JP5368349B2 - プロピレン系樹脂組成物およびこれらから得られる成形体 - Google Patents

プロピレン系樹脂組成物およびこれらから得られる成形体 Download PDF

Info

Publication number
JP5368349B2
JP5368349B2 JP2010062401A JP2010062401A JP5368349B2 JP 5368349 B2 JP5368349 B2 JP 5368349B2 JP 2010062401 A JP2010062401 A JP 2010062401A JP 2010062401 A JP2010062401 A JP 2010062401A JP 5368349 B2 JP5368349 B2 JP 5368349B2
Authority
JP
Japan
Prior art keywords
propylene
dicarboxylate
group
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010062401A
Other languages
English (en)
Other versions
JP2011195664A (ja
Inventor
幸喜 平野
板倉  啓太
和久 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2010062401A priority Critical patent/JP5368349B2/ja
Publication of JP2011195664A publication Critical patent/JP2011195664A/ja
Application granted granted Critical
Publication of JP5368349B2 publication Critical patent/JP5368349B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

本発明は、プロピレン系ブロック共重合体、該共重合体を含むプロピレン系樹脂組成物およびこれらから得られる成形体に関する。詳しくは、本発明は、剛性と耐衝撃性のバランスに優れ、さらに成形加工性が良好、成形時の外観特性に極めて優れたプロピレン系樹脂組成物、およびこれらから得られる成形体に関する。
プロピレン系樹脂は、日用雑貨、台所用品、包装用フィルム、家電製品、機械部品、電気部品、自動車部品など、種々の分野で利用されており、要求される性能に応じて種々の添加剤が配合されている。特に自動車部品用途においては、プロピレン系樹脂にα−オレフィン共重合体ゴムとタルクのような無機充填剤を配合した組成物が、その成形品の剛性と耐衝撃性とのバランスに優れているため、大量に使用されている。
自動車内外装部品は、生産性の観点から射出成形によって成形されることが多い。しかし、これまでに知られているプロピレン系樹脂組成物を用いて射出成形を行うと、射出成形品表面の流動方向と交わる方向にフローマークやタイガーマークと呼ばれる複数の周期的な縞模様が発生し目立つことが知られている。成形品表面に発生したフローマークが目立つと成形品の外観を損なうので、必要に応じて塗装等を行って、フローマークを消すことが実施されているが、その結果自動車部品の製造工程が煩雑にならざるを得ない。
フローマークの発生機構はいくつか提案されているが、その1つとして、射出成形時の金型内での流動先端(メルトフロント)の不安定化現象が関係しているとの考察が提案されている(非特許文献1)。この考え方では、射出成形時にメルトフロントの形状が周期的に不安定化し、溶融樹脂の金型転写状態が周期的に変動、固化した結果、光沢差が発生して周期的な縞模様(フローマーク)に見えるとされている。
この考え方を基に、プロピレン系樹脂組成物の溶融弾性を高くする、特に、金型への転写を想定して、低剪断速度領域での溶融弾性を高くすることにより、射出成形金型内での流動先端を安定化させ、フローマークを改良させる試みが行われている。例えば、特開平9−87482号公報(特許文献1)では超高分子量のプロピレン−エチレン共重合体を含んだプロピレン系ブロック共重合体からなるプロピレン系樹脂組成物が開示されている。上記発明では、フローマークが少ない射出成形品を得ることができるが、溶融樹脂流動の合流箇所で発生するウェルドラインと呼ばれる外観不良が発生することがある。ウェルドラインとは、溶融樹脂流動の合流した痕跡が固化して筋状の外観不具合状に見える現象であり、上記発明ではプロピレン系ブロック共重合体中に多量の超高分子量プロピレン−エチレン共重合体が海−島構造の島構造として分散している為、溶融樹脂流動の合流した痕跡が消失(緩和)しづらくなった結果、ウェルドラインが目立ちやすくなったと推察される。ウェルドラインの目立ちが顕著な場合は、塗装の際にウェルドラインを消す前処理工程が必要になるため、上記技術を自動車部品に適用にする際に、一部制約が生じていた。
一方、プロピレン重合体成分を広分子量分布化することによって高溶融弾性化を図り、フローマークを改良させる試みも検討されている。特開2000―204111号公報(特許文献2)では、固体状チタン触媒成分、助触媒としてアルミニウム−アルキル化合物と窒素含有型脂肪族ケイ素化合物とを用いたオレフィン重合用触媒によりプロピレン重合体成分を広分子量分布化させたプロピレン系ブロック体が開示されている。上記技術により、プロピレン系樹脂組成物の溶融弾性が高くなり、フローマークはある程度改良されるものの、プロピレン重合体部の広分子量分布化が不十分であった為、更なるフローマーク改良が必要であった。更に、上記技術では、剛性と耐衝撃性バランスの改良が求められていた。
また、国際公開第98/47959号パンフレットでは、多段重合法による製造で、超高分子量プロピレン重合体を重合後、低分子量プロピレン重合体を重合することにより広分子量分布プロピレン重合体部を有するプロピレン系ブロック共重合体からなるポリプロピレン樹脂組成物が開示されている。自動車内外装部品では、プロピレン系樹脂組成物に射出成形時の高流動性化が求められるが、上記技術では、プロピレン重合体部の高流動性化を図ろうとすると、超高分子量プロピレン重合体が低分子プロピレン重合体に均一に分散または相溶しづらくなり、耐衝撃性が低下や、成形品表面にブツが発生する等の不具合が生じる場合があった。
以上、フローマークの改良事例を挙げたが、外観不具合の解消、機械物性バランス、射出成形流動性の改良などを考慮して、プロピレン系樹脂組成物の更なる改良が求められている。
自動車において、内装部品は室温での使用が想定され、外装部品は冬季厳寒での使用まで考慮される。これに伴い、衝撃強度の評価は、常温(23℃)および低温(−30℃)をもって実施される。
プロピレン系樹脂の常温衝撃強度と低温衝撃強度の双方を同時に向上させることは容易ではなく、改質用のエラストマーの添加量を多くすることで対応する必要があった。エラストマーの多量添加により常温衝撃強度と低温衝撃強度のバランスは向上する一方、剛性の低下・硬度の低下・射出成形流動性の低下・原料コストの増加などデメリットも無視できず、経済性も考慮した総合的なバランスに優れた材料が要求されていた。
特開平9−87482号公報 特開2000−204111号公報 国際公開第98/47959号パンフレット
日本レオロジー学会誌 Vol.35,No.5,293〜299
本発明は、成形外観性および剛性と常温・低温衝撃強度とのバランスに優れ、かつ射出成形流動性に優れたプロピレン系樹脂組成物、さらに、該プロピレン系樹脂組成物から得られる射出成形体、および該射出成形体からなる自動車部品を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意検討した結果、特定の範囲に制御した広分子量分布を有するプロピレン重合体成分と特定の範囲に制御した広分子量分布かつ狭共重合組成分布を有するプロピレン−エチレン共重合体ゴム成分を有するプロピレン系ブロック共重合体を含むプロピレン系樹脂組成物を開発した。前記プロピレン系ブロック共重合体では、分子量分布を特定の範囲に制御することにより、高分子量プロピレン重合体成分による高溶融弾性化、特に低剪断速度領域での溶融弾性を高くすることができ、さらに広分子量分布プロピレン−エチレン共重合体ゴム成分による高溶融弾性化効果と合わせ、プロピレン系樹脂組成物の射出成形時にフローマークが著しく改良できることを見出した。また、驚くべきことに、前記プロピレン系ブロック共重合体では、分子量分布を特定の範囲に制御することにより、本発明に係るプロピレン系樹脂組成物では、ウェルドラインが目立ちにくいことを見出した。
また、前記プロピレン系ブロック共重合体では、高剛性化が図れることを見出した。ここで、高剛性化の機構は解明しきれていないが、プロピレン重合体成分が高立体規則性かつ広分子量分布であることから、高分子量プロピレン重合体が結晶核となり、低分子量成分が板状結晶を形成する、あるいは、射出成形時に高分子量プロピレン重合体の配向が凍結されやすいなどが推察される。
さらに、前記プロピレン系ブロック共重合体のプロピレン−エチレン共重合体ゴム成分は、広分子量分布ではあるが、プロピレン−エチレン共重合ゴム成分の組成分布を狭く制御することに着眼し、剛性/耐衝撃性バランスを顕著に改善することができた。ここで、プロピレン−エチレン重合体ゴム成分製造時に副生されるポリエチレン樹脂成分を少なくすることができ、ポリエチレン樹脂による剛性/耐衝撃性バランスの低下を抑制するのに加え、低分子量プロピレン−エチレン共重合体ゴム成分による、耐衝撃性低下の影響が少ないことから、耐衝撃性を著しく改良できたものと推察される。
このように、プロピレン系ブロック共重合体中にプロピレン重合体成分を特定の範囲で広分子量分布化させ、かつ広分子量分布かつ狭共重合組成分布であるプロピレン−エチレン共重合体ゴムとから構成されるプロピレン系ブロック共重合体を主材料とするプロピレン系樹脂組成物では、良成形外観、良好な剛性/耐衝撃性とのバランス、さらに射出成形時の高流動性の全ての要件を高度なレベルで満たすことができる。
そして、このような特定の構造を持つゴム成分を有する当該共重合体を2種類以上組み合わせることにより、常温衝撃強度と低温衝撃強度のバランスをも向上させることで、本発明を完成させるに至った。
また、別の視点で説明すれば、特定の構造を持つゴム成分を有する当該プロピレン系ブロック共重合体2種、すなわち低エチレン量かつ高い極限粘度(高[η])のn−デカン可溶分を有する特定のプロピレン系ブロック共重合体、および高エチレン量かつ低い極限粘度(低[η])のn−デカン可溶分を有する特定のプロピレン系ブロック共重合体とを混合して得られたプロピレン系樹脂組成物およびその成形体は、常温衝撃強度と低温衝撃強度とのバランスが向上することを見出し本発明を完成させるに到った。
すなわち、本発明のプロピレン系樹脂組成物は、プロピレン系ブロック共重合体(A―1)95重量%以上、5重量%以下とプロピレン系ブロック共重合体(A−2)5重量%以上、95重量%以下とからなるプロピレン系ブロック共重合体混合物(A)(ただし、(A−1)および(A−2)の合計は100重量%である)40重量部以上、100重量部以下、エラストマー(B)0重量部以上、35重量部以下、およびフィラー(E)0重量部以上、40重量部以下を含有しており(ただし、(A)、(B)、および(E)の合計は100重量部である)、前記プロピレン系ブロック共重合体(A−1)と(A−2)とが、プロピレン重合体成分を製造する工程およびプロピレン−エチレン共重合体ゴム成分を製造する工程を含む製造方法によって得られ、かつ下記の要件[1]〜[8]を同時に満たす、プロピレン系樹脂組成物である。
[1]ASTM D1238Eに準拠し、230℃、2.16kg荷重で測定したメルトフローレート(MFR)が、(A−1)の場合は、80g/10分以上150g/10分以下、(A−2)の場合は、93g/10分以上150g/10分以下、
[2]室温n−デカンに可溶な部分(Dsol)5〜50重量%と室温n−デカンに不溶な部分(Dinsol)50重量%以上95重量%以下から構成される(ただし、DsolとDinsolとの合計量は100重量%である)、
[3]Dsolの重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が7.0以上、20以下、
[4]Dsolのエチレン含有量が、(A−1)の場合は25モル%以上、35モル%以下、(A−2)の場合は40モル%以上、60モル%以下、
[5]Dsolの極限粘度[η]が、(A−1)の場合は5.0dl/g以上、10dl/g以下、(A−2)の場合は1.8dl/g以上、3.5dl/g以下、
[6]Dinsolの分子量分布(Mw/Mn)が7.0以上、20以下、かつZ平均分子量(Mz)と重量平均分子量(Mw)との比であるMz/Mwが6.0以上、20以下、
[7]Dinsolのペンタド分率(mmmm)が95%以上、
[8]Dsolにおいて、下式(i)で定義されるCSDの値が1.0以上〜2.0以下である。
Figure 0005368349
(式(i)中、[EE]はDsol中のエチレン連鎖のモル分率、[PP]はDsol中のプロピレン連鎖のモル分率、[PE]はプロピレン−エチレン連鎖のモル分率である。)
前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方は、下記要件[9]をさらに満たすことが好ましい。
[9]DsolのGPC−IR測定において、GPC曲線の面積分率で高分子量側5%における溶出成分のエチレン含有量(C2(H5))(モル%)と高分子量側から50%における溶出成分のエチレン含有量(C2(H50))(mol%)の差(Δ(C2))(下記式(ii))が1.5以下。
Figure 0005368349
また、 前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方の製造方法においては、プロピレン重合体成分を製造する工程を前段で行い、プロピレン−エチレン共重合体ゴム成分を製造する工程を後段で行うことが好ましい。
さらに、前記プロピレン重合体成分を製造する工程が、2槽以上の直列した重合槽で行われ、各槽で生成されるプロピレン重合体の極限粘度[η]が4dl/g以下であることが好ましい。また、前記プロピレン−エチレン共重合体ゴム成分を製造する工程が1槽の重合槽で行われることが好ましい。
また、前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方は、チタン、マグネシウム、およびハロゲンと下記式(1)で特定される環状エステル化合物(a)および下記式(2)で特定される環状エステル化合物(b)とを含む固体状チタン触媒成分(I)と、周期表の第1族、第2族および第13族から選ばれる金属原子を含む有機金属化合物(II)と、必要に応じて電子供与体(III)と、を含むオレフィン重合用触媒の存在下に重合して得られる。
Figure 0005368349
式(1)において、nは5〜10の整数である。
2およびR3はそれぞれ独立にCOOR1またはRであり、R2およびR3のうち少なくとも1つはCOOR1である。環状骨格中の単結合(C−Cb結合、R3がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合))は、二重結合に置き換えられていてもよい。
1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。
複数個あるRは、それぞれ独立に水素原子、炭素原子数1〜20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少なくとも1つのRは水素原子ではない。
Rが互いに結合して形成される環の骨格中に、二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5〜10である。
Figure 0005368349
式(2)において、nは5〜10の整数である。
4およびR5はそれぞれ独立にCOOR1または水素原子であり、R4およびR5のうち少なくとも1つはCOOR1である。R1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。環状骨格中の単結合(C−Cb結合、R5がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合))は、二重結合に置き換えられていてもよい。
ここで、前記式(1)および/または(2)において、前記環状骨格中の炭素原子間結合のすべてが単結合であることが好ましい。また、前記式(1)および/または(2)において、n=6であることも好ましい。
さらに、前記環状エステル化合物(a)が下記式(1a)であり、前記環状エステル化合物(b)が下記式(2a)であることが好ましい。
Figure 0005368349
式(1a)において、nは5〜10の整数である。
環状骨格中の単結合(C−C結合(nが6〜10の場合)、Ca−C結合およびCb−C結合)は、二重結合に置き換えられていてもよい。
1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。
複数個あるRは、それぞれ独立に水素原子または炭素原子数1〜20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少なくとも1つのRは水素原子ではない。
Rが互いに結合して形成される環の骨格中に、二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5〜10である。
Figure 0005368349
式(2a)において、nは5〜10の整数である。
1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。環状骨格中の単結合(C−C結合(nが6〜10の場合)、Ca−C結合およびCb−C結合)は、二重結合に置き換えられていてもよい。
ここで、前記式(1a)および(2a)において、前記環状骨格中の炭素原子間結合のすべてが単結合であることが好ましい。また、前記式(1a)および(2a)において、n=6であることも好ましい。
本発明では、前記プロピレン系ブロック共重合体(A)を含んでなる成形体を特徴としている。また、前記成形体は、射出成形によって得られた自動車部品であることが好ましい。
本発明に係るプロピレン系樹脂組成物は、剛性と耐衝撃性等の機械物性が良好でありながらフローマーク、ウェルドライン等の成形外観不良が少なく、かつ射出成形時の金型内流動性が良好であるため、自動車内外装部品などの薄肉大型射出成形品へ好適に使用することができる。
フローマーク評価用射出成形品の概略図である。 ウェルド評価用射出成形品の概略図である。 本発明のプロピレン系樹脂組成物の常温衝撃強度と低温衝撃強度との関係を表したグラフである。
以下、本発明のプロピレン系樹脂組成物を構成するプロピレン系ブロック共重合体混合物(A)、エラストマー(B)、およびフィラー(E)について具体的に説明する。
[プロピレン系ブロック共重合体混合物(A)]
前記プロピレン系ブロック共重合体混合物(A)は、プロピレン系ブロック共重合体(A―1)95〜5重量%とプロピレン系ブロック共重合体(A−2)5〜95重量%とからなる(ただし、(A−1)および(A−2)の合計は100重量%である)ことを特徴としている。
そして、前記プロピレン系ブロック共重合体(A1)および(A2)は、プロピレン重合体成分を製造する工程およびプロピレン−エチレン共重合体ゴム成分を製造する工程によって得られ、下記の要件[1]〜[8]を同時に満たすことを特徴としており、好ましくは要件[9]をさらに満たすことを特徴としている。なお、前記プロピレン重合体は結晶性であり、プロピレンと少量の他のα−オレフィンとの共重合体、プロピレン単独重合体である。
[1]ASTM D1238Eに準拠し、230℃、2.16kg荷重で測定したメルトフローレート(MFR)が、20g/10分以上、150g/10分以下、
[2]室温n−デカンに可溶な部分(Dsol)5重量%以上、50重量%以下、と室温n−デカンに不溶な部分(Dinsol)50重量%以上、95重量%以下とから構成される(ただし、DsolとDinsolの合計量は100重量%である)、
[3]Dsolの分子量分布(Mw/Mn)が7.0以上、20以下、
[4]Dsolのエチレン含有量が、(A−1)の場合は25mol%以上、35mol%以下、(A−2)の場合は40mol%以上、60mol%以下、
[5]Dsolの[η]が、(A−1)の場合は5.0dl/g以上、10dl/g以下、(A−2)の場合は1.8dl/g以上、3.5dl/g以下、
[6]Dinsolの分子量分布(Mw/Mn)が7.0以上、20以下、かつMz/Mwが6.0以上、20以下、
[7]Dinsolのペンタド分率(mmmm)が95%以上、
[8]Dsolにおいて、下記式(i)で定義されるCSDの値が1.0以上、2.0以下である。
Figure 0005368349
(式(i)中、[EE]はDsol中のエチレン連鎖のモル分率、[PP]はDsol中のプロピレン連鎖のモル分率、[PE]はプロピレン−エチレン連鎖のモル分率である。)
[9]DsolのGPC−IR測定において、GPC曲線の面積分率で高分子量側5%における溶出成分のエチレン含有量(C2(H5))(mol%)と高分子量側から50%における溶出成分のエチレン含有量(C2(H50))(mol%)の差(Δ(C2))(下記式(ii)が1.5以下である。
Figure 0005368349
以下、プロピレン系ブロック共重合体(A)が満たす各要件について詳細に説明する。
要件[1]
前記プロピレン系ブロック共重合体(A1)および(A2)の、ASTM D1238Eに準拠し、230℃、2.16kg荷重で測定したメルトフローレート(MFR)は、20g/10分以上、150g/10分以下であり、好ましくは25g/10分以上、120g/10分以下であり、更に好ましくは30g/10分以上、100g/10分以下である。
MFRが上記上限値を超えると、プロピレン系樹脂組成物の耐衝撃性が低下し、自動車部品等の構造部品には適さない場合がある。また、MFRが上記下限値未満であると、プロピレン系樹脂組成物の流動性が低下し、自動車部品等の大型部品の射出成形性には適さない場合がある。
要件[2]
前記プロピレン系ブロック共重合体(A1)および(A2)の、室温n−デカンに可溶な部分(Dsol)と室温n−デカンに不溶な部分(Dinsol)としては、Dsolが5重量%以上、50重量%以下、Dinsolが50重量%以上、95重量%以下(ただし、DsolとDinsolの合計量は100重量%である)であり、好ましくはDsolが7重量%、40重量%以下、Dinsolが60重量%以上〜93重量%以下、更に好ましくはDsolが10重量%以上、35重量%以下、Dinsolが65重量%以上〜90重量%以下である。
ここで、Dsolは、主としてプロピレン−エチレン共重合体ゴム成分から構成され、Dinsolは、主としてプロピレン重合体成分と副生分としてポリエチレン樹脂などから構成されている。
Dsolが上記下限値未満、Dinsolが上記上限値よりも多いと、プロピレン系樹脂組成物の耐衝撃性が悪化する為、各種構造部品への適用が難しくなる。Dsolが上記上限値よりも多く、Dinsolが上記下限値未満であると、プロピレン樹脂組成物の剛性が低下する為、各種構造部品への適用が難しくなる。
要件[3]
前記プロピレン系ブロック共重合体(A1)および(A2)の、Dsolの重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は7.0以上、20以下であり、好ましくは、Mw/Mnが7.0以上、15以下、更に好ましくは7.0以上、10以下である。
Mw/Mnが上記範囲にあると、プロピレン系樹脂組成物から、フローマークが少ない射出成形品を得ることができる。これは、Mw/Mnが上記範囲に存在した結果、高分子量プロピレン−エチレン共重合体ゴム成分によるプロピレン系樹脂組成物の高溶融弾性化、特に溶融樹脂の金型への転写に相当する低剪断速度領域での高溶融弾性化が図ることができ、射出成形金型内での流動先端が安定化した結果、フローマークが非常に改良できたものと推察している。また、Mw/Mnが上記範囲にあると、低分子量プロピレン−エチレン共重合体ゴム成分による耐衝撃性低下の影響が少ない為、プロピレン系樹脂組成物の耐衝撃性が保持できるものと推察している。
Mw/Mnが上記上限値よりも大きいと、プロピレン系ブロック共重合体中に低分子量のプロピレン−エチレン共重合体ゴムが増える為、プロピレン系樹脂組成物の耐衝撃性が低下する場合がある。また、Mw/Mnが上記下限値よりも小さいと、プロピレン系ブロック共重合体の溶融弾性が低下する為、プロピレン系樹脂組成物を射出成形した際に、フローマークが発生しやすくなる場合がある。
なお、本発明において、分子量分布(Mw/Mn)は、GPCで測定される重量平均分子量(Mw)と数平均分子量(Mn)であり、その定義については、高分子化学の基礎(高分子学会編、1978年出版)P117に従って行った。
要件[4]
前記プロピレン系ブロック共重合体(A1)の、Dsolのエチレン含有量は25mol%以上、35mol%以下であり、好ましくは25mol%以上、34mol%以下、更に好ましくは25mol%以上、33mol%以下である。
プロピレン系ブロック共重合体(A1)におけるDsolのエチレン含有量が上記下限値未満であると、プロピレン系ブロック共重合体中のプロピレン―エチレン共重合体ゴム成分が、プロピレン重合体成分中に相容する傾向があり、得られたプロピレン系樹脂組成物の耐衝撃性が低下し、各種構造部品への適用が難しくなることがある。この現象の理由は明らかではないが、プロピレン系ブロック共重合体中に分散相として存在するプロピレン―エチレン共重合体ゴムの分散粒径が細かくなりすぎた結果、プロピレン―エチレン共重合体ゴム粒子が応力集中点として作用しなくなるため、耐衝撃性が低下したものと推察される。
プロピレン系ブロック共重合体(A1)におけるDsolのエチレン含有量が上記上限値よりも高いと、プロピレン系ブロック共重合体(A2)と混合して使用した際に効果が発現しにくい。
前記プロピレン系ブロック共重合体(A2)の、Dsolのエチレン含有量は40mol%以上、60mol%以下であり、好ましくは42mol%以上、60mol%以下、更に好ましくは44mol%以上、60mol%以下である。
プロピレン系ブロック共重合体(A2)におけるDsolのエチレン含有量が上記下限値未満であると、プロピレン系ブロック共重合体(A1)と混合して使用した際に効果が発現しにくい。
プロピレン系ブロック共重合体(A2)におけるDsolのエチレン含有量が上記上限値よりも高いと、プロピレン系ブロック共重合体中のプロピレン―エチレン共重合体ゴム成分とプロピレン重合体成分との親和性が低下し、得られたプロピレン系樹脂組成物の耐衝撃性や引っ張り破断伸びが低下する場合がある。これは、分散粒子として存在するプロピレン―エチレン共重合体ゴムと、それを取り囲むプロピレン重合体との界面の接着性が悪く、衝撃や引張り歪みを加えた際にその界面が剥離し、破壊の起点になるためと推察される。
要件[5]
前記プロピレン系ブロック共重合体(A1)の、Dsolの極限粘度[η]は5.0dl/g以上、10dl/g以下であり、好ましくは6.0dl/g以上、10dl/g以下、更に好ましくは7.0dl/g以上、10dl/g以下である。
プロピレン系ブロック共重合体(A1)におけるDsolの極限粘度[η]が上記下限値未満であると、プロピレン系ブロック共重合体(A2)と混合して使用した際に効果が発現しにくい。
プロピレン系ブロック共重合体(A1)におけるDsolの極限粘度[η]が上記上限値を超えると、流動性が悪くなる。そのため、プロピレン系樹脂組成物の射出成形時の流動性を高めるための処置として、プロピレン重合体成分のMFRを高くする必要がある。この場合、プロピレン系樹脂組成物の耐衝撃性や引張り破断伸びが低下する場合がある。また、プロピレン重合体への分散性が悪くなり、フィッシュアイとなる場合があり、プロピレン系樹脂組成物から得られた成形品の表面にブツが発生して外観不良となることがある。
前記プロピレン系ブロック共重合体(A2)の、Dsolの極限粘度[η]は1.8dl/g以上、3.5dl/g以下であり、好ましくは1.8dl/g以上、3.2dl/g以下、更に好ましくは1.8dl/g以上、2.9dl/g以下である。
プロピレン系ブロック共重合体(A1)におけるDsolの極限粘度[η]が上記下限値未満であると、プロピレン系ブロック共重合体の耐衝撃性が低下し、得られたプロピレン系樹脂組成物の耐衝撃性も低下する場合がある。
プロピレン系ブロック共重合体(A1)におけるDsolの極限粘度[η]が上記上限値を超えると、プロピレン系ブロック共重合体(A1)と混合して使用した際に効果が発現しにくい。
要件[6]
前記プロピレン系ブロック共重合体(A1)および(A2)の、Dinsolの分子量分布(Mw/Mn)は7.0以上であり、好ましくは8.0以上、更に好ましくは9.0以上であり、また上記Mw/Mnは20以下である。Dinsolでは上記Mw/Mnであることに加えさらに、Z平均分子量(Mz)と重量平均分子量(Mw)との比であるMz/Mwが6.0以上であり、好ましくは7.0以上、更に好ましくは8.0以上であり、また上記Mz/Mwは20以下である。
Mw/MnおよびMz/Mwが上記範囲にあると、プロピレン系樹脂組成物から、フローマークが非常に少ない射出成形品を得ることができる。これは、Mw/MnおよびMz/Mwが上記範囲に存在した結果、高分子量プロピレン重合体成分により、プロピレン系樹脂組成物の高溶融弾性化、特に低剪断速度領域での高溶融弾性化が図ることができ、射出成形金型内での流動先端が安定化した結果、フローマークが非常に改良できたものと推察している。
Mw/MnおよびMz/Mwが上記下限値よりも小さいと、プロピレン系ブロック共重合体中のプロピレン系重合体成分の溶融弾性が低下し、該プロピレン系樹脂組成物から得られた射出成形品にフローマークが目立ちやすくなり、さらに、射出成形時の流動性が低下することから、自動車部品等の大型射出成形品には適さない場合がある。また、Mw/Mnが上記下限値よりも小さいと該プロピレン系樹脂組成物の剛性が低下する為、好ましくない場合がある。さらに、Mw/Mnが上記上限値よりも大きいと、プロピレン系ブロック共重合体中に低分子量プロピレン重合体成分が増える為、プロピレン系樹脂組成物の耐衝撃性が低下する場合がある。
ここで、本発明において、分子量分布(Mw/Mn)は、GPCで測定される重量平均分子量(Mw)と数平均分子量(Mn)との比、Mz/MwはGPCで測定されるZ平均分子量(Mz)と重量平均分子量(Mw)との比であり、これらの定義については、高分子化学の基礎(高分子学会編、1978年出版)P117に従って行った。
要件[7]
前記プロピレン系ブロック共重合体(A1)および(A2)の、Dinsolのペンダット分率(mmmm)が95%以上、好ましくは96%以上、更に好ましくは97%以上である。
Dinsolのmmmmが上記%よりも低いと、プロピレン系樹脂組成物の剛性が低下する為、好ましくない。
要件[8]
前記プロピレン系ブロック共重合体(A1)および(A2)の、Dsolにおいて、下記式(i)で定義されるCSDの値が1.0以上、2.0以下、好ましくは1.0以上、1.8以下である。
Figure 0005368349
(式(i)中、[EE]はDsol中のエチレン連鎖のモル分率、[PP]はDsol中のプロピレン連鎖のモル分率、[PE]はプロピレン−エチレン連鎖のモル分率である。)
式(i)において、CSDとはプロピレン−エチレン共重合体のプロピレンおよびエチレンの共重合性を表す指標として使用することができる。
Dsolは主としてプロピレン−エチレン共重合体から構成されるが、Dsolにおいて、下式(i)で定義されるCSDの値が上記上限値よりも大きいと、Dsol中にエチレン連鎖およびプロピレン連鎖が増加、プロピレン−エチレン連鎖が減少する傾向がある。この場合、結晶性のエチレン連鎖およびプロピレン連鎖が増加する為、プロピレン系ブロック共重合体が脆くなりやすくなり、プロピレン系ブロック共重合体の耐衝撃性が低下する。その為、得られたプロピレン系樹脂組成物の耐衝撃性も悪化する場合がある。
要件[9]
前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方の、DsolのGPC−IR測定において、GPC曲線の面積分率で高分子量側5%における溶出成分のエチレン含有量(C2(H5))(モル%)と高分子量側から50%における溶出成分のエチレン含有量(C2(H50))(モル%)の差(Δ(C2))(下記式(ii))は好ましくは1.5mol%以下、より好ましくは、1.0mol%以下である。
Figure 0005368349
また、上記要件[9]は、(A1)および(A2)の少なくとも一方が満たすことが好ましいが、(A1)および(A2)の両方が満たすことがより好ましい。
Δ(C2)が1.5mol%よりも大きいと、Dsol中の各分子量におけるエチレン量にバラつきが生じ、Dsol中のエチレン組成分布が広くなる場合がある。このとき、プロピレン系樹脂組成物の剛性/耐衝撃性などの物性バランスを高度に制御する観点で、Dsol中のエチレン組成分布が広くなると好ましくない場合がある。
上記の要件[1]〜[8]を同時に満たし、さらに好ましくは要件[9]を満たすことを特徴とするプロピレン系ブロック共重合体(A1)および(A2)の少なくとも一方は、以下のオレフィン重合用触媒を用いて製造されることが好ましく、(A1)および(A2)の両方が、以下のオレフィン重合用触媒を用いて製造されることがより好ましい。
[オレフィン重合用触媒]
前記プロピレン系ブロック共重合体(A1)および(A2)の少なくとも一方は、固体状チタン触媒成分(I)と、周期表の第1族、第2族および第13族から選ばれる金属原子を含む有機金属化合物(II)と、必要に応じて電子供与体(III)とを含むオレフィン重合用触媒の存在下に重合して得られたものであることが好ましく、前記プロピレン系ブロック共重合体(A1)および(A2)の両方が、該触媒の存在下に重合して得られたものであることがより好ましい。以下、オレフィン重合用触媒に係る各成分について詳細に説明する。
[固体状チタン触媒成分(I)]
前記固体状チタン触媒成分(I)は、チタン、マグネシウム、およびハロゲンおと下記式(1)で特定される環状エステル化合物(a)および下記式(2)で特定される環状エステル化合物(b)とを含む。
<環状エステル化合物(a)>
前記環状エステル化合物(a)は、複数のカルボン酸エステル基を有し、下記式(1)で表される。
Figure 0005368349
式(1)において、nは、5〜10の整数、好ましくは5〜7の整数であり、特に好ましくは6である。またCaおよびCbは、炭素原子を表わす。
2およびR3はそれぞれ独立にCOOR1またはRであり、R2およびR3のうちの少なくとも1つはCOOR1である。
環状骨格中の炭素原子間結合は、すべてが単結合であることが好ましいが、環状骨格中の、Ca−Ca結合およびR3がRである場合のCa−Cb結合以外の、いずれかの単結合は、二重結合に置き換えられていてもよい。すなわち、環状骨格中の、C−Cb結合、R3がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合)は、二重結合に置き換えられていてもよい。
複数個あるR1は、それぞれ独立に、炭素原子数が1〜20、好ましくは1〜10、より好ましくは2〜8、さらに好ましくは4〜8、特に好ましくは4〜6の1価の炭化水素基である。この炭化水素基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、ヘキシル基、へプチル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基などが挙げられ、中でもn−ブチル基、イソブチル基、ヘキシル基、オクチル基が好ましく、さらにはn−ブチル基、イソブチル基が、分子量分布の広いプロピレン系ブロック共重合体を製造できることから特に好ましい。
複数個あるRは、それぞれ独立に、水素原子、炭素原子数1〜20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基であるが、少なくとも1つのRは水素原子ではない。
水素原子以外のRとしては、これらの中でも炭素原子数1〜20の炭化水素基が好ましく、この炭素原子数1〜20の炭化水素基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、ビニル基、フェニル基、オクチル基などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基が挙げられる。中でも脂肪族炭化水素基が好ましく、具体的にはメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基が好ましい。
またRは、互いに結合して環を形成していてもよく、Rが互いに結合して形成される環の骨格中には、二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5〜10である。
このような環の骨格としては、ノルボルナン骨格、テトラシクロドデセン骨格などが挙げられる。
また複数個あるRは、カルボン酸エステル基、アシル基、ケトン基などのカルボニル構造含有基であってもよく、これらの置換基には、炭素原子数1〜20の炭化水素基1個以上を含んでいることが好ましい。
このような環状エステル化合物(a)としては、国際公開2006/077945号パンフレットに記載がある。具体的には、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3−メチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
4−メチルシクロヘキサン−1,3−ジカルボン酸ジエチル、
4−メチルシクロヘキサン−1,3−ジカルボン酸ジイソブチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
4−メチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル
4−メチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
5−メチルシクロヘキサン−1,3−ジカルボン酸ジエチル、
5−メチルシクロヘキサン−1,3−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル
3,4−ジメチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジヘキシル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジへプチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジオクチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジデシル、
3−ヘキシルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−ヘキシルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジヘキシルシクロヘキサン−1,2−ジカルボン酸ジエチル、
3−ヘキシル−6−ペンチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチルシクロペンタン−1,2−ジカルボン酸ジエチル、
3−メチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3−メチルシクロペンタン−1,2−ジカルボン酸ジへプチル、
3−メチルシクロペンタン−1,2−ジカルボン酸ジデシル、
4−メチルシクロペンタン−1,3−ジカルボン酸ジエチル、
4−メチルシクロペンタン−1,3−ジカルボン酸ジイソブチル、
4−メチルシクロペンタン−1,2−ジカルボン酸ジエチル、
4−メチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
4−メチルシクロペンタン−1,2−ジカルボン酸ジへプチル、
4−メチルシクロペンタン−1,2−ジカルボン酸ジデシル、
5−メチルシクロペンタン−1,3−ジカルボン酸ジエチル、
5−メチルシクロペンタン−1,3−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロペンタン−1,2−ジカルボン酸ジエチル、
3,4−ジメチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロペンタン−1,2−ジカルボン酸ジへプチル、
3,4−ジメチルシクロペンタン−1,2−ジカルボン酸ジデシル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジエチル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジへプチル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジデシル、
3−ヘキシルシクロペンタン−1,2−ジカルボン酸ジエチル、
3,5−ジヘキシルシクロペンタン−1,2−ジカルボン酸ジエチル、
3−ヘキシル−5−ペンチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジエチル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジn−プロピル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジイソプロピル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジn−ブチル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジイソブチル
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジヘキシル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジオクチル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジデシル、
3−メチルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3−メチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3−メチルシクロヘプタン−1,2−ジカルボン酸ジへプチル、
3−メチルシクロヘプタン−1,2−ジカルボン酸ジデシル、
4−メチルシクロヘプタン−1,3−ジカルボン酸ジエチル、
4−メチルシクロヘプタン−1,3−ジカルボン酸ジイソブチル、
4−メチルシクロヘプタン−1,2−ジカルボン酸ジエチル、
4−メチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
4−メチルシクロヘプタン−1,2−ジカルボン酸ジへプチル、
4−メチルシクロヘプタン−1,2−ジカルボン酸ジデシル、
5−メチルシクロヘプタン−1,3−ジカルボン酸ジエチル、
5−メチルシクロヘプタン−1,3−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3,4−ジメチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3,4−ジメチルシクロヘプタン−1,2−ジカルボン酸ジへプチル、
3,4−ジメチルシクロヘプタン−1,2−ジカルボン酸ジデシル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジへプチル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジデシル、
3−ヘキシルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3,7−ジヘキシルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3−ヘキシル−7−ペンチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジエチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジn−プロピル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジイソプロピル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジn−ブチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジヘキシル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジオクチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジデシル、
3−メチルシクロオクタン−1,2−ジカルボン酸ジエチル、
3−メチルシクロデカン−1,2−ジカルボン酸ジエチル、
3−ビニルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジフェニルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジシクロヘキシルシクロヘキサン−1,2−ジカルボン酸ジエチル、
ノルボルナン−2,3−ジカルボン酸ジイソブチル、
テトラシクロドデカン−2,3−ジカルボン酸ジイソブチル
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジエチル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジn−プロピル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジイソプロピル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジn−ブチル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジイソブチル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジヘキシル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジへプチル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジオクチル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジ2−エチルヘキシル、
3,6−ジメチル−4−シクロヘキセン−1,2−ジカルボン酸ジデシル、
3,6−ジヘキシル−4−シクロヘキセン−1,2−ジカルボン酸ジエチル、
3−ヘキシル−6−ペンチル−4−シクロヘキセン−1,2−ジカルボン酸ジイソブチル、
などが挙げられる。
また、以下の化合物、
3,6−ジメチルシクロヘキサン−1,2−ジアセテート、
3,6−ジメチルシクロヘキサン−1,2−ジブタネート、
3−メチル−6−プロピルシクロヘキサン−1,2−ジオールアセテート、
3−メチル−6−プロピルシクロヘキサン−1,2−ジブタネート、
3,6−ジメチルシクロヘキサン−1,2−ジベンゾエート、
3,6−ジメチルシクロヘキサン−1,2−ジトルエート、
3−メチル−6−プロピルシクロヘキサン−1,2−ジベンゾエート、
3−メチル−6−プロピルシクロヘキサン−1,2−ジトルエート、
等も好ましい例として挙げることができる。
上記のようなジエステル構造を持つ化合物には、式(1)における複数のCOOR1基に由来するシス、トランス等の異性体が存在し、どの構造であっても本発明の目的に合致する効果を有するが、よりトランス体の含有率が高い方が好ましい。トランス体の含有率が高い方が、分子量分布を広げる効果だけでなく、活性や得られる重合体の立体規則性がより高い傾向がある。
前記環状エステル化合物(a)としては、下記式(1−1)〜(1−6)で表される化合物が好ましい。
Figure 0005368349
Figure 0005368349
Figure 0005368349
Figure 0005368349
Figure 0005368349
Figure 0005368349
〔上記式(1−1)〜(1−6)中の、R1およびRは式(1)での定義と同様である。
上記式(1−1)〜(1−3)において、環状骨格中の単結合(ただしCa−Ca結合およびCa−Cb結合を除く。)は、二重結合に置き換えられていてもよい。
上記式(1−4)〜(1−6)において、環状骨格中の単結合(ただしCa−Ca結合を除く。)は、二重結合に置き換えられていてもよい。
また、上記式(1−3)および(1−6)においてnは7〜10の整数である。〕
前記環状エステル化合物(a)としては、特には下記式(1a)で表わされる化合物が好ましい。
Figure 0005368349
〔式(1a)中の、n、R1およびRは式(1)での定義と同様であり、環状骨格中の単結合(ただしCa−Ca結合およびCa−Cb結合を除く。)は、二重結合に置き換えられていてもよい。すなわち、環状骨格中のC−C結合(nが6〜10の場合)、Ca−C結合およびCb−C結合は、二重結合に置き換えられていてもよい。〕
上記式(1a)で表わされる化合物として具体的には、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジn−ヘキシル、
3,5−ジメチルシクロペンタン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−5−エチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3−メチル−5−エチルシクロペンタン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−5−エチルシクロペンタン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−5−n−プロピルシクロペンタン−1,2−ジカルボン酸ジn−オクチル、
3,5−ジエチルシクロペンタン−1,2−ジカルボン酸ジイソブチル、
3,5−ジエチルシクロペンタン−1,2−ジカルボン酸ジn−ヘキシル、
3,5−ジエチルシクロペンタン−1,2−ジカルボン酸ジn−オクチル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジn−ヘキシル、
3,7−ジメチルシクロヘプタン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−7−エチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3−メチル−7−エチルシクロヘプタン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−7−エチルシクロヘプタン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−7−n−プロピルシクロヘプタン−1,2−ジカルボン酸ジn−オクチル、
3,7−ジエチルシクロヘプタン−1,2−ジカルボン酸ジイソブチル、
3,7−ジエチルシクロヘプタン−1,2−ジカルボン酸ジn−ヘキシル、
3,7−ジエチルシクロヘプタン−1,2−ジカルボン酸ジn−オクチル、
などが挙げられる。
上記の化合物の中では、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−6−エチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3−メチル−6−n−プロピルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジn−ヘキシル、
3,6−ジエチルシクロヘキサン−1,2−ジカルボン酸ジn−オクチル
がさらに好ましい。これらの化合物はDiels Alder反応を利用して製造できる。
上記のようなジエステル構造を持つ環状エステル化合物(a)には、シス、トランス等の異性体が存在し、どの構造であっても本発明の目的に合致する効果を有するが、トランス体の含有率が高い方が、分子量分布を広げる効果だけでなく、活性や得られる重合体の立体規則性がより高い傾向があるため特に好ましい。シス体およびトランス体のうちのトランス体の割合は、好ましくは51%以上であることが好ましい。より好ましい下限値は55%であり、さらに好ましくは60%であり、特に好ましくは65%である。一方、好ましい上限値は100%であり、より好ましくは90%であり、さらに好ましくは85%であり、特に好ましくは79%である。
<環状エステル化合物(b)>
環状エステル化合物(b)は、複数のカルボン酸エステル基を有し、下記式(2)で表される。
Figure 0005368349
式(2)において、nは、5〜10の整数、好ましくは5〜7の整数であり、特に好ましくは6である。またCaおよびCbは、炭素原子を表わす。
環状骨格中の炭素原子間結合は、すべてが単結合であることが好ましいが、環状骨格中の、Ca−Ca結合およびR5が水素原子である場合のCa−Cb結合以外のいずれかの単結合は、二重結合に置き換えられていてもよい。すなわち、環状骨格中の、C−Cb結合、R5がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合)は、二重結合に置き換えられていてもよい。
また、R4およびR5はそれぞれ独立にCOOR1または水素原子であり、R4およびR5のうちの少なくとも1つはCOOR1であり、R1はそれぞれ独立に炭素原子数1〜20の1価の炭化水素基である。
複数個あるR1は、それぞれ独立に、炭素原子数が1〜20、好ましくは1〜10、より好ましくは2〜8、さらに好ましくは4〜8、特に好ましくは4〜6の1価の炭化水素基である。この炭化水素基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、ヘキシル基、へプチル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基などが挙げられ、中でもn−ブチル基、イソブチル基、ヘキシル基、オクチル基が好ましく、さらにはn−ブチル基、イソブチル基が、分子量分布の広いプロピレン系ブロック共重合体を製造できることから特に好ましい。
このような環状エステル化合物(b)としては、
シクロヘキサン−1,2−ジカルボン酸ジエチル、
シクロヘキサン−1,2−ジカルボン酸ジn−プロピル、
シクロヘキサン−1,2−ジカルボン酸ジイソプロピル、
シクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
シクロヘキサン−1,2−ジカルボン酸ジイソブチル、
シクロヘキサン−1,2−ジカルボン酸ジヘキシル、
シクロヘキサン−1,2−ジカルボン酸ジへプチル、
シクロヘキサン−1,2−ジカルボン酸ジオクチル、
シクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル
シクロヘキサン−1,2−ジカルボン酸ジデシル、
シクロヘキサン−1,3−ジカルボン酸ジエチル、
シクロヘキサン−1,3−ジカルボン酸ジイソブチル、
シクロペンタン−1,2−ジカルボン酸ジエチル、
シクロペンタン−1,2−ジカルボン酸ジイソプロピル、
シクロペンタン−1,2−ジカルボン酸ジイソブチル、
シクロペンタン−1,2−ジカルボン酸ジへプチル、
シクロペンタン−1,2−ジカルボン酸ジデシル、
シクロペンタン−1,3−ジカルボン酸ジエチル、
シクロペンタン−1,3−ジカルボン酸ジイソブチル、
シクロヘプタン−1,2−ジカルボン酸ジエチル、
シクロヘプタン−1,2−ジカルボン酸ジイソプロピル、
シクロヘプタン−1,2−ジカルボン酸ジイソブチル、
シクロヘプタン−1,2−ジカルボン酸ジへプチル、
シクロヘプタン−1,2−ジカルボン酸ジデシル、
シクロヘプタン−1,3−ジカルボン酸ジエチル、
シクロヘプタン−1,3−ジカルボン酸ジイソブチル、
シクロオクタン−1,2−ジカルボン酸ジエチル、
シクロデカン−1,2−ジカルボン酸ジエチル、
4−シクロヘキセン−1,2−ジカルボン酸ジエチル、
4−シクロヘキセン−1,2−ジカルボン酸ジn−プロピル、
4−シクロヘキセン−1,2−ジカルボン酸ジイソプロピル、
4−シクロヘキセン−1,2−ジカルボン酸ジn−ブチル、
4−シクロヘキセン−1,2−ジカルボン酸ジイソブチル、
4−シクロヘキセン−1,2−ジカルボン酸ジヘキシル、
4−シクロヘキセン−1,2−ジカルボン酸ジへプチル、
4−シクロヘキセン−1,2−ジカルボン酸ジオクチル、
4−シクロヘキセン−1,2−ジカルボン酸ジデシル、
4−シクロヘキセン−1,3−ジカルボン酸ジエチル、
4−シクロヘキセン−1,3−ジカルボン酸ジイソブチル、
3−シクロペンテン−1,2−ジカルボン酸ジエチル、
3−シクロペンテン−1,2−ジカルボン酸ジイソプロピル、
3−シクロペンテン−1,2−ジカルボン酸ジイソブチル、
3−シクロペンテン−1,2−ジカルボン酸ジへプチル、
3−シクロペンテン−1,2−ジカルボン酸ジデシル、
3−シクロペンテン−1,3−ジカルボン酸ジエチル、
3−シクロペンテン−1,3−ジカルボン酸ジイソブチル、
4−シクロヘプテン−1,2−ジカルボン酸ジエチル、
4−シクロヘプテン−1,2−ジカルボン酸ジイソプロピル、
4−シクロヘプテン−1,2−ジカルボン酸ジイソブチル、
4−シクロヘプテン−1,2−ジカルボン酸ジへプチル、
4−シクロヘプテン−1,2−ジカルボン酸ジデシル、
4−シクロヘプテン−1,3−ジカルボン酸ジエチル、
4−シクロヘプテン−1,3−ジカルボン酸ジイソブチル、
5−シクロオクテン−1,2−ジカルボン酸ジエチル、
6−シクロデセン−1,2−ジカルボン酸ジエチル
などが挙げられる。
また、以下の化合物、
シクロヘキサン−1,2−ジアセテート、
シクロヘキサン−1,2−ジブタネート、
シクロヘキサン−1,2−ジベンゾエート、
シクロヘキサン−1,2−ジトルエート、
なども好ましい例として挙げることができる。
上記のようなジエステル構造を持つ化合物には、シス、トランス等の異性体が存在するが、どの構造であっても本発明の目的に合致する効果を有する。シス体およびトランス体のうちのトランス体の割合は、51%以上であることが好ましい。より好ましい下限値は55%であり、さらに好ましくは60%であり、特に好ましくは65%である。一方、好ましい上限値は100%であり、より好ましくは90%であり、さらに好ましくは85%であり、特に好ましくは79%である。この理由は不明であるが、後述する立体異性体のバリエーションが、広分子量分布化に適した領域にあると推測される。
特に上記式(2)においてn=6であるシクロヘキサン−1,2−ジカルボン酸ジエステルのトランス純度は上記の範囲である。
トランス純度が51%未満であると広分子量分布化の効果、活性、立体特異性等が不充分となることがある。また、トランス純度が79%を超えると広分子量分布化の効果が不充分となることがある。すなわち、トランス純度が上記の範囲内であれば、得られる重合体の分子量分布を広げる効果と、触媒の活性や得られる重合体の高い立体規則性とを高いレベルで両立する上で有利なことが多い。
前記環状エステル化合物(b)としては、特には下記式(2a)で表わされるシクロアルカン−1,2−ジカルボン酸ジエステル構造またはシクロアルケン−1,2−ジカルボン酸ジエステル構造を有する化合物が好ましい。
Figure 0005368349
〔式(2a)中の、n、R1は前記同様(すなわち、式(2)での定義と同様)であり、環状骨格中の単結合(ただしCa−Ca結合およびCa−Cb結合を除く。すなわち、C−Ca結合、C−Cb結合およびC−C結合(nが6〜10の場合))は、二重結合に置き換えられていてもよい。〕
上記式(2a)で表わされる化合物として具体的には、
シクロヘキサン−1,2−ジカルボン酸ジn−ブチル、
シクロヘキサン−1,2−ジカルボン酸ジイソブチル、
シクロヘキサン−1,2−ジカルボン酸ジヘキシル、
シクロヘキサン−1,2−ジカルボン酸ジへプチル、
シクロヘキサン−1,2−ジカルボン酸ジオクチル、
シクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
シクロペンタン−1,2−ジカルボン酸ジイソブチル、
シクロペンタン−1,2−ジカルボン酸ジヘプチル、
シクロヘプタン−1,2−ジカルボン酸ジイソブチル、
シクロヘプタン−1,2−ジカルボン酸ジへプチル
などが挙げられる。
上記の化合物の中では、
シクロヘキサン−1,2−ジカルボン酸ジイソブチル、
シクロヘキサン−1,2−ジカルボン酸ジヘキシル、
シクロヘキサン−1,2−ジカルボン酸ジへプチル、
シクロヘキサン−1,2−ジカルボン酸ジオクチル、
シクロヘキサン−1,2−ジカルボン酸ジ2−エチルヘキシル、
がさらに好ましい。その理由は、触媒性能だけでなく、これらの化合物がDiels Alder反応を利用して比較的安価に製造できる点にある。
環状エステル化合物(a)および(b)は、各々単独で用いてもよく各2種以上を組み合わせて用いてもよい。
環状エステル化合物(a)と環状エステル化合物(b)との組合せモル比(環状エステル化合物(a)/(環状エステル化合物(a)+環状エステル化合物(b))×100(mol%))は10mol%以上であることが好ましい。更に好ましくは、30mol%以上、特に好ましくは40mol%以上、特により好ましくは50mol%である。好ましい上限値は99mol%、好ましくは90mol%。より好ましくは85mol%、特に好ましくは80mol%である。
本発明の固体状チタン触媒成分(I)は、広範囲の環状エステル化合物(a)の組合せモル比の条件で、即ち固体状チタン触媒成分(I)の環状エステル化合物(a)の含有量が低くても、極めて分子量分布の広いオレフィン重合体を与えることができる。この効果の要因は不明であるが、本発明者らは以下のように推測している。
環状エステル化合物(a)は置換基Rの存在により環状エステル化合物(b)に比して形成し得る立体構造のバリエーションが極めて多いことは自明である。このため、分子量分布については環状エステル化合物(a)の影響が支配的になり、組合せモル比が低くても極めて広い分子量分布のオレフィン重合体を与えることができると考えられる。
一方、環状エステル化合物(a)と環状エステル化合物(b)とは比較的構造が似ているので、活性、立体規則性などの基本性能には互いの化合物の効果に影響を与え難い(構造が異なる化合物を用いた場合、活性や立体規則性等が激変することや、一方の化合物の効果が支配的になる例が多くある)。
このため、本発明で使用する固体状チタン触媒成分(I)は、環状エステル化合物(a)の含有率が低くても極めて広い分子量分布かつ高い立体規則性を有するオレフィン重合体を高い活性で与えることができる。
本発明のプロピレン系ブロック共重合体は、分子量分布の広い重合体である。この理由は現時点で不明であるが、下記のような原因が推定される。
環状炭化水素構造は、イス型、舟型など多彩な立体構造を形成することが知られている。さらに、環状構造に置換基を有すると、取りうる立体構造のバリエーションはさらに増大する。また、環状エステル化合物の環状骨格を形成する炭素原子のうちの、エステル基(COOR1基)が結合した炭素原子とエステル基(COOR1基)が結合した他の炭素原子との間の結合が単結合であれば、取りうる立体構造のバリエーションが広がる。この多彩な立体構造を取りうることが、固体状チタン触媒成分(I)上に多彩な活性種を形成することに繋がる。その結果、固体状チタン触媒成分(I)を用いてオレフィンの重合を行うと、多様な分子量のオレフィン重合体を一度に製造することができる、即ち分子量分布の広いプロピレン系ブロック共重合体を製造することができる。
本発明において、環状エステル化合物(a)および(b)は、固体状チタン触媒成分(I)を調製する過程で形成されてもよい。例えば、固体状チタン触媒成分(I)を調製する際に、環状エステル化合物(a)および(b)に対応する無水カルボン酸やカルボン酸ジハライドと、対応するアルコールとが実質的に接触する工程を設けることで、環状エステル化合物(a)および(b)を固体状チタン触媒成分中に含有させることもできる。
本発明で使用する固体状チタン触媒成分(I)の調製には、上記の環状エステル化合物(a)および(b)の他、マグネシウム化合物およびチタン化合物が用いられる。また、本発明の目的を損なわない限り、後述する触媒成分(c)および触媒成分(d)とを組み合わせて用いてもよい。
<マグネシウム化合物>
本発明で使用する固体状チタン触媒成分(I)の調製に用いられるマグネシウム化合物として具体的には、
塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウム;
メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、フェノキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;
エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、2−エチルヘキソキシマグネシウムなどのアルコキシマグネシウム;
フェノキシマグネシウムなどのアリーロキシマグネシウム;
ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩などの公知のマグネシウム化合物を挙げることができる。
これらのマグネシウム化合物は単独で用いても、2種以上を組み合わせて用いてもよい。またこれらのマグネシウム化合物は、他の金属との錯化合物、複化合物あるいは他の金属化合物との混合物であってもよい。
これらの中ではハロゲンを含有するマグネシウム化合物が好ましく、ハロゲン化マグネシウム、特に塩化マグネシウムが好ましく用いられる。他に、エトキシマグネシウムのようなアルコキシマグネシウムも好ましく用いられる。また、該マグネシウム化合物は、他の物質から誘導されたもの、例えばグリニャール試薬のような有機マグネシウム化合物とハロゲン化チタンやハロゲン化ケイ素、ハロゲン化アルコールなどとを接触させて得られるものであってもよい。例えば、アルコキシマグネシウムとテトラアルコキシチタンなどを組み合わせる場合は、ハロゲン化剤として四塩化珪素などを反応させ、ハロゲン化マグネシウムとすることが好ましい。
<チタン化合物>
チタン化合物としては、例えば一般式;
Ti(OR)g4-g
(Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4である。)
で示される4価のチタン化合物を挙げることができる。より具体的には、
TiCl4、TiBr4などのテトラハロゲン化チタン;
Ti(OCH3)Cl3、Ti(OC25)Cl3、Ti(O−n−C49)Cl3、Ti(OC25)Br3、Ti(O−isoC49)Br3などのトリハロゲン化アルコキシチタン;
Ti(OCH32Cl2、Ti(OC252Cl2などのジハロゲン化アルコキシチタン;
Ti(OCH33Cl、Ti(O−n−C493Cl、Ti(OC253Brなどのモノハロゲン化アルコキシチタン;
Ti(OCH34、Ti(OC254、Ti(OC494、Ti(O−2−エチルヘキシル)4などのテトラアルコキシチタンなどを挙げることができる。
これらの中で好ましいものは、テトラハロゲン化チタンであり、特に四塩化チタンが好ましい。これらのチタン化合物は単独で用いても2種以上を組み合わせて用いてもよい。
上記のようなマグネシウム化合物およびチタン化合物としては、例えば前記特許文献1、特許文献2などに詳細に記載されている化合物も挙げることができる。
本発明の固体状チタン触媒成分(I)の調製には、環状エステル化合物(a)および(b)を該触媒成分中に含ませるようにする他は、公知の方法を制限無く使用することができる。具体的な好ましい方法としては、例えば下記(P−1)〜(P−4)の方法を挙げることができる。
(P−1)マグネシウム化合物および触媒成分(c)からなる固体状付加物と、環状エステル化合物(a)および(b)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させる方法。
(P−2)マグネシウム化合物および触媒成分(c)からなる固体状付加物と、環状エステル化合物(a)および(b)と、液状状態のチタン化合物とを、複数回に分けて接触させる方法。
(P−3)マグネシウム化合物および触媒成分(c)からなる固体状付加物と、環状エステル化合物(a)および(b)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させ、且つ複数回に分けて接触させる方法。
(P−4)マグネシウム化合物および触媒成分(c)からなる液状状態のマグネシウム化合物と、液状状態のチタン化合物と、環状エステル化合物(a)および(b)とを接触させる方法。
固体状チタン触媒成分(I)の調製の際の好ましい反応温度は、好ましくは−30℃〜150℃、より好ましくは−25℃〜140℃、さらに好ましくは−25〜130℃の範囲である。
また上記の固体状チタン触媒成分の製造は、必要に応じて公知の媒体の存在下に行うこともできる。この媒体としては、やや極性を有するトルエンなどの芳香族炭化水素やヘプタン、ヘキサン、オクタン、デカン、シクロヘキサンなどの公知の脂肪族炭化水素、脂環族炭化水素化合物が挙げられるが、これらの中では脂肪族炭化水素が好ましい例として挙げられる。
上記の範囲で製造された固体状チタン触媒成分(I)を用いてオレフィンの重合反応を行うと、広い分子量分布の重合体を得られる効果と、触媒の活性や得られる重合体の高い立体規則性とをより高いレベルで両立することができる。
<触媒成分(c)>
上記の固体状付加物や液状状態のマグネシウム化合物の形成に用いられる触媒成分(c)としては、室温〜300℃程度の温度範囲で上記のマグネシウム化合物を可溶化できる公知の化合物が好ましく、例えばアルコール、アルデヒド、アミン、カルボン酸およびこれらの混合物などが好ましい。これらの化合物としては、例えば前記特許文献1や特許文献2に詳細に記載されている化合物を挙げることができる。
上記のマグネシウム化合物可溶化能を有するアルコールとして、より具体的には、
メタノール、エタノール、プロパノール、ブタノール、イソブタノール、エチレングリコール、2−メチルペンタノール、2−エチルブタノール、n−ヘプタノール、n−オクタノール、2−エチルヘキサノール、デカノール、ドデカノールのような脂肪族アルコール;
シクロヘキサノール、メチルシクロヘキサノールのような脂環族アルコール;
ベンジルアルコール、メチルベンジルアルコールなどの芳香族アルコール;
n−ブチルセルソルブなどのアルコキシ基を有する脂肪族アルコールなどを挙げることができる。
カルボン酸としては、カプリル酸、2−エチルヘキサノイック酸などの炭素原子数7以上の有機カルボン酸類を挙げることができる。
アルデヒドとしては、カプリックアルデヒド、2−エチルヘキシルアルデヒドなどの炭素原子数7以上のアルデヒド類を挙げることができる。
アミンとしては、ヘプチルアミン、オクチルアミン、ノニルアミン、ラウリルアミン、2−エチルヘキシルアミンなどの炭素原子数6以上のアミン類を挙げることができる。
上記の触媒成分(c)としては、上記のアルコール類が好ましく、特にエタノール、プロパノール、ブタノール、イソブタノール、ヘキサノール、2−エチルヘキサノール、デカノールなどが好ましい。
上記の固体状付加物や液状状態のマグネシウム化合物を調製する際のマグネシウム化合物および触媒成分(c)の使用量については、その種類、接触条件などによっても異なるが、マグネシウム化合物は、該触媒成分(c)の単位容積あたり、0.1〜20mol/リットル、好ましくは、0.5〜5mol/リットルの量で用いられる。また、必要に応じて上記固体状付加物に対して不活性な媒体を併用することもできる。上記の媒体としては、ヘプタン、ヘキサン、オクタン、デカンなどの公知の炭化水素化合物が好ましい例として挙げられる。
得られる固体状付加物や液状状態のマグネシウム化合物のマグネシウムと触媒成分(c)との組成比は、用いる化合物の種類によって異なるので一概には規定できないが、マグネシウム化合物中のマグネシウム1molに対して、触媒成分(c)は、好ましくは2.0mol以上、より好ましくは2.2mol以上、さらに好ましくは2.3mol以上、特に好ましくは2.4mol以上、5mol以下の範囲である。
<芳香族カルボン酸エステルおよび/または複数の炭素原子を介して2個以上のエーテル結合を有する化合物>
本発明の固体状チタン触媒成分(I)は、さらに、芳香族カルボン酸エステルおよび/または複数の炭素原子を介して2個以上のエーテル結合を有する化合物(以下「触媒成分(d)」ともいう。)を含んでいてもよい。本発明の固体状チタン触媒成分(I)が触媒成分(d)を含んでいると触媒活性を向上させたり、立体規則性を高めたり、分子量分布をより広げることができる場合がある。
この触媒成分(d)としては、従来オレフィン重合用触媒に好ましく用いられている公知の芳香族カルボン酸エステルやポリエーテル化合物、例えば上記特許文献1や特開2001−354714号公報などに記載された化合物を制限無く用いることができる。
この芳香族カルボン酸エステルとしては、具体的には安息香酸エステル(エチルベンゾエートなど)やトルイル酸エステルなどの芳香族カルボン酸モノエステルの他、フタル酸エステル類等の芳香族多価カルボン酸エステルが挙げられる。これらの中でも芳香族多価カルボン酸エステルが好ましく、フタル酸エステル類がより好ましい。このフタル酸エステル類としては、フタル酸エチル、フタル酸n−ブチル、フタル酸イソブチル、フタル酸ヘキシル、フタル酸へプチル等のフタル酸アルキルエステルが好ましく、フタル酸ジイソブチルが特に好ましい。
また前記ポリエーテル化合物としては、より具体的には以下の式(3)で表わされる化合物が挙げられる。
Figure 0005368349
なお、上記式(3)において、mは1〜10の整数、より好ましくは3〜10の整数であり、特に好ましくは3〜5である。R11、R12、R31〜R36は、それぞれ独立に、水素原子、あるいは炭素、水素、酸素、フッ素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケイ素から選択される少なくとも1種の元素を有する置換基である。
11、R12について好ましくは、炭素原子数1〜10の炭化水素基であり、好ましくは炭素原子数2〜6の炭化水素基であり、R31〜R36について好ましくは水素原子または炭素原子数1〜6の炭化水素基である。
11、R12について具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、イソペンチル基、ネオペンチル基、ヘキシル基、へプチル基、オクチル基、2−エチルヘキシル基、デシル基、シクロペンチル基、シクロヘキシル基等が挙げられ、好ましくは、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、である。
31〜R36について具体的には、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基等が挙げられ、好ましくは水素原子、メチル基である。
任意のR11、R12、R31〜R36、好ましくはR11、R12は共同してベンゼン環以外の環を形成していてもよく、主鎖中に炭素以外の原子が含まれていてもよい。
上記のような2個以上のエーテル結合を有する具体的な化合物としては、
2−イソプロピル−1,3−ジメトキシプロパン、
2−s−ブチル−1,3−ジメトキシプロパン、
2−クミル−1,3−ジメトキシプロパン
等の1置換ジアルコキシプロパン類、
2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、
2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、
2−メチル−2−イソプロピル−1,3−ジメトキシプロパン、
2−メチル−2−シクロヘキシル−1,3−ジメトキシプロパン、
2−メチル−2−イソブチル−1,3−ジメトキシプロパン、
2,2−ジイソブチル−1,3−ジメトキシプロパン、
2,2−ビス(シクロヘキシルメチル)−1,3−ジメトキシプロパン、
2,2−ジイソブチル−1,3−ジエトキシプロパン、
2,2−ジイソブチル−1,3−ジブトキシプロパン、
2,2−ジ−s−ブチル−1,3−ジメトキシプロパン、
2,2−ジネオペンチル−1,3−ジメトキシプロパン、
2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、
2−シクロヘキシル−2−シクロヘキシルメチル−1,3−ジメトキシプロパン
等の2置換ジアルコキシプロパン類
2,3−ジシクロヘキシル−1,4−ジメトキシブタン、
2,3−ジシクロヘキシル−1,4−ジエトキシブタン、
2,3−ジイソプロピル−1,4−ジエトキシブタン
2,4−ジフェニル−1,5−ジメトキシペンタン、
2,5−ジフェニル−1,5−ジメトキシヘキサン、
2,4−ジイソプロピル−1,5−ジメトキシペンタン、
2,4−ジイソブチル−1,5−ジメトキシペンタン、
2,4−ジイソアミル−1,5−ジメトキシペンタン
等のジアルコキシアルカン類、
2−メチル−2−メトキシメチル−1,3−ジメトキシプロパン、
2−シクロヘキシル−2−エトキシメチル−1,3−ジエトキシプロパン、
2−シクロヘキシル−2−メトキシメチル−1,3−ジメトキシプロパン
等のトリアルコキシアルカン類、
2,2−ジイソブチル−1,3−ジメトキシ4−シクロヘキセン、
2−イソプロピル−2−イソアミル−1,3−ジメトキシ4−シクロヘキセン、
2−シクロヘキシル−2−メトキシメチル−1,3−ジメトキシ4−シクロヘキセン、
2−イソプロピル−2−メトキシメチル−1,3−ジメトキシ4−シクロヘキセン、
2−イソブチル−2−メトキシメチル−1,3−ジメトキシ4−シクロヘキセン、
2−シクロヘキシル−2−エトキシメチル−1,3−ジメトキシ4−シクロヘキセン、
2−イソプロピル−2−エトキシメチル−1,3−ジメトキシ4−シクロヘキセン、
2−イソブチル−2−エトキシメチル−1,3−ジメトキシ4−シクロヘキセン
等のジアルコキシシクロアルカン
等を例示することができる。
これらのうち、1,3−ジエーテル類が好ましく、特に、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2,2−ビス(シクロヘキシルメチル)1,3−ジメトキシプロパンが好ましい。
これらの化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記の環状エステル化合物(a)および(b)、触媒成分(c)、ならびに触媒成分(d)は、当業者間では電子供与体と呼ばれる成分に属すると考えても差し支えない。上記の電子供与体成分は、触媒の高い活性を維持したまま、得られる重合体の立体規則性を高める効果や、得られる共重合体の組成分布を制御する効果や、触媒粒子の粒形や粒径を制御する凝集剤効果などを示すことが知られている。
上記の環状エステル化合物(a)および(b)は、それ自身が電子供与体であることによって、さらに分子量分布を制御する効果をも示していると考えられる。
本発明の固体状チタン触媒成分(I)において、ハロゲン/チタン(原子比)(すなわち、ハロゲン原子のモル数/チタン原子のモル数)は、2〜100、好ましくは4〜90であることが望ましく、
環状エステル化合物(a)/チタン(モル比)(すなわち、環状エステル化合物(a)のモル数/チタン原子のモル数)および環状エステル化合物(b)/チタン(モル比)(すなわち、環状エステル化合物(b)のモル数/チタン原子のモル数)は、0.01〜100、好ましくは0.2〜10であることが望ましく、
触媒成分(c)は、触媒成分(c)/チタン原子(モル比)は0〜100、好ましくは0〜10であることが望ましい。
ここで、環状エステル化合物(a)と環状エステル化合物(b)との好ましい比率としては、100×環状エステル化合物(a)/(環状エステル化合物(a)+環状エステル化合物(b))の値(mol%)の下限が好ましくは5mol%、より好ましくは25mol%、さらに好ましくは40mol%であり、特に好ましくは50mol%である。上限は好ましくは99mol%、より好ましくは90mol%、さらに好ましくは85mol%、特に好ましくは80mol%である。
マグネシウム/チタン(原子比)(すなわち、マグネシウム原子のモル数/チタン原子のモル数)は、2〜100、好ましくは4〜50であることが望ましい。
また、前述した環状エステル化合物(a)および(b)以外に含まれても良い成分、例えば触媒成分(c)および触媒成分(d)の含有量は、環状エステル化合物(a)および(b)100重量%に対して好ましくは20重量%以下であり、より好ましくは10重量%以下である。
固体状チタン触媒成分(I)のより詳細な調製条件として、環状エステル化合物(a)および(b)を使用する以外は、例えばEP585869A1(欧州特許出願公開第0585869号明細書)や前記特許文献2等に記載の条件を好ましく用いることができる。
<有機金属化合物触媒成分(II)>
有機金属化合物触媒成分(II)としては、周期表の第1族、第2族および第13族から選ばれる金属原子を含む有機金属化合物が挙げられる。具体的には、第13族金属を含む化合物、例えば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化物、第2族金属の有機金属化合物などを用いることができる。これらの中でも有機アルミニウム化合物が好ましい。
有機金属化合物触媒成分(II)として具体的には、前記EP585869A1等の公知の文献に記載された有機金属化合物触媒成分を好ましい例として挙げることができる。
<電子供与体(III)>
また、本発明のオレフィン重合用触媒は、上記の有機金属化合物触媒成分(II)と共に、必要に応じて電子供与体(III)を含んでいてもよい。電子供与体(III)として好ましくは、有機ケイ素化合物が挙げられる。この有機ケイ素化合物としては、例えば下記一般式(4)で表される化合物を例示できる。
nSi(OR’)4-n ・・・(4)
(式中、RおよびR’は炭化水素基であり、nは0<n<4の整数である。)
上記のような一般式(4)で示される有機ケイ素化合物としては、具体的には、ジイソプロピルジメトキシシラン、t−ブチルメチルジメトキシシラン、t−ブチルメチルジエトキシシラン、t−アミルメチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、t−ブチルトリエトキシシラン、フェニルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロペンチルトリメトキシシラン、2−メチルシクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、トリシクロペンチルメトキシシラン、ジシクロペンチルメチルメトキシシラン、ジシクロペンチルエチルメトキシシラン、シクロペンチルジメチルエトキシシランなどが用いられる。
このうちビニルトリエトキシシラン、ジフェニルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジシクロペンチルジメトキシシランが好ましく用いられる。
また、国際公開第2004/016662号パンフレットに記載されている下記式(5)で表されるシラン化合物も前記有機ケイ素化合物の好ましい例である。
Si(ORa3(NRbc) ・・・(5)
式(5)中、Raは、炭素原子数1〜6の炭化水素基であり、好ましくは、炭素原子数1〜6の不飽和あるいは飽和脂肪族炭化水素基などが挙げられ、特に好ましくは炭素原子数2〜6の飽和脂肪族炭化水素基が挙げられる。具体例としてはメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、n−ペンチル基、iso−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基等が挙げられ、これらの中でもエチル基が特に好ましい。
式(5)中、Rbは、炭素原子数1〜12の炭化水素基または水素原子であり、好ましくは、炭素原子数1〜12の不飽和あるいは飽和脂肪族炭化水素基または水素原子などが挙げられる。具体例としては水素原子、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、n−ペンチル基、iso−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基等が挙げられ、これらの中でもエチル基が特に好ましい。
式(5)中、Rcは、炭素原子数1〜12の炭化水素基または水素原子であり、好ましくは、炭素原子数1〜12の不飽和あるいは飽和脂肪族炭化水素基などが挙げられる。具体例としてはメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、n−ペンチル基、iso−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、オクチル基等が挙げられ、これらの中でもエチル基が特に好ましい。
上記式(5)で表される化合物の具体例として、
ジメチルアミノトリエトキシシラン、
ジエチルアミノトリエトキシシラン、
ジメチルアミノトリメトキシシラン、
ジエチルアミノトリメトキシシラン、
ジエチルアミノトリn−プロポキシシラン、
ジ−n−プロピルアミノトリエトキシシラン、
メチル−n−プロピルアミノトリエトキシシラン、
t−ブチルアミノトリエトキシシラン、
エチル−n−プロピルアミノトリエトキシシラン、
エチル−iso−プロピルアミノトリエトキシシラン、
メチルエチルアミノトリエトキシシラン
が挙げられる。
また、前記有機ケイ素化合物の他の例としては、下記式(6)で表される化合物が挙げられる。
RNSi(ORa3 ・・・(6)
式(6)中、RNは、環状アミノ基であり、この環状アミノ基として、例えば、パーヒドロキノリノ基、パーヒドロイソキノリノ基、1,2,3,4−テトラヒドロキノリノ基、1,2,3,4−テトラヒドロイソキノリノ基、オクタメチレンイミノ基等が挙げられる。Raは、式(5)で定義したものと同様のものが挙げられる。上記式(6)で表される化合物として具体的には、
(パーヒドロキノリノ)トリエトキシシラン、
(パーヒドロイソキノリノ)トリエトキシシラン、
(1,2,3,4−テトラヒドロキノリノ)トリエトキシシラン、
(1,2,3,4−テトラヒドロイソキノリノ)トリエトキシシラン、
オクタメチレンイミノトリエトキシシラン
等が挙げられる。
これらの有機ケイ素化合物は、2種以上組み合わせて用いることもできる。
また、電子供与体(III)として他に有用な化合物としては、前記触媒成分(d)として定義した、芳香族カルボン酸エステルおよび/または複数の炭素原子を介して2個以上のエーテル結合を有する化合物(ポリエーテル化合物)も好ましい例として挙げられる。
なお、本発明のオレフィン重合用触媒は、上記のような各成分以外にも必要に応じてオレフィン重合に有用な他の成分を含んでいてもよい。その他の成分としては、例えば、シリカなどの担体、帯電防止剤等、粒子凝集剤、保存安定剤などが挙げられる。粒子凝集剤として、例えば塩化マグネシウムとエタノールを用いて粒子を生成する際、ソルビタンジステアレートなどが好ましい化合物として使用される。
[プロピレン系ブロック共重合体(A1)および(A2)の製造方法]
本発明のプロピレン系ブロック共重合体(A1)および(A2)は、前記要件[1]〜[8]および好ましくは要件[9]を満たす限り製造方法が限定されるものではない。
本発明のプロピレン系ブロック共重合体の製造方法では、上述したオレフィン重合用触媒の存在下にオレフィンを予備重合(prepolymerization)させて得られる予備重合触媒の存在下で、本重合(polymerization)を行うことも可能である。この予備重合は、オレフィン重合用触媒1g当り通常0.1〜1000g、好ましくは0.3〜500g、特に好ましくは1〜200gの量でオレフィンを予備重合させることにより行われる。
予備重合では、本重合における系内の触媒濃度よりも高い濃度の触媒を用いることができる。
予備重合における前記固体状チタン触媒成分(I)の濃度は、液状媒体1リットル当り、チタン原子換算で、通常約0.001〜200ミリモル、好ましくは約0.01〜50ミリモル、特に好ましくは0.1〜20ミリモルの範囲とすることが望ましい。
予備重合における前記有機金属化合物触媒成分(II)の量は、固体状チタン触媒成分(I)1g当り通常0.1〜1000g、好ましくは0.3〜500gの重合体が生成するような量であればよく、固体状チタン触媒成分(I)中のチタン原子1モル当り、通常約0.1〜300モル、好ましくは約0.5〜100モル、特に好ましくは1〜50モルの量であることが望ましい。
予備重合では、必要に応じて前記電子供与体(III)等を用いることもでき、この際これらの成分は、前記固体状チタン触媒成分(I)中のチタン原子1モル当り、通常0.1〜50モル、好ましくは0.5〜30モル、さらに好ましくは1〜10モルの量で用いられる。
予備重合は、不活性炭化水素媒体にオレフィンおよび上記の触媒成分を加え、温和な条件下に行うことができる。
この場合、用いられる不活性炭化水素媒体として具体的には、
プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;
シクロペンタン、メチルシクロペンタン、シクロヘキサン、シクロヘプタン、メチルシクロヘプタン、シクロオクタンなどの脂環族炭化水素;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素;
エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素;
あるいはこれらの混合物などを挙げることができる。
これらの不活性炭化水素媒体のうち、特に脂肪族炭化水素を用いることが好ましい。このように、不活性炭化水素媒体を用いる場合、予備重合はバッチ式で行うことが好ましい。
一方、オレフィン自体を溶媒として予備重合を行うこともできるし、また実質的に溶媒のない状態で予備重合することもできる。この場合には、予備重合を連続的に行うのが好ましい。
予備重合で使用されるオレフィンは、後述する本重合で使用されるオレフィンと同一であっても、異なっていてもよいが、プロピレンであることが好ましい。
予備重合の際の温度は、通常−20〜+100℃であり、好ましくは−20〜+80℃、さらに好ましくは0〜+40℃の範囲である。
次に、前記の予備重合を経由した後に、あるいは予備重合を経由することなく実施される本重合(polymerization)について説明する。
本発明において本重合(polymerization)は、プロピレン重合体成分を製造する工程およびプロピレン−エチレン共重合体ゴム成分を製造する工程に分けられる。
本発明では、予備重合および本重合は、バルク重合法、溶解重合、懸濁重合などの液相重合法あるいは気相重合法のいずれにおいても実施できる。プロピレン重合体成分を製造する工程として好ましいのは、バルク重合や懸濁重合などの液相重合あるいは気相重合法である。また、プロピレン−エチレン共重合体ゴム成分を製造する工程として好ましいのは、バルク重合や懸濁重合などの液相重合あるいは気相重合法であり、より好ましいのは、気相重合法である。
本重合がスラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重合時に用いられる不活性炭化水素を用いることもできるし、反応温度・圧力において液体であるオレフィンを用いることもできる。
本発明のプロピレンブロック共重合体の製造方法における本重合においては、前記固体状チタン触媒成分(I)は、重合容積1リットル当りチタン原子に換算して、通常は約0.0001〜0.5ミリモル、好ましくは約0.005〜0.1ミリモルの量で用いられる。また、前記有機金属化合物触媒成分(II)は、重合系中の予備重合触媒成分中のチタン原子1モルに対し、通常約1〜2000モル、好ましくは約5〜500モルとなるような量で用いられる。前記電子供与体(III)は、使用される場合であれば、前記有機金属化合物触媒成分(II)1モルに対して、0.001〜50モル、好ましくは0.01〜30モル、特に好ましくは0.05〜20モルの量で用いられる。
本重合を水素の存在下に行えば、得られる重合体の分子量を調節する(下げる)ことができ、メルトフローレートの大きい重合体が得られる。分子量を調整するために必要な水素量は、使用する製造プロセスの種類、圧力、温度によって異なる為、一概に範囲を決定することができない。それゆえ、プロピレン重合体成分を製造する工程では、目標とするMFRが0.01〜1000g/10分の範囲で得られるように圧力、温度を考慮して水素量を決定することが望ましい。また、プロピレン−エチレン共重合体ゴム成分を製造する工程においてもDsolの極限粘度[η]が、(A1)および(A2)それぞれの共重合体の所望の極限粘度の範囲で得られるように圧力、温度を考慮して水素量を決定することが望ましい。
本発明における本重合において、オレフィンの重合温度は、通常、約20〜200℃、好ましくは約30〜100℃、より好ましくは50〜90℃である。圧力(ゲージ圧)は、通常、常圧〜100kgf/cm2(9.8MPa)、好ましくは約2〜50kgf/cm2(0.20〜4.9MPa)に設定される。本発明のプロピレンブロック共重合体の製造方法においては、重合を、回分式、半連続式、連続式の何れの方法においても行うことができる。さらに重合を、反応条件を変えて二段以上に分けて行うこともできる。
また、本発明におけるプロピレンブロック共重合体を得るためにα−オレフィン/(α−オレフィン+プロピレン)ガス比を制御している。α−オレフィンとしては、プロピレン以外の炭素原子数が2〜20のアルケンがよく、例えば、エチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−エイコセンなどの直鎖状オレフィンや、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3−メチル−1−ブテンなどの分岐状オレフィンなどが挙げることができ、中でもエチレン、1−ブテン、4−メチル−1−ペンテンが好ましく、より好ましいのはエチレンである。α−オレフィン/(α−オレフィン+プロピレン)ガス比は、5〜80モル%、好ましくは、10〜70モル%、より好ましくは15〜60モル%で制御して用いる。
本発明にかかるプロピレン系ブロック共重合体(A1)および(A2)の製造方法についてさらに詳細に説明する。
本発明者らの知見に拠れば、本発明のプロピレン系ブロック共重合体(A1)および(A2)を構成する室温n−デカンに不溶な部分(Dinsol)は、主としてプロピレン重合体成分から構成される。
一方、室温n−デカンに可溶な部分(Dsol)は、主としてプロピレン−エチレン共重合体ゴム成分から構成される。
したがって、本発明のプロピレン系ブロック共重合体(A1)および(A2)は、次の製造方法によって製造が可能となる。
製造方法;
次の二つの重合工程(重合工程1および重合工程2)を連続的に実施することによって、要件[1]〜要件[8]および好ましくは要件[9]を満たすプロピレン系ブロック共重合体(A1)および(A2)を製造する方法(以下、この方法を「直重法」と呼ぶ)。
[重合工程1]固体状チタン触媒成分の存在下でプロピレンと必要に応じて他のα−オレフィンとを重合し、プロピレン重合体成分を製造する工程(プロピレン重合体製造工程)。
[重合工程2]固体状チタン触媒成分の存在下でプロピレン並びにエチレンを共重合することプロピレン−エチレン共重合体ゴム成分を製造する工程(共重合体ゴム製造工程)。
なお、上記プロピレン−エチレン共重合体ゴムを製造する際には、エチレン/(エチレン+プロピレン)ガス比を、好ましくは5〜80モル%、より好ましくは10〜70モル%、さらに好ましくは15〜60モル%で制御して重合を行う。
本発明に係るプロピレン系ブロック共重合体(A1)および(A2)の少なくとも一方、望ましくはプロピレン系ブロック共重合体(A1)および(A2)の両方が、前述した製造方法で製造されることが好ましく、重合工程1を前段で行い、重合工程2を後段で行うことがより好ましい。また、各重合工程(重合工程1、重合工程2)は2槽以上の直列した重合槽を用いて行うこともできる。
ここで、プロピレン重合体成分を製造する工程(上記製造方法の重合工程1)が、2槽以上の重合槽で行われる場合、各槽で生成されるプロピレン重合体の極限粘度[η]は4dl/g以下であることが好ましい。各槽で成長するプロピレン重合体の分子量に相当する極限粘度[η]は次式で計算される。
Figure 0005368349
また、前記プロピレン−エチレン共重合体ゴム成分を製造する工程(上記製造方法の重合工程2)は、1段階で重合することが好ましい。
プロピレン系ブロック共重合体混合物(A)は、上記プロピレン系ブロック共重合体(A―1)95重量%以下、5重量%以上とプロピレン系ブロック共重合体(A−2)5重量%以上、95重量%以下とからなる(ただし、(A−1)および(A−2)の合計は100重量%である)が、好ましくは上記プロピレン系ブロック共重合体(A―1)90重量%以下、10重量%以上とプロピレン系ブロック共重合体(A−2)10重量%以上、90重量%以下、より好ましくは上記プロピレン系ブロック共重合体(A―1)80重量%以下、20重量%以上とプロピレン系ブロック共重合体(A−2)20重量%以上、80重量%以下とからなる。
[エラストマー(B)]
本発明に係るプロピレン系樹脂組成物にはエラストマー(B)が含まれていてもよい。前記エラストマー(B)としては、エチレン・α−オレフィンランダム共重合体(B−a)、エチレン・α−オレフィン・非共役ポリエンランダム共重合体(B−b)、水素添加ブロック共重合体(B−c)、その他弾性重合体、およびこれらの混合物などが挙げられる。
前記エチレン・α−オレフィンランダム共重合体(B−a)は、エチレンと炭素数3以上、20以下のα−オレフィンとのランダム共重合体ゴムである。上記炭素数3以上、20以下のα−オレフィンとしては、具体的にはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−エイコセンなどが挙げられる。これらのα−オレフィンは、単独でまたは組み合せて用いることができる。これらの中では、特にプロピレン、1−ブテン、1−ヘキセン、1−オクテンが好ましく用いられる。
エチレン・α−オレフィンランダム共重合体(B−a)は、エチレンとα−オレフィンとのモル比(エチレン/α−オレフィン)が95/5乃至70/30、好ましくは90/10乃至75/25であることが望ましい。エチレン・α−オレフィンランダム共重合体(B−a)は、230℃、荷重2.16kgにおけるMFRが0.1g/10分以上、好ましくは0.5g/10分以上、100g/10分以下、更に好ましくは、0.5g/10分以上、70g/10分以下であることが望ましい。
前記エチレン・α−オレフィン・非共役ポリエンランダム共重合体(B−b)は、エチレンと炭素数3以上、20以下のα−オレフィンと非共役ポリエンとのランダム共重合体ゴムである。上記炭素数3以上、20以下のα−オレフィンとしては、前記と同じものが挙げられる。前記非共役ポリエチレンとしては、5−エチリデン−2−ノルボルネン、5−プロピリデン−5−ノルボルネン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、ノルボルナジエンなどの非環状ジエン;1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、5−メチル−1,5−ヘプタジエン、6−メチル−1,5−ヘプタジエン、6−メチル−1,7−オクタジエン、7−メチル−1,6−オクタジエンなどの鎖状の非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネンなどのトリエン等が挙げられる。これらの中では、1,4−ヘキサジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネンが好ましく用いられる。
エチレン・α−オレフィン・非共役ポリエンランダム共重合体(B−b)は、エチレンとα−オレフィンと非共役ポリエンとのモル比(エチレン/α−オレフィン/非共役ポリエン)が90/5/5乃至30/45/25、好ましくは80/10/10乃至40/40/20であるのが望ましい。
エチレン・α−オレフィン・非共役ポリエンランダム共重合体(B−b)は、230℃、荷重2.16kgにおけるMFRが0.05g/10分以上、好ましくは0.1g/10分以上10g/10分以下であるものが望ましい。エチレン・α−オレフィン・非共役ポリエンランダム共重合体(B−b)の具体的なものとしては、エチレン・プロピレン・ジエン三元共重合体(EPDM)などが挙げられる。
前記水素添加ブロック共重合体(B−c)は、ブロックの形態が以下式(x)または(y)で表されるブロック共重合体の水素添加物であり、水素添加率が90モル%以上、好ましくは95モル%以上の水素添加ブロック共重合体である。
X(YX)n ・・・(x)
(XY)n ・・・(y)
前記式(x)または(y)のXで示される重合ブロックを構成するモノビニル置換芳香族炭化水素としては、スチレン、α−メチルスチレン、p−メチルスチレン、クロロスチレン、低級アルキル置換スチレン、ビニルナフタレン等のスチレンまたはその誘導体などがあげられる。これらは1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。
前記式(x)または(y)のYで示される重合ブロックを構成する共役ジエンとしては、ブタジエン、イソプレン、クロロプレンなどがあげられる。これらは1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。nは1以上、5以下の整数、好ましくは1または2である。
水素添加ブロック共重合体(B−c)の具体的なものとしては、スチレン・エチレン・ブテン・スチレンブロック共重合体(SEBS)、スチレン・エチレン・プロピレン・スチレンブロック共重合体(SEPS)およびスチレン・エチレン・プロピレンブロック共重合体(SEP)等のスチレン系ブロック共重合体などが挙げられる。
水素添加前のブロック共重合体は、例えば不活性溶媒中で、リチウム触媒またはチーグラー触媒の存在下に、ブロック共重合を行わせる方法により製造することができる。詳細な製造方法は、例えば特公昭40−23798号などに記載されている。水素添加処理は、不活性溶媒中で公知の水素添加触媒の存在下に行うことができる。詳細な方法は、例えば特公昭42−8704号、同43−6636号、同46−20814号などに記載されている。
共役ジエンモノマーとしてブタジエンが用いられる場合、ポリブタジエンブロックにおける1,2−結合量の割合は20重量%以上、80重量%以下、好ましくは30重量%以上、60重量%以下であることが望ましい。
水素添加ブロック共重合体(B−c)としては市販品を使用することもできる。具体的なものとしては、クレイトンG1657(商標、シェル化学(株)製)、セプトン2004(商標、クラレ(株)製)、タフテックH1052(商標、旭化成(株)製)などが挙げられる。エラストマー(B)は1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。
[フィラー(E)]
本発明に係るプロピレン系樹脂組成物の構成成分であるフィラー(E)とは、タルク、硫酸マグネシウム繊維、ガラス繊維、炭素繊維、マイカ、炭酸カルシウム、水酸化マグネシウム、リン酸アンモニウム塩、珪酸塩類、炭酸塩類、カーボンブラック等の無機フィラーと、木粉、セルロース、ポリエステル繊維、ナイロン繊維、ケナフ繊維、竹繊維、ジュード繊維、米粉、澱粉、コーンスターチ等の有機フィラーとに大別される。
前記無機フィラーとしては、タルク、硫酸マグネシウム、ガラス繊維、炭素繊維が好適に使用される。以下、詳細に説明する。
(タルク)
タルクは、含水ケイ酸マグネシウムを粉砕したものである。含水ケイ酸マグネシウムの結晶構造は、パイロフィライト型三層構造であり、タルクはこの構造が積み重なったものである。タルクとして、より好ましくは、含水ケイ酸マグネシウムの結晶を単位層程度にまで微粉砕した平板状のものである。
上記のタルクの平均粒子径として、好ましくは3μm以下である。ここでタルクの平均粒子径とは、遠心沈降式粒度分布測定装置を用いて水またはアルコールである分散媒中にタルクを懸濁させて測定した篩下法の積分分布曲線から求めた50%相当粒子径D50を意味する。タルクは、無処理のまま使用しても良く、または、プロピレン系ブロック共重合体との界面接着性やプロピレン系樹脂組成物に対する分散性を向上させるために、各種シランカップリング剤、チタンカップリング剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩類、または、他の界面活性剤で表面を処理して使用しても良い。
(硫酸マグネシウム繊維)
硫酸マグネシウム繊維を用いた場合、その平均繊維長として、好ましくは5μm以上、50μm以下であり、より好ましくは10μm以上、30μm以下である。また、硫酸マグネシウム繊維の平均繊維径として、好ましくは0.3μm以上、2μm以下であり、より好ましくは0.5μm以上、1μm以下である。製品としては、宇部興産(株)「モスハイジ」などが挙げられる。
(ガラス繊維)
ガラス繊維としては、Eガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)および耐アルカリガラスなどのガラスを溶融紡糸してフィラメント状の繊維にしたものを挙げることができる。該ガラス繊維は1mm以下の短繊維、1mm以上の長繊維の形態で組成物中に含まれる。
長繊維ガラスを用いる場合は、公知のブレンド方法が使用できる。特に、特開2006−117839号公報、特開2004−2837号公報に記載されているようにガラス繊維処理用変性ポリオレフィン系樹脂を含むサイジング剤で処理された表面処理ガラス繊維を含む繊維強化プロピレン系樹脂を長さ2mm以上、200mm以下のペレットに加工して、無水マレイン酸等のエチレン系不飽和結合含有モノマーで変性された変性プロピレン樹脂とともにプロピレン系樹脂組成物を作成することが望ましい。
(炭素繊維)
本発明のプロピレン系樹脂組成物で使用される炭素繊維は、繊維径が2μmより大きく15μm以下であり、好ましくは3μm以上、12μm以下、より好ましくは4μm以上、10μm以下である。繊維径が2μm以下の場合、繊維の剛性が著しく低下し、15μmを超えると、繊維のアスペクト比(長さ(L)と太さ(D)の比:L/D)が低下してしまうため、剛性や耐熱性などの十分な補強効率が得られず好ましくない。ここで繊維径は、繊維を繊維方向に垂直に裁断し、その断面を顕微鏡観察して直径を計測し、100本以上の繊維の直径の数平均を算出することにより求めることができる。
また、炭素繊維は、繊維長が通常1mm以上、20mm以下、好ましくは2mm以上、15mm以下、より好ましくは3mm以上、10mm以下である。繊維長が1mm未満の場合、アスペクト比が低く十分な補強効率が得られず、繊維長が20mmを超えると、加工性や外観が著しく悪化してしまうため好ましくない。
ここで、繊維長は、ノギス等を用いて計測し、100本以上の繊維の繊維長の数平均を算出することにより求めることができる。
本発明のプロピレン系樹脂組成物で使用される炭素繊維としては、上述の形状を満たせば、特に制限なく、従来公知の炭素繊維が使用できる。炭素繊維としては、例えば、ポリアクリロニトリルを原料としたPAN系炭素繊維や、ピッチを原料としたピッチ系炭素繊維などを例示する事ができる。これらの炭素繊維は、繊維原糸を所望の長さに裁断した、所謂チョップドカーボンファイバーとして用いることができ、又必要に応じて、各種サイジング剤を用いて収束処理されたものであっても良い。収束処理に用いるサイジング剤は、ポリプロピレン樹脂との溶融混練において融解する必要があるため、200℃以下で溶融するものであることが好ましい。
このようなチョップドカーボンファイバーの具体例としては、PAN系炭素繊維では、東レ(株)社製商品名『トレカチョップ』、三菱レーヨン(株)社製商品名『パイロフィル(チョップ)』、東邦テナックス(株)社製商品名『ベスファイト(チョップ)』等を挙げる事が出来、ピッチ系炭素繊維では、三菱化学産資(株) 社製商品名『ダイアリード』、大阪ガスケミカル(株)社製商品名『ドナカーボ(チョップ)』、呉羽化学(株)社製商品名『クレカチョップ』等を挙げることが出来る。
これらの炭素繊維成分は、本発明のプロピレン系樹脂組成物を構成するその他の成分と共に、押出機などの溶融混練装置を用いて複合化されるが、この溶融混練の際には、炭素繊維成分の過剰な折損を防止するような複合化方法を選択する事が好ましい。これを実現するための方法としては、例えば、押出機による溶融混練では、炭素繊維成分以外の成分を十分に溶融混練した後、炭素繊維成分をサイドフィード法等により、樹脂成分の完全溶融位置よりも川下側の位置からフィードし、繊維の折損を最小限に抑えながら、収束繊維を分散させる方法等を例示することができる。
炭素繊維を含む本発明に係るプロピレン系樹脂組成物は、反応性官能基を有するサイジング剤で表面処理された炭素繊維に、無水マレイン酸等のエチレン系不飽和結合含有モノマーで変性された変性プロピレン樹脂とともにプロピレン系樹脂組成物を含浸してなる炭素長繊維強化プロピレン系樹脂ペレットの形態で使用しても良い。前記炭素長繊維強化プロピレン系樹脂ペレットでは、該ペレットの長さ方向に炭素長繊維が同一長さで平行配列しており、該炭素長繊維の長さが4mm以上、50mm以下であることが望ましい。
また、炭素繊維を含む本発明に係るプロピレン系樹脂組成物は、反応性官能基を有するサイジング剤で表面処理された炭素繊維に、無水マレイン酸等のエチレン系不飽和結合含有モノマーで変性された変性プロピレン樹脂とともに、プロピレン系樹脂組成物を含浸してなる炭素繊維強化シートの形状で使用しても良い。
(木粉)
木粉としては、木材をカッターミルなどによって破断し、これをボールミルやインペラーミルなどにより粉砕して、微粉状にしたものなどが使用可能であり、その平均粒径は通常1μm以上、200μm以下、好ましくは10μm以上、150μm以下である。平均粒径が1μm未満のものは、取り扱いが困難であるうえに、特に木質系充填剤の配合量が多い場合は、樹脂への分散が悪いと、製造される木質樹脂発泡成形体に機械強度の低下が発生する。また、200μmより大きいと、成形品の均質性、平面性、機械的強度が低下する。
(セルロース)
セルロースは、セルロース繊維と結晶セルロースが好適に使用される。
セルロース繊維は、純度が高い繊維であるのが好ましく、例えば、α−セルロース含量が80重量%以上の繊維であるのが好ましい。セルロース繊維などの有機繊維としては、平均繊維径0.1μm以上、1000μm以下および平均繊維長0.01mm以上、5mm以下を有する繊維が使用できる。
結晶セルロースは、繊維性植物からパルプとして得たα−セルロースを、鉱酸で部分的に解重合し、精製したものであり、製品としては旭化成(株)製「セオラス」等が挙げられる。
[他の成分]
本発明のプロピレン系樹脂組成物は、本発明の効果を損なわない範囲で、上記以外の他の成分を含有していてもよい。以下に本発明のプロピレン系樹脂組成物が含み得る他の成分について記載する。
(プロピレン系重合体)
本発明のプロピレン系樹脂組成物は、本発明の効果を損なわない範囲で、プロピレン系ブロック共重合体(A)以外のプロピレン系重合体(A’)を含有していてもよい。このようなプロピレン系重合体(A’)とは、プロピレンの単独重合体、プロピレンとエチレンおよび他のα−オレフィンの共重合体、プロピレンとエチレンおよび他のα−オレフィンのブロック共重合体である。前述のα−オレフィンの具体例としては、1−ブテン、2−メチル−1−プロペン、2−メチル−1−ブテン、3−メチル−1−ブテン、1−ヘキセン、2−エチル−1−ブテン、2,3−ジメチル−1−ブテン、2−メチル−1−ペンテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、3,3−ジメチル−1−ブテン、1−ヘプテン、メチル−1−ヘキセン、ジメチル−1−ペンテン、エチル−1−ペンテン、トリメチル−1−ブテン、メチルエチル−1−ブテン、1−オクテン、メチル−1−ペンテン、エチル−1−ヘキセン、ジメチル−1−ヘキセン、プロピル−1−ヘプテン、メチルエチル−1−ヘプテン、トリメチル−1−ペンテン、プロピル−1−ペンテン、ジエチル−1−ブテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン等を挙げることができる。これらの中でも1−ブテン、1−ペンテン、1−ヘキセン、1−オクテンのα−オレフィンを好ましく用いることができる。
プロピレン系重合体(A’)は、融点(Tm)が145℃以上、170℃以下、好ましくは155℃以上、167℃以下であることが望ましい。また、プロピレン系重合体(A’)のメルトフローレート(MFR:ASTM D1238、230℃、荷重2.16kg)は、通常0.3g/10分以上、200g/10分以下、好ましくは2g/10分以上、150g/10分以下、さらに好ましくは10g/10分以上、100g/10分以下である。
(結晶核剤)
本発明のプロピレン系樹脂組成物は、剛性、耐熱性、成形性改良の必要に応じて結晶核剤を添加しても良い。
本発明で用いられる結晶核剤としては、ジベンジリデンソルビトール等のソルビトール化合物、有機リン酸エステル系化合物、ロジン酸塩系化合物、炭素原子数4乃至12の脂肪族ジカルボン酸およびその金属塩などを挙げることができる。
これらの中では、有機リン酸エステル系化合物が好ましい。有機リン酸エステル系化合物は、次に示す一般式[N−1]および/または[N−2]で表わされる化合物である。
Figure 0005368349
Figure 0005368349
前記の式[N−1]、[N−2]中、R1は、炭素原子数1乃至10の2価の炭化水素基であり、R2およびR3は、水素または炭素原子数1乃至10の炭化水素基であって、R2とR3は同じであっても異なっていてもよく、Mは、1乃至3価の金属原子であり、nは1乃至3の整数であり、mは1または2である。
一般式[N−1]で表わされる有機リン酸エステル系化合物の具体例としては、ナトリウム−2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、リチウム−2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、リチウム−2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス(4−i−プロピル−6−t−ブチルフェニル)フォスフェート、リチウム−2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェニル)フォスフェート、リチウム−2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−ブチリデン−ビス(4,6−ジ−メチルフェニル)フォスフェート、ナトリウム−2,2’−ブチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−t−オクチルメチレン−ビス(4,6−ジ−メチルフェニル)フォスフェート、ナトリウム−2,2’−t−オクチルメチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、カルシウム−ビス−(2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート)、マグネシウム−ビス[2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、バリウム−ビス[2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、ナトリウム−2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス(4−m−ブチル−6−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス(4,6−ジ−メチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス(4,6−ジ−エチルフェニル)フォスフェート、カリウム−2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、カルシウム−ビス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フオスフェート]、マグネシウム−ビス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、バリウム−ビス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、アルミニウム−トリス[2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェル)フォスフェート]、アルミニウム−トリス[2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート]、およびこれらの2種以上の混合物などを挙げることができる。
一般式[N−2]で表わされるヒドロキシアルミニウムフォスフェート化合物も使用可能な有機リン酸エステル系化合物であって、特にR2およびR3が共にtert−ブチル基である、一般式[N−3]で表わされる化合物が好ましい。
Figure 0005368349
式[N−3]において、R1は、炭素原子数1乃至10の2価の炭化水素基であり、mは1または2である。特に好ましい有機リン酸エステル系化合物は、一般式[N−4]で表わされる化合物である。
Figure 0005368349
式[N−4]において、R1は、メチレン基またはエチリデン基である。
具体的には、ヒドロキシアルミニウム−ビス[2,2−メチレン−ビス(4,6−ジ−t−ブチル)フォスフェート]、またはヒドロキシアルミニウム−ビス[2,2−エチリデン−ビス(4,6−ジ−t−ブチル)フォスフェート]である。前記ソルビトール系化合物としては、具体的には、1,3,2,4−ジベンジリデンソルビトール、1,3−ベンジリデン−2,4−p−メチルベンジリデンソルビトール、1,3−ベンジリデン−2,4−p−エチルベンジリデンソルビトール、1,3−p−メチルベンジリデン−2,4−ベンジリデンソルビトール、1,3−p−エチルベンジリデン−2,4−ベンジリデンソルビトール、1,3−p−メチルベンジリデン−2,4−p−エチルベンジリデンソルビトール、1,3−p−エチルベンジリデン−2,4−p−メチルベンジリデンソルビトール、1,3,2,4−ジ(p−メチルベンジリデン)ソルビトール、1,3,2,4−ジ(p−エチルベンジリデン)ソルビトール、1,3,2,4−ジ(p−n−プロピルベンジリデン)ソルビトール、1,3,2,4−ジ(p−i−プロピルベンジリデン)ソルビトール、1,3,2,4−ジ(p−n−ブチルベンジリデン)ソルビトール、1,3,2,4−ジ(p−s−ブチルベンジリデン)ソルビトール、1,3,2,4−ジ(p−t−ブチルベンジリデン)ソルビトール、1,3,2,4−ジ(p−メトキシベンジリデン)ソルビトール、1,3,2,4−ジ(p−エトキシベンジリデン)ソルビトール、1,3−ベンジリデン−2,4−p−クロルベンジリデンソルビトール、1,3−p−クロルベンジリデン−2,4−ベンジリデンソルビトール、1,3−p−クロルベンジリデン−2,4−p−メチルベンジリデンソルビトール、1,3−p−クロルベンジリデン−2,4−p−エチルベンジリデンソルビトール、1,3−p−メチルベンジリデン−2,4−p−クロルベンジリデンソルビトール、1,3−p−エチルベンジリデン−2,4−p−クロルベンジリデンソルビトールもしくは1,3,2,4−ジ(p−クロルベンジリデン)ソルビトールなどを例示することができる。特に、1,3,2,4−ジベンジリデンソルビトール、1,3,2,4−ジ(p−メチルベンジリデン)ソルビトールまたは1,3−p−クロルベンジリデン−2,4−p−メチルベンジリデンソルビトールが好ましい。
本発明で使用可能な炭素原子数4乃至12の脂肪族ジカルボン酸およびその金属塩としては、具体的には、コハク酸、グルタール酸、アジピン酸、スベリン酸、セバシン酸、およびこれらのLi、Na、Mg、Ca、Ba、Al塩などを挙げることができる。また、本発明で結晶核剤として使用可能な芳香族カルボン酸およびその金属塩としては、安息香酸、アリル置換酢酸、芳香族ジカルボン酸およびこれらの周期律表第1乃至3族金属塩であり、具体的には、安息香酸、p−イソプロピル安息香酸、o−第3級ブチル安息香酸、p−第3級ブチル安息香酸、モノフェニル酢酸、ジフェニル酢酸、フェニルジメチル酢酸、フタル酸、およびこれらのLi、Na、Mg、Ca、Ba、Al塩などを挙げることができる。
また、結晶核剤として、下記式[N−5]で示される核剤を使用しても良い。
Figure 0005368349
式[N−5]において、nは、0〜2の整数であり、R1〜R5は、同一または異なって、それぞれ水素原子もしくは炭素数が1〜20のアルキル基、アルケニル基、アルコキシ基、カルボニル基、ハロゲン基およびフェニル基であり、R6は、炭素原子数が1乃至20のアルキル基である。
式[N−5]において好ましくは、nは、0乃至2の整数であり、R1、R2、R4およびR5は、それぞれ水素原子であり、R3およびR6は、同一または異なって、それぞれ炭素原子数が1乃至20のアルキル基である。
さらに好ましくは、式[N−5]において、nは、0〜2の整数であり、R1、R2、R4およびR5は、それぞれ水素原子であり、R3は、−CH3、−CH2CH3、−CH2CH2CH3、−CH2CH2CH2CH3、−CH2CH=CH2、−CH(CH3)CH=CH2、−CH2CH−X1−CH2−X2、−CH2CH−X3−CH2CH3、−CH2CH−X4−CH2OHもしくは−CH2OH−CH(OH)−CH2OHであり(但し、X1〜X4は、それぞれ独立したハロゲン基である。)、R6は、炭素原子数が1乃至20のアルキル基である。
式[N−5]に示された結晶核剤の製造方法としては、国際公開2005/111134号パンフレット等に記載の方法を挙げることができる。市販品としても、容易に入手することができ、例えば、ミラッドNX8000(ミリケン・アンド・カンパニー社製)を挙げることができる。
(安定剤)
本発明で用いられる安定剤は、耐熱安定剤、耐候安定剤、耐光安定剤、塩化吸収剤、充填剤、結晶核剤、軟化剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス等の公知の安定剤を制限無く用いることができる。例えば公知のフェノール系安定剤、有機ホスファイト系安定剤、チオエーテル系安定剤、ヒンダードアミン系安定剤、ステアリン酸カルシウムなどの高級脂肪酸金属塩、無機酸化物などが挙げられる。
本発明に用いられるプロピレン系ブロック共重合体(A)は、上記のとおり高分子量成分を比較的多く含む特徴がある。高分子量成分は、熱、光、剪断などのエネルギーにより比較的切断が起き易い傾向があることが知られている。分子切断が起こると分子量分布が狭くなり、高速成形性能の低下や大型成型品の製造が困難になる等の問題点が生じる可能性がある。したがって、上記の添加剤は従来に比して効果の高い添加剤を選択することや添加量を高めることが好ましい。
[プロピレン系樹脂組成物]
本発明のプロピレン系樹脂組成物は、上記プロピレン系ブロック共重合体混合物(A)と必要に応じて、エラストマー(B)、フィラー(E)および上述した他の成分を包含している。本発明に係るプロピレン系樹脂組成物におけるプロピレン系ブロック共重合体混合物(A)、エラストマー(B)およびフィラー(E)の含有量は、それぞれ以下のとおりである。
プロピレン系ブロック共重合体混合物(A)の含有量は、(A)、(B)、および(E)の合計100重量部に対して、40重量部以上、100重量部以下であり、好ましくは40重量部以上99重量部以下、より好ましくは45重量部以上、97重量部以下、更に好ましくは50重量部以上、95重量部以下である。
衝撃強度、剛性の観点から、エラストマー(B)の含有量は、(A)、(B)、および(E)の合計100重量部に対して、0重量部以上であるが、好ましくは3重量部以上、更に好ましくは5重量部以上であり、また上記エラストマー(B)の含有量は、(A)、(B)、および(E)の合計100重量部に対して、35重量部以下であるが、好ましくは30重量部以下、さらに好ましくは25重量部以下である。なお、エラストマー(B)の含有量が0の場合についても好ましい範囲と規定しているが、これは、上記したプロピレン系ブロック共重合体(A)においてプロピレン−エチレン共重合体ゴム成分が、エラストマー(B)添加と同等の衝撃強度、剛性の観点からの効果を示す場合を想定してのものである。
フィラー(E)の含有量は、(A)、(B)、および(E)の合計100重量部に対して、0重量部以上40重量部以下であり、好ましくは1重量部以上40重量部以下、より好ましくは3重量部以上35重量部以下、更に好ましくは5重量部以上30重量部以下である。
なお、必要に応じて添加される上述の他の成分は、その添加する成分の効果の発現に併せて適切な量が適宜添加されてよい。
本発明のプロピレン系樹脂組成物は、o−ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により、100℃から135℃の温度範囲にて溶出した成分の、重量平均分子量(Mw)と数平均分子量(Mn)の比(分子量分布:Mw/Mn)が、6.0以上、16以下であることが好ましく、7.0以上16以下であることがより好ましい。Mw/MnおよびMz/Mwが上記範囲にあると、プロピレン系樹脂組成物から、フローマークが非常に少ない射出成形品を得ることができる。これは、Mw/MnおよびMz/Mwが上記範囲に存在した結果、高分子量プロピレン重合体成分により、プロピレン系樹脂組成物の高溶融弾性化、特に溶融樹脂の金型への転写に相当する低剪断速度領域での高溶融弾性化が図ることができ、射出成形金型内での流動先端が安定化した結果、フローマークが非常に改良できたものと推察している。
Mw/Mnが6.0よりも小さいと、プロピレン系ブロック共重合体中のプロピレン系重合体成分の溶融弾性が低下し、該プロピレン系樹脂組成物から得られた射出成形品にフローマークが目立ちやすくなり、さらに、射出成形時の流動性が低下することから、自動車部品等の大型射出成形品には適さない場合がある。また、Mw/Mnが7.0よりも小さいと該プロピレン系樹脂組成物の剛性が低下する為、好ましくない場合がある。さらに、Mw/Mnが16よりも大きいと、プロピレン系ブロック共重合体中に低分子量プロピレン重合体成分が増える為、プロピレン系樹脂組成物の耐衝撃性が低下する場合がある。
[成形体]
本発明に係るプロピレン系樹脂組成物は、各種成形体に適用することができる。プロピレン系樹脂組成物からなる成形体としては、射出成形体、発泡成形体、射出発泡成形体、押出成形体、ブロー成形体、真空・圧空成形体、カレンダー成形体、延伸フィルム、インフレーションフィルムなどが挙げられ、特に射出成形体に好適に使用できる。以下、射出成形体について詳細に説明する。
[射出成形体]
前記射出成形体は剛性と低温耐衝撃性とのバランスに優れ、さらにフローマーク、ブツ等の不具合が無い等、成形体外観が良好である。したがって、前記射出成形体は用途が限定されることはないが、特にバンパー、サイドモール、フェンダー、アンダーカバー等の自動車外装部品、インストルメントパネル、ドアトリム、ピラー等の自動車内装部品、エンジンルーム周辺部品、その他自動車部品、家電部品、食品容器、飲料容器、医療容器、コンテナ等に好適に使用することができる。本発明の射出成形体の成形条件は、従来公知の条件を制限無く採用することができる。
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
以下の実施例において、プロピレン系ブロック共重合体およびプロピレン系樹脂組成物の物性は下記の方法によって測定した。
(1)メルトフローレート(MFR:〔g/10分〕):
ASTM D1238Eに準拠し、2.16kg荷重で測定した。測定温度は230℃とした。
(2)極限粘度([η]:〔dl/g〕):
デカリン溶媒を用いて、135℃で測定した。サンプル約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた。
[η]=lim(ηsp/C) (C→0)
(3)室温n−デカン可溶(不溶)成分量(〔wt%〕):
ガラス製の測定容器にプロピレン系ブロック共重合体約3g(10-4gの単位まで測定した。また、この重量を、下式においてb(g)と表した。)、デカン500ml、およびデカンに可溶な耐熱安定剤を少量装入し、窒素雰囲気下、スターラーで攪拌しながら2時間で150℃に昇温してプロピレン系ブロック共重合体を溶解させ、150℃で2時間保持した後、8時間かけて23℃まで徐冷した。得られたプロピレン系ブロック共重合体の析出物を含む液を、磐田ガラス社製25G−4規格のグラスフィルターで減圧ろ過した。ろ液の100mlを採取し、これを減圧乾燥してデカン可溶成分の一部を得、この重量を10-4gの単位まで測定した(この重量を、下式においてa(g)と表した)。この操作の後、デカン可溶成分量を下記式によって決定した。
室温n−デカン可溶成分(Dsol)含有率=100×(500×a)/(100×b)
室温n−デカン不溶成分(Dinsol)含有率=100−100×(500×a)/(100×b)
(4)分子量分布:
液体クロマトグラフ:Waters製 ALC/GPC 150−C plus型 (示唆屈折計検出器一体型)
カラム:東ソー株式会社製 GMH6−HT×2本およびGMH6−HTL×2本を直列接続した。
移動相媒体:o−ジクロロベンゼン
流速:1.0ml/分
測定温度:140℃
検量線の作成方法:標準ポリスチレンサンプルを使用した
サンプル濃度:0.10%(w/w)
サンプル溶液量:500μl
の条件で測定し、得られたクロマトグラムを公知の方法によって解析することでMw/Mn値およびMz/Mw値を算出した。1サンプル当たりの測定時間は60分であった。
(5)ペンタド分率(mmmm:〔%〕)
重合体の立体規則性の指標の1つであり、そのミクロタクティシティーを調べたペンタド分率(mmmm,%)は、プロピレン重合体においてMacromolecules 8,687(1975)に基づいて帰属した13C−NMRスペクトルのピーク強度比より算出した。13C−NMRスペクトルは、日本電子製EX−400の装置を用い、TMSを基準とし、温度130℃、o−ジクロロベンゼン溶媒を用いて測定した。
(6)エチレンに由来する骨格の含量
Dsol中のエチレンに由来する骨格濃度を測定するために、サンプル20〜30mgを1,2,4−トリクロロベンゼン/重ベンゼン(2:1)溶液0.6mlに溶解後、炭素核磁気共鳴分析(13C−NMR)を行った。プロピレン、エチレンの定量はダイアッド連鎖分布より求めた。プロピレン−エチレン共重合体の場合、PP=Sαα、EP=Sαγ+Sαβ、EE=1/2(Sβδ+Sδδ)+1/4Sγδを用い、以下の計算式により求めた。
プロピレン(モル%)=(PP+1/2EP)×100/[(PP+1/2EP)+(1/2EP+EE)
エチレン(モル%)=(1/2EP+EE)×100/[(PP+1/2EP)+(1/2EP+EE)
なお本実施例における、Dsolのエチレン量単位は、重量%に換算して標記した。
また、Dsolにおいて、CSDは、下式(i)に従って算出した。
Figure 0005368349
(式(i)中、[EE]はDsol中のエチレン連鎖のモル分率、[PP]はDsol中のプロピレン連鎖のモル分率、[PE]はプロピレン−エチレン連鎖のモル分率である。)
(7)GPC−IR測定
出光興産(株)製GPC−FTIR装置を用いて、エチレン含有量を以下のようにして算出した。
高温高速GPC装置はMillipore/Waters社モデル150Cを使用し、展開溶媒は精製し安定剤等を添加したトリクロロベンゼン(TCB)を使用した。分離カラムは昭和電工非水系GPCカラム(Shodex UT−806L(2本))を使用し、カラム分離後の溶出液はGPC装置から145℃に温度制御したトランスファーチューブにより同温度に制御したFTIR用液体フローセルに導いた。そして、ニコレー社Magna560FTIRで赤外スペクトルを測定し、SEC−FTIR解析ソフト(ニコレー社製)を用いて、2955cm-1のC−CH3伸縮振動と2920cm-1のCH2伸縮振動とを解析することにより、エチレン含有量を算出した。なお、分子量150万以上の成分の含有量は、当該GPC測定により算出した。
(GPC測定条件)
GPCカラム:Shodex UT−806L(2本)
溶媒:TCB(温度:145℃、流速1.0ml/min)
分子量換算:汎用較正法(PP換算)
(FT−IR測定条件)
検出器 :MGNA−IR560(ニコレー社製)
注入濃度 : 0.3w/v%
注入量 : 750μl
(8)CFC(クロス分別クロマトグラフ測定)
各温度でのo−ジクロロベンゼンに可溶な成分の分析は、クロス分別クロマトグラフ測定(CFC)で行った。CFCは組成分別を行う温度上昇溶離分別(TREF)部と、分子量分別を行うGPC部とを備えた下記装置を用いて、下記条件で測定し、各温度での量を算出した。
測定装置:CFC T−150A型、三菱油化(株)製、
カラム:Shodex AT−806MS(×3本)
溶解液:o−ジクロロベンゼン
流速:1.0ml/min
試料濃度:0.3wt%/vol%(0.1% BHT入り)
注入量:0.5ml
溶解性:完全溶解
検出器:赤外吸光検出法、3.42μ(2924cm-1)、NaCl板
溶出温度:0〜135℃、28フラクション
0、10、20、30、40、45、50、55、60、65、70、75、80、85、90、94、97、100、103、106、109、112、115、118、121、124、127、135(℃)
測定の詳細は、試料を145℃で2時間加熱して溶解してから、135℃で保持した後、0℃まで10℃/hrで降温、さらに0℃で60分保持して試料をコーティングさせた。昇温溶出カラム容量は0.83ml、配管容量は0.07mlである。検出器はFOXBORO社製赤外分光器MIRAN 1A CVF型(CaF2セル)を用い、応答時間10秒の吸光度モードの設定で、3.42μm(2924cm-1)の赤外光を検知した。溶出温度は0℃〜135℃までを28フラクションに分けた。温度表示は全て整数であり、例えば94℃の溶出画分とは、91〜94℃で溶出した成分のことを示す。0℃でもコーティングされなかった成分および各温度で溶出したフラクションの分子量を測定し、汎用較正曲線を使用して、ポリプロピレン換算分子量を求めた。SEC温度は135℃であり、内標注入量は0.5mlであり、注入位置は3.0mlであり、データサンプリング時間は0.50秒である。データ処理は、装置付属の解析プログラム「CFCデータ処理(バージョン1.50)」で実施した。
(9)曲げ弾性率
曲げ弾性率(FM:〔MPa〕)は、JIS K7171に従って、下記の条件で測定した。
<測定条件>
試験片:10mm(幅)×4mm(厚さ)×80mm(長さ)
曲げ速度:2mm/分
曲げスパン:64mm
(10)シャルピー衝撃試験
シャルピー衝撃試験(〔kJ/m2〕)は、JIS K7111に従って、下記の条件で測定した。
<試験条件>
温度:23℃、−30℃
試験片:10mm(幅)×4mm(厚さ)×80mm(長さ)
ノッチは機械加工
(11)加熱変形温度
加熱変形温度(HDT:〔℃〕)は、JIS K7191に従って、下記の条件で測定した。
<測定条件>
試験片:10mm(幅)×4mm(厚さ)×80mm(長さ)
荷重:0.45MPa
(12)射出成形品外観(フローマーク)
射出成形品のフローマークは、長さ350mm、幅100mm、厚み3mmの平板が成形可能で中央部(50mm)にゲートを持つ射出成形金型を用いた(図1)。ここで、ゲートからフローマークが発生した面積を目視で評価した。なお、本試験では、フローマークを判定しやすくする為、プロピレン系樹脂組成物100重量部に対して、黒着色マスターバッチ2重量部をドライブレンドして、射出成形を行った。
<試験片射出成形条件>
射出成形機:品番 SE220HDZ、住友重機工業(株)製
シリンダー温度:210℃
金型温度:40℃
射出時間(一次充填時間):3秒
保圧時間:10秒
成形品形状:図1に示す
フローマーク評価:10点満点(フローマーク未発生)、0点(全面にフローマーク発生)
(13)射出成形品外観(ウェルド)
長さ350mm、幅100mm、厚み3mmの平板が成形可能で幅100mmの中央部(50mm)にゲートを持つ射出成形金型を用いた(図2)。ゲートから流動方向直下25mmの位置にその点を中心とする直径45mm、厚み3mmの樹脂の流動を妨げる堰を設けた。ウェルド長さは上記金型を用いて射出成形をしたとき、堰以降に発生するウェルドを目視によりウェルドが判別できなくなるまでの長さを測定し、求めた。なお、ウェルドを判定しやすくする為、プロピレン系樹脂組成物100重量部に対して、黒着色マスターバッチ2重量部をドライブレンドして、射出成形を行った。
<試験片射出成形条件>
射出成形機:品番 SE220HDZ、住友重機工業(株)製
シリンダー温度:210℃
金型温度:40℃
射出時間(一次充填時間):3秒
保圧時間:10秒
成形品形状:図2に示す
[製造例1]<プロピレン系ブロック共重合体(A1)の製造>
内容積2リットルの高速撹拌装置(特殊機化工業製(TKホモミクサーM型))を充分窒素置換した後、この装置に精製デカン700ml、市販塩化マグネシウム10g、エタノール24.2gおよび商品名レオドールSP−S20(花王(株)製ソルビタンジステアレート)3gを入れ、この懸濁液を撹拌しながら系を昇温し、懸濁液を120℃にて800rpmで30分撹拌した。次いでこの懸濁液を、沈殿物が生じないように高速撹拌しながら、内径5mmのテフロン(登録商標)製チューブを用いて、予め−10℃に冷却された精製デカン1リットルを張り込んである2リットルのガラスフラスコ(攪拌機付)に移した。移液により生成した固体を濾過し、精製n−ヘプタンで充分洗浄することにより、塩化マグネシウム1モルに対してエタノールが2.8モル配位した固体状付加物を得た。
この固体状付加物をデカンで懸濁状にして、マグネシウム原子に換算して23ミリモルの上記固体状付加物を、−20℃に保持した四塩化チタン100ml中に、攪拌下、導入して混合液を得た。この混合液を5時間かけて80℃に昇温し、80℃に達したところで、3,6−ジメチルシクロヘキサン−1,2−ジカルボン酸ジイソブチル(シス体、トランス体混合物)を、固体状付加物のマグネシウム原子1モルに対して0.085モルの割合の量で添加し、40分間で110℃まで昇温した。110℃に到達したところで更にシクロヘキサン1,2−ジカルボン酸ジイソブチル(シス体、トランス体混合物)を固体状付加物のマグネシウム原子1モルに対して0.0625モルの割合の量で添加し、温度を110℃で90分間攪拌しながら保持することによりこれらを反応させた。
90分間の反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンにて再懸濁させた後、昇温して110℃に達したところで、45分間撹拌しながら保持することによりこれらを反応させた。45分間の反応終了後、再び熱濾過にて固体部を採取し、100℃のデカンおよびヘプタンで、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
以上の操作によって調製した固体状チタン触媒成分(α−1)はデカン懸濁液として保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。
このようにして得られた固体状チタン触媒成分(α−1)の組成はチタン3.2質量%、マグネシウム17質量%、塩素57質量%、3,6−ジメチルシクロヘキサン1,2−ジカルボン酸ジイソブチル10.6質量%、シクロヘキサン1,2−ジカルボン酸ジイソブチル8.9質量%およびエチルアルコール残基0.6質量%であった。
(固体状チタン触媒成分(α−1)予備重合)
次に窒素で置換した内容積200ミリリットルの攪拌機付きの三つ口フラスコに、脱水したヘキサンを加え、トリエチルアルミニウム0.75ミリモル、さらに上記の固体状チタン触媒成分(α−1)の懸濁液をチタン原子換算で0.25ミリモル投入、全量を50ミリリットルとした。これを攪拌下、20℃を維持して60分間プロピレンを所定量吸収させた。その後、残留プロピレンを窒素で置換して、ヘキサンを用いて充分洗浄を行い、予備重合触媒成分を得た(3g−PP/g−固体状チタン触媒成分)。
(本重合)
内容積2リットルの重合器に、室温で500gのプロピレンおよび水素7.0NLを加えた後、トリエチルアルミニウムを0.5ミリモル、ジエチルアミノトリエトキシシランを0.1ミリモル、および固体状チタン触媒成分(α−1)の予備重合触媒成分をチタン原子換算で0.0035ミリモルを60℃で加え、速やかに重合器内を70℃まで昇温した。70℃で20分重合(プロピレンバルク重合)した後、降温させながらプロピレンをパージした。その後窒素置換を数回繰り返した。そして、水素0.01NLを加えた後、エチレン/(エチレン+プロピレン)=34モル%のガス比とし、全圧1.0MPaで気相重合を行った。ゴム量(Dsol)が約12%に達するまで重合した。反応終了後、少量のメタノールにて反応停止し、プロピレンをパージした。更に得られた重合体粒子を室温で一晩、減圧乾燥してプロピレン系ブロック共重合体(H−1)を得た。得られた重合体の物性は、MFR=80g/10分、室温n−デカン可溶な部分(Dsol)は11.7重量%、Dsolのエチレン含量は30モル%、Dsolの[η]は7.3dl/gであった。
[製造例2]<プロピレン系ブロック共重合体(A2)の製造>
気相重合時の条件を水素0.07NL、エチレン/(エチレン+プロピレン)=57モル%のガス比、全圧0.4MPaとした以外は、製造例1と同様に重合した。得られた重合体粒子は、室温で一晩、減圧乾燥してプロピレン系ブロック共重合体(H−2)を得た。得られた重合体の物性は、MFR=93g/10分、室温n−デカン可溶な部分(Dsol)は12.0重量%、Dsolのエチレン含量は52モル%、Dsolの[η] は2.4dl/gであった。
[製造例3]
気相重合時の条件を水素0.02NL、エチレン/(エチレン+プロピレン)=40モル%のガス比、全圧0.7MPaとした以外は、製造例1と同様に重合した。得られた重合体粒子は、室温で一晩、減圧乾燥してプロピレン系ブロック共重合体(H−3)を得た。得られた重合体の物性は、MFR=85g/10分、室温n−デカン可溶な部分(Dsol)は12.2重量%、Dsolのエチレン含量は38モル%、Dsolの[η] は5.0dl/gであった。
[製造例4]
内容積2リットルの高速撹拌装置(特殊機化工業製(TKホモミクサーM型))を充分窒素置換した後、この装置に精製デカン700ml、市販塩化マグネシウム10g、エタノール24.2gおよび商品名レオドールSP−S20(花王(株)製ソルビタンジステアレート)3gを入れ、この懸濁液を撹拌しながら系を昇温し、懸濁液を120℃にて800rpmで30分撹拌した。次いでこの懸濁液を、沈殿物が生じないように高速撹拌しながら、内径5mmのテフロン(登録商標)製チューブを用いて、予め−10℃に冷却された精製デカン1リットルを張り込んである2リットルのガラスフラスコ(攪拌機付)に移した。移液により生成した固体を濾過し、精製n−ヘプタンで充分洗浄することにより、塩化マグネシウム1モルに対してエタノールが2.8モル配位した固体状付加物を得た。
この固体状付加物をデカンで懸濁状にして、マグネシウム原子に換算して23ミリモルの上記固体状付加物を、−20℃に保持した四塩化チタン100ml中に、攪拌下、導入して混合液を得た。この混合液を5時間かけて80℃に昇温し、80℃に達したところで、ジイソブチルフタレートを、固体状付加物のマグネシウム原子1モルに対して0.15モルの割合の量で添加し、50分間で120℃まで昇温した。温度を120℃で90分間攪拌しながら保持することによりこれらを反応させた。
90分間の反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンにて再懸濁させた後、昇温して130℃に達したところで、45分間撹拌しながら保持することによりこれらを反応させた。45分間の反応終了後、再び熱濾過にて固体部を採取し、100℃のデカンおよびヘプタンで、洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
以上の操作によって調製した固体状チタン触媒成分(α−2)はデカン懸濁液として保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。
このようにして得られた固体状チタン触媒成分(α−2)の組成はチタン2.5質量%、マグネシウム19質量%、塩素58質量%、ジイソブチルフタレート6.5質量%およびエチルアルコール残基0.2質量%であった。
(固体状チタン触媒成分(α−2)予備重合)
次に窒素で置換した内容積200ミリリットルの攪拌機付きの三つ口フラスコに、脱水したヘキサンを加え、トリエチルアルミニウム0.75ミリモル、さらに上記の固体状チタン触媒成分(α−2)の懸濁液をチタン原子換算で0.25ミリモル投入、全量を50ミリリットルとした。これを攪拌下、20℃を維持して60分間プロピレンを所定量吸収させた。その後、残留プロピレンを窒素で置換して、ヘキサンを用いて充分洗浄を行い、予備重合触媒成分を得た(3g−PP/g−固体状チタン触媒成分)。
(本重合)
内容積2リットルの重合器に、室温で500gのプロピレンおよび水素5.0NLを加えた後、トリエチルアルミニウムを0.5ミリモル、ジエチルアミノトリエトキシシランを0.1ミリモル、および固体状チタン触媒成分(α−2)の予備重合触媒成分をチタン原子換算で0.0035ミリモルを60℃で加え、速やかに重合器内を70℃まで昇温した。70℃で20分重合した後、降温させながらプロピレンをパージした。その後窒素置換を数回繰り返した。そして、水素0.04NLを加えた後、エチレン/(エチレン+プロピレン)=43モル%のガス比とし、全圧0.4MPaで気相重合を行った。ゴム量(Dsol)が約12%に達するまで重合した。反応終了後、少量のメタノールにて反応停止し、プロピレンをパージした。更に得られた重合体粒子を室温で一晩、減圧乾燥してプロピレン系ブロック共重合体(A’−4)を得た。得られた重合体の物性は、MFR=95g/10分、室温n−デカン可溶な部分(Dsol)は11.8重量%、Dsolのエチレン含量は40モル%、Dsolの[η]は2.5dl/gであった。
Figure 0005368349
Figure 0005368349
Figure 0005368349
[実施例1]
製造例1で製造されたプロピレン系ブロック共重合体(H−1)(プロピレン系ブロック共重合体(A1)に相当)と製造例2で製造されたプロピレン系ブロック共重合体(H−2)(プロピレン系ブロック共重合体(A2)に相当)とを50対50の重量比で混合したプロピレン系ブロック共重合体混合物(A)60重量部、エチレン−ブテン共重合体ゴム(タフマーA1050(三井化学(株)商標)20重量部、タルク(ホワイトフィラー5000PJ(商標)、松村産業(株)製)20量部、耐熱安定剤IRGANOX1010(チバガイギー(株)商標)0.1重量部、耐熱安定剤IRGAFOS168(チバガイギー(株)商標)0.1重量部、耐熱安定剤IRGANOX1076(チバガイギー(株)商標)0.1重量部、およびステアリン酸カルシウム0.1重量部をタンブラーにて混合後、二軸押出機にて溶融混練してペレット状のプロピレン系樹脂組成物を調製し、射出成形機にてこのプロピレン系樹脂組成物から試験片(小型試験片、フローマーク外観評価用試験片、ウェルド外観評価用試験片)を作製した。得られた試験片(成形品)の機械物性および外観を表2に示す。
<溶融混練条件>
同方向二軸混練機:品番 NR2−36、ナカタニ機械(株)製
混練温度:190℃
スクリュー回転数:200rpm
フィーダー回転数:400rpm
ホッパー内に窒素フロー有り
<JIS小型試験片/射出成形条件>
射出成形機:品番 EC40、東芝機械(株)製
シリンダー温度:190℃
金型温度:40℃
射出時間−保圧時間:13秒(一次充填時間:1秒)
冷却時間 : 15秒
[実施例2]
実施例1において、プロピレン系ブロック共重合体混合物(A)を、プロピレン系ブロック共重合体(H−1)とプロピレン系ブロック共重合体(H−2)との重量比が25対75の混合物とした以外は同様にプロピレン系樹脂組成物および試験片の作製を行った。得られた試験片(成形品)の機械物性および外観を表2に示す。
[比較例1]
実施例1において、プロピレン系ブロック共重合体混合物(A)を、プロピレン系ブロック共重合体(H−1)全量とした以外は同様にプロピレン系樹脂組成物および試験片の作製を行った。得られた試験片(成形品)の機械物性および外観を表3に示す。
[比較例2]
実施例1において、プロピレン系ブロック共重合体混合物(A)を、プロピレン系ブロック共重合体(H−2)全量とした以外は同様にプロピレン系樹脂組成物および試験片の作製を行った。得られた試験片(成形品)の機械物性および外観を表3に示す。
[比較例3]
実施例1において、プロピレン系ブロック共重合体混合物(A)を、プロピレン系ブロック共重合体(H−3)全量とした以外は同様にプロピレン系樹脂組成物および試験片の作製を行った。得られた試験片(成形品)の機械物性および外観を表3に示す。なお、比較例3は、実施例1に相当するプロピレン系ブロック共重合体混合物(A)が有するDsolのエチレン含有量およびDsolの極限粘度を有するプロピレン系ブロック共重合体を直接重合によって得たものである。
[比較例4]
実施例1において、プロピレン系ブロック共重合体混合物(A)を、プロピレン系ブロック共重合体(H−4)全量とした以外は同様にプロピレン系樹脂組成物および試験片の作製を行った。得られた試験片(成形品)の機械物性および外観を表3に示す。
本発明における二種類のブロピレン系ブロック共重合体(A1)および(A2)を併用した組成物から作製された成形体の常温衝撃強度と低温衝撃強度のバランスを図3に示す。
プロピレン系ブロック共重合体単独の場合と比べて、本発明の特定の二種類のプロピレン系ブロック共重合体(A1)および(A2)を併用した場合のほうが、常温衝撃強度と低温衝撃のバランスが高くなる。そのメカニズムについての詳細は明らかでないが、プロピレン系ブロック共重合体(A1)に含まれる低エチレン量・高[η]のゴム成分(主としてDsol)は、プロピレン単独重合体(ホモポリプロピレン)成分(主としてDinsol)との相溶性がよく、かつ適度な高分子量成分が界面で絡み合うために常温衝撃強度向上に寄与すると考えられる。
さらに、プロピレン系ブロック共重合体(A2)に含まれる高エチレン量・低[η]のゴム成分(主としてDsol)は、ガラス転移温度が低いため、低温時に受けた衝撃エネルギーを分子運動を通じて熱に変換することにより、低温衝撃強度向上に寄与すると考えられる。
本発明に係るプロピレン系樹脂組成物は、剛性、常温衝撃強度と低温衝撃強度とのバランス等の機械物性が良好でありながらフローマーク、ウェルドライン等の成形外観不良が少なく、かつ射出成形時の金型内流動性が良好であることから、各種成形品、特に自動車内外装部品等の大型射出成形部品の薄肉化、軽量化を図ることができる。

Claims (14)

  1. プロピレン系ブロック共重合体(A―1)95重量%以下、5重量%以上とプロピレン系ブロック共重合体(A−2)5重量%以上、95重量%以下とからなるプロピレン系ブロック共重合体混合物(A)(ただし、(A−1)および(A−2)の合計は100重量%である)40重量部以上、100重量部以下、
    エラストマー(B)0重量部以上、35重量部以下、および
    フィラー(E)0重量部以上、40重量部以下を含有しており(ただし、(A)、(B)、および(E)の合計は100重量部である)、
    前記プロピレン系ブロック共重合体(A−1)と(A−2)とが、プロピレン重合体成分を製造する工程およびプロピレン−エチレン共重合体ゴム成分を製造する工程を含む製造方法によって得られ、かつ下記の要件[1]〜[8]を同時に満たす、プロピレン系樹脂組成物。
    [1]ASTM D1238Eに準拠し、230℃、2.16kg荷重で測定したメルトフローレート(MFR)が、(A−1)の場合は、80g/10分以上150g/10分以下、(A−2)の場合は、93g/10分以上150g/10分以下、
    [2]室温n−デカンに可溶な部分(Dsol)5重量%以上、50重量%以下と室温n−デカンに不溶な部分(Dinsol)50重量%以上、95重量%以下から構成される(ただし、DsolとDinsolとの合計量は100重量%である)、
    [3]Dsolの重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)が7.0以上、20以下、
    [4]Dsolのエチレン含有量が、(A−1)の場合は25モル%以上、35モル%以下、(A−2)の場合は40モル%以上、60モル%以下、
    [5]Dsolの極限粘度[η]が、(A−1)の場合は5.0dl/g以上、10dl/g以下、(A−2)の場合は1.8dl/g以上、3.5dl/g以下、
    [6]Dinsolの分子量分布(Mw/Mn)が7.0以上、20以下、かつZ平均分子量(Mz)と重量平均分子量(Mw)との比であるMz/Mwが6.0以上、20以下、
    [7]Dinsolのペンタド分率(mmmm)が95%以上、
    [8]Dsolにおいて、下式(i)で定義されるCSDの値が1.0以上2.0以下である。
    Figure 0005368349
    (式(i)中、[EE]はDsol中のエチレン連鎖のモル分率、[PP]はDsol中のプロピレン連鎖のモル分率、[PE]はプロピレン−エチレン連鎖のモル分率である。)
  2. 前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方が、下記要件[9]をさらに満たすことを特徴とする請求項1に記載のプロピレン系樹脂組成物。
    [9]DsolのGPC−IR測定において、GPC曲線の面積分率で高分子量側5%における溶出成分のエチレン含有量(C2(H5))(モル%)と高分子量側から50%における溶出成分のエチレン含有量(C2(H50))(モル%)の差(Δ(C2))(下記式(ii))が1.5以下である。
    Figure 0005368349
  3. 前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方の製造方法において、プロピレン重合体成分を製造する工程を前段で行い、プロピレン−エチレン共重合体ゴム成分を製造する工程を後段で行うことを特徴とする請求項1または2に記載のプロピレン系樹脂組成物。
  4. 前記プロピレン重合体成分を製造する工程が、2槽以上の直列した重合槽で行われ、各槽で生成されるプロピレン重合体の極限粘度[η]が4dl/g以下であることを特徴とする請求項1〜3のいずれか1項に記載のプロピレン系樹脂組成物。
  5. 前記プロピレン−エチレン共重合体ゴムを製造する工程が、1槽の重合槽で行われることを特徴とする請求項1〜4のいずれか1項に記載のプロピレン系樹脂組成物。
  6. 前記プロピレン系ブロック共重合体(A1)および前記プロピレン系ブロック共重合体(A2)の少なくとも一方が、チタン、マグネシウム、およびハロゲンと下記式(1)で特定される環状エステル化合物(a)および下記式(2)で特定される環状エステル化合物(b)とを含む固体状チタン触媒成分(I)と、
    周期表の第1族、第2族および第13族から選ばれる金属原子を含む有機金属化合物(II)と、
    必要に応じて電子供与体(III)とを含むオレフィン重合用触媒の存在下にプロピレンを含有するオレフィンを重合して得られたものであることを特徴とする請求項1〜5のいずれか1項に記載のプロピレン系樹脂組成物。
    Figure 0005368349
    式(1)において、nは5〜10の整数である。
    2およびR3はそれぞれ独立にCOOR1またはRであり、R2およびR3のうち少なくとも1つはCOOR1である。環状骨格中の単結合(C−Cb結合、R3がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合))は、二重結合に置き換えられていてもよい。
    1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。
    複数個あるRは、それぞれ独立に水素原子、炭素原子数1〜20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少なくとも1つのRは水素原子ではない。
    Rが互いに結合して形成される環の骨格中に、二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5〜10である。
    Figure 0005368349
    式(2)において、nは5〜10の整数である。
    4およびR5はそれぞれ独立にCOOR1または水素原子であり、R4およびR5のうち少なくとも1つはCOOR1である。R1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。環状骨格中の単結合(C−Cb結合、R5がCOOR1である場合のCa−Cb結合、およびC−C結合(nが6〜10の場合))は、二重結合に置き換えられていてもよい。
  7. 前記式(1)および/または(2)において、前記環状骨格中の炭素原子間結合のすべてが単結合であることを特徴とする請求項6に記載のプロピレン系樹脂組成物。
  8. 前記式(1)および/または(2)において、n=6であることを特徴とする請求項6に記載のプロピレン系樹脂組成物。
  9. 前記環状エステル化合物(a)が下記式(1a)であり、前記環状エステル化合物(b)が下記式(2a)であることを特徴とする請求項6に記載のプロピレン系樹脂組成物。
    Figure 0005368349
    式(1a)において、nは5〜10の整数である。
    環状骨格中の単結合(C−C結合(nが6〜10の場合)、Ca−C結合およびCb−C結合)は、二重結合に置き換えられていてもよい。
    1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。
    複数個あるRは、それぞれ独立に水素原子または炭素原子数1〜20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少なくとも1つのRは水素原子ではない。
    Rが互いに結合して形成される環の骨格中に二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5〜10である。
    Figure 0005368349
    式(2a)において、nは5〜10の整数である。
    1は、それぞれ独立に炭素原子数1〜20の1価の炭化水素基である。環状骨格中の単結合(C−C結合(nが6〜10の場合)、Ca−C結合およびCb−C結合)は、二重結合に置き換えられていてもよい。
  10. 前記式(1a)および(2a)において、前記環状骨格中の炭素原子間結合のすべてが単結合であることを特徴とする請求項9に記載のプロピレン系樹脂組成物。
  11. 前記式(1a)および(2a)において、n=6であることを特徴とする請求項9に記載のプロピレン系樹脂組成物。
  12. o−ジクロロベンゼンを用いたクロス分別クロマトグラフ(CFC)により、100℃から135℃の温度範囲にて溶出した成分の、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、6.0以上16以下であることを特徴とする請求項1〜11のいずれか1項に記載のプロピレン系樹脂組成物。
  13. 請求項1〜12のいずれか1項に記載のプロピレン系樹脂組成物を含んでなる成形体。
  14. 射出成形によって得られた自動車部品であることを特徴とする請求項13に記載の成形体。
JP2010062401A 2010-03-18 2010-03-18 プロピレン系樹脂組成物およびこれらから得られる成形体 Active JP5368349B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062401A JP5368349B2 (ja) 2010-03-18 2010-03-18 プロピレン系樹脂組成物およびこれらから得られる成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062401A JP5368349B2 (ja) 2010-03-18 2010-03-18 プロピレン系樹脂組成物およびこれらから得られる成形体

Publications (2)

Publication Number Publication Date
JP2011195664A JP2011195664A (ja) 2011-10-06
JP5368349B2 true JP5368349B2 (ja) 2013-12-18

Family

ID=44874291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062401A Active JP5368349B2 (ja) 2010-03-18 2010-03-18 プロピレン系樹脂組成物およびこれらから得られる成形体

Country Status (1)

Country Link
JP (1) JP5368349B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739667B1 (ko) * 2012-10-11 2017-05-24 보레알리스 아게 이종상 폴리프로필렌 조성물
EP3187518B1 (en) 2014-08-26 2018-10-31 Toho Titanium CO., LTD. Manufacturing method for propylene block copolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941888B2 (ja) * 1995-01-17 2007-07-04 新日本石油化学株式会社 表面光沢に優れるプロピレン・エチレンブロックコポリマー
JP4294381B2 (ja) * 2003-06-06 2009-07-08 株式会社プライムポリマー プロピレン系樹脂組成物
JP5250303B2 (ja) * 2008-05-14 2013-07-31 日本ポリプロ株式会社 プロピレン系樹脂組成物
JP5441778B2 (ja) * 2010-03-18 2014-03-12 三井化学株式会社 プロピレン系樹脂組成物およびこれらから得られる成形体

Also Published As

Publication number Publication date
JP2011195664A (ja) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5441777B2 (ja) プロピレン系ブロック共重合体およびこれから得られるプロピレン系樹脂組成物およびこれらから得られる成形体
JP5441778B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP5441773B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP5441769B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP5486291B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP5441909B2 (ja) プロピレン系ブロック共重合体、該共重合体を含む組成物およびこれらから得られる成形体
KR100311595B1 (ko) 올레핀중합촉매,올레핀중합방법,및올레핀중합체조성물
KR100444618B1 (ko) 폴리프로필렌 수지조성물 및 사출성형품
US6251997B1 (en) Polypropylene resin composition and injection-molded article thereof
JP5441774B2 (ja) プロピレン系ブロック共重合体およびこれらから得られる成形体
JP6566842B2 (ja) ポリプロピレン系樹脂組成物
WO1997045463A1 (fr) Polypropylene cristallin, procede de preparation associe, composition a base de polypropylene et article thermoforme
US6531551B2 (en) Polypropylene composition, process for preparing the same, and polymerization catalyst therefor
JP5580630B2 (ja) プロピレン系樹脂組成物から製造された発泡成形体
JP5368349B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP5368348B2 (ja) プロピレン系樹脂組成物およびこれらから得られる成形体
JP6308005B2 (ja) 熱成形体
JP5564337B2 (ja) 結晶性プロピレン重合体、その製造方法及びそれを含む樹脂組成物
JP6360698B2 (ja) プロピレン系ブロック共重合体
JP6045412B2 (ja) プロピレン系重合体および該プロピレン系重合体を含むプロピレン系樹脂組成物
JP2022149485A (ja) ポリプロピレン系樹脂組成物及びその製造方法、並びに射出成形体
JP3932678B2 (ja) オレフィン(共)重合体組成物及びオレフィン(共)重合体組成物成型品
JP7186594B2 (ja) プロピレン系重合体の製造方法
JPH04202506A (ja) プロピレン系共重合体の製造方法、プロピレン系共重合体、プロピレン系共重合体組成物、およびそれらの用途
JP2000191859A (ja) ポリプロピレン系樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5368349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250