JP5372859B2 - Co2回収型発電システム及びその運転制御方法 - Google Patents

Co2回収型発電システム及びその運転制御方法 Download PDF

Info

Publication number
JP5372859B2
JP5372859B2 JP2010164857A JP2010164857A JP5372859B2 JP 5372859 B2 JP5372859 B2 JP 5372859B2 JP 2010164857 A JP2010164857 A JP 2010164857A JP 2010164857 A JP2010164857 A JP 2010164857A JP 5372859 B2 JP5372859 B2 JP 5372859B2
Authority
JP
Japan
Prior art keywords
intake
engine
exhaust
way valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010164857A
Other languages
English (en)
Other versions
JP2012026342A (ja
Inventor
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2010164857A priority Critical patent/JP5372859B2/ja
Publication of JP2012026342A publication Critical patent/JP2012026342A/ja
Application granted granted Critical
Publication of JP5372859B2 publication Critical patent/JP5372859B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は発電システムに係り、特に、エンジン排気ガス中のCO2を分離回収しながら発電と熱回収を行ない、CO2フリーの熱電併給を可能とする、CO2回収型発電システムの起動及び停止時の運転制御技術に関する。
従来、エンジンを駆動源とする発電システム又はコージェネレーション・システムにおいて、エンジン排気ガスは大気中に排出することが一般的である。しかしながら、近年、地球温暖化防止が叫ばれ、CO2排出量削減が全世界的な課題となっていることから、この分野においても排気ガスのCO2削減が求められている。
本願発明者は、この問題に関してバイオマスを燃料とするコージェネレーション・システムにおいて、CO2を分離回収して固定化処理する技術を提案している(特許文献1)。
この技術は、図に示すようにバイオマス燃料と純酸素を、混合器(ミキサー)102で予混合してガスエンジン101に供給し、これを駆動源として発電機103で発電して電力供給する。また、酸化剤として純酸素を用いることにより、CO2とH2Oのみとなった排気ガスを、熱交換器105において冷却してH2O成分を除去する。これにより、CO2を効率良く回収するとともに、排気ガスからの熱回収により熱供給を可能とする。さらに、熱交換器105通過後のCO2ガスを、モータ106駆動の圧縮機107により圧縮して、地中注入井108に圧送する。以上のフローにより、CO2フリーの電力及び熱併給を可能とするものである。
特開2010−13333号公報
酸化剤として純酸素を用いる上記システムにおいては、起動・停止時にエア供給に切り替えたり、パージのためのエアを導入する必要があるが、急激な供給ガス組成の変化はエンジン内での燃焼を悪化させ、エンジンやCO2圧縮装置の損傷を招く恐れがある。また、排気ガス中のCO2濃度が低下するため、CO2を昇圧する際の圧縮効率が低下する。
さらに、回収CO2の処理方法としてCO2回収用パイプラインに圧送するシステムを採用する場合には、CO2濃度の低下はパイプライン内への不純ガス混入を意味し、パイプラインの処理効率の低下に加え、パイプラインの損傷を招く恐れもある。
本願発明者は、上記課題についてさらに検討を重ね、CO2フリーの発電システムにおいて、安定的に起動・停止が可能な制御技術に関する発明を完成した。
本発明は、以下の内容を要旨とする。すなわち、本発明に係るCO2回収型発電システムは、
(1)エンジン動力による発電と排熱回収による温熱を、系外に供給する発電システムにおいて、ピストン内に供給される炭化水素系燃料と、純酸素と、再循環EGRガス又は/及びエアと、の混合気を、シリンダ内において成層状態で燃焼可能に構成したエンジンと、エンジン排気ガスの一部を再循環するEGR系統と、再循環以外の排気ガス中のH2O成分を冷却除去してCO2ガスを高濃度化した後に、圧縮機により昇圧するCO2回収系統と、EGR系統内に、再循環ガス量を調整可能とするEGRガス量制御手段と、CO2回収系統内に、排気ガス中のCO2濃度を検知するCO2濃度検知手段と、エンジン吸気を、エア吸気側又は/及びEGRガス吸気側に切り替え可能とする吸気三方弁と、該圧縮機の上流側に、排気ガス流路を圧縮機側又は/及び大気開放側に切り替え可能とする排気三方弁と、を備えて成り、エンジン起動時又は停止時において、排気ガス中のCO2濃度に基づく、該EGRガス量制御手段、該吸気三方弁又は該排気三方弁のいずれか一以上の操作により、安定的な起動・停止と高濃度CO2ガス回収担保を可能に構成したことを特徴とする。
「成層状態で燃焼可能」とする手段としては、例えばスワール流若しくはタンブル流又はこれらの組み合わせを好適に用いることができる。
「CO2濃度検知手段」としては、CO2センサにより直接、CO2濃度を計測するもののみならず、これに替えて又はこれに加えて、残留O2濃度、残留CO濃度、残留H2濃度、あるいは残留炭化水素(HC)濃度等の計測により間接的にCO2濃度を検知するものも含む。
(2)上記発明において、前記EGRガス量制御手段が、前記EGR系統に配設した流量調整弁であることを特徴とする。
(3)上記(1)の発明において、前記EGRガス量制御手段が、吸・排気のバルブタイミングを調整可能とする可変バルブタイミング機構であることを特徴とする。
また、本発明に係るCO2回収型発電システムの起動時運転制御方法は、
(4)上記(1)乃至(3)の発明において、前記吸気三方弁をエア吸気側、前記排気三方弁を大気開放側の流路に設定した状態で、前記エンジンを始動するステップと、前記EGRガス量制御手段を操作して、前記エンジンに供給するEGRガス割合を増加させつつ、前記吸気三方弁を操作して、エア吸気側からのエア吸気量を段階的に減少させるステップと、エア吸気量の減少分に相当する純酸素の供給量を増加させて、燃焼に必要な酸素量を維持しつつ運転を継続するステップと、前記吸気三方弁を完全にEGRガス吸気側に切り替えて、EGRガスと純酸素の混合気で燃料を燃焼させるステップと、エンジン燃焼状態が安定し、かつ、回収CO2濃度が所定の閾値を超えた段階で、前記排気三方弁を操作して、排気ガス流路を前記大気開放側から前記圧縮機側に段階的に切り替えて、回収CO2を圧縮するステップと、を含むことを特徴とする。
(5)上記(1)乃至(3)の発明において、燃料及び酸素の供給を徐々に減らすステップと、CO2濃度が所定の閾値以下になった段階で、前記排気三方弁を操作して、排気ガス流路を前記圧縮機側から前記大気開放側に切り替えるステップと、燃料及び酸素の 供給が停止した段階で、前記吸気三方弁を操作して吸気流路をエア吸気側に切り替えて、惰性運転している前記エンジン内部及び前記圧縮機内部をエアにより置換するステップと、前記エンジンにおけるエア吸気と、前記圧縮機における大気開放側からの排気と、前記エンジン及び前記圧縮機CO2の惰性運転により全流路を空気で置換した後に、運転停止に至るステップと、を含むことを特徴とする。
本発明によれば、システムの起動・停止工程において、エア供給に切り替えたり、エアを混入する場合であっても、燃焼悪化によるエンジンやCO2圧縮装置の損傷を回避でき、安定的な起動・停止を担保するという効果がある。
また、回収したCO2を処理パイプラインに圧送して処理する際に、空気混入による排気ガス中のCO2濃度低下を回避することができるため、パイプライン注入のためにCO2を昇圧する際の圧縮効率の低下や、パイプラインに不純ガスが混入することによる、パイプラインの処理効率低下リスクや、パイプラインの損傷を防止できるという効果がある。
さらに、CO2ガスを高濃度化する過程において、熱交換により得られる温熱を回収することにより、熱電併給可能なコージェネレーション・システムを構築することもできる。
本発明の一実施形態に係るCO2回収型コージェネレーション(CG)・システム1の全体構成(側断面)を示す図である。 同上断面構成を示す図である。 エンジン2の燃焼室内における成層燃焼の態様を示す図である。 起動時初期段階における吸気及び排気の流れを示す図である。 起動時途中段階における吸気及び排気の流れを示す図である。 定常運転時における吸気及び排気の流れを示す図である。 CGシステム1の起動時運転制御フローを示す図である。 停止時初期段階における吸気及び排気の流れを示す図である。 停止直前段階における吸気及び排気の流れを示す図である。 CGシステム1の停止時運転制御フローを示す図である。 従来のCO2回収型コージェネレーション・システム100の構成を示す図である。
以下、本発明の一実施形態に係るCO2回収型コージェネレーション・システム(以下、CGシステムと略記)について、図1乃至6を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の各実施形態に限定されないことはいうまでもない。
<システム構成>
図1、図2を参照して、本実施形態に係るCO2回収型CGシステム1は、エンジン2を駆動源とする駆動系統3と、エンジン2に燃料及び酸素を供給する燃料供給系統7と、排気ガスをエンジン2に再循環するEGR系統5と、及び、EGR系統5から分岐して排気ガス中のCO2を回収するCO2回収系統6と、起動・停止時及び定常運転時におけるエンジン2の燃焼状態の監視・燃焼制御を行う燃焼制御系統8と、を主要構成として備えている。
駆動系統3は、駆動源であるエンジン2と、エンジン2とクランクシャフト2bを介して連結する発電機9、及び変速ギア2cを介して連結する圧縮機4と、を主要構成とする。エンジン2は4つのシリンダ2aを備えた4気筒4サイクルエンジンであり、クランクシャフト2bの一端側は、変速ギア2cを介して圧縮機側シャフト4aに連結しており、他端側は発電機9に直結している。これらの伝達装置により、エンジン駆動力を発電機9及び圧縮機4に伝達するように構成されている。
エンジン2のシリンダ2a、吸気・排気バルブカムシャフト2i、2j、ピストンカムシャフト2f、及び圧縮機4は一体としてシリンダブロック2e内に格納されている。各シリンダのピストンヘッド2hにはキャビティ(図示せず)が設けられ、また、吸気ポート5gにはスワールコントロールバルブ(図示せず)が配設されており、シリンダ内でスワール流形成を促進するように構成されている。
圧縮機4は、2連の2サイクル・往復式圧縮機4a、4bにより構成されている。圧縮機4a、4bの流路間には、排気CO2ガス冷却のためのインタークーラー4cが介装されている。上述のように、圧縮機4及びエンジン2はともに往復式であるため、吸気及び排気バルブカムシャフト2i、2jを共用している。すなわち、エンジン2の吸気及び排気のバルブカムと、圧縮機4のバルブカムとは、カムプロファイルはそれぞれ異なるものの、両者のカムを共有カムシャフト上に構成することで、それぞれ独立のカムシャフトを備える場合と比較して、装置のコンパクト化と簡素化を可能にしている。
燃料供給系統7は、炭化水素系液体燃料を供給する燃料供給ライン7cの末端部に液体燃料インジェクタ7aと、酸化剤である純酸素を供給する酸素供給ライン7dの末端部に酸素インジェクタ7bを、それぞれ独立に備えている。液体燃料を用いているため、酸化剤(酸素又はエア)との混合に難があることを考慮して、吸気ポート5g内の最適混合ポイントに燃料を噴射可能とするためである。なお、図1(a)では1系統のシリンダ以外については図示を省略しているが、他の系統についても同様に構成されている。
EGR系統5は、排気マニホールド5jに集めたエンジン排気ガスを各シリンダに再循環させるEGRライン5aと、EGRライン5a経路中にタービン5da及びこれを駆動源とするコンプレッサ5dbから成るターボ過給機5dと、タービン5daとコンプレッサ5db間に介装され、再循環ガスを冷却して水分を凝縮除去するための(第二)熱交換器(インタークーラー)5cと、を主要構成として備えている。
EGR系統5には、さらに、後述するように起動・停止時にエアを吸気するためのエア吸気ライン5fと、吸気をEGRライン側/エア吸気ライン側に切り替え可能とする吸気三方弁5eが設けられている。
CO2回収系統6は、タービン5daの下流側でEGRライン5aから分岐し、エンジン排気ガスを圧縮機4に導くCO2回収ライン6bと、CO2回収ライン6b経路中に介装され、排気ガスと熱交換して温熱を取り出す(第一)熱交換器6aと、回収したCO2ガスをCO2回収パイプライン6cの圧力に昇圧する圧縮機4と、昇圧後のCO2ガスをパイプライン6cに圧送するための圧送用配管6fと、を主要構成として備えている。
CO2回収系統6には、さらに、後述するように起動・停止時にCO2ガスを放散するための大気開放ライン6eと、排気を圧縮機側/大気開放ライン側に切り替え可能とする排気三方弁6dが設けられている。
燃焼制御系統8は、酸素供給ライン7dの経路中に介装される流量制御弁7eと、EGRライン5a経路中に介装される流量調整弁5bと、吸気三方弁5eと、排気三方弁6dと、CO2回収ライン6b経路中に介装されているCO2センサS3と、シリンダ2a内に配設される筒内圧センサS1及び温度センサS2と、各センサの検出値に基づいて各調整弁・三方弁の開度調整を指令し、定常運転時及び起動・停止時のシステム運転制御を行う燃焼制御装置8aと、を主要構成として備えている。
さらに、燃焼制御装置8aには、燃料又は酸素の噴射時期や噴射時間の調整、エンジンの吸排気バルブ(図示せず)の開閉時期を調整する機能(可変バルブタイミング機構)を備えている。なお、燃焼制御装置8aは、CPU、クロック、RAM、ROM、バス、I/Oインターフェース等を備えたマイコンにより実装できる。
<定常運転時燃焼態様>
CGシステム1は以上のように構成されており、次に図2をも参照して、定常運転時のエンジン2内部における燃料、酸素及びEGRガスの挙動について説明する。定常運転時においては、吸気三方弁5eはEGRライン5a側、排気三方弁6dは圧縮機4側の流路に設定されている。この状態で、酸素インジェクタ7bを介して酸素が吸気ポート5gに噴射され、さらにシリンダ中央部に流入する。一方、EGRライン5aを介して吸気マニホールド5hに戻されたEGRガスは、吸気ポート5gを経由してシリンダ2a内壁面に沿って渦流を形成する。これにより、シリンダ中央部に燃焼用の酸素、外周部にEGRガスとして成層化されたガスが形成され、シリンダ内でスワール流を形成することにより成層状態が維持される。この状態で、液体燃料が燃料インジェクタ7dにより直接シリンダ中心部に噴射され、噴射された燃料はシリンダ中央部の酸素と反応し、ディーゼル着火して燃焼する。この場合、内層側の混合気は燃焼するが、外層側はEGRガスが存在するために、未反応燃料ガスや残酸素のシリンダ2a内壁面への付着が防止される。燃焼完結により、排気ガスの組成はCO2とH2Oのみとなり、排気マニホールド5jに集められた後、EGR系統5及びCO2回収系統6に導かれる。
次に、定常運転時におけるEGR系統5での排気再循環の態様について説明する。排気マニホールド5j出の排気ガスは、ターボ過給機5dのタービン5daにおいて減圧・低温化され、一部がEGRライン5aに導かれる。なお、タービン5daにおける減圧・低温化の際に排ガス中の水分が一部凝縮し、ドレン水として回収される。続いて、排気ガスはインタークーラー5cで冷却され、さらに、水分除去されてCO2を主成分とするEGRガスは、コンプレッサ5dbにおいて再度昇圧され、EGRライン5aを介して吸気マニホールド5h入口に還流される。
次に、CO2回収系統6におけるCO2ガス回収の態様について説明する。EGR系統5から分岐した排気ガスは、熱交換器6aにおいて冷却、水分除去されて高濃度CO2ガスとなり、一方、ここで回収された熱は温水等として系外で利用される。熱交換器6a出のCO2ガスは圧縮機4に導かれ、段階的にCO2回収パイプライン6cへの圧入のための要求圧力まで昇圧される。昇圧過程において、CO2ガスはインタークーラー4cで冷却され、ここで回収した温熱は系外で利用される。昇圧されたCO2ガスは回収パイプライン6cに送出される。以上のフローにより、エンジン排気ガスは大気中に放散されることなくCO2回収が実現される。
<起動時運転制御>
次に、図3、4を参照して、CGシステム1の起動時運転制御の態様について説明する。
図3(a)を参照して、起動前においては、流量調整弁5bは閉、吸気三方弁5eはエア吸気ライン5f側、排気三方弁6dは大気開放ライン6e側の流路に設定されている(S101)。この状態で、運転管理者による運転指令があると(S102においてY)、エア吸気ライン5fを介して空気が吸気され、空気中の酸素により燃料が燃焼してエンジン2が始動する(S103)。排気ガスは、大気開放ライン6eを介して排出される。
エンジン始動後は、シリンダ内の筒内圧センサS1、温度センサS2により燃焼が安定状態に至ったか否かが判定され(S104)、不安定状態が継続する場合には、燃料噴射量、燃料噴射時期、圧縮比の調整、等の燃焼改善制御が行われる(S105)。
図3(b)を参照して、燃焼が過渡状態から安定燃焼状態に至った段階で(S104においてY)、運転モードの切り替えが行われる(S106)。すなわち、流量調整弁5bを徐々にEGRライン5a側に切り替えることにより、EGRガス割合を増加させつつ、エア吸気ライン5f側からのエア吸気量を減少させる(S106)。減少分に相当する酸素は、酸素インジェクタ7bからの酸素吸気量の増加により補う。
以上の運転制御により、最終的にはエア吸気ライン5fを閉鎖し、この閉鎖に伴う空気減少量のうち、主に窒素(N2)分に相当する給気量はEGRラインからの還流CO2で補い、酸素(O2)分に相当する流量は酸素インジェクタ7bを介して流量調整して補うことで、循環排気ガスと純酸素の混合気で燃料を燃焼させる。
定常運転中は、筒内圧S1、温度センサS2、CO2センサS3の計測値に基づいてエンジン燃焼状態の判定が行われる(S107)。具体的には、圧力異常、ノッキング発生、筒内温度異常の有無を監視し、燃焼速度が適正か否かが判定される。
S107において燃焼速度過剰と判定された場合には、燃焼緩慢化制御が適宜実行される(S108)。具体的には、
(a)点火、燃料噴射時期を遅らせる。
(b)燃料又は酸素噴射量を絞る。
(c)圧縮比を下げる。
(d)燃料又は酸素の噴射時期や噴射時間の調整、可変バルブタイミング機構の操作により、成層混合気の成層度を低下させ、EGRガスとの均一化を図る。
(e)EGR熱交換量を増加させて、EGRガス温度を低下させる。
また、S107において燃焼速度緩慢と判定された場合、及び、S110においてCO2濃度が所定の閾値を下回る場合には(S110においてN)、以下の燃焼促進化制御(S106)が適宜実行される(S109)。具体的には、以下の各操作を単独又は組み合わせて行う。
(a)点火、燃料噴射時期を早める。
(b)燃料又は酸素噴射量を増加させる。
(c)圧縮比を上げる。
(d)燃料又は酸素の噴射時期や噴射時間の調整、可変バルブタイミング機構の操作により、成層混合気の成層度を上げる。
(e)EGR熱交換量を減少させて、EGRガス温度を上昇させる。
図3(c)を参照して、S107−S110の制御により運転状態が安定し、回収CO2濃度が所定のレベルを超えた段階で、徐々に排気三方弁6dを操作してCO2圧縮機側6bに流路を切り替え、圧縮機4によりCO2を圧縮し、回収したCO2を圧送用配管6fを介してCO2処理パイプライン6cに送出する(S111)。
<停止時運転制御>
次に、図5、図6を参照して、CGシステム1の停止時運転制御フローについて説明する。
定常運転モードにおいては(上述の図3(c)参照)、流量調整弁5bは全開、吸気三方弁5eはEGRライン5a側、排気三方弁6dは圧縮機4側の流路に設定されている(S201)。運転管理者による運転停止指令があると(S202においてY)、定常運転モードから停止運転モードに切り替えられる(S203)。具体的には、流量調整弁5bは段階的に閉、吸気三方弁5eは段階的にエア吸気ライン5f側に切り替えられる。同時に、酸素インジェクタ7bからの酸素供給量が段階的に減少される(図5(a)参照)。
運転モード切り替え中は、CO2センサS3によりCO2濃度が計測され、CO2濃度が所定の閾値以上に維持されているか否かが判定される(S204)。CO2濃度が閾値を下回っている場合には(S204においてN)、排気三方弁6dが大気開放ライン6e側に切り替えられる(S205)(図5(b)参照)。これにより、エア混入によりCO2濃度が低下した排気ガスがCO2パイプライン6cに流入することを防止できる。
所定のCO2濃度が維持されている場合には(S204においてY)、さらに運転モード移行時の安定燃焼を担保するため、起動時のS107−S109と同様の燃焼安定化制御が行われる(S206−S208)。
運転モード切替完了後に(S209においてY)、エンジン停止操作が開始される。具体的には以下のステップで行われる。
(a)停止判断後に、燃料と酸素の供給を徐々に減らす(S210)。
(b)燃料と酸素の供給を停止しつつ、吸気三方弁5eをEGRライン5a側からエア吸気ライン側5f側に切り替え、エアによりシリンダ2a内及び圧縮機4内を置換する(S211)。
(c)エンジン2の駆動軸と発電機の軸の連結を切り離す。これにより、燃料及び酸素供給停止後も、エンジン2および圧縮機4を暫時、惰性で回転継続させることができる(S212)。
(d)エンジン2への空気吸気、圧縮機4の大気開放ライン6eからの排気、及びエンジン2および圧縮機4の惰性運転により、システム全体がエアパージされ(S213)、やがて回転が止まってシステム停止に至る(S214)。
なお、本実施形態では燃料供給系統について、液体燃料インジェクタと酸素インジェクタを独立して設ける例を示したが、これに替えて、
(1)予混合気インジェクション+火花点火(または液体燃料微量噴射着火)
(2)純酸素インジェクション+液体燃料噴霧着火
(3)(ガスまたは液体)燃料インジェクション+純酸素インジェクション+火花点火(又は液体燃料
微量噴射着火)
等、他の燃料及び酸素供給形態を採用することもできる。
また、エンジンシリンダ内でスワール流を形成して成層燃焼させる例を示したが、これに替えてタンブル流を形成して成層燃焼させる形態とすることもできる。
また、CO2圧縮機として往復式圧縮機を用いる例を示したが、これに替えて単段もしくは多段の軸流、又はスクロ―ル式圧縮機を用いる形態とすることもできる。
また、CO2回収ラインのCO2濃度検知手段として、CO2センサを用いる例を示したが、これに替えて、又は、これに加えてO2センサ、COセンサ、H2センサ、あるいは炭化水素(HC)センサ 等を用いて間接的にCO2濃度を検知する形態とすることもできる。
また、エンジンの燃焼状態又は回収CO2濃度に応じて、流量調整弁5bの開度調整により排ガス再循環量を制御することにより、起動・停止時の過渡期燃焼安定化制御を行う例を示したが、これに替えて、可変バルブタイミング機構により、吸排気バルブの開閉タイミングを調整することにより燃焼制御を行う形態とすることもできる。
本発明は、CO2回収型コージェネレーション・システムのみならず、エンジン排気ガス中のCO2を回収するCO2フリーのシステムとして広く応用可能である。
1・・・・CO2回収型コージェネレーション(CG)・システム
2・・・・エンジン
2a・・・シリンダ
2i・・・吸気バルブカムシャフト
2j・・・排気バルブカムシャフト
3・・・・駆動系統
4・・・・圧縮機
5・・・・EGR系統
4c、5c・・・インタークーラー(熱交換器)
5d・・・ターボ過給機
5e・・・吸気三方弁
5f・・・エア吸気ライン
6・・・CO2回収系統
6a・・・熱交換器
6c・・・CO2回収パイプライン
6d・・・排気三方弁
6e・・・大気開放ライン
7・・・・燃料供給系統
7a・・・液体燃料インジェクタ
7b・・・酸素インジェクタ
8・・・・燃焼制御系統
9・・・・発電機
S1・・・筒内圧センサ
S2・・・温度センサ
S3・・・CO2センサ

Claims (2)

  1. エンジン動力による発電電力を系外に供給する発電システムにおいて、
    ピストン内に供給される炭化水素系燃料と、純酸素と、再循環EGRガス又は/及びエアと、の混合気を、シリンダ内において成層状態で燃焼可能に構成したエンジンと、
    エンジン排気ガスの一部を再循環するEGR系統と、
    再循環以外の排気ガス中のH2O成分を冷却除去してCO2ガスを高濃度化した後に、圧縮機により昇圧するCO2回収系統と、
    EGR系統内に、再循環ガス量を調整可能とするEGRガス量制御手段と、
    CO2回収系統内に、排気ガス中のCO2濃度を検知するCO2濃度検知手段と、
    エンジン吸気を、エア吸気側又は/及びEGRガス吸気側に切り替え可能とする吸気三方弁と、
    該圧縮機の上流側に、排気ガス流路を圧縮機側又は/及び大気開放側に切り替え可能とする排気三方弁と、を備えて成り、
    エンジン起動時又は停止時において、排気ガス中のCO2濃度に基づく、該EGRガス量制御手段、該吸気三方弁又は該排気三方弁のいずれか一以上の操作により、安定的な起動・停止と高濃度CO2ガス回収担保を可能に構成したことを特徴とするCO2回収型発電システムにおいて、
    前記吸気三方弁をエア吸気側、前記排気三方弁を大気開放側の流路に設定した状態で、前記エンジンを始動するステップと、
    前記EGRガス量制御手段を操作して、前記エンジンに供給するEGRガス割合を増加させつつ、前記吸気三方弁を操作して、エア吸気側からのエア吸気量を段階的に減少させるステップと、
    エア吸気量の減少分に相当する純酸素の供給量を増加させて、燃焼に必要な酸素量を維持しつつ運転を継続するステップと、
    前記吸気三方弁を完全にEGRガス吸気側に切り替えて、EGRガスと純酸素の混合気で燃料を燃焼させるステップと、
    エンジン燃焼状態が安定し、かつ、回収CO2濃度が所定の閾値を超えた段階で、前記排気三方弁を操作して、排気ガス流路を前記大気開放側から前記圧縮機側に段階的に切り替えて、回収CO2を圧縮するステップと、
    を含むことを特徴とするCO2回収型発電システムの起動時運転制御方法。
  2. 請求項1に記載のCO2回収型発電システムにおいて、
    燃料及び酸素の供給を徐々に減らすステップと、
    CO2濃度が所定の閾値以下になった段階で、前記排気三方弁を操作して、排気ガス流路を前記圧縮機側から前記大気開放側に切り替えるステップと、
    燃料及び酸素の供給が停止した段階で、前記吸気三方弁を操作して吸気流路をエア吸気側に切り替えて、惰性運転している前記エンジン内部及び前記圧縮機内部をエアにより置換するステップと、
    前記エンジンにおけるエア吸気と、前記圧縮機における大気開放側からの排気と、前記エンジン及び前記圧縮機CO2の惰性運転により全流路を空気で置換した後に、運転停止に至るステップと、
    を含むことを特徴とするCO2回収型発電システムの停止時運転制御方法。
JP2010164857A 2010-07-22 2010-07-22 Co2回収型発電システム及びその運転制御方法 Expired - Fee Related JP5372859B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164857A JP5372859B2 (ja) 2010-07-22 2010-07-22 Co2回収型発電システム及びその運転制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010164857A JP5372859B2 (ja) 2010-07-22 2010-07-22 Co2回収型発電システム及びその運転制御方法

Publications (2)

Publication Number Publication Date
JP2012026342A JP2012026342A (ja) 2012-02-09
JP5372859B2 true JP5372859B2 (ja) 2013-12-18

Family

ID=45779561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164857A Expired - Fee Related JP5372859B2 (ja) 2010-07-22 2010-07-22 Co2回収型発電システム及びその運転制御方法

Country Status (1)

Country Link
JP (1) JP5372859B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109736935B (zh) * 2018-12-30 2021-02-02 北京工业大学 以纯氧气为氧化剂的烃类燃料点燃式零氮排放发动机的控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617419B2 (ja) * 2000-07-14 2005-02-02 日産自動車株式会社 内燃機関の排気浄化装置
JP4297488B2 (ja) * 2003-08-21 2009-07-15 東京瓦斯株式会社 内燃機関
JP5137199B2 (ja) * 2008-07-07 2013-02-06 東京瓦斯株式会社 大気中二酸化炭素の分離回収処理装置
JP5039651B2 (ja) * 2008-07-08 2012-10-03 三菱重工業株式会社 排ガス中の二酸化炭素回収システム

Also Published As

Publication number Publication date
JP2012026342A (ja) 2012-02-09

Similar Documents

Publication Publication Date Title
US7650223B2 (en) Method and device for integrative control of gas engine
RU2641194C2 (ru) Способ эксплуатации двигателя с охлаждаемой системой рециркуляции выхлопных газов
JP2009057871A (ja) ガスエンジンの始動制御方法及び装置
JP4871141B2 (ja) 副室式エンジン
US9677465B2 (en) Natural gas engine and operation method for natural gas engine
JP5372848B2 (ja) Co2回収型コージェネレーション・システム及びその運転制御方法
JP5939836B2 (ja) 副室式エンジン及びその運転制御方法
JP2000213384A (ja) 圧縮自着火エンジン
JP5372859B2 (ja) Co2回収型発電システム及びその運転制御方法
JP2008280922A (ja) 副室式エンジン
KR101246899B1 (ko) 엔진 유닛 및 엔진 유닛의 구동방법
JP2007263039A (ja) 内燃機関
WO2010095258A1 (ja) 内燃機関
JP5689316B2 (ja) 低圧排ガス再循環回路を備えるガソリンエンジン
EP4248075A1 (en) Internal combustion engine
JP4775225B2 (ja) 圧縮着火式内燃機関の制御システム
JP2008128106A (ja) 圧縮着火式内燃機関の制御システム
JP2000064838A (ja) パイロット着火ガスエンジン
JP7214490B2 (ja) ガスエンジンシステム及びその制御方法
FR2970509A1 (fr) Systeme de reformage de combustible pour turbomachine
JP4175243B2 (ja) 予混合圧縮着火内燃機関
JP2017214856A (ja) 内燃機関
JP2009221930A (ja) 内燃機関の排気浄化システム
JP2024057951A (ja) 内燃機関システム
JP2024046331A (ja) エンジンの吸排気システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

R150 Certificate of patent or registration of utility model

Ref document number: 5372859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees