JP5383447B2 - Wiring board, probe card and electronic device - Google Patents

Wiring board, probe card and electronic device Download PDF

Info

Publication number
JP5383447B2
JP5383447B2 JP2009264489A JP2009264489A JP5383447B2 JP 5383447 B2 JP5383447 B2 JP 5383447B2 JP 2009264489 A JP2009264489 A JP 2009264489A JP 2009264489 A JP2009264489 A JP 2009264489A JP 5383447 B2 JP5383447 B2 JP 5383447B2
Authority
JP
Japan
Prior art keywords
wiring
layer
insulating resin
ceramic
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009264489A
Other languages
Japanese (ja)
Other versions
JP2011108959A (en
Inventor
徹 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009264489A priority Critical patent/JP5383447B2/en
Publication of JP2011108959A publication Critical patent/JP2011108959A/en
Application granted granted Critical
Publication of JP5383447B2 publication Critical patent/JP5383447B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、プローブカードに用いられる配線基板または半導体素子や圧電振動子等の電子部品を搭載するための配線基板、ならびにそのような配線基板を用いたプローブカードおよび電子装置に関する。   The present invention relates to a wiring board used for a probe card or a wiring board for mounting electronic components such as a semiconductor element and a piezoelectric vibrator, and a probe card and an electronic apparatus using such a wiring board.

近年、電子機器の小型化・高密度化に伴い、電子機器に使用される半導体素子のみならず、その半導体素子が搭載されるパッケージや配線基板、あるいは半導体素子の電気的な検査をするためのプローブカードに対しても配線の微細化および高密度化が要求されている。また、半導体素子の高速化に伴って高周波信号の伝送が可能であることも求められ、プローブカードに対しては平坦性に優れていることも求められている。   In recent years, along with miniaturization and higher density of electronic devices, not only semiconductor elements used in electronic devices but also packages, wiring boards on which the semiconductor elements are mounted, or electrical inspection of semiconductor elements The probe card is also required to have finer wiring and higher density. In addition, it is required that a high-frequency signal can be transmitted with an increase in the speed of the semiconductor element, and the probe card is also required to have excellent flatness.

このような要求に応えるものとして、微細なパターン加工が可能であり、平坦性および高周波特性に優れた基板として、研磨加工により平坦化したセラミック基板上に薄膜導体と薄膜の絶縁層とを複数層形成した多層配線部を形成した、いわゆるビルドアップ方式の配線基板がある(例えば、特許文献1を参照。)。図5は、従来の配線基板の一例を示す断面図である。従来の配線基板は、複数のセラミック絶縁層18と内部配線15および外部配線17とから成るセラミック配線基板11の上面に、絶縁樹脂層12と配線層13とを交互に積層して形成されていた。そして、絶縁樹脂層12の上下に位置する配線層13同士、および最下層の絶縁樹脂層12の上面の配線層13とセラミック配線基板11の上面の接続配線16とは、ビア導体14により接続されているものであった。   In order to meet such demands, fine patterning is possible, and as a substrate excellent in flatness and high frequency characteristics, a thin film conductor and a thin insulating layer are formed on a ceramic substrate flattened by polishing. There is a so-called build-up type wiring board in which the formed multilayer wiring portion is formed (see, for example, Patent Document 1). FIG. 5 is a cross-sectional view showing an example of a conventional wiring board. A conventional wiring board is formed by alternately laminating insulating resin layers 12 and wiring layers 13 on the upper surface of a ceramic wiring board 11 composed of a plurality of ceramic insulating layers 18, internal wirings 15 and external wirings 17. . The wiring layers 13 positioned above and below the insulating resin layer 12, and the wiring layer 13 on the upper surface of the lowermost insulating resin layer 12 and the connection wiring 16 on the upper surface of the ceramic wiring substrate 11 are connected by the via conductors 14. It was what was.

特開2004−214586号公報Japanese Patent Laid-Open No. 2004-214586

しかしながら、従来の配線基板は、最下層の絶縁樹脂層12に形成されたビア導体14とセラミック配線基板11の上面に形成された接続配線16との接続部に、絶縁樹脂層12の熱膨張係数とセラミック配線基板11の熱膨張係数との差による熱応力が加わりやすいものであった。これは、セラミック配線基板11の上面の接続配線16はその厚みが薄く、絶縁樹脂層12に比べてセラミック配線基板11のセラミック絶縁層18との接合強度が高いので、接続配線16の熱膨張の挙動はセラミック配線基板11(セラミック絶縁層18)の挙動に準じた挙動を示し、ビア導体14は絶縁樹脂層12内に形成されているので絶縁樹脂層12の挙動に準じた挙動を示すことから、最下層の絶縁樹脂層12に形成されたビア導体14とセラミック配線基板11の上面に形成された接続配線16との接合界面の位置が、セラミック配線基板11と絶縁樹脂層12との間の熱応力が大きくなる位置と実質的に一致するからである。   However, the conventional wiring board has a thermal expansion coefficient of the insulating resin layer 12 at the connection portion between the via conductor 14 formed in the lowermost insulating resin layer 12 and the connection wiring 16 formed on the upper surface of the ceramic wiring board 11. And thermal stress due to the difference between the thermal expansion coefficients of the ceramic wiring substrate 11 were easily applied. This is because the connection wiring 16 on the upper surface of the ceramic wiring board 11 is thin, and the bonding strength between the ceramic wiring board 11 and the ceramic insulating layer 18 is higher than that of the insulating resin layer 12. Because the behavior shows behavior according to the behavior of the ceramic wiring board 11 (ceramic insulating layer 18), and the via conductor 14 is formed in the insulating resin layer 12, it shows behavior according to the behavior of the insulating resin layer 12. The position of the bonding interface between the via conductor 14 formed in the lowermost insulating resin layer 12 and the connection wiring 16 formed on the upper surface of the ceramic wiring board 11 is between the ceramic wiring board 11 and the insulating resin layer 12. This is because it substantially coincides with the position where the thermal stress increases.

このような従来の配線基板に対して、配線層13のさらなる微細化が求められており、ビア導体14のセラミック配線基板11の上面の接続配線16との接続部が、例えば直径50μm程度以下の小さいものとなると、ビア導体14とセラミック配線基板11の上面に形成された接続配線16との接続強度が小さくなる。また、半導体素子の電気的な検査はウエハ上の多数の半導体素子をプローブカードにて同時に行なうが、半導体素子のコスト低下のためにこのウエハの大きさが大きくなると、プローブカードも大型にする必要があり、プローブカード用の配線基板が大型になると、ビア導体14のセラミック配線基板11の上面の接続配線16との接続部に加わる熱応力も大きいものとなる。そのため、最下層の絶縁樹脂層12のビア導体14とセラミック配線基板11の上面の接続配線16との間で断線しやすくなるという問題があった。   With respect to such a conventional wiring board, further miniaturization of the wiring layer 13 is required, and the connection portion between the via conductor 14 and the connection wiring 16 on the upper surface of the ceramic wiring board 11 has a diameter of, for example, about 50 μm or less. If it is small, the connection strength between the via conductor 14 and the connection wiring 16 formed on the upper surface of the ceramic wiring substrate 11 decreases. In addition, the electrical inspection of semiconductor elements is performed simultaneously with a probe card on a large number of semiconductor elements on the wafer. However, if the size of the wafer increases to reduce the cost of the semiconductor elements, the probe card must also be enlarged. When the wiring board for the probe card becomes large, the thermal stress applied to the connection portion with the connection wiring 16 on the upper surface of the ceramic wiring board 11 of the via conductor 14 becomes large. Therefore, there has been a problem that it is easy to break between the via conductor 14 of the lowermost insulating resin layer 12 and the connection wiring 16 on the upper surface of the ceramic wiring substrate 11.

本発明は上記課題を解決するためになされたものであり、その目的は、絶縁樹脂層とセラミック配線基板との間に熱応力が発生したとしても、配線が破断してしまう可能性がより低減された、プローブカードとして用いるのにも好適な、高信頼性の配線基板を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to further reduce the possibility of the wiring breaking even if a thermal stress is generated between the insulating resin layer and the ceramic wiring board. Another object of the present invention is to provide a highly reliable wiring board suitable for use as a probe card.

本発明の配線基板は、セラミック配線基板の上面に複数の絶縁樹脂層と複数の配線層とが交互に積層され、前記絶縁樹脂層の上下に位置する前記配線層間がビア導体で接続されており、最下層の前記絶縁樹脂層に形成された複数の前記ビア導体と、前記セラミック配線基板の内部から上面に引き出された複数の内部配線の端部とが電気的に接続されている配線基板であって、前記セラミック配線基板の上面に、前記複数のビア導体と前記複数の内部配線の端部との複数の接続部のそれぞれを離間して取り囲むように、前記絶縁樹脂層の絶縁樹脂よりもヤング率の大きい材料から成る複数の凸部が形成されており、前記複数の凸部は、互いに独立して設けられていることを特徴とするものである。 In the wiring board of the present invention, a plurality of insulating resin layers and a plurality of wiring layers are alternately laminated on the upper surface of the ceramic wiring board, and the wiring layers positioned above and below the insulating resin layer are connected by via conductors. A wiring board in which the plurality of via conductors formed in the lowermost insulating resin layer and the ends of the plurality of internal wirings led out from the inside of the ceramic wiring board are electrically connected The insulating resin layer has an upper surface than the insulating resin so as to surround and surround each of the plurality of connection portions between the plurality of via conductors and the ends of the plurality of internal wirings on the upper surface of the ceramic wiring board. A plurality of convex portions made of a material having a high Young's modulus are formed, and the plurality of convex portions are provided independently of each other .

本発明のプローブカードは、上記構成の本発明の配線基板と、最上層の前記絶縁樹脂層の上面の前記配線層に接続されたプローブピンとを具備することを特徴とするものである。   A probe card according to the present invention includes the wiring board according to the present invention having the above-described configuration, and probe pins connected to the wiring layer on the upper surface of the uppermost insulating resin layer.

本発明の電子装置は、上記構成の本発明の配線基板と、最上層の前記絶縁樹脂層の上面の前記配線層に接続された電子部品とを具備することを特徴とするものである。   An electronic device according to the present invention includes the wiring board according to the present invention having the above-described configuration and an electronic component connected to the wiring layer on the upper surface of the uppermost insulating resin layer.

本発明の配線基板によれば、セラミック配線基板の上面に、ビア導体と内部配線の端部との接続部を離間して取り囲むように、前記絶縁樹脂層の絶縁樹脂よりもヤング率の大きい材料から成る凸部が形成されていることから、最下層の絶縁樹脂層に形成されたビア導体と内部配線の端部との接続部は凸部の内側に位置するとともに、その周囲の絶縁樹脂は絶縁樹脂よりヤング率の大きい材料から成る凸部によって固定されて変形し難いので、ビア導体と内部配線の端部との接続部に加わる熱応力が低減され、断線してしまう可能性が低減された高信頼性の配線基板となる。   According to the wiring board of the present invention, a material having a higher Young's modulus than the insulating resin of the insulating resin layer so as to surround and surround the connection portion between the via conductor and the end of the internal wiring on the upper surface of the ceramic wiring board. Since the projecting portion is formed, the connecting portion between the via conductor formed in the lowermost insulating resin layer and the end of the internal wiring is located inside the projecting portion, and the surrounding insulating resin is Since it is fixed by the convex part made of a material having a higher Young's modulus than the insulating resin and hardly deforms, the thermal stress applied to the connection part between the via conductor and the end part of the internal wiring is reduced, and the possibility of disconnection is reduced. It becomes a highly reliable wiring board.

本発明のプローブカードによれば、上記構成の本発明の配線基板と、最上層の絶縁樹脂層の上面の配線層に接続されたプローブピンとを具備することから、大型のウエハに対応する大型のものであっても、温度変化によって配線が破断してしまう可能性が低減された高信頼性のプローブカードとなる。   According to the probe card of the present invention, since the wiring board of the present invention having the above-described configuration and the probe pin connected to the wiring layer on the upper surface of the uppermost insulating resin layer are provided, a large-sized wafer corresponding to a large-sized wafer is provided. Even if it is a thing, it becomes a highly reliable probe card by which possibility that a wiring will fracture | rupture by a temperature change was reduced.

本発明の電子装置によれば、上記構成の本発明の配線基板と、最上層の絶縁樹脂層の上面の配線層に接続された電子部品とを具備することから、温度変化により配線が破断してしまう可能性が小さいので、微細配線の半導体素子のようなより小型の電子部品が搭載された、より小型で高信頼性の電子装置となる。   According to the electronic device of the present invention, since the wiring board of the present invention having the above configuration and the electronic component connected to the wiring layer on the upper surface of the uppermost insulating resin layer are provided, the wiring breaks due to a temperature change. Therefore, a smaller and more reliable electronic device on which a smaller electronic component such as a semiconductor element with fine wiring is mounted is obtained.

(a)は本発明の配線基板の実施の形態の一例を示す断面図であり、(b)は本発明の配線基板におけるセラミック配線基板の上面図である。(A) is sectional drawing which shows an example of embodiment of the wiring board of this invention, (b) is a top view of the ceramic wiring board in the wiring board of this invention. (a)は図1(b)のA部を拡大して示す上面図であり、(b)〜(d)は、それぞれ本発明の配線基板の実施の形態の他の例の要部を拡大して示す上面図である。(A) is the top view which expands and shows the A section of FIG.1 (b), (b)-(d) expands the principal part of the other example of embodiment of the wiring board of this invention, respectively. FIG. (a)および(b)は、それぞれ本発明の配線基板の要部を拡大して示す断面図である。(A) And (b) is sectional drawing which expands and shows the principal part of the wiring board of this invention, respectively. 本発明の配線基板の他の例の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the other example of the wiring board of this invention. 従来の配線基板の一例を示す断面図である。It is sectional drawing which shows an example of the conventional wiring board.

本発明の配線基板ならびにそれを用いたプローブカードおよび電子装置について、添付の図面を参照しつつ詳細に説明する。図1に示す例では、配線基板の最表面の配線層3は16個で、絶縁樹脂層2は3層、セラミック配線基板1のセラミック絶縁層8も3層と簡略化した例を示している。配線基板に搭載する電子部品の端子の数や、プローブカードで検査するウエハ上の半導体素子の数および半導体素子の端子の数、およびそれらの配置に応じて、絶縁樹脂層2、配線層3、ビア導体4、内部配線5および外部配線7の大きさや配置が設定される。   A wiring board of the present invention and a probe card and an electronic device using the same will be described in detail with reference to the accompanying drawings. The example shown in FIG. 1 shows a simplified example in which the wiring layer 3 on the outermost surface of the wiring board is 16 pieces, the insulating resin layer 2 is 3 layers, and the ceramic insulating layer 8 of the ceramic wiring board 1 is also 3 layers. . Depending on the number of terminals of electronic components mounted on the wiring board, the number of semiconductor elements on the wafer to be inspected by the probe card, the number of terminals of the semiconductor elements, and their arrangement, the insulating resin layer 2, the wiring layer 3, The size and arrangement of the via conductor 4, the internal wiring 5 and the external wiring 7 are set.

また、図1〜図4に示す例では、最下層の絶縁樹脂層2に形成されたビア導体4と内部配線5の端部とは、接続配線6を介して接続されている。内部配線5とセラミック絶縁層8とが同時焼成により形成されるセラミック配線基板1は、その作製工程において、焼結収縮ばらつきによる寸法ばらつきが発生することから、セラミック配線基板1上に露出する内部配線5の位置も同様にばらつきがある。このばらつきを吸収してビア導体4と内部配線5との接続を確実なものとするためには、接続配線6を介して接続するのが好ましい。最下層の絶縁樹脂層2のビア導体4を、位置のばらつきがある内部配線5に合わせて形成する場合であれば、接続配線6を介さずにビア導体4と内部配線5の端部とを直接接続してもよい。この場合は、最下層の絶縁樹脂層2の上面の配線層3の形状をセラミック配線基板1の内部配線5の位置ばらつきに応じた形状にするか、位置ばらつきを吸収できるように大きいものとする必要があり、生産性が低下したり、微細な配線の引き回しが困難となったりする可能性があるので、接続配線6を設けるのが好ましい。   In the example shown in FIGS. 1 to 4, the via conductor 4 formed in the lowermost insulating resin layer 2 and the end of the internal wiring 5 are connected via a connection wiring 6. The ceramic wiring substrate 1 in which the internal wiring 5 and the ceramic insulating layer 8 are formed by simultaneous firing causes dimensional variations due to sintering shrinkage variations in the manufacturing process, so that the internal wiring exposed on the ceramic wiring substrate 1 is exposed. Similarly, the position 5 also varies. In order to absorb this variation and to ensure the connection between the via conductor 4 and the internal wiring 5, it is preferable to connect via the connection wiring 6. If the via conductor 4 of the lowermost insulating resin layer 2 is formed in conformity with the internal wiring 5 having a variation in position, the via conductor 4 and the end of the internal wiring 5 are not connected via the connection wiring 6. You may connect directly. In this case, the shape of the wiring layer 3 on the upper surface of the lowermost insulating resin layer 2 is made to be a shape corresponding to the positional variation of the internal wiring 5 of the ceramic wiring substrate 1 or large so as to absorb the positional variation. It is necessary to provide the connection wiring 6 because there is a possibility that productivity may be reduced and it may be difficult to route fine wiring.

セラミック配線基板1は、セラミックスから成る絶縁基体と、その表面に形成された外部配線7および内部に形成された内部配線5とを有する。絶縁基体を図1に示す例のように複数のセラミック絶縁層8で構成して内部配線5を展開することで、セラミック配線基板1の下面の外部配線7の間隔を大きくすることができる。絶縁樹脂層2の上面の配線層3の間隔が大きい場合は、内部配線5を展開する必要がないので、セラミック絶縁層8は1層で構成してもよい。セラミック絶縁層8が1層である場合は、絶縁基体を作製した後に絶縁基体に内部配線5を形成することができるので、内部配線5の位置精度が高いものとなり、接続配線6を小さくしたり、省いたりすることができる。   The ceramic wiring board 1 has an insulating base made of ceramics, an external wiring 7 formed on the surface thereof, and an internal wiring 5 formed inside. As shown in the example shown in FIG. 1, the insulating base is composed of a plurality of ceramic insulating layers 8 and the internal wiring 5 is developed, whereby the interval between the external wirings 7 on the lower surface of the ceramic wiring substrate 1 can be increased. When the interval between the wiring layers 3 on the upper surface of the insulating resin layer 2 is large, it is not necessary to develop the internal wiring 5, so the ceramic insulating layer 8 may be composed of one layer. When the ceramic insulating layer 8 is a single layer, the internal wiring 5 can be formed on the insulating base after the insulating base is manufactured. Therefore, the positional accuracy of the internal wiring 5 is high, and the connection wiring 6 can be made small. Can be omitted.

セラミック配線基板1の下面の外部配線7は、配線基板を外部回路に接続するためのものである。内部配線5は、セラミック配線基板1の下面の外部配線7と絶縁樹脂層2に形成された配線層3等とを電気的に接続するためのものであり、セラミック絶縁層8・8間の内部配線層と、セラミック絶縁層8を貫通して内部配線層間や内部配線層と外部配線7とを接続する内部貫通導体とがある。図1〜図4に示す例において、最下層の絶縁樹脂層2に形成されたビア導体4が電気的に接続される内部配線5の端部とは、最上層のセラミック絶縁層8に形成された内部貫通導体の上端部となる。   The external wiring 7 on the lower surface of the ceramic wiring board 1 is for connecting the wiring board to an external circuit. The internal wiring 5 is for electrically connecting the external wiring 7 on the lower surface of the ceramic wiring substrate 1 to the wiring layer 3 formed on the insulating resin layer 2 and the like. There are a wiring layer and an internal through conductor that passes through the ceramic insulating layer 8 and connects the internal wiring layer and the internal wiring layer and the external wiring 7. In the example shown in FIGS. 1 to 4, the end portion of the internal wiring 5 to which the via conductor 4 formed in the lowermost insulating resin layer 2 is electrically connected is formed in the uppermost ceramic insulating layer 8. It becomes the upper end of the inner through conductor.

セラミック配線基板1のセラミック絶縁層8は、酸化アルミニウム(アルミナ:Al)質焼結体,窒化アルミニウム(AlN)質焼結体,炭化珪素(SiC)質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックスから成るものである。プローブカードに用いる場合は、熱膨張係数がウエハを形成するシリコン(Si)に近い、酸化アルミニウム(Al)質焼結体またはガラスセラミックスが好ましい。セラミック絶縁層8がこのようなセラミックスから成るものであると、配線基板上にプローブ端子を形成する際に、プローブ端子やプローブ端子の接合部に加わる、プローブ端子とともに接合されるウエハと配線基板との熱膨張差による熱応力が比較的小さなものとなるので好ましい。また、プローブカードとして用いた場合に、半導体素子の電気特性の測定時における熱負荷に対する熱変形を有効に防止でき、さらに、高い熱伝達性により内部に熱を滞留させることがない。 The ceramic insulating layer 8 of the ceramic wiring board 1 includes an aluminum oxide (alumina: Al 2 O 3 ) sintered body, an aluminum nitride (AlN) sintered body, a silicon carbide (SiC) sintered body, and a mullite sintered body. Body, made of ceramics such as glass ceramics. When used for a probe card, an aluminum oxide (Al 2 O 3 ) sintered material or glass ceramics having a thermal expansion coefficient close to that of silicon (Si) forming a wafer is preferable. When the ceramic insulating layer 8 is made of such ceramics, when the probe terminal is formed on the wiring board, the wafer and the wiring board joined together with the probe terminal, which are added to the probe terminal and the joint portion of the probe terminal, This is preferable because the thermal stress due to the difference in thermal expansion is relatively small. Further, when used as a probe card, it is possible to effectively prevent thermal deformation with respect to a thermal load during measurement of electrical characteristics of a semiconductor element, and furthermore, heat is not retained inside due to high heat transferability.

セラミック配線基板1の内部配線5および外部配線7は、セラミック絶縁層8と同時焼成により形成される、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金,銀(Ag),銅(Cu),金(Au),銀−パラジウム(Pd)合金等の金属を主成分とするメタライズから成るものである。   The internal wiring 5 and the external wiring 7 of the ceramic wiring substrate 1 are formed by simultaneous firing with the ceramic insulating layer 8, tungsten (W), molybdenum (Mo), molybdenum-manganese (Mo—Mn) alloy, silver (Ag) , Copper (Cu), gold (Au), silver-palladium (Pd) alloy, etc.

このようなセラミック配線基板1は、以下の方法により製作される。例えば、セラミック絶縁層8が酸化アルミニウム質焼結体で形成される場合には、まず、酸化アルミニウム(アルミナ),酸化珪素,酸化マグネシウムおよび酸化カルシウムの原材料粉末に適当な有機バインダおよび溶媒を添加混合して泥漿状となすとともに、これをドクターブレード法等によってシート状に成形し、セラミック絶縁層8となる複数のセラミックグリーンシートを作製する。   Such a ceramic wiring substrate 1 is manufactured by the following method. For example, when the ceramic insulating layer 8 is formed of an aluminum oxide sintered body, first, an appropriate organic binder and solvent are added to and mixed with raw material powders of aluminum oxide (alumina), silicon oxide, magnesium oxide and calcium oxide. Then, the slurry is formed into a mud shape and formed into a sheet shape by a doctor blade method or the like to produce a plurality of ceramic green sheets to be the ceramic insulating layer 8.

次に、セラミックグリーンシートの内部貫通導体が形成される所定位置に金型等を用いた打ち抜き加工やレーザ加工によって貫通孔を形成するとともに、貫通孔に導体ペーストを充填する。また、スクリーン印刷法等によってセラミックグリーンシートの所定位置に内部配線層あるいは外部配線7となる導体ペースト層を10〜20μmの厚みに形成する。導体ペーストは、タングステン(W),モリブデン(Mo),モリブデン−マンガン(Mo−Mn)合金等の融点の高い金属粉末と適当な樹脂バインダおよび溶剤とを混練することにより作製される。   Next, through holes are formed by punching or laser processing using a mold or the like at a predetermined position where the internal through conductors of the ceramic green sheet are formed, and the through holes are filled with a conductive paste. Further, a conductive paste layer to be the internal wiring layer or the external wiring 7 is formed to a thickness of 10 to 20 μm at a predetermined position of the ceramic green sheet by a screen printing method or the like. The conductive paste is produced by kneading a metal powder having a high melting point such as tungsten (W), molybdenum (Mo), molybdenum-manganese (Mo-Mn) alloy, an appropriate resin binder, and a solvent.

最後に、これらセラミックグリーンシートを重ね合わせて圧着して積層体を作製し、この積層体を1500℃〜1600℃程度の高温で焼成することによってセラミック配線基板1が作製される。セラミック配線基板1の外部配線7の表面には、腐食防止や外部回路との接続性のために、厚さ1〜10μm程度のニッケルめっき層および厚さ0.1〜3μm程度の金めっき層を順次形成するとよい。内部配線5のセラミック配線基板1の上面に露出する部分(内部配線5の端部)にも同様のめっき層を形成してもよい。   Finally, these ceramic green sheets are superposed and pressure-bonded to produce a laminate, and the laminate is fired at a high temperature of about 1500 ° C. to 1600 ° C., thereby producing the ceramic wiring substrate 1. A nickel plating layer with a thickness of about 1 to 10 μm and a gold plating layer with a thickness of about 0.1 to 3 μm are sequentially formed on the surface of the external wiring 7 of the ceramic wiring board 1 in order to prevent corrosion and connect with external circuits. Good. A similar plating layer may be formed on a portion of the internal wiring 5 exposed on the upper surface of the ceramic wiring substrate 1 (an end portion of the internal wiring 5).

セラミック絶縁層8がガラスセラミックスから成る場合であれば、セラミックグリーンシートが焼結する温度では焼結収縮しない、アルミナ等を主成分とする拘束グリーンシートを積層体の両面に積層して焼成すると、拘束グリーンシートによりセラミックグリーンシートは積層面方向の焼結収縮が抑えられ、平面方向の収縮が小さく収縮ばらつきや寸法精度が良好なセラミック配線基板1が得られるので好ましい。   If the ceramic insulating layer 8 is made of glass ceramics, when the ceramic green sheet is sintered at a temperature at which the ceramic green sheet is sintered, the constrained green sheet mainly composed of alumina or the like is laminated on both sides of the laminate and fired. The constrained green sheet is preferable because the ceramic green sheet suppresses the sintering shrinkage in the direction of the laminated surface, and the ceramic wiring substrate 1 having a small shrinkage in the plane direction and good shrinkage variation and good dimensional accuracy can be obtained.

セラミック絶縁層8が1層である場合は、まず、セラミックグリーンシートを積層して所定の厚みとなるような積層体を作製するか、原料粉末に適当な有機バインダを加えたものを金型プレスで成型体を作製して、焼成することで絶縁基体を作製する。次に、絶縁基体にブラスト加工やレーザ加工によって内部配線5(内部貫通導体)を形成するための貫通孔を形成する。ブラスト加工は、貫通孔を形成する部分に開口を有する、例えばレジスト膜等からなるマスクを絶縁基体の上面に配置しておいて行なう。貫通孔の形成前または形成後に、絶縁基体の少なくとも上面を研磨によって平坦に研磨しておくと、配線基板の平坦性を高めることができるとともに、絶縁樹脂層2を良好に形成することができるので好ましい。貫通孔を有する絶縁基体は、セラミックグリーンシートやセラミックグリーンシートの積層体に打ち抜き加工やレーザ加工によって貫通孔を形成しておく、あるいは粉末のプレス成型の際に金型によって貫通孔を形成しておくことでも作製することができる。この場合は、焼成収縮による内部配線5を形成するための貫通孔の位置ずれが発生するので、上記のように、絶縁基体を作製した後に貫通孔を形成するのがより好ましい。そして、内部配線5となる導体ペーストを印刷法等の埋め込み方法によって貫通孔を充填し、スクリーン印刷法等によって外部配線7となる導体ペースト層を形成して、熱処理することによって、メタライズから成る内部配線5および外部配線7を有するセラミック配線基板1が作製される。この場合も外部配線7の表面および内部配線5の端部にも上記と同様のめっき層を形成してもよい。   When the ceramic insulating layer 8 is a single layer, first, a ceramic green sheet is laminated to produce a laminated body having a predetermined thickness, or a raw material powder added with an appropriate organic binder is die pressed. Then, a molded body is prepared and fired to produce an insulating substrate. Next, a through hole for forming the internal wiring 5 (internal through conductor) is formed in the insulating substrate by blasting or laser processing. The blasting is performed by placing a mask made of, for example, a resist film or the like having an opening in a portion where the through hole is formed on the upper surface of the insulating substrate. If at least the upper surface of the insulating substrate is polished flatly by polishing before or after the formation of the through-hole, the flatness of the wiring substrate can be improved and the insulating resin layer 2 can be satisfactorily formed. preferable. An insulating substrate having a through-hole is formed by punching or laser processing a ceramic green sheet or a laminate of ceramic green sheets, or by forming a through-hole with a mold during powder press molding. Can also be produced. In this case, since the positional displacement of the through hole for forming the internal wiring 5 due to firing shrinkage occurs, it is more preferable to form the through hole after the insulating base is manufactured as described above. Then, the conductive paste to be the internal wiring 5 is filled with the through holes by a filling method such as a printing method, and a conductive paste layer to be the external wiring 7 is formed by a screen printing method or the like, and heat treatment is performed, so The ceramic wiring substrate 1 having the wiring 5 and the external wiring 7 is produced. Also in this case, a plating layer similar to the above may be formed on the surface of the external wiring 7 and the end of the internal wiring 5.

セラミック配線基板1の上面の接続配線6は、外部配線7と同様に、セラミック絶縁層8と同時焼成で形成してもよいし、接続配線6を有さないセラミック配線基板1を作製して、その上面を研磨するなどして平坦にした後に、いわゆるモリマン法等のメタライズ法で形成してもよい。あるいは、接続配線6を有さないセラミック配線基板1を作製して、蒸着法,スパッタリング法,イオンプレーティング法等の薄膜形成法によって形成してもよい。外部配線7も同様に、薄膜形成法によって形成してもよい。メタライズ法の場合は、例えば、スクリーン印刷法等によってセラミック配線基板1の所定位置にタングステン(W),モリブデン(Mo),マンガン(Mn)等の金属粉末と適当な樹脂バインダおよび溶剤とを含む導体ペーストを塗布し、1400℃以上の高温で熱処理することによって作製される。接続配線6の表面にも上記と同様のめっき層を形成してもよい。薄膜形成法の場合は、セラミック配線基板1の上面の全面に、0.1μm〜3μm程度の厚みの、例えばクロム(Cr)−Cu合金層やチタン(Ti)−Cu合金層から成る下地導体層を形成し、その上に接続配線6のパターン形状の開口を有するレジスト膜を形成して、このレジスト膜をマスクとしてめっき等で銅や金等の金属から成る、2μm〜10μm程度の厚みの主導体層を形成する。そして、レジスト膜を剥離除去し、下地導体層の露出した部分をエッチングにより除去することで接続配線6が形成される。その表面には、さらに、めっき法によりニッケルや金のめっき層を形成するとよい。   The connection wiring 6 on the upper surface of the ceramic wiring board 1 may be formed by simultaneous firing with the ceramic insulating layer 8 as with the external wiring 7, or the ceramic wiring board 1 without the connection wiring 6 is produced, After the upper surface is flattened by polishing or the like, it may be formed by a metallizing method such as a so-called Moriman method. Alternatively, the ceramic wiring substrate 1 without the connection wiring 6 may be produced and formed by a thin film forming method such as a vapor deposition method, a sputtering method, or an ion plating method. Similarly, the external wiring 7 may be formed by a thin film forming method. In the case of the metallization method, for example, a conductor containing metal powder such as tungsten (W), molybdenum (Mo), manganese (Mn), and a suitable resin binder and solvent at a predetermined position of the ceramic wiring substrate 1 by screen printing or the like. It is produced by applying a paste and heat-treating it at a high temperature of 1400 ° C or higher. A plating layer similar to the above may also be formed on the surface of the connection wiring 6. In the case of the thin film forming method, a base conductor layer made of, for example, a chromium (Cr) -Cu alloy layer or a titanium (Ti) -Cu alloy layer having a thickness of about 0.1 μm to 3 μm is formed on the entire upper surface of the ceramic wiring substrate 1. A resist film having a pattern-shaped opening of the connection wiring 6 is formed thereon, and a main conductor having a thickness of about 2 μm to 10 μm made of a metal such as copper or gold by plating or the like using the resist film as a mask. Form a layer. Then, the connection film 6 is formed by peeling off the resist film and removing the exposed portion of the underlying conductor layer by etching. A nickel or gold plating layer may be further formed on the surface by plating.

セラミック配線基板1の上面の凸部9は、ビア導体4と内部配線5の端部との接続部を取り囲むように形成されており、図1に示す例のように、複数の接続部のそれぞれを離間して取り囲むように、絶縁樹脂層2の絶縁樹脂よりもヤング率の大きい材料で複数形成されているものである。   The convex portion 9 on the upper surface of the ceramic wiring substrate 1 is formed so as to surround the connection portion between the via conductor 4 and the end portion of the internal wiring 5, and each of the plurality of connection portions is provided as in the example shown in FIG. Are formed of a material having a Young's modulus larger than that of the insulating resin of the insulating resin layer 2 so as to surround and be surrounded.

凸部9の平面視の形状は、図2(a)に示す例のように、1つの環状の凸部9であってもよいし、図2(b)に示す例のように、環状の凸部9が複数に分断されたようなもの、あるいは図2(c)に示す例のように、複数の凸部9が接続部を取り囲むように配置されたものであってもよい。図2(a)に示す例のように、凸部9が環状の突起状のものであると、内部配線5と接続されているビア導体4の周囲の絶縁樹脂2は、その周囲の全てにおいて凸部9によって固定されることとなり、平面方向におけるどの方向からの応力に対しても、凸部9によって固定されて変形し難いものとなるので好ましい。この場合の凸部9の平面視の形状は、特に制限はなく、円形や楕円形あるいは長円形のような円形状や四角形や六角形のような多角形状の環状であってもよいが、通常は、横断面形状が円形であるビア導体4に対して接続部を中心とする円形であると、接続部から凸部9までの距離が等しくなるので、特定の方向からの応力に対して絶縁樹脂が変形しやすくなることがなく、また、角部がないことによって絶縁樹脂を凸部9の内側に充填しやすいことから、図2(a)に示す例のような接続部を取り囲むような円形に凸部9を形成したものであるのが好ましい。   The shape of the convex portion 9 in plan view may be one annular convex portion 9 as in the example shown in FIG. 2A, or the annular shape as in the example shown in FIG. The convex part 9 may be divided into a plurality of parts, or the convex part 9 may be disposed so as to surround the connecting part as in the example shown in FIG. As shown in the example shown in FIG. 2A, when the convex portion 9 is a ring-shaped protrusion, the insulating resin 2 around the via conductor 4 connected to the internal wiring 5 is all around the periphery. It will be fixed by the convex part 9, and it is preferable because it is fixed by the convex part 9 and hardly deforms against stress from any direction in the plane direction. In this case, the shape of the projection 9 in plan view is not particularly limited, and may be a circular shape such as a circle, an ellipse or an oval, or a polygonal ring such as a rectangle or a hexagon. Since the distance from the connecting portion to the convex portion 9 is equal to the via conductor 4 having a circular cross-sectional shape, the distance from the connecting portion to the convex portion 9 is equal, so that it is insulated against stress from a specific direction. Since the resin does not easily deform, and since there is no corner portion, it is easy to fill the insulating resin with the insulating resin, so that the connection portion as in the example shown in FIG. It is preferable that the convex portion 9 is formed in a circular shape.

図2(b)や図2(c)に示す例のように、複数の凸部9で接続部を取り囲むような場合は、複数の凸部9の間隔は小さいほうが好ましく、各凸部9の中心と接続部の中心とを結ぶ線に沿った方向の長さ(図2(c)に示す例であれば凸部9の直径)よりも小さいのが好ましい。また、複数の凸部9は、その形状は特に制限はないが、それぞれの形状は同じで大きさが等しく、接続部の中心を中心とする円周上に等間隔に配置することで、特定の方向からの応力に対して絶縁樹脂が変形しやすくなることがない。このとき、例えば図1に示す例のような配線基板の場合は、それぞれの接続部から配線基板の中心に向かう方向の熱応力が大きくなるので、それぞれの接続部と配線基板の中心とを通る直線上に凸部9を配置するのが好ましい。また、凸部9が複数からなる場合の各凸部9の平面視の形状(横断面形状)は、特に制限はなく、図2(c)に示す例のような円形や楕円形あるいは長円形のような円形状以外にも、四角形や六角形のような多角形状であってもよい。上記と同様に凸部9の内側への絶縁樹脂の充填性を考慮すると角部の角度が大きい(90度以上)形状、あるいは角部がない形状であるのが好ましい。   As shown in FIG. 2B and FIG. 2C, when the connection portions are surrounded by the plurality of projections 9, the interval between the plurality of projections 9 is preferably small. The length is preferably smaller than the length in the direction along the line connecting the center and the center of the connecting portion (in the example shown in FIG. 2C, the diameter of the convex portion 9). In addition, the shape of the plurality of convex portions 9 is not particularly limited, but each shape is the same and the size is the same, and it is specified by arranging them at equal intervals on the circumference centering on the center of the connecting portion. The insulating resin is not easily deformed by the stress from the direction. In this case, for example, in the case of the wiring board as shown in FIG. 1, the thermal stress in the direction from the respective connection portions toward the center of the wiring substrate is increased, so that each of the connection portions passes through the center of the wiring substrate. It is preferable to arrange the convex portions 9 on a straight line. Further, the shape (transverse cross-sectional shape) in plan view of each convex portion 9 when the convex portion 9 is composed of a plurality is not particularly limited, and is circular, elliptical, or oval as in the example shown in FIG. In addition to the circular shape, a polygonal shape such as a square or a hexagon may be used. In the same manner as described above, in consideration of the filling property of the insulating resin inside the convex portion 9, it is preferable that the corner has a large angle (90 ° or more) or has no corner.

また、複数の凸部9を配置する場合は、図2(d)に示す例のように、接続部を凹部9の外側で2重に取り囲み、接続部の中心からの放射線上に凸部9が位置するように配置すると、環状の凸部9と同様に、接続部の周囲をもれなく取り囲むことができるので好ましい。図2(d)に示す例では、外側の凸部9の形状と内側の凸部9の形状とは異なっているが、例えば、外側の凸部9の形状も内側と同様に環状の突起を複数に分断したような形状にするなど、内側と外側とで凸部9の形状が同じであってもよい。   When a plurality of convex portions 9 are arranged, as shown in the example shown in FIG. 2D, the connecting portion is double-wrapped outside the concave portion 9, and the convex portion 9 is projected on the radiation from the center of the connecting portion. If it arrange | positions so that may be located, since the circumference | surroundings of a connection part can be surrounded without exception like the cyclic | annular convex part 9, it is preferable. In the example shown in FIG. 2D, the shape of the outer convex portion 9 and the shape of the inner convex portion 9 are different. For example, the outer convex portion 9 has an annular protrusion similar to the inner shape. The shape of the convex portion 9 may be the same on the inner side and the outer side, such as a shape that is divided into a plurality of parts.

凸部9は、絶縁樹脂層2の絶縁樹脂の種類にもよるが、その幅(図3(a)に示すW)、具体的には、図2(a)および(b)に示す例のような環状の凸部9の場合の凸部9の、内側(接続部側)の面から凸部9の外側の面までの距離、あるいは図2(c)に示す例のような場合の凸部9の直径は、0.1mm〜0.5mm程度で、高さ(図3(a)に示すH)が最下層の絶縁樹脂層2の厚み(図3(a)に示すT)の1/3〜2/3程度であるのがよい。凸部9の幅Wが0.1mmよりも小さいと、接続部に対して加わる応力の方向の凸部9の厚みが小さくなるので凸部9が変形しやすくなってしまい、ビア導体4と内部配線5の端部との接続部に加わる応力を抑えることが困難となる。一方、凸部9の幅Wが0.5mmよりも大きいと凸部9の大きさが大きくなって配線を高密度に配置することができなくなる。また、凸部9の高さHが絶縁樹脂層2の厚みTの1/3よりも低いと、凸部9よりも上方のヤング率の小さい絶縁樹脂2を介して応力が凸部9の内側へ伝わりやすくなって、ビア導体4と内部配線5の端部との接続部が固定され難くなり、一方、凸部9の高さHが絶縁樹脂層2の厚みTの2/3よりも高いと凸部9の上の絶縁樹脂層2の厚みが薄くなって、この部分の絶縁樹脂層2が破れやすくなるので、その上面の配線層3が破断してしまう場合がある。そして、ビア導体4の接続部から凸部9までの距離(図3に示すD)が0.3mmよりも大きいと凸部9によって接続部の周囲の絶縁樹脂が固定され難くなるので0.3mm程度までであるのがよく、また、接続部は接続配線6上に位置するので、凸部9は接続配線6の外側に形成される。   Although the convex portion 9 depends on the type of insulating resin of the insulating resin layer 2, its width (W shown in FIG. 3 (a)), specifically, in the example shown in FIGS. 2 (a) and (b). The distance from the inner (connecting portion side) surface to the outer surface of the convex portion 9 in the case of such an annular convex portion 9, or the convex shape in the case of the example shown in FIG. The diameter of the portion 9 is about 0.1 mm to 0.5 mm, and the height (H shown in FIG. 3A) is 1/3 of the thickness of the lowermost insulating resin layer 2 (T shown in FIG. 3A). It should be about /. If the width W of the convex portion 9 is smaller than 0.1 mm, the thickness of the convex portion 9 in the direction of the stress applied to the connecting portion becomes small, so that the convex portion 9 is easily deformed, and the via conductor 4 and the internal wiring Therefore, it is difficult to suppress the stress applied to the connection portion with the end portion of 5. On the other hand, if the width W of the convex portion 9 is larger than 0.5 mm, the size of the convex portion 9 becomes large, and the wiring cannot be arranged with high density. When the height H of the convex portion 9 is lower than 1/3 of the thickness T of the insulating resin layer 2, the stress is applied to the inner side of the convex portion 9 through the insulating resin 2 having a lower Young's modulus above the convex portion 9. The connection portion between the via conductor 4 and the end portion of the internal wiring 5 is difficult to be fixed, while the height H of the convex portion 9 is higher than 2/3 of the thickness T of the insulating resin layer 2. Since the insulating resin layer 2 on the convex portion 9 becomes thin and the insulating resin layer 2 in this portion is easily broken, the wiring layer 3 on the upper surface may be broken. If the distance from the connecting portion of the via conductor 4 to the convex portion 9 (D shown in FIG. 3) is larger than 0.3 mm, the insulating resin around the connecting portion is difficult to be fixed by the convex portion 9, so that the distance is about 0.3 mm. Moreover, since the connection portion is located on the connection wiring 6, the convex portion 9 is formed outside the connection wiring 6.

凸部9は、絶縁樹脂層2の絶縁樹脂よりもヤング率の大きい材料から成るものであり、ガラス,セラミックス,樹脂,メタライズ金属およびこれらの混合物で形成すればよい。固定材料9のヤング率は、好ましくは絶縁樹脂層2の絶縁樹脂のヤング率の2倍程度以上であるのがよい。凸部9がガラス,セラミックス,メタライズ金属およびこれらの混合物から成る場合は、凸部9は後述するような絶縁樹脂層2の絶縁樹脂よりもヤング率が大きいもの(絶縁樹脂の10倍以上)となる。凸部9が樹脂から成る場合には、例えば、絶縁樹脂層2の絶縁樹脂にポリアミドイミド樹脂(ヤング率:3GPa)を用いて、凸部9にポリイミド樹脂(ヤング率:12GPa)を用いる場合が挙げられる。また、凸部9の樹脂成分としては絶縁樹脂層2と同じものを用いて、アルミナやシリカ(SiO)等の絶縁性の無機粉末から成るフィラーを添加することでヤング率を大きくしたものを用いてもよい。例えば、ヤング率が3GPaのポリアミドイミド樹脂に対して、フィラーとして30質量%の溶融シリカ粉末を加えることによってヤング率は約10GPaとなる。このようなフィラーを添加することによって凸部9の熱膨張係数をセラミック絶縁層8の熱膨張係数に近づけることができ、凸部9とセラミック絶縁層8との接合がより強固となるので、凸部9内の絶縁樹脂の固定の信頼性を高めることができる。 The convex portion 9 is made of a material having a Young's modulus larger than that of the insulating resin of the insulating resin layer 2 and may be formed of glass, ceramics, resin, metallized metal, and a mixture thereof. The Young's modulus of the fixing material 9 is preferably about twice or more that of the insulating resin of the insulating resin layer 2. When the convex portion 9 is made of glass, ceramics, metallized metal, and a mixture thereof, the convex portion 9 has a Young's modulus larger than the insulating resin of the insulating resin layer 2 as described later (more than 10 times that of the insulating resin). Become. When the convex portion 9 is made of resin, for example, a polyamideimide resin (Young's modulus: 3 GPa) is used for the insulating resin of the insulating resin layer 2 and a polyimide resin (Young's modulus: 12 GPa) is used for the convex portion 9. Can be mentioned. The resin component of the convex portion 9 is the same as that of the insulating resin layer 2, and the Young's modulus is increased by adding a filler made of an insulating inorganic powder such as alumina or silica (SiO 2 ). It may be used. For example, by adding 30% by mass of fused silica powder as a filler to a polyamideimide resin having a Young's modulus of 3 GPa, the Young's modulus is about 10 GPa. By adding such a filler, the thermal expansion coefficient of the convex portion 9 can be brought close to the thermal expansion coefficient of the ceramic insulating layer 8, and the bonding between the convex portion 9 and the ceramic insulating layer 8 becomes stronger. The reliability of fixing the insulating resin in the portion 9 can be increased.

凸部9が樹脂から成る場合は、例えば、液状の熱硬化性の樹脂をセラミック配線基板1上にスクリーン印刷法で所定形状に印刷塗布して加熱によって硬化させることで形成すればよい。セラミック配線基板1の上面に感光性樹脂を塗布してフォトリソグラフィ法で所定形状の凸部9に形成すると、図3(a)に示す例のようにシャープなエッジ形状とすることができる。あるいは、セラミック配線基板1の上面に感光性樹脂を塗布して、フォトリソグラフィ法で凸部9の形状の孔を形成して、セラミック配線基板1の上面に直接マスクを形成し、孔を液状の樹脂で充填して硬化させた後にマスクを除去してもよい。   In the case where the convex portion 9 is made of a resin, for example, a liquid thermosetting resin may be formed on the ceramic wiring board 1 by printing and applying it in a predetermined shape by a screen printing method and curing by heating. When a photosensitive resin is applied to the upper surface of the ceramic wiring substrate 1 and formed on the convex portions 9 having a predetermined shape by photolithography, a sharp edge shape can be obtained as in the example shown in FIG. Alternatively, a photosensitive resin is applied to the upper surface of the ceramic wiring substrate 1, holes having the shape of the convex portions 9 are formed by photolithography, a mask is directly formed on the upper surface of the ceramic wiring substrate 1, and the holes are made liquid. The mask may be removed after filling with resin and curing.

凸部9がガラスやセラミックスから成る場合は、セラミック配線基板1の上にこれらを主成分とするペーストをスクリーン印刷法等の方法で所定形状に印刷塗布して、ペーストをセラミック配線基板1の上面に焼き付ければよい。このときの加熱によってセラミック配線基板1が反る等の変形が生じないように、セラミック配線基板1の焼成温度よりも低い温度で焼付けるのが好ましい。例えば低融点ガラスと、セラミック絶縁層8と熱膨張係数を合わせるためのアルミナ粉末等のフィラーおよび可塑剤、有機溶剤等を混合した低融点ガラスペーストを、ビア導体4と内部配線5の端部との接続部を離間して取り囲むような形状にスクリーン印刷等の方法でセラミック絶縁層8の上面に印刷塗布し、低融点ガラスの融点付近の温度でグレーズしてやればよい。   When the convex portion 9 is made of glass or ceramics, a paste mainly composed of these is printed on the ceramic wiring substrate 1 in a predetermined shape by a method such as a screen printing method, and the paste is applied to the upper surface of the ceramic wiring substrate 1. Just baked into. It is preferable to bake at a temperature lower than the firing temperature of the ceramic wiring board 1 so that the ceramic wiring board 1 is not warped by the heating at this time. For example, a low-melting glass, a low-melting glass paste mixed with a filler such as alumina powder for matching the thermal expansion coefficient with the ceramic insulating layer 8, a plasticizer, an organic solvent, and the like are used as the via conductor 4 and the end of the internal wiring 5. It is only necessary to print and apply on the upper surface of the ceramic insulating layer 8 by a method such as screen printing in a shape so as to surround and surround the connecting portions, and glaze at a temperature near the melting point of the low-melting glass.

凸部9がメタライズ金属から成る場合は、上述したメタライズ法で接続配線6を形成する方法と同様にして形成することができ、メタライズ法で接続配線6を形成する際に同時に凸部9を形成してもよい。   When the convex portion 9 is made of metallized metal, it can be formed in the same manner as the method for forming the connection wiring 6 by the metallization method described above, and the convex portion 9 is formed at the same time when the connection wiring 6 is formed by the metallization method. May be.

スクリーン印刷法等によって樹脂やガラスから成る凸部9を形成すると図3(b)に示す例のように凸部9の上面側のエッジ部分にRが付きやすく(丸みが付きやすく)、凸部9にRが付くと絶縁樹脂2を固定する効果が低下しやすくなるが、絶縁樹脂やガラスに対して50体積%以上のフィラーを加えて凸部9を形成すると、凸部9の表面にフィラーによる凹凸が形成されることで、凸部9の上部にRが形成されても絶縁樹脂を固定する効果が低下しにくくなるので好ましい。なお、メタライズから成る凸部9の場合は、印刷法で形成しても、通常はその表面にメタライズ金属による凹凸が形成される。   When the convex portion 9 made of resin or glass is formed by a screen printing method or the like, the edge portion on the upper surface side of the convex portion 9 is likely to have an R (easily rounded) as shown in FIG. When R is attached to 9, the effect of fixing the insulating resin 2 is likely to be reduced. However, when the convex portion 9 is formed by adding 50% by volume or more filler to the insulating resin or glass, the filler is formed on the surface of the convex portion 9. It is preferable that the unevenness due to is formed because the effect of fixing the insulating resin is less likely to be lowered even if R is formed on the top of the convex portion 9. In addition, in the case of the convex part 9 which consists of metallization, even if it forms with a printing method, the unevenness | corrugation by a metallized metal is normally formed in the surface.

絶縁樹脂層2は、ポリイミド樹脂,ポリアミドイミド樹脂,シロキサン変性ポリアミドイミド樹脂,シロキサン変性ポリイミド樹脂,ポリフェニレンサルファイド樹脂,全芳香族ポリエステル樹脂,BCB(ベンゾシクロブテン)樹脂,エポキシ樹脂,ビスマレイミドトリアジン樹脂,ポリフェニレンエーテル樹脂,ポリキノリン樹脂,フッ素樹脂等の絶縁樹脂から成るものである。   The insulating resin layer 2 is composed of polyimide resin, polyamideimide resin, siloxane modified polyamideimide resin, siloxane modified polyimide resin, polyphenylene sulfide resin, wholly aromatic polyester resin, BCB (benzocyclobutene) resin, epoxy resin, bismaleimide triazine resin, It is made of an insulating resin such as polyphenylene ether resin, polyquinoline resin, or fluorine resin.

セラミック配線基板1の上に絶縁樹脂層2を形成するには、例えば、ポリイミド樹脂からなる場合には、ワニス状のポリイミド前駆体をセラミック配線基板1の上面にスピンコート法・ダイコート法・カーテンコート法・印刷法等の塗布法により塗布し、しかる後、400℃程度の熱で硬化させてポリイミド化させることによって、10μm〜50μm程度の厚みに形成する。あるいは、上記樹脂から成る10μm〜50μm程度のシートの下面に、シロキサン変性ポリアミドイミド樹脂,シロキサン変性ポリイミド樹脂,ポリイミド樹脂,ビスマレイミドトリアジン樹脂,エポキシ樹脂等の樹脂接着剤を乾燥厚みで5μm〜20μm程度にドクターブレード法等の塗布法にて塗布して乾燥させることで接着剤層を形成し、これをセラミック配線基板1の上に重ねて加熱プレスすることで形成する。いずれの方法においても、絶縁樹脂層2にビア導体4および配線層3を形成して上記工程を必要な絶縁樹脂層2の数だけ繰り返すことで複数の絶縁樹脂層2が形成される。フィルム形状の樹脂を用いる方法は、複数のフィルムを一括してプレスすることが可能であり、1層毎に塗布および硬化を行なう必要がないので、製造工程を短くすることができる。   In order to form the insulating resin layer 2 on the ceramic wiring substrate 1, for example, when made of polyimide resin, a varnish-like polyimide precursor is applied to the upper surface of the ceramic wiring substrate 1 by spin coating, die coating, or curtain coating. The film is applied by a coating method such as a printing method or the like, and then cured by heat at about 400 ° C. to form a polyimide, thereby forming a thickness of about 10 μm to 50 μm. Alternatively, a resin adhesive such as a siloxane-modified polyamideimide resin, a siloxane-modified polyimide resin, a polyimide resin, a bismaleimide triazine resin, or an epoxy resin is dried on the lower surface of a sheet of about 10 μm to 50 μm made of the above resin with a dry thickness of about 5 μm to 20 μm. An adhesive layer is formed by applying and drying by a coating method such as a doctor blade method, and the adhesive layer is formed on the ceramic wiring substrate 1 by heating and pressing. In any method, the plurality of insulating resin layers 2 are formed by forming the via conductors 4 and the wiring layers 3 in the insulating resin layer 2 and repeating the above steps as many times as the number of necessary insulating resin layers 2. In the method using a film-shaped resin, a plurality of films can be pressed at once, and it is not necessary to apply and cure for each layer, so that the manufacturing process can be shortened.

絶縁樹脂層2にはビア導体4が形成されるので、この部分には例えば直径が20μm〜100μmの貫通孔が形成される。この貫通孔の形成方法は、まず絶縁樹脂層2に開口を有するレジスト膜を形成するとともに、このレジスト膜の開口に位置する絶縁樹脂層2をエッチングすることによって、あるいはレーザを使い、直接絶縁樹脂層2の一部を除去することによって形成される。このときのレーザにはエキシマレーザ,COレーザ等を用いることができるが、貫通孔の内壁の形状を垂直に近く調整でき、さらに貫通孔の内壁面を滑らかに加工できる、紫外線レーザで形成しておくのが望ましい。あるいは、ワニス状の樹脂を塗布する方法の場合であれば、感光性の樹脂を用いて、例えば露光により貫通孔が形成される部分以外を硬化させて、貫通孔が形成される部分の樹脂をエッチングにより除去することにより貫通孔を形成してもよい。 Since the via conductor 4 is formed in the insulating resin layer 2, a through hole having a diameter of 20 μm to 100 μm is formed in this portion. This through hole is formed by first forming a resist film having an opening in the insulating resin layer 2 and etching the insulating resin layer 2 located in the opening of the resist film or using a laser to directly form the insulating resin. Formed by removing part of layer 2. An excimer laser, a CO 2 laser, or the like can be used as the laser at this time, but the shape of the inner wall of the through hole can be adjusted to be nearly vertical, and the inner wall surface of the through hole can be processed smoothly, and is formed with an ultraviolet laser. It is desirable to keep it. Alternatively, in the case of a method of applying a varnish-like resin, a photosensitive resin is used, for example, a portion other than a portion where a through-hole is formed by exposure is cured, and a resin in a portion where the through-hole is formed is obtained. The through hole may be formed by removing by etching.

配線層3の形成は、まず、蒸着法やスパッタリング法、イオンプレーティング法等の薄膜形成法により、絶縁樹脂層2の主面の全面に、0.1μm〜3μm程度の厚みの、例えばクロム(Cr)−銅(Cu)合金層やチタン(Ti)−銅(Cu)合金層から成る下地導体層を形成する。次に、下地導体層の上に配線層3のパターン形状の開口を有するレジスト膜を形成して、このレジスト膜をマスクとしてめっき等で銅や金等の電気抵抗の小さい金属から成る、2μm〜10μm程度の厚みの主導体層を形成する。そして、レジスト膜を剥離除去し、下地導体層の露出した部分をエッチングによって除去することで、配線層3が形成される。最上層の配線層3の表面には、外部配線7と同様に、めっき法によってニッケルや金のめっき層を形成するとよい。   First, the wiring layer 3 is formed by, for example, chromium (Cr) having a thickness of about 0.1 μm to 3 μm on the entire main surface of the insulating resin layer 2 by a thin film forming method such as vapor deposition, sputtering, or ion plating. ) -Copper (Cu) alloy layer or titanium (Ti) -copper (Cu) alloy layer. Next, a resist film having a pattern-shaped opening of the wiring layer 3 is formed on the underlying conductor layer, and the resist film is used as a mask to form a metal having a low electrical resistance such as copper or gold by plating or the like. A main conductor layer having a thickness of about 10 μm is formed. Then, the wiring layer 3 is formed by removing the resist film and removing the exposed portion of the underlying conductor layer by etching. Similar to the external wiring 7, a nickel or gold plating layer may be formed on the surface of the uppermost wiring layer 3 by plating.

配線層3は、図4に示す例のように、絶縁樹脂層2に配線層3と同形状の凹部を形成しておき、その凹部内に配線層3を形成すると、絶縁樹脂層2の上面と配線層3の上面との間に段差がなく平坦になるので、複数の絶縁樹脂層2を積層しても配線基板の上面は平坦となり、最上層の絶縁樹脂層2の上面の配線層3に電子部品やプローブピンをより良好に接続することが可能となるので好ましい。絶縁樹脂層2に凹部を形成するには、絶縁樹脂層2の表面に配線層3のパターン形状の開口を有するレジスト膜を形成して、RIE(Reactive Ion Etching)等のエッチング法によって絶縁樹脂層2の露出した部分の表面を除去して形成すればよい。   As shown in the example shown in FIG. 4, when the wiring layer 3 is formed with a recess having the same shape as the wiring layer 3 in the insulating resin layer 2 and the wiring layer 3 is formed in the recess, the upper surface of the insulating resin layer 2 is formed. Since there is no step between the wiring layer 3 and the upper surface of the wiring layer 3, the upper surface of the wiring substrate is flat even if a plurality of insulating resin layers 2 are stacked, and the wiring layer 3 on the upper surface of the uppermost insulating resin layer 2. It is preferable because an electronic component and a probe pin can be connected better. In order to form a recess in the insulating resin layer 2, a resist film having a pattern-shaped opening of the wiring layer 3 is formed on the surface of the insulating resin layer 2, and the insulating resin layer is etched by an etching method such as RIE (Reactive Ion Etching). The surface of the exposed portion of 2 may be removed.

ビア導体4は、配線層3を形成する前に、例えば、銅等の金属粉末と樹脂を主成分とする導体ペーストを絶縁樹脂層2の貫通孔に充填しておくことによって、図1〜図4に示す例のような、貫通孔が導体により充填されたものが形成される。導体ペーストは、銅等の金属粉末と樹脂と溶媒から成り、貫通孔に充填した後に乾燥させることによって固化するものである。あるいは、配線層3を形成する際に、貫通孔の内面にも下地導体層および主導体層を形成することによって、配線層3と同時に形成してもよい。この場合のビア導体4は、絶縁樹脂層2の貫通孔の内面に被着して形成され、貫通孔は導体により充填されたものとはならない。主導体層を形成する際のめっき厚みを厚くすると、図1〜図4に示す例のような、貫通孔が導体により充填されたものとすることができる。ビア導体4を配線層3と同時に形成する場合は、貫通孔の内面に薄膜により下地導体層を良好に形成することができるように、図1〜図4に示す例のように、貫通孔は絶縁樹脂層2の上面側の方が大きくなるような形状にするのが好ましい。このような形状の貫通孔は、エッチングによって貫通孔を形成する場合はエッチング条件により、レーザによって貫通孔を形成する場合はレーザの出力等の調節により、感光性樹脂を用いる場合は露光条件やエッチング条件により、所望の大きさや形状の貫通孔を形成することができる。   Before forming the wiring layer 3, the via conductor 4 is formed by filling a through hole of the insulating resin layer 2 with a conductive paste mainly composed of metal powder such as copper and resin, as shown in FIGS. As shown in the example shown in FIG. 4, a through hole filled with a conductor is formed. The conductor paste is made of a metal powder such as copper, a resin, and a solvent, and is solidified by filling the through holes and then drying. Alternatively, when the wiring layer 3 is formed, it may be formed simultaneously with the wiring layer 3 by forming a base conductor layer and a main conductor layer also on the inner surface of the through hole. In this case, the via conductor 4 is formed by being attached to the inner surface of the through hole of the insulating resin layer 2, and the through hole is not filled with the conductor. When the plating thickness at the time of forming the main conductor layer is increased, the through holes can be filled with the conductor as in the examples shown in FIGS. When the via conductor 4 is formed at the same time as the wiring layer 3, the through hole is formed as in the example shown in FIGS. 1 to 4 so that the base conductor layer can be satisfactorily formed by a thin film on the inner surface of the through hole. It is preferable to make the shape so that the upper surface side of the insulating resin layer 2 becomes larger. The through hole having such a shape is controlled by etching conditions when the through hole is formed by etching, by adjusting the output of the laser when the through hole is formed by a laser, and when using a photosensitive resin, the exposure condition or etching is performed. Depending on conditions, a through hole having a desired size and shape can be formed.

本発明のプローブカードは、上記のような本発明の配線基板と、最上層の絶縁樹脂層2の上面の配線層3に接続されたプローブピンとを具備するものである。プローブピンは、例えば、以下のようにして作製され、本発明の配線基板に取り付けられる。まず、シリコンウエハの1面にエッチングにより複数のプローブピンの雌型を形成し、雌型を形成した面にめっき法によってニッケルから成る金属を被着させるとともに雌型をニッケルで埋め込み、埋め込まれたニッケル以外のウエハ上のニッケルをエッチング等の加工を施すことによって除去して、ニッケル製プローブピンが埋設されたシリコンウエハを作製する。このシリコンウエハに埋設されたニッケル製プローブピンを配線基板の最上層の絶縁樹脂層2の上面の配線層3にはんだ等の接合材で接合する。そして、シリコンウエハを水酸化カリウム水溶液で除去することによって、プローブカードが得られる。   The probe card of the present invention comprises the above-described wiring board of the present invention and probe pins connected to the wiring layer 3 on the upper surface of the uppermost insulating resin layer 2. The probe pin is produced, for example, as follows and attached to the wiring board of the present invention. First, a female die of a plurality of probe pins is formed on one surface of a silicon wafer by etching, a metal made of nickel is deposited on the surface on which the female die is formed by plating, and the female die is embedded and embedded with nickel. Nickel on the wafer other than nickel is removed by processing such as etching to produce a silicon wafer in which nickel probe pins are embedded. Nickel probe pins embedded in the silicon wafer are bonded to the wiring layer 3 on the upper surface of the uppermost insulating resin layer 2 of the wiring substrate by a bonding material such as solder. Then, the probe card is obtained by removing the silicon wafer with an aqueous potassium hydroxide solution.

本発明の電子装置は、上記のような本発明の配線基板と、最上層の絶縁樹脂層2の上面の配線層3に接続された電子部品とを具備するものである。電子部品は、例えばICチップ等の半導体素子や水晶振動子等の圧電振動子であり、チップコンデンサ等の受動素子も必要に応じて搭載される。このような電子部品の配線層3への接続は、はんだ付けや導電性接着剤による接着、あるいはワイヤボンディングによって行なわれる。   The electronic device of the present invention includes the above-described wiring board of the present invention and an electronic component connected to the wiring layer 3 on the upper surface of the uppermost insulating resin layer 2. The electronic component is, for example, a semiconductor element such as an IC chip or a piezoelectric vibrator such as a crystal vibrator, and a passive element such as a chip capacitor is also mounted as necessary. Such an electronic component is connected to the wiring layer 3 by soldering, bonding with a conductive adhesive, or wire bonding.

1:セラミック配線基板
2:絶縁樹脂層
3:配線層
4:ビア導体
5:内部配線
6:接続配線
7:外部配線
8:セラミック絶縁層
9:凸部
1: Ceramic wiring board 2: Insulating resin layer 3: Wiring layer 4: Via conductor 5: Internal wiring 6: Connection wiring 7: External wiring 8: Ceramic insulating layer 9: Projection

Claims (3)

セラミック配線基板の上面に複数の絶縁樹脂層と複数の配線層とが交互に積層され、前記絶縁樹脂層の上下に位置する前記配線層間がビア導体で接続されており、最下層の前記絶縁樹脂層に形成された複数の前記ビア導体と、前記セラミック配線基板の内部から上面に引き出された複数の内部配線の端部とが電気的に接続されている配線基板であって、
前記セラミック配線基板の上面に、前記複数のビア導体と前記複数の内部配線の端部との複数の接続部のそれぞれを離間して取り囲むように、前記絶縁樹脂層の絶縁樹脂よりもヤング率の大きい材料から成る複数の凸部が形成されており、前記複数の凸部は、互いに独立して設けられていることを特徴とする配線基板。
A plurality of insulating resin layers and a plurality of wiring layers are alternately laminated on the upper surface of the ceramic wiring substrate, and the wiring layers positioned above and below the insulating resin layer are connected by via conductors, and the insulating resin in the lowermost layer A wiring board in which a plurality of the via conductors formed in a layer and ends of a plurality of internal wirings led out from the inside of the ceramic wiring board are electrically connected;
The upper surface of the ceramic wiring board, the plurality of such via conductors and surrounding spaced apart each of the plurality of connecting portions between the ends of the plurality of internal wirings, the Young's modulus than that of the insulating resin of the insulating resin layer and a plurality of projections formed consisting of large material, the plurality of convex portions, the wiring board, characterized in that are provided independently of each other.
請求項1に記載の配線基板と、最上層の前記絶縁樹脂層の上面の前記配線層に接続されたプローブピンとを具備することを特徴とするプローブカード。   A probe card comprising: the wiring board according to claim 1; and a probe pin connected to the wiring layer on the upper surface of the uppermost insulating resin layer. 請求項1に記載の配線基板と、最上層の前記絶縁樹脂層の上面の前記配線層に接続された電子部品とを具備することを特徴とする電子装置。   An electronic device comprising: the wiring board according to claim 1; and an electronic component connected to the wiring layer on the upper surface of the uppermost insulating resin layer.
JP2009264489A 2009-11-20 2009-11-20 Wiring board, probe card and electronic device Expired - Fee Related JP5383447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264489A JP5383447B2 (en) 2009-11-20 2009-11-20 Wiring board, probe card and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264489A JP5383447B2 (en) 2009-11-20 2009-11-20 Wiring board, probe card and electronic device

Publications (2)

Publication Number Publication Date
JP2011108959A JP2011108959A (en) 2011-06-02
JP5383447B2 true JP5383447B2 (en) 2014-01-08

Family

ID=44232111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264489A Expired - Fee Related JP5383447B2 (en) 2009-11-20 2009-11-20 Wiring board, probe card and electronic device

Country Status (1)

Country Link
JP (1) JP5383447B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996971B2 (en) * 2012-08-31 2016-09-21 京セラ株式会社 Multilayer wiring board and probe card using the same
JP2014086679A (en) * 2012-10-26 2014-05-12 Kyocera Corp Thin film wiring board, multilayer wiring board and substrate for probe card
WO2017150232A1 (en) 2016-03-03 2017-09-08 株式会社村田製作所 Multilayer wiring substrate for probe cards, and probe card provided with same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846357A (en) * 1994-07-29 1996-02-16 Hitachi Ltd Production of thin film ceramic hybrid board
JP4385782B2 (en) * 2004-02-06 2009-12-16 株式会社村田製作所 Composite multilayer substrate and manufacturing method thereof
JP4480431B2 (en) * 2004-03-18 2010-06-16 京セラ株式会社 Multilayer wiring board
JP2009135184A (en) * 2007-11-29 2009-06-18 Shinko Electric Ind Co Ltd Wiring substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2011108959A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
US7488897B2 (en) Hybrid multilayer substrate and method for manufacturing the same
US8003438B2 (en) Circuit module and manufacturing method thereof
US7903426B2 (en) Multilayer electronic component, electronic device, and method for producing multilayer electronic component
JP6096812B2 (en) Electronic device mounting package, electronic device and imaging module
JP2017183653A (en) Multilayer wiring board for high frequency and manufacturing method thereof
JP5383448B2 (en) Wiring board, probe card and electronic device
JP2011222928A (en) Wiring board and probe card
JP2007096246A (en) Wiring substrate and electronic device using the same
JP2011228427A (en) Probe card and probe device
JP2009295624A (en) Electronic component and manufacturing method thereof
JP5383447B2 (en) Wiring board, probe card and electronic device
JP2010003871A (en) Wiring substrate, probe card, and electronic device
JP2011009327A (en) Wiring board, probe card and electronic device
JP2011023694A (en) Wiring board, probe card, and electronic device
JP2010192784A (en) Wiring substrate, probe card, and electronic device
JP2011009698A (en) Wiring board, probe card, and electronic device
JP2011009694A (en) Wiring board, probe card, and electronic apparatus
JP5996971B2 (en) Multilayer wiring board and probe card using the same
JP2013131704A (en) Wiring substrate, probe card, and electronic apparatus
JP6418918B2 (en) Circuit board for probe card and probe card having the same
JP4812287B2 (en) Multilayer wiring board and manufacturing method thereof
JP2011043493A (en) Probe card and probe device
KR100882101B1 (en) Method of manufacturing the non-shrinkage ceramic substrate
JP2004259714A (en) Electronic component comprising multilayer ceramic substrate and its producing method
JP2001210746A (en) Semiconductor element mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees