JP5364090B2 - アルカリ金属酸化物を含む光ファイバー - Google Patents

アルカリ金属酸化物を含む光ファイバー Download PDF

Info

Publication number
JP5364090B2
JP5364090B2 JP2010507393A JP2010507393A JP5364090B2 JP 5364090 B2 JP5364090 B2 JP 5364090B2 JP 2010507393 A JP2010507393 A JP 2010507393A JP 2010507393 A JP2010507393 A JP 2010507393A JP 5364090 B2 JP5364090 B2 JP 5364090B2
Authority
JP
Japan
Prior art keywords
core
optical fiber
region
annular region
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010507393A
Other languages
English (en)
Other versions
JP2010526749A (ja
JP2010526749A5 (ja
Inventor
アール ビッカム,スコット
シー ブックバインダー,ダナ
リ,ミン−ジュン
ケー ミシュラ,スニグドハラジュ
エイ ノーラン,ダニエル
タンドン,プシュカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2010526749A publication Critical patent/JP2010526749A/ja
Publication of JP2010526749A5 publication Critical patent/JP2010526749A5/ja
Application granted granted Critical
Publication of JP5364090B2 publication Critical patent/JP5364090B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glass Compositions (AREA)

Description

関連出願の相互参照
本出願は2007年5月7日付け、米国特許仮出願番号60/928,052の利益および優先権を主張するものであり、前記引用により前記出願の内容がすべてそのまま本出願に組み込まれたものとする。
本発明はアルカリ金属酸化物をドープした光ファイバーとその製造方法及び装置に関するものである。
減衰というのは光ファイバーを制約する主要な特性である。例えば、光ファイバーの損失は光ファイバー増幅器間の限界距離を設定する上で重要である。このことは、光ファイバー増幅器がシステムの信頼性の主要因であるのみならずシステム・コストの大きな部分を占める海底用途等、長距離及び超長距離ネットワークにとって特に重要である。そのため、減衰を抑制した光ファイバーの開発に多大な商業的関心が寄せられている。
本発明の広義の態様によれば、石英系コア及びクラッドを有して成る光ファイバーが開示される。前記コアは平均濃度約10〜10000重量ppmのKO、NaO、Li O、RbO、CsO、及びこれらの組合せから成る群から選択されるアルカリ金属酸化物を含んでいる。前記コアを囲む前記クラッドは、該コアより低い屈折率デルタ%を有する少なくとも第1環状領域及び該第1環状領域より低い屈折率デルタ%を有する第2環状領域を有し成ることが好ましい。また、第2環状領域はランダムに分布した空隙、フッ素、又はその両方を含んで成ることが好ましい。本明細書においては、孔と空隙とは同一意味で使用される。第2環状領域は前記コアから(第1環状領域により)少なくとも5μm離間していることが好ましく、少なくとも10μm離間していることがより好ましい。また、第2環状領域は、該領域より高い屈折率デルタを有する第3環状クラッドに囲まれて成ることが好ましい。第2環状領域は、前記コアより少なくとも0.1デルタ%、より好ましくは少なくとも0.2デルタ%低い屈折率デルタを有すると共に、第1及び第3環状領域より低い屈折率デルタを有して成ることが好ましい。好ましい実施の形態によっては、前記コアにおけるアルカリ金属の濃度が約50〜1000ppmである。前記第2環状領域が複数のランダムに分布した空隙を有する実施の形態においては、空隙の平均直径が約2000nm未満であることが好ましい。
好ましい実施の形態において、前記コアは基本的にゲルマニウムを含んでいないことが好ましく、全く含んでいないことがより好ましい。この様にして、前記コアに直接隣接していることが好ましい第1環状領域にフッ素をドープすることにより、前記コアの屈折率が周囲の領域に対し正になる。第2環状領域をランダムに分布した空隙、フッ素、又はその両方を含んで成るよう形成することが好ましい。好ましい実施の形態において、前記クラッドがフッ素ドープ石英から成る第3環状領域を構成し、第3環状領域が第2環状領域を囲んでいる。本発明の1つの態様によれば、中心線から半径Rに広がるガラスコア、前記コアを接触包囲するガラス・クラッドであって、(i)半径Rから半径Rに広がり、放射幅W=R−Rを有する第1環状領域、(ii)前記半径Rから半径Rに広がり、放射幅W=R−Rを有する第2環状領域、及び(iii)前記半径Rから最外ガラス半径Rに広がる第3環状領域を有して成る光ファイバーが提供される。前記コアが第3環状領域に対し最大相対屈折率、Δ1MAX、を有し、0.2%<Δ1MAX<0.6%であることが好ましい。第1環状クラッド領域の屈折率デルタ|Δ(r)|が、|Δ(r)|<0.05%であることが好ましい。第2環状領域が第3環状領域に対し最小相対屈折率、Δ3MIN、を有し、Δ3MIN<−0.1%であることが好ましく、Δ3MIN<−0.3%であることがより好ましい。即ち、本実施の形態においては、Δ1MAX>Δ2MAX>Δ3MIN及びΔ1MAX>Δ2MIN>Δ3MINである。本実施の形態のコアとクラッドとによりケーブル・カットオフが1500nm未満、1550nmにおける減衰が0.18dB/km未満、並びに1550nmにおける有効面積が72μm超、好ましくは75μm超、更に好ましくは85μm超、最も好ましくは95μm超の光ファイバーが提供される。第2環状領域はフッ素ドープ石英ガラス、ランダムに分布した空隙を有する石英ガラス、あるいはフッ素ドープ石英ガラスであってランダムに分布した空隙を有するものから成ることができる。
また、第2環状領域はランダムに分布した空(真空)またはガスを充填した複数の閉孔を有する石英ガラスから成ることができ、前記閉孔により光が内部に反射されコアに沿って導波される。前記孔には窒素とヘリウムの混合ガスを充填することが好ましい。このような孔により、例えば純石英と比較して有効屈折率を低くすることができる。第2環状領域20は、本明細書において以下に規定するプロファイル体積積Vを有している。
Figure 0005364090
Δ1MAX<0.6%、Δ2MIN>−0.05%、Δ2MAX<0.05%、Δ3MIN<−0.1%、より好ましくは−0.25%未満、並びに第2環状領域の最大プロファイル体積の絶対値|V|が20%-μmであることが好ましい。また、Δ3MIN<−0.45%であることがより好ましく、場合によりΔ3MIN≦−0.7%とすることができる。
一部の実施の形態においては、20%-μm<|V|<80%-μm。別の実施の形態においては、30%-μm<|V|<70%-μmであり、更に別の実施の形態においては、40%-μm<|V|<60%-μmである。
ある場合には、0.2%<Δ1MAX<0.6%であることが好ましく、別の場合には、0.20%<Δ1MAX<0.40%であることが好ましい。
一部の実施の形態においては、W>1.0μmであり、別の実施の形態においては、1.0<W<10.0μmであり、更に別の実施の形態においては、W<8.0μmであり、また2.0<W<4.0μmである実施の形態もある。
断面積とパーセントで示すデルタΔ 3MIN の絶対値との積(単位:%-μm)である第2環状領域のプロファイル体積を適切に選択することにより曲げ損失を改善することができる。第2環状領域のプロファイル体積は実際のファイバー・カットオフ波長およびケーブル・カットオフ波長に影響を与える。ケーブル・カットオフ波長を1500nm未満とするためには、第2環状領域のプロファイル体積の絶対値である|V|を80%-μm未満とする必要がある。
本明細書に開示したファイバーの設計値を使用することにより、ケーブル・カットオフが1300nm未満、より好ましくは1260nm未満、1550nmにおける波長分散が約13〜19ps/nm/km、より好ましくは14〜18ps/nm/km、零分散波長が約1420nm未満、より好ましくは約1350nm未満、最も好ましくは約1324nm未満、1310nmにける分散スロープが0.092ps/nm/km未満、より好ましくは約0.090ps/nm/km以下、及び1550nmにける分散スロープが約0.07ps/nm/km未満のファイバーが可能である。
また、本明細書に開示した光ファイバーは、1550nmにおける有効面積が70μm超、好ましくは75μm超、更に好ましくは85μm超、最も好ましくは95μm超、1550nmにおける減衰が0.18dB/km未満、好ましくは0.175dB/km未満、最も好ましくは0.17dB/km未満の特性を有することができる。また、このようなファイバーは1550nmにおける15mm曲げ損失が5dB/巻き未満、20mm曲げ損失が1dB/巻き未満、好ましくは0.5dB/巻き未満、より好ましくは0.1dB/巻き未満、及び30mm曲げ損失が0.04dB/巻き未満の特性を有することができる。
前記コアが平均濃度約50〜500重量ppm、より好ましくは約100〜300重量ppmのアルカリ金属酸化物を含んでいることが好ましい。前記ファイバー・コアが基本的にゲルマニウムを含んでいないことが好ましく、全く含んでいないことがより好ましい。コアはフッ素を含有することができ、一部の実施の形態において、フッ素の平均濃度がアルカリ金属酸化物の平均濃度より高いことが好ましい。前記光ファイバーのコア及びクラッドは更に塩素を含有することができ、一部の好ましい実施の形態において、前記コアにおける塩素の平均濃度がアルカリ金属酸化物の平均濃度より高いことが好ましい。本明細書において、平均濃度とはコア全体の平均濃度を意味する。従って、例えば、コアの内側半分が300ppmのKOを含有し、外側半分が400ppmのKOを含有している場合、そのコアのKOの平均濃度は350重量ppmとなる。KOは本発明に従ってドープする好ましいアルカリ金属酸化物である。
前記ファイバーのコアは平均濃度約750重量ppmの塩素を含んでいることが好ましい。前記クラッドは石英系クラッドであり、コアを囲み、好ましくは前記コアに直接隣接していることが好ましい。前記クラッドは10000ppmを超える量の塩素を含んでいることが好ましい。前記コアは基本的にゲルマニウムを含んでいないことが好ましく、全く含んでいないことがより好ましい。
好ましい実施の形態において、前記ファイバーのコアが100ppm未満の塩素を含有する中心線に沿った第1領域、及び前記第1領域を囲み、100ppmを超える塩素を含有する第2コア領域を有している。また、前記第1領域の最大塩素含有量が前記第2領域の最小塩素含有量より多いことが好ましい。
ドーパントとしてゲルマニウムを含まない実施の形態において、コアにおける塩素の平均濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが更に好ましい。前記コアにおけるフッ素の平均濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが更に好ましく、約1500ppm超であることが最も好ましい。
本明細書に開示したファイバーの設計値を使用することにより、1310nmにおける減衰が約0.30dB/km未満、1550nmにおける減衰が約0.18dB/km未満、好ましくは約0.175dB/km、より好ましくは約0.17dB/km未満の光ファイバーを製造することができる。
前記光ファイバーのコア及びクラッドの両方がアルカリ金属酸化物ドーパントを含んでいることが好ましい。前記光ファイバーは少なくとも1つのコア・セグメントを有しているが、このことは重要でなく、多数のコア・セグメントを有することができる。
前記光ファイバー・コアのOH含有量が20ppb未満であることが好ましい。
本発明の更なる特徴および効果は以下の詳細な説明に記載されおり、その一部は当業者にとって明らかであり、また以下の詳細な説明、特許請求の範囲、および添付図面を含む本明細書に記載の本発明を実施することにより認識できる。
前記概要説明および以下の詳細な説明は本発明の実施の形態を説明するものであり、本発明の本質および特徴を理解するための要旨あるいは構成の説明を意図したものである。添付図面は本発明の理解を深めるためのものであり、本明細書の一部を構成するものである。本発明の各種実施の形態が図面に示されており、その説明と共に本発明の原理および動作を説明するものである。可能な限り、同一機能には同一符号が付してある。
本発明によるステップ・インデックス・ファイバーの屈折率プロファイル。 ガラススートの堆積方法を示す図。 ガラス管にアルカリ金属酸化物をドープする方法を示す図。 ガラスロッドの線引き方法を示す図。
本発明は低損失光ファイバー及びその製造方法に関するものである。具体的には、本発明はアルカリ金属酸化物ドーパントをドープした光ファイバー、並びに前記光ファイバー及びその母材の製造方法に関するものである。本明細書において、以下の用語は以下の意味を有する。
−モードフィールド径:下式で表されるシングルモード光ファイバー端面における光電力。
Figure 0005364090
ここで、2ωはモードフィールド径(従ってωはモードフィールド半径)、λは光の平均波長、Φは放射パターンの中心に対する角度であり、0°〜90°の積分が好ましい。モードフィールド径は、例えば、試験手順、ANSI/TIA/EIA-455-191-A-2001に従って測定できる。
−有効面積:は下式で表される面積
Figure 0005364090
ここで、積分限界は0〜∞であり、Eは伝搬光の電界である。
ケーブル化カットオフ波長、又は“ケーブル化カットオフ” はケーブル環境において受ける厳しい曲げおよび機械的圧力により、実測ファイバー・カットオフより低くなる。ケーブル化カットオフは、例えば、EIA-455-170、Cable Cutoff Wavelength of Single−mode Fiber by Transmitted Power、即ち“FOTP−170”に記載されている22m試験により測定できる。本明細書において、ケーブル・カットオフとはEIA-455、FiberOpticTestProcedureに記載の試験による値を意味する。
−相対屈折率Δ:等式Δi=(n −n )/2n で定義される値。ここで、nは屈折率プロファイル・セグメントiの最大屈折率であり、nは外部クラッド層の屈折率である。一般に、相対屈折率はパーセントで表され、本明細書においては、例えば、デルタ・パーセント、あるいは%Δで示される。
−コア:クラッドに対し一段高い屈折率を有する光ファイバー部分であり、送信光電力の大部分が伝搬する部分。コアは1つ以上のセグメントから成っていてよい。それぞれのコア・セグメントは純石英より大きい、等しい、あるいは小さい屈折率を有していてよい。
−ppm:別に定めのない限り、重量パーツパーミリオンを意味する。
図1に示すように、好ましい実施の形態において、本明細書に開示した光ファイバーはコアおよびそのコアを囲むクラッドを有していることが好ましい。クラッドはコアを接触包囲していることが好ましい。コアは基本的にゲルマニウムを含んでいないことが好ましく、全く含んでいないことがより好ましい。一部の好ましい実施の形態において、図1、及び階段形状、円形、アルファ形状、あるいは三角形状のような図1の例示プロファイルの変形例に示すように、コアが1つのコア・セグメント、即ち中央コア・セグメント14から成り、クラッド16がコアを接触包囲して成り、コアがクラッドに対し正の屈折率Δ(r)を有している。別の好ましい実施の形態において、コアが中央コア・セグメント、中央コア・セグメントを接触包囲している第1環状コア・セグメント等の多数のコア・セグメントから成り、クラッドが第1環状コア・セグメントを接触包囲して成り、中央コア・セグメントがクラッドに対し負でない、好ましくは正の相対屈折率Δ%(r)を有し、第1環状コア・セグメントの純石英がクラッドに対し負でない、好ましくは正の相対屈折率Δ%(r)を有している。
図1の実施の形態において、コア・セグメント14が光ファイバーの中心から約2〜8μm、好ましくは約3〜6μm、最も好ましくは3.5〜4.5μm広がって成り、クラッド16が前記コアの外半径から光ファイバーの最外半径に広がっている。図1に示すように、好ましい実施の形態においては、少なくとも屈折率Δを有する第1コア領域14A及びΔより小さい屈折率デルタを有するクラッド16が用いられている。コア・セグメント14全体の平均屈折率は約0.1%〜0.5%Δであることが好ましく、約0.3%〜0.4%Δであることがより好ましい。領域14AのΔの好ましい値は約0.25〜0.45%Δであり、約0.3〜0.35%Δであることがより好ましい。領域14Aは光ファイバーの中心線を横断してスロープが連続してもよく、あるいは任意としてコア領域14はΔより大きいΔを有する領域14Bを有していてもよい。光ファイバーに沿ってコア領域14Bを設ける場合、コア領域14Bのピーク屈折率Δの値は約0.25〜0.60%Δであることが好ましく、約0.36〜0.46%Δがより好ましく、コア領域14Aより高いピーク屈折率を有していることが好ましい。従って、好ましい実施の形態において、コア・セグメント14はその最外部付近より光ファイバーの中心線に沿って高い屈折率を有している。
前記コアを囲むクラッド16は、少なくともコア14より低い屈折率デルタ・パーセンΔを有する第1環状領域18と第1環状領域18のΔより低い屈折率デルタ・パーセンΔを有する第2環状領域20とから成っていることが好ましい。第2環状領域20はランダムに分布した空隙、フッ素、又はその両方を含んで成ることが好ましい。また、第2環状領域20は(例えば、第1環状領域18の幅によって)コアから少なくとも5μm、最も好ましくは10μm離隔して成ることが好ましい。更に、第2環状領域20はΔを有し、好ましい実施の形態において、フッ素がドープされガラス・ファイバーの最外周部に広がっていることが好ましい、外部クラッド領域22に囲まれていることが好ましい。
第2環状領域20が複数のランダムに分布する空隙を有して成る実施の形態において、前記空隙、即ち、孔は非周期的に配されていることが好ましい。本明細書において“非周期的に配する”あるいは“非周期的分布”とは、断面(例えば、光ファイバーの長手方向の軸に対し垂直な断面)で見たとき、非周期的に配した孔が、孔を含む領域全体にわたりランダム又は非周期的に分布していることを意味する。ファイバーの長さ方向の異なる位置における断面はそれぞれ異なる断面孔パターンを示す、即ち、断面によって孔パターンが異なり、孔の分布及び孔の大きさが一致しない。即ち、空隙あるいは孔は非周期的であり、換言すれば、ファイバー構造体内に周期的に位置していない。これ等の孔は光ファイバーの長さ方向(即ち、長手方向軸)に平行に広げる(伸長する)ことにより、ファイバイの直径方向より軸方向に沿って長くすることができるが、伝送ファイバーの一般的な長さ全体にわたり伸長することはない。
非周期的に配した孔、即ち、空隙を陥凹環状領域20に使用する場合、95%超の孔、好ましくはすべての孔が1550nm未満、好ましくは775nm未満、最も好ましくは約390nm未満であるクラッドの平均孔サイズを示すよう形成することが望ましい。同様に、ファイバーの孔の最大径が7000nm未満であることが好ましく、2000nm未満であることがより好ましく、1550nm未満であることが更に好ましく、775nm未満であることが最も好ましい。一部の実施の形態において、ファイバー断面視、有孔環状領域が10以上、好ましくは100以上、更に好ましくは400以上、最も好ましくは600以上の孔を有している。実際、本明細書に開示した技術によって、10μm未満、好ましくは7μm未満の光ファイバー環状リングに1000超、更には2000超の孔を設けることができる。従って、例えば、光ファイバーの特定の好ましい実施の形態において、断面視、最大径が1550nm未満、平均径が775nm未満の10以上の孔、好ましくは100以上の孔を設けることができる。一部の実施の形態において、非周期的に配した孔の平均径が500nm、好ましくは300nm、より好ましくは5nm超200nm未満である。別の実施の形態において、本明細書に開示したファイバーが1000未満の孔を有し、更に別の実施の形態において、所定のファイバー垂直断面の孔の合計が10超500未満である。ランダムに配した空隙を有する実施の形態において、空隙占有率が約1〜10パーセントであることが好ましく、1.5〜7.5パーセントであることがより好ましい。本明細書において、“空隙占有率”とは、ファイバー断面視、ランダムに分布する空隙を有する領域(例えば領域20)における空隙の全面積をその領域の面積で除した割合を意味する。勿論、一部の実施の形態において、ファイバーはこれ等を組み合せた特性を示す。従って、例えば、特定の好ましい実施の形態において、光ファイバーは、断面において、最大径が1550nm未満、平均径が775nmの10超の孔、好ましくは100超300未満の孔を示す。一部の実施の形態において、非周期分布孔の平均径が500nm未満であり、好ましくは300nm未満であり、更に好ましくは5nm超200nmである。孔の数、平均径、最大径、および合計空隙面積割合はすべて、倍率約800倍の走査型電子顕微鏡及びImagePro(米国、メリーランド州、シルバースプリング所在のMedia Cybernetics社製)のような画像解析ソフトを活用することにより算出できる。このようにランダムに分布した空隙には、アルゴン、窒素、クリプトン、二酸化炭素、二酸化硫黄、酸素のような気体を一種以上充填することも、実質的に気体含まない真空とすることもできる。気体の存在の有無に関わらず、有孔領域の屈折率は孔の存在によって低下する。これ等の孔はランダム、即ち、非周期的に配することも周期的に配することもできる。一部の実施の形態において、複数の孔が非周期的に配された複数の孔と周期的に配された複数の孔とから成っている。前記の代わりに、あるいは前記に加え、有孔領域のガラスを(例えば、フッ素により)ダウンドープするか一方又は両方の包囲領域を(例えば、酸化ゲルマニウムにより)アップドープすることにより、前記陥凹屈折率領域を設けることができる。
領域20は圧密ガラスブランク材に気体を閉じ込めるのに有効な母材圧密条件を用いる方法により圧密ガラス光ファイバー母材に空隙を形成することにより作製できる。空隙を除去するのではなく、前記母材を使用して空隙、即ち、孔を有する光ファイバーを形成する。本明細書において、孔の直径とは光ファイバーをその中心軸を横断する垂直断面で見たとき、終端が石英内部表面に配され孔を画成する最も長い線分を意味する。光ファイバーにおける微細構造領域の利用及び/又は形成方法の詳細は、米国特許出願番号11/583,098(出願日2006年10月18日)、米国仮出願番号60/817,863(出願日2006年6月30日)、60/817,721(出願日2006年6月30日)、60/841,458(出願日2006年8月31日)、60/841,490(出願日2006年8月31日)、及び60/879,164(出願日2007年1月8日)に記載されている。前記出願はすべてコーニング社に譲渡されたものであり、前記引用によりすべて本出願に組み込まれたものとする。
本明細書に開示した光ファイバーはコア及び/又はクラッドの屈折率を調整するための酸化ゲルマニウム又はフッ素を含有していてもいなくてもよいが、環状領域20にはこれ等のドーパントは使用されず、代わりに孔(及び、孔に配される一種または複数種の気体)を使用して光がコアに沿って導波されるよう調整することができる。環状領域20がランダムに分布した空隙を有している場合、この領域は非ドープ(ゲルマニウム又はフッ素不使用)石英から成ることができ、ドーパントの使用を完全に避けることがでると共に有孔領域の屈折率を低下させることができる。あるいは、環状領域20は、例えば、複数の孔を有するフッ素ドープ石英のようにランダムに分布した空隙及びドープ石英の両方から成ることもできる。
コア領域は、平均濃度約10〜1000重量ppmのKO、NaO、Li O、RbO、CsO、及びこれらの組合せから成る群から選択されるアルカリ金属酸化物(KOが最も好ましい)を含んでいることが好ましい。また、前記コアは塩素及びフッ素を含んでいることが好ましい。更に、前記コアは基本的にゲルマニウムを含んでいないことが好ましく、全く含んでいないことがより好ましい。前記コアにおけるフッ素濃度がアルカリ金属酸化物の平均値より高いことが好ましく、塩素の平均値がアルカリ金属酸化物の平均値より高いことが好ましい。前記ファイバーは前記コアを囲む、あるいは一部の実施の形態においては接触包囲する、フッ素をドープした石英系クラッド(例えば、環状領域18及び22)を有していることが好ましい。前記第2環状領域が前記第1環状領域より少なくとも0.1デルタ・パーセント、好ましくは少なくとも0.2デルタ・パーセント低い屈折率デルタを示すことが好ましい。また前記第2環状領域の屈折率デルタが前記第1および第3領域の屈折率デルタより低いことが好ましい。
一部の好ましい実施の形態において、前記コア領域がコアの中心線に沿って(約1μmに広がる)好ましくは塩素濃度がコアの外部領域(即ち、約1μmから約4μmに広がる領域)より低い第1中央コア領域を有している。特に、前記中央コア領域の平均塩素濃度が100ppm未満であることが好ましく、50ppm未満であることがより好ましい。また、前記第1領域を囲む前記第2即ち外部コア領域の平均塩素濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが更に好ましく、1500ppm超であることが最も好ましい。前記コア領域のピーク塩素濃度が500ppm超であることが好ましく、1000ppm超であることが更に好ましく、1500ppm超であることが最も好ましい。
前記中央コア領域における平均フッ素濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが最も好ましい。同様に、前記第1領域を囲む前記第2即ち外部コア領域の平均フッ素濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが最も好ましい。
コア領域全体の平均フッ素濃度が500ppm超であることが好ましく、750ppm超であることがより好ましく、1000ppm超であることが最も好ましく、5000ppm未満であることが好ましく、4000ppm未満であることがより好ましい。特に重要ではないが、本実施の形態において、第2コア領域のピーク塩素濃度が前記第2領域のピーク塩素濃度より高い。前記コア領域の平均塩素濃度及び平均フッ素濃度が約500ppm超であることが好ましく、約750ppm超であることがより好ましく、約1000ppm超であることが最も好ましい。
一部の好ましい実施の形態において、本明細書に開示した光ファイバーが1つのコア・セグメント、即ち中央コア・セグメント14とこの中央コア・セグメントを接触包囲するクラッド16とから成り、このクラッドが純石英に対し負の屈折率を有し、前記コアがフッ素、並びにピーク濃度が20〜700ppm、より好ましくは50〜500ppm、更に好ましくは100〜400ppmである、KO、NaO、Li O、RbO、CsO、及びこれらの組合せから成る群から選択されるアルカリ金属酸化物を含んでいる。
前記ファイバーのコア領域14Aが(クラッドに対し)0.2〜0.5%、好ましくは0.3〜0.4%のピーク相対屈折率デルタ、ΔMAXを有している。前記光ファイバーは90重量%超、好ましくは95重量%以上のSiOを含んでいる。
図1の実施の形態において、ファイバーがクラッド16に囲まれた1つのコア・セグメント14を有している。アルカリ金属酸化物濃度が半径に応じて変化することが好ましい。前記アルカリ金属酸化物濃度がファイバーの中心線から少なくとも半径の特定の部分まで、半径に比例して低下することが好ましい。図1に示すように、前記ファイバーのコア領域14は一般に階段形状を成すが、円形、アルファ形状、あるいは三角形状を成すこともできる。
本発明の実施の形態において、図1に示すような光ファイバーの屈折率プロファイルを調整することにより、零分散波長λが1420nm未満、好ましくは1350nm未満、より好ましくは1324未満、最も好ましくは約1280nm〜1324nm、1310nmにおける分散スロープが約0.09ps/nm/km未満、1550nmにおける分散スロープが約0.07ps/nm/km未満、好ましくは約0.065ps/nm/km未満、最も好ましくは約0.06ps/nm/km未満、及び1550nmにおける総分散量が約13〜19ps/nm/km、好ましくは約14〜18ps/nm/kmのシングルモード・ファイバーが得られる。しかし、別の屈折率プロファイルを用いて同様の特性を得ることもできる。前記光ファイバーのケーブル・カットオフ波長が約1300nm未満であることが好ましく、約1260nm未満であることがより好ましい。また、前記光ファイバーの1550nmにおける有効面積が約70μm超であることが好ましく、約75μm超であることがより好ましい。前記光ファイバーのコア径が約3μm超であることが好ましく、約3μm〜5μmであることがより好ましく、1550nmにおけるモードフィールド径が約9.5μm超であることが好ましく、約10μm〜11μmであることがより好ましい。本発明に従ってアルカリ金属酸化物を含めることにより、1310nmにおける減衰が約0.3dB/km未満、1550nmにおける減衰が約0.18dB/km未満、より好ましくは0.175dB/km未満、最も好ましくは0.17dB/km未満の光ファイバーを製造することができる。本発明の好ましい実施の形態において、例えば、実施例9〜12に示すように、1550nmにおける減衰が0.18dB/km未満、より好ましくは0.17dB/km未満、1550nmにおける分散/減衰が80ps/nm/dB超、より好ましくは90ps/nm/dB超の光ファイバーがもたらされる。一部の好ましい実施の形態において、1550nmにおける分散/減衰が約80〜110ps/nm/dBであり、より好ましくは80〜100ps/nm/dBである。これ等の実施の形態において、ファイバーの分散が18ps/nm/km未満であることが好ましく、17ps/nm/km未満であることがより好ましい。本明細書に開示した光ファイバーの20mm径曲げ損失が1dB/巻き未満、より好ましくは0.5dB/巻き未満、最も好ましくは0.25dB/巻き未満である。
本発明による光ファイバーの実施例を表1に示す。表1の各実施例において、第2環状クラッド領域20にランダム空隙を設けることにより、クラッド領域18及び22と比較して顕著なダウンドープ効果を得ている。領域20は平均径が200nmであるランダムに分散した空隙を有する石英ガラスから成っている。表1は本発明による各種実施例における、内部コア領域14Bの最大屈折率Δ、コア・セグメント14の平均屈折率Δ(デルタ平均)、コア領域14の半径R、第1環状クラッド領域18の屈折率Δ、第1環状クラッド領域18の外半径、第2環状クラッド領域20の幅、及び空隙占有率を示している。すべての実施例において、コアはゲルマニウムを含まず、クラッドの領域18及び22はフッ素ドープ石英から成り、領域20はランダムに分布した空隙を有している。従って、個々のセグメントの屈折率デルタは外部フッ素ドープ・クラッド領域22に対して算出されたものである。また、表1は各実施例の1310nmにおける分散及び分散スロープ、零分散波長、1550nmにおける分散および分散スロープ、1310nm及び1550nmにおけるモードフィールド径、1310nm及び1550nmにおける有効面積、ケーブル・カットオフ波長、及び1550nmにおける減衰も示している。
Figure 0005364090
光ファイバーのコア及びクラッドの両方がアルカリ金属酸化物ドーパントを含んでいることが好ましい。前記アルカリ金属酸化物はK、Na、Li、Cs、又はRbの酸化物、あるいはこれらの酸化物の組合せであることが好ましく、KO、RbO、CsO、又はこれらの組合せであることがより好ましく、KOであることが最も好ましい。アルカリ金属酸化物はコアにおいてピーク濃度を示すことが好ましい。アルカリ金属酸化物濃度が光ファイバーの半径を横断して放射状に変化することができ、場合により、ファイバーの中心線から少なくとも半径の特定の部分まで半径に比例して低下することができる。
表1から分かるように、一連の好ましい実施の形態において、環状領域20の内半径は約12〜18μmであり、特にコアから約8〜14μm、好ましくは9〜12μm離間している。表1に示す一連の実施の形態において、1550nmにおける有効面積は75μm超、より好ましくは90μm超、最も好ましくは95μm超である。また、これ等の実施例においては、幅が約5〜10μm、好ましくは約6〜9μmの領域20を採用している。第2の一連の好ましい実施の形態において、環状リング領域20はコアから少なくとも10μm、好ましくは12μm、より好ましくは15μm離間している。これ等の実施の形態における領域20の幅は約2〜8μmであることが好ましく、約3〜6μmであることがより好ましい。第2の一連の好ましい実施の形態においては、1550nmにおいて更に大きな有効面積が得られる、即ち、80μm超、好ましくは100μm超、多くの場合120μm超の有効面積が得られる。ここに開示したすべてのファイバーの20mm径曲げ損失は1dB/巻き未満、好ましくは0.5dB/巻き未満、より好ましくは0.25dB/巻きである。
本発明によるファイバーの別の実施例を表2に示す。表2の各実施例において、第2環状クラッド領域20に空隙を設けずフッ素をドープすることによりクラッド領域18及び22と比較して顕著なダウンドープ効果を得ている。表2は内部コア・セグメント14Bの最大屈折率Δ、コア・セグメント14の平均屈折率Δ(デルタ平均)、コア領域14の半径R、第1環状クラッド領域18の屈折率Δ、第1環状クラッド領域18の外半径、第2環状クラッド領域20の幅、第2環状クラッド領域20外半径R3、及び第2環状クラッド領域20の屈折率Δを示している。すべての実施例において、コアはゲルマニウムを含まず、クラッドの領域18、20、及び22はフッ素ドープ石英から成りランダムに分布した空隙を設けていない。従って、個々のセグメントの屈折率デルタは外部フッ素ドープ・クラッド領域22に対して算出されたものである。また、表2は各実施例の1310nmにおける分散及び分散スロープ、零分散波長、1550nmにおける分散および分散スロープ、1310nm及び1550nmにおけるモードフィールド径、1310nm及び1550nmにおける有効面積、ケーブル・カットオフ波長、及び1550nmにおける減衰も示している。
Figure 0005364090
表2から分かるように、実施の形態により、環状領域20の内半径は約12〜18μmであり、特にコアから約8〜14μm、好ましくは9〜12μm離間している。これらの実施の形態において、1550nmにおける有効面積は75μm超、より好ましくは90μm超、最も好ましくは95μm超である。これ等の実施例においては、幅が約5〜10μm、好ましくは約6〜9μmの領域20を採用している。第2の一連の好ましい実施の形態において、環状リング領域20はコアから少なくとも10μm、好ましくは12μm、より好ましくは15μm離間している。これ等の実施の形態における領域20の幅は約2〜8μmであることが好ましく、約3〜6μmであることがより好ましい。第2の一連の好ましい実施の形態においては、1550nmにおいて更に大きな有効面積が得られる、即ち、80μm超、好ましくは100μm超、多くの場合120μm超の有効面積が得られる。本明細書に開示したすべてのファイバーの20mm径曲げ損失は1dB/巻き未満、好ましくは0.5dB/巻き未満、より好ましくは0.25dB/巻きである。表2に開示したファイバーの屈折率デルタは−0.1パーセント未満、好ましくは−0.15パーセント未満、最も好ましくは−0.2パーセント未満である。また、これ等のファイバーは、プロファイル体積の絶対値|V|が20%-μm超、好ましくは30%-μm超、実施の形態によっては40%-μm超の第2環状クラッド領域20を採用している。
本発明によるファイバーの更に別の実施例21〜29を表3に示す。表3の各実施例において、第1及び外部クラッド領域22にフッ素をドープし、第2環状クラッド領域20にフッ素ドープを施すと共に/又はランダムに分布した空隙を設けることにより、クラッド領域18又は22と比較して領域20に顕著なダウンドープ効果を得ている。表3はコア・セグメント14の平均屈折率Δ(デルタ平均)、コア領域14の半径R、第1環状クラッド領域18の屈折率Δ及び外部クラッド領域22の屈折率Δ(表3の実施例において、両者は実質的に等しい)、コア・セグメントのアルファ(好ましい実施の形態において、アルファは1超、好ましくは4超である)、第1環状クラッド領域18の外半径R、第2環状領域20の外半径R、第2環状領域20のプロファイル体積V、及びコア/クラッド比(R/R)を示している。すべての実施例において、コアはゲルマニウム及びアルカリ金属酸化物を含んでいない。個々のセグメントの屈折率デルタは外部フッ素ドープ・クラッド領域22に対して算出されたものである。実施例21〜25の領域20はフッ素を含み空隙を有していない。また、表3は1310nm及び1550nmにおけるモードフィールド径、1550nmにおける有効面積、1310nmにおける分散及び分散スロープ、零分散波長、1550nmにおける分散及び分散スロープ、1550nmにおける減衰、ケーブル・カットオフ波長、LP11カットオフ波長、10mm曲げ損失、15mm曲げ損失、及び20mm曲げ損失も示している。
Figure 0005364090
表3から分かるように、実施の形態により、環状領域20がコアから約8〜14μm、好ましくは9〜13μm、一部の実施の形態において9〜12μm離間している。これらの実施の形態において、1550nmにおける有効面積は約70μm超、より好ましくは90μm超、一部の実施の形態において95μm超である。これ等の実施例においては、幅が約4〜10μm、好ましくは約6〜9μmの領域20を採用している。ここに開示したすべてのファイバーの20mm径曲げ損失は1dB/巻き未満、好ましくは0.5dB/巻き未満、より好ましくは0.25dB/巻きである。表3に開示した光ファイバーは有効屈折率デルタ(平均空隙径200nmの空隙を有する石英ガラス領域)が1パーセント未満の第2環状領域20を有し、実施例26〜29における第2環状領域20の有効屈折率デルタは−1.20パーセントである。また、これ等のファイバーは、プロファイル体積の絶対値|V|が20%-μm超、好ましくは30%-μm超、一部の実施の形態おいて40%-μm超、別の実施の形態おいて60%-μm超、80%-μm超、あるいは100%-μm超の第2環状クラッド領域を有している。アルカリ金属酸化物は線引き処理の段階において都合よく拡散制御できる。所定の方法によって線引き条件を変えることにより、母材全体に所望の濃度プロファイルでアルカリ金属酸化物ドーパントを分布させることができることが分かった。アルカリ金属酸化物ドーパントは半径に対して比較的直線的に拡散させることが好ましい。アルカリ金属酸化物ドーパントの拡散はドープが行われるガラスの温度及びその持続時間にある程度依存するので、これ等の要素が線引き処理におけるアルカリ金属酸化物ドーパントの拡散を制御する上で重要な役割を果たす。線引き処理において、光ファイバー母材(及び母材から線引きされる光ファイバー)が晒される温度及びその時間は線引き速度、線引き(加熱炉)温度、及び光ファイバーの張力を変えることによって制御される。例えば、線引き速度を上昇させると光ファイバー母材の特定の部分が線引き炉内に存在する時間が減少し、アルカリ金属酸化物ドーパントが光ファイバー母材内、従って線引きされた光ファイバー内に拡散する距離が短くなる。これにより、クラッドに拡散するアルカリ金属酸化物ドーパントの量が減少し、光ファイバーのコアにおけるアルカリ金属酸化物の濃度の方が高くなる。逆に、線引き速度を低下させると、炉内存在時間が増大する。従って、アルカリ金属酸化物が光ファイバーのクラッドの奥まで拡散することにより、コアのアルカリ金属酸化物濃度が低下する。同様に、加熱炉の温度を上昇させると、アルカリ金属酸化物の拡散速度が上昇することによりアルカリ金属酸化物濃度が低下する。それ故、線引き速度及び加熱炉温度を利用することにより拡散、従って、線引きされた光ファイバー内におけるアルカリ金属酸化物の分布を効果的に制御できる。
従来の外付けプロセスを示す図2において、スートバーナー156によって石英スート162の多層膜が心棒144に堆積されることによりスート母材160が形成される。次に、形成されたスート母材160は通常の塩素による乾燥方法によって乾燥される。その後、乾燥処理における塩素の大部分又は全部が除去される時間及び温度において、フッ素含有化合物(例えば、SiF)が存在する雰囲気にスート母材を晒すことにより、スート母材にフッ素がドープされる。前記母材はガラスが高いフッ素レベルでドープされないよう約1100℃未満の温度でフッ素含有雰囲気に晒される(フッ素スイープ)ことが好ましい。フッ素レベルは、例えば、0.1〜0.4重量%のように低いレベルであることが好ましい。その結果、フッ素(及び潜在塩素)がドープされたスート管が固化される。
次に、固化されたガラス管にアルカリがドープされる。例えば、図3において、まず、ガラス管106は旋盤101(例えば、ガラス加工旋盤又は従来の改良型化学気相成長(MCVD)ガラス形成旋盤)のチャックに固定される。環状であることが好ましいアルカリ金属源化合物110を入れるための貯蔵タンク108が2つの首形状を成す環状歪曲体112を火炎加工又は溶接によって管106の壁に設けることにより管106の一端の近傍に形成されている。別の種類の貯蔵タンクも可能である。首形状を成す環状歪曲体112は互いに約2cm離間していることが好ましい。アルカリ金属の結晶化を防止するため、管106及び管内部に沈着される任意の付加ガラスが基本的に塩素を含んでいないことが好ましい。本明細書において、“基本的に塩素を含んでいない”とは、塩素含有量が充分に低くアルカリ塩化物の結晶化による光損失が回避できることを意味する。そのために、塩素含有量は約500重量ppm未満であることが好ましく、約100重量ppm未満であることがより好ましく、約50重量ppm未満であることが最も好ましい。また、石英ガラス管106及びその内部に堆積される任意の付加ガラスが基本的に“水分”を含んでいてはならない。本明細書において、“水分”とは水酸基OHを意味する。水分が約1383nmにおける吸収ピークの原因となり、その吸収ピークが光ファイバーの動作波長域に及ぶことがある。この吸収ピークがファイバーの減衰に悪影響を及ぼす。従って、ガラスのOH含有量をできるだけ小さくして、ウォータピークとも呼ばれる吸収ピークを小さくすることが好ましい。ガラス管106のOH含有量が約100重量ppm未満であることが好ましく、20重量ppm未満であることがより好ましい。石英ガラス管の製造中、従来の塩素による乾燥方法によりアルカリ金属酸化物ドーパントを拡散する前の当初ガラス品が基本的に水分を含まないようにすることができる。
図3において、アルカリ源化合物110が管106の貯蔵タンク108に導入され、熱源114によって加熱され、管106が回転するにつれ気化する。酸素又はキャリアガスが回転シール118を介して管106の注入口114から流入され、アルカリ金属酸化物源化合物110の下流にある管106の部分120が加熱されることにより、管106の内表面122へのアルカリ金属酸化物の拡散が促進される。管106は別のガラスロッドのような母材成分が内部に挿入されていなことが好ましい。アルカリ金属酸化物が内表面122へ急速に拡散されガラスの失透が防止される充分な温度でアルカリ金属酸化物源化合物110の下流にある管106の部分120を加熱する必要がある。熱源124によりアルカリ金属酸化物源化合物110の下流にある管106の部分120を約1500℃に加熱することが好ましく、約1500℃〜2000℃に加熱することがより好ましい。熱源124を管106の部分120の長手方向に沿って移動させることが好ましい。アルカリ金属酸化物源化合物110はK、Na、Li、及びRbから成る群から選択される元素を含んでいることが好ましい。アルカリ金属酸化物源化合物110は臭化物、ヨウ化物、又はフッ化物であることが好ましい。アルカリ金属酸化物源化合物110がKBr、KI、又はKNOであることが最も好ましい。管106が崩壊する前に、アルカリ金属酸化物(例えば、KO、NaO、Li O、RbO、CsO、又はこれらの組合せ)が管106の内拡散表面122から約100μm〜500μm拡散されることにより、アルカリ酸化物ドープガラス管が形成されることが好ましい。特に、拡散したアルカリ金属酸化物ドーパントの濃度(重量%)が半径方向に変化することが好ましい。図3の拡大図に示すように、ガラス品(例えば、管106)は内側半部分107表面において濃度が最も高く、外側半部分109において低くなるようドープされることが好ましい。内側半部分と外側半部分との境界は管106の1/2半径厚さ位置(点線111)である。例えば、外側半部分109におけるアルカリ・ドーパントのピーク濃度が内側半部分107のピーク濃度(重量%)の50%未満となるよう拡散されることが好ましい。
拡散処理に続き、当技術分野で周知の従来の方法(又は本明細書に記載の乾燥方法)により更に加熱して管106を部分崩壊させることにより、アルカリ金属酸化物が失われる可能性がある内表面積を小さくする共にアルカリ金属酸化物が拡散されたガラス層を厚くする。次に、熱源124により石英ガラス管106を加熱してアルカリ金属酸化物源化合物110の下流にある管106を崩壊させることによりアルカリ金属酸化物ドープ固形ガラスロッド132を形成する。例えば、適切な熱源(例えば、トーチ)により加熱する等当技術分野で周知の従来の方法により管106を崩壊させることができる。次に、アルカリ金属源化合物貯蔵タンク108を含むガラス部分からアルカリ金属酸化物ドープ固形ガラスロッド132が切り離される。
崩壊したアルカリ・ドープ棒132のアルカリ金属酸化物の濃度が(管106と同様に)半径方向に変化すると共に、内側半部分107に対応する部分においてアルカリ・ドーパントのピーク濃度(重量%)が最も高く、外側半部分109に対応する部分において低いピーク濃度を示すことが好ましい。アルカリ・ドーパントのピーク濃度がガラスロッドの中央にあり、1/2半径位置における濃度がピーク濃度の50%未満であることが最も好ましく、25%未満であることがより好ましい。
ドープガラスロッド132を再線引き炉136内において加熱して細径ガラスロット144に線引きすることができる。その線引き処理を図4に示す。前記崩壊処理によって得られたアルカリドープ・ガラスロッド132にガラスハンドル130が取り付けられ、従来の再線引き炉136の上部において移動式ダンウフィード支持体134に取り付けられる。アルカリドープ・ガラスロッド132の下端に取り付け可能な犠牲ガラスロッド138がモータ駆動式トラクター140によって牽引されることにより、アルカリドープ・ガラスロッド132が適切な速度で線引きされる。適切な線引き速度は15〜23cm/分であると判明しており、センサー142によって検知された径によって制御される。線引き処理によって得られた細径ガラスロッド144の外径(d1)は3mm〜10mmであることが好ましく、6mm未満であることがより好ましい。光ファイバー線引き時における細径ガラスロッド144のピークKO濃度は、アルカリ・ドーパントの顕著な移動を補正するため、光ファイバーのコアにおける所望のピークKO濃度の約5倍〜10倍であることが好ましい。例えば、光ファイバーのコアにおける所望ピークKO濃度が0.4重量%であるとき、細径ガラスロッド144のピークKO濃度が約2重量%〜4重量%であることが好ましい。特に、アルカリドープ・ロッドの径を非常に小さくするとロッド中の遷移金属不純物がその悪影響が抑制されるファイバーの中心線付近に集中するため有益である。ドープ・クラッドに大量の材料が付加された場合、ファイバーにおけるピーク濃度は細径ガラスロッドにおけるピーク濃度の1/100に低下することもある。
例えば、図4の細径アルカリドープ・ガラスロッド144を当初ロッドとして用い、図2のOVD法によりオーバークラッドとして多孔質ガラススート162を更に堆積することができる。追加のスート堆積を行う前に、アルカリドープ・ガラスロッド144にガラスハンドルを取り付け、形成される母材の一体部分とすることができる。このハンドルにより、堆積処理により得られた石英ガラス母材を後の処理段階において支持することができる。ハンドルを取り付けたガラスロッド144を回転しバーナーに対し平行移動する旋盤に取り付けることができる。次に、バーナー156に対し数回ガラスロッド144を移動させることにより石英スートを含む多くの層により外部スート被膜を形成することにより、複合スート母材が形成される。回転しているガラスロッド144に沿ってバーナー156を移動させるかあるいはバーナー156とガラスロッド144とを互いに平行移動させることによっても前記平行移動運動が得られる。外部スート被膜は純石英であることが好ましい複合母材160のコアガラスの少なくとも一部を形成する。このスート被膜の濃度は0.35g/cc超であることが好ましく、0.35g/cc〜0.5g/ccであることがより好ましい。次に、複合母材160を炉内において約1000℃の温度で加熱する間に塩素含有ガスに晒すことにより乾燥される。次に、複合母材160にフッ素がドープされる。フッ素ドープ処理において、スートがフッ素ドープされるのに適した温度(例えば、約1000℃)において、フッ素を含有するガスに晒すことにより母材にフッ素がドープされることが好ましい。このようにして、光ファイバーの外部コア領域が形成される。しかし、フッ素ドープ処理は比較的少量のフッ素(例えば、0.1〜0.4重量%)をドープするのに必要な時間だけ行われる。次に、母材160が適切な固化温度で加熱固化される。次に、この結果得られた透明ガラスコア母材を再度線引きして第2コアロッド、即ち、線引きされるファイバーのコアの少なくとも一部を有するガラスロッドを形成することができる。次に、例えば、ガラス管(ガラス管又はスート管)スリーブの第2コアロッドへの取付け、例えば、化学気相法によるガラススートの堆積、スリーブの取付けと化学気相法の両方、あるいは当技術分野で周知の別の方法により、ガラス追加処理を施すことにより光ファイバーを線引きできる状態にある完全な光ファイバー母材を形成することができる。追加されるガラスはコアガラス、クラッドガラス、あるいはコアガラスとクラッドガラスの両方であってよい。また、幾つかの追加堆積処理ステップにより追加ガラスを所望の厚さにすることができる。この場合、各堆積処理ステップ終了後、スートの乾燥、フッ素ドープ、固化、及び細径ロッドへの再線引きが行われる。コアに隣接するクラッドであることが好ましい環状クラッド領域18及び環状クラッド領域22は、ダウンドープされた光ファイバーのクラッド領域を形成するためのフッ素を用いたフラッド・ドーピング(米国特許第4,629,485明細書参照)により充分ダウンドープされた石英であることが好ましい。前記ドーピングはコアとクラッドとの間に、例えば、0.2%超、より好ましくは0.30%〜0.40%の相対屈折率デルタ%を得るのに充分であることが好ましい。特に、モート石英(ファイバーのクラッドに対応する付加ガラス)が堆積により第2ロッドに付加される各追加ステップにおいて、モート石英にフッ素がドープされる。まず塩素含有ガスに晒すことによりモートスートが乾燥され、次に1225℃の温度で60〜120分間フッ素含有ガス(例えば、SiF又はCF)に晒し、好ましくはフッ素含有ガス存在下において、7〜10mm/分の速度で(1450〜1500℃の)ホットゾーンに通すことにより固化される。この母材を再度線引きすることにより第3ロッドを形成することができ、これ等のステップ、即ち、堆積、乾燥、フッ素ドープ、及び固化ステップを繰り返すことにより、適切な径の最終母材が得られる。領域20はフッ素ドープ技術を用いても形成できるが、別の好ましい方法として、強いダウンドーパントとして機能するランダムに分布した空隙が形成される前記固化技術によって形成できる。完全な光ファイバー母材が製造された後、その母材をアルカリ金属酸化物ドープ光ファイバーに線引きすることができる。
本明細書に開示したすべての実施の形態において、光ファイバーがクラッドの最外径を接触包囲する一次被膜及び一次被膜を接触包囲する二次被膜を有して成ることが好ましい。
本発明の精神および範囲を逸脱せずに、各種改良および変更が可能であることは当業者にとって明白である。従って、本発明は添付の特許請求の範囲およびその均等物に属する限りにおいて、かかる改良および変更を包含するものである。
14A 第1コア領域
14B 内部コア領域
14 コア領域
18 第1環状クラッド領域
20 第2環状クラッド領域
22 外部環状クラッド領域
106 ガラス管
108 貯蔵タンク
110 アルカリ金属源化合物
112 環状歪曲体
130 ガラスハンドル
132 アルカリドープ・ガラスロッド
136 再線引き炉
144 細径ガラスロッド
156 バーナー
160 スート母材

Claims (10)

  1. O、NaO、LiO、RbO、CsO、及びこれらの組合せからなる群から選択されるアルカリ金属酸化物を平均濃度約10〜10000重量ppm含有する石英系コアと、
    前記コアを囲む石英系クラッドであって、少なくとも、第1環状領域と、ランダムに分布した空隙、フッ素、又はその両方を含み、屈折率デルタが残りの領域より低く、前記コアから前記第1環状領域により離間した第2環状領域と、前記第2環状領域を囲む第3環状領域とを有して成るクラッドと
    を有して成り、
    前記第2環状領域のプロファイル体積の絶対値が80%-μm 未満であり、ここで、前記第2環状領域の前記プロファイル体積とは、前記第2環状領域の断面積と、前記第3環状領域に対する前記第2環状領域のパーセントで示す最小相対屈折率との積である
    ことを特徴とする光ファイバー。
  2. 前記第2環状領域が前記コアから少なくとも5マイクロメートル離間していることを特徴とする請求項1記載の光ファイバー。
  3. 前記コアが基本的にゲルマニウムを含んでいないことを特徴とする請求項1または2記載の光ファイバー。
  4. ケーブル・カットオフが1260nm未満、零分散波長が1350nm未満、1310nmにおける分散スロープが0.09ps/nm/km未満、1550nmにおける減衰が0.18dB/km未満、及び1550nmにおける有効面積が70μm超であることを特徴とする請求項1から3いずれか1項記載の光ファイバー。
  5. 1550nmにおける20mmマクロベンド損失が1dB/巻き未満であることを特徴とする請求項4記載の光ファイバー。
  6. 1550nmにおける有効面積が90μm超であり、減衰が0.17dB/km未満であることを特徴とする請求項4記載の光ファイバー。
  7. 前記第2環状領域が前記コアから少なくとも10マイクロメートル離間していることを特徴とする請求項6記載の光ファイバー。
  8. 前記クラッドが、フッ素ドープ石英から成る前記第1環状領域と、ランダムに分布した空隙を有する前記第2環状領域とを含むことを特徴とする請求項1から7いずれか1項記載の光ファイバー。
  9. 前記クラッドの前記第1環状領域が500ppmを超える量のフッ素ドープ石英から成り、前記1環状領域を囲む前記第2環状領域がランダムに分布した空隙を有して成ることを特徴とする請求項8記載の光ファイバー。
  10. 前記クラッドが、フッ素ドープ石英から成る前記第3環状領域を有して成ることを特徴とする請求項8記載の光ファイバー。
JP2010507393A 2007-05-07 2008-04-23 アルカリ金属酸化物を含む光ファイバー Expired - Fee Related JP5364090B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US92805207P 2007-05-07 2007-05-07
US60/928,052 2007-05-07
PCT/US2008/005239 WO2008136929A1 (en) 2007-05-07 2008-04-23 Optical fiber containing alkali metal oxide

Publications (3)

Publication Number Publication Date
JP2010526749A JP2010526749A (ja) 2010-08-05
JP2010526749A5 JP2010526749A5 (ja) 2012-03-08
JP5364090B2 true JP5364090B2 (ja) 2013-12-11

Family

ID=39650648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010507393A Expired - Fee Related JP5364090B2 (ja) 2007-05-07 2008-04-23 アルカリ金属酸化物を含む光ファイバー

Country Status (5)

Country Link
US (1) US7844155B2 (ja)
EP (1) EP2145218A1 (ja)
JP (1) JP5364090B2 (ja)
CN (1) CN101688947A (ja)
WO (1) WO2008136929A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901208B2 (en) 2012-02-28 2018-02-27 Nestec S.A. Beverage preparation machine with drop management

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175437B2 (en) * 2008-02-07 2012-05-08 Corning Incorporated Microstructured transmission optical fiber
US7676129B1 (en) * 2008-11-18 2010-03-09 Corning Incorporated Bend-insensitive fiber with two-segment core
FR2941540B1 (fr) * 2009-01-27 2011-05-06 Draka Comteq France Fibre optique monomode presentant une surface effective elargie
US7689085B1 (en) * 2009-01-30 2010-03-30 Corning Incorporated Large effective area fiber with GE-free core
US8135254B2 (en) * 2009-06-08 2012-03-13 Corning Incorporated Microstructured transmission optical fiber
JP2011039109A (ja) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd 光通信システム
FR2962230B1 (fr) * 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
WO2012010212A1 (en) 2010-07-23 2012-01-26 Prysmian S.P.A. Bend-resistant single-mode optical fibre
JP5974488B2 (ja) * 2011-04-15 2016-08-23 住友電気工業株式会社 光ファイバおよび光ファイバ母材
US8620125B2 (en) * 2011-04-29 2013-12-31 Corning Incorporated Light diffusing fibers and methods for making the same
EP2535319A3 (en) 2011-06-15 2014-09-10 Sumitomo Electric Industries, Ltd. Method for producing optical fiber
JP2013032241A (ja) 2011-08-01 2013-02-14 Sumitomo Electric Ind Ltd 光ファイバ母材製造方法
JP5974455B2 (ja) 2011-11-21 2016-08-23 住友電気工業株式会社 光ファイバ母材、光ファイバ製造方法および光ファイバ
JP5903896B2 (ja) * 2012-01-11 2016-04-13 住友電気工業株式会社 光ファイバ母材製造方法
JP6136261B2 (ja) * 2012-01-23 2017-05-31 住友電気工業株式会社 光ファイバ
CN104093674B (zh) 2012-01-25 2016-06-01 住友电气工业株式会社 光纤母材制备方法、光纤母材以及光纤
EP2813477B1 (en) * 2012-02-09 2017-07-19 Sumitomo Electric Industries, Ltd. Optical fiber preform manufacturing method, optical fiber preform, and optical fiber
CN104203850B (zh) 2012-03-21 2016-12-28 住友电气工业株式会社 光纤的制造方法
JP5625037B2 (ja) * 2012-03-23 2014-11-12 株式会社フジクラ ガラス母材の製造方法
JP2014043378A (ja) 2012-08-27 2014-03-13 Sumitomo Electric Ind Ltd 光ファイバ製造方法および光ファイバ
US11287589B2 (en) 2012-09-26 2022-03-29 Corning Optical Communications LLC Binder film for a fiber optic cable
US8620124B1 (en) 2012-09-26 2013-12-31 Corning Cable Systems Llc Binder film for a fiber optic cable
JP6048105B2 (ja) 2012-12-12 2016-12-21 住友電気工業株式会社 光ファイバ製造方法および光ファイバ
JP2014118334A (ja) * 2012-12-18 2014-06-30 Sumitomo Electric Ind Ltd 光ファイバ製造方法
JP6213262B2 (ja) 2013-02-04 2017-10-18 住友電気工業株式会社 光ファイバ母材および光ファイバ母材製造方法
US9020316B2 (en) 2013-02-28 2015-04-28 Corning Incorporated Low attenuation optical fibers with an F-graded index core
US9057814B2 (en) * 2013-03-28 2015-06-16 Corning Incorporated Large effective area fiber with low bending losses
JP6268758B2 (ja) * 2013-06-10 2018-01-31 住友電気工業株式会社 光ファイバ
US8913862B1 (en) 2013-09-27 2014-12-16 Corning Optical Communications LLC Optical communication cable
JP2015105199A (ja) * 2013-11-29 2015-06-08 住友電気工業株式会社 光ファイバおよび光ファイバ母材
JP6579107B2 (ja) 2014-07-22 2019-09-25 住友電気工業株式会社 光ファイバ母材製造方法および光ファイバ母材
JP6551109B2 (ja) * 2014-11-20 2019-07-31 住友電気工業株式会社 光ファイバ
JP6536036B2 (ja) * 2015-01-14 2019-07-03 住友電気工業株式会社 光ファイバ
CN107531562B (zh) * 2015-04-30 2021-05-28 康宁股份有限公司 具有离散的金属银层的导电制品及其制造方法
JP6613604B2 (ja) 2015-04-30 2019-12-04 住友電気工業株式会社 光ファイバ母材
US9919955B2 (en) * 2015-07-24 2018-03-20 Ofs Fitel, Llc Optical fiber with low loss and nanoscale structurally homogeneous core
JP6620633B2 (ja) * 2016-03-25 2019-12-18 住友電気工業株式会社 光ファイバ
US10197726B2 (en) * 2017-06-22 2019-02-05 Corning Incorporated Wide-band multimode optical fibers with cores having a radially-dependent alpha profile
JP7214352B2 (ja) 2018-03-08 2023-01-30 古河電気工業株式会社 光ファイバ
JP6560806B1 (ja) * 2018-11-21 2019-08-14 日本電信電話株式会社 マルチコア光ファイバ、マルチコア光ファイバ設計方法、および光伝送方法
JP7019617B2 (ja) * 2019-02-07 2022-02-15 古河電気工業株式会社 光ファイバおよび光ファイバの製造方法
CN112305666A (zh) * 2019-07-29 2021-02-02 斯特里特技术有限公司 截止移位光纤
WO2021025858A1 (en) 2019-08-07 2021-02-11 Corning Incorporated Single mode optical fiber with low bend loss at small and large bend diameters
US11874494B2 (en) * 2020-03-18 2024-01-16 Corning Incorporated Reduced diameter optical fiber with improved microbending
WO2021188288A1 (en) * 2020-03-18 2021-09-23 Corning Incorporated Reduced diameter optical fiber with improved microbending
NL2025269B1 (en) * 2020-03-18 2021-10-20 Corning Inc Reduced diameter optical fiber with improved microbending
NL2025271B1 (en) * 2020-03-18 2021-10-20 Corning Inc Reduced diameter optical fiber with improved microbending
US11500149B2 (en) * 2020-05-08 2022-11-15 Corning Incorporated Optical fiber with nitrogen and chlorine co-doped core
CN116829998A (zh) 2020-12-11 2023-09-29 康宁股份有限公司 低护槽体积单模超低损耗光纤
WO2023112968A1 (ja) * 2021-12-14 2023-06-22 住友電気工業株式会社 光ファイバ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629485A (en) * 1983-09-26 1986-12-16 Corning Glass Works Method of making fluorine doped optical preform and fiber and resultant articles
US4852968A (en) * 1986-08-08 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Optical fiber comprising a refractive index trench
GB2228585A (en) * 1989-02-28 1990-08-29 Stc Plc Silica optical fibre having two cladding layers
US5146534A (en) * 1991-11-12 1992-09-08 At&T Bell Laboratories SiO2 -based alkali-doped optical fiber
JP2003021759A (ja) * 2001-07-10 2003-01-24 Sumitomo Electric Ind Ltd 光ファイバ
US7471862B2 (en) 2002-12-19 2008-12-30 Corning Cable Systems, Llc Dry fiber optic cables and assemblies
EP1663890B1 (en) * 2003-08-29 2020-09-23 Corning Incorporated Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
EP1708971B1 (en) * 2004-01-20 2015-06-10 Corning Incorporated Double clad optical fiber with rare earth metal doped glass core
US7187833B2 (en) * 2004-04-29 2007-03-06 Corning Incorporated Low attenuation large effective area optical fiber
US7072552B2 (en) * 2004-12-02 2006-07-04 Nufern Optical fiber with micro-structured cladding
JP4249121B2 (ja) * 2004-12-06 2009-04-02 株式会社フジクラ ダブルクラッドファイバの製造方法
US7088900B1 (en) * 2005-04-14 2006-08-08 Corning Incorporated Alkali and fluorine doped optical fiber
US7450806B2 (en) * 2005-11-08 2008-11-11 Corning Incorporated Microstructured optical fibers and methods
US7536076B2 (en) * 2006-06-21 2009-05-19 Corning Incorporated Optical fiber containing alkali metal oxide
WO2008013627A2 (en) * 2006-06-30 2008-01-31 Corning Incorporated Low bend loss optical fiber with high modulus coating
US7505660B2 (en) * 2006-06-30 2009-03-17 Corning Incorporated Microstructured transmission optical fiber
US20080050086A1 (en) * 2006-08-24 2008-02-28 Scott Robertson Bickham Optical fiber containing alkali metal oxide
US7450807B2 (en) * 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
US7620282B2 (en) * 2006-08-31 2009-11-17 Corning Incorporated Low bend loss single mode optical fiber
US7283714B1 (en) * 2006-12-15 2007-10-16 Ipg Photonics Corporation Large mode area fiber for low-loss transmission and amplification of single mode lasers
US7526166B2 (en) * 2007-01-31 2009-04-28 Corning Incorporated High numerical aperture fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901208B2 (en) 2012-02-28 2018-02-27 Nestec S.A. Beverage preparation machine with drop management

Also Published As

Publication number Publication date
US20080279515A1 (en) 2008-11-13
JP2010526749A (ja) 2010-08-05
CN101688947A (zh) 2010-03-31
US7844155B2 (en) 2010-11-30
WO2008136929A1 (en) 2008-11-13
EP2145218A1 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP5364090B2 (ja) アルカリ金属酸化物を含む光ファイバー
JP2010526749A5 (ja)
JP5489713B2 (ja) アルカリ金属酸化物を含有する光ファイバ
KR101212884B1 (ko) 알카리 및 불소가 도핑된 광섬유
JP5706374B2 (ja) アルカリ金属酸化物を含有する光ファイバ
US20080050086A1 (en) Optical fiber containing alkali metal oxide
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
EP2527893A1 (en) Single mode optical fiber
EP1739063A2 (en) Low loss optical fiber designs and methods for their manufacture
JP2011507028A (ja) 耐曲げ性マルチモード光ファイバ
WO2024190234A1 (ja) マルチコア光ファイバ
WO2023112968A1 (ja) 光ファイバ
WO2024048118A1 (ja) 光ファイバ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees