JP5364051B2 - 流体制御弁 - Google Patents

流体制御弁 Download PDF

Info

Publication number
JP5364051B2
JP5364051B2 JP2010156936A JP2010156936A JP5364051B2 JP 5364051 B2 JP5364051 B2 JP 5364051B2 JP 2010156936 A JP2010156936 A JP 2010156936A JP 2010156936 A JP2010156936 A JP 2010156936A JP 5364051 B2 JP5364051 B2 JP 5364051B2
Authority
JP
Japan
Prior art keywords
valve seat
valve
fluid control
control valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010156936A
Other languages
English (en)
Other versions
JP2012017830A (ja
Inventor
博秀 今枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2010156936A priority Critical patent/JP5364051B2/ja
Publication of JP2012017830A publication Critical patent/JP2012017830A/ja
Application granted granted Critical
Publication of JP5364051B2 publication Critical patent/JP5364051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)

Description

この発明は、流体の流れを制御する流体制御弁の弁座シール構造に関するものである。
従来、流体の流れを制御する流体制御弁として、例えば、特許文献1に開示されたポペット弁が挙げられる。図14は、特許文献1のポペット弁の弁座シール構造について、説明する断面図である。
特許文献1では、図14に示すように、弁座形成部110は、上側に凸状で、当該弁座形成部110の軸心CLに対し、最も径内側の位置に着座部位110aを有し、この着座部位110aから径外側に向けて下降する外側テーパ面110bを有している。また、ダイアフラム弁体120は、着座部位110aと当接または離間する平面状の下面120aを有している。
特許文献1のポペット弁のように、ゴム等の、弾性を有した材質で形成された弁体が、弁座に当接または離間して流体の流れを制御する流体制御弁では、弁座は、上側に凸状に形成された弁座形成部の上端に形成され、当該弁座の軸心に対し、径内側に位置している。
弁座形成部の弁座には、曲面状の頂部からその径外側に向けて下降する外側テーパ面が形成され、弁体の下面である平面状の弁座当接部が、弁座の頂部及び外側テーパ面の上端部と、当接または離間するシール構造が一般的である。
このようなシール構造にすることで、閉弁したときに、弁体の弁座当接部が弾性変形することにより、弁座の頂部及び外側テーパ面の上端部が、弁体の弁座当接部に食い込んで、弁座の頂部周辺に大きな反発力が発生し、シール力の高い流体制御弁が得られる。
また、流体制御弁の他の実施例として、従来、蒸気等の高温流体の制御を行う高温流体用流体制御弁で実施されている弁座のシール構造の一例を、図15に示す。
図示しないパイロット機構に連結され上下方向に摺動可能な弁軸151の下端に小径部151aが形成され、その先にネジ部151bが形成されている。小径部151aには、支持円板152が嵌合されている。支持円板152の溝には、下面が平面であるフッ素樹脂製の弁部材153が嵌め込まれ、押さえ板157により挟み込まれてナット156がネジ部151bにネジ締めされることにより固定されている。弁部材153にフッ素系樹脂を使用している理由は、流体が高温であるので、ゴムでは耐熱性が不十分で、弁体にゴムが使用できないためである。
このような流体制御弁は、弁部材153の下面である平面状の弁座当接部153aが、弁座形成部155の弁座154に当接することにより、閉弁し、この弁座当接部153aが弁座154から離間することにより、開弁する。
ところが、閉弁時には、高温流体が流れている状態で弁部材に押圧力が加えられるため、フッ素系樹脂製の弁部材が、クリープにより変形する問題があり、この問題を解決するため、特許文献2に開示された流体制御弁では、弁座と弁体の各形状に工夫がなされている。
図16は、特許文献2に記載された流体制御弁を示す断面図である。図17は、図16中、X部を拡大して模式的に示した説明図である。
特許文献2は、弁体220のうち、樹脂製の弁体当接部221を弁座210に当接または離間させることにより、流体の流れを制御する流体制御弁200である。弁座210は、図16及び図17に示すように、上側に凸状に形成され、流体制御弁200の軸心CLに対し、その径内側で軸心CLと沿う内周面210aから延びた弁座曲面210bを挟んで、径外側に向けて下降する外側テーパ面210cを有している。また、弁体220は、弁座曲面210bと当接する弁体当接部221に、下側から上側に向かって拡大する傾斜面221aを有している。
特許文献2では、クリープの進行により徐々にシール部分が傾斜面221aの上側に移動したとき、それに伴いシール部分の直径は位置Pから位置Qへと増加するが、その増加量は、傾斜部での移動距離のサイン分だけ移動するだけなので、直径としての移動距離を減少させることができている。これにより、特許文献2は、当接部が設計限界を越えるまでの時間、当接部を伸ばすことができ、耐久性の高い流量制御弁となっている。
特許文献2のように、弁体(弁体当接部)にゴムではなく、フッ素系樹脂が用いられている流体制御弁でも、弁座の形状は、曲面状の頂部から当該弁座の径外側に向けて外側テーパ面で下降した形状となっている。
特開平9−229213号公報 特開2007−170583号公報
しかしながら、弁座当接部がゴム製で平面状に形成された弁体を弁座に当接または離間させて、流体の流れを制御する流体制御弁において、その流体制御弁のユーザーは、高圧用の仕様で構成された流体制御弁を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合がある。この場合、高圧用の流体制御弁を用いて、低圧の流体の流れを制御すると、経時的に生じる弁体の損傷の進行が早まり、シール性能が低下して、当該流体制御弁の使用後、短い使用時間で流体の漏れが生じてしまう問題があった。
この問題は、次の理由によって生じる。
例えば、太陽電池製造装置等には、流体制御弁が用いられている。流体制御弁は、入力ポートと出力ポートの間にある弁座に対し、弁体が当接または離間することで、入力ポートから出力ポートへの流体の流れを制御している。
太陽電池製造装置等では、流体制御弁で流通制御する流体としては、例えば、窒素等の不活性ガスのほか、純水などであり、流体制御弁を流通するときの流体温度は、弁体にゴムが使用できる程度の温度である。流体制御弁の弁体は、弁座とのシール性を高くするため、ゴムで形成されている。
このような流体制御弁には、一般的にノーマルクローズ(NC)タイプとノーマルオープンタイプ(NO)があるが、弁体を弁座に当接させるときの押圧力が、付勢部材による付勢力(NC)か、操作エア圧による押圧力(NO)かの違いだけなので、ここでは、NCタイプの流体制御弁を代表して、流体を制御する部分の構造について簡単に説明する。
流体制御弁は、流通する流体の圧力に打勝つだけの大きな押圧力を発生させるバネ等の付勢部材を有し、この付勢部材により、ピストンを介して弁体を付勢して弁座に当接させることで閉弁し、入力ポートから出力ポートへの流体の流れを遮断する。このとき、弁体の下面である平面状の弁座当接部はゴム製で形成されているため、弁座とその周辺部が、弁座当接部の弾性変形により、弁座当接部に食い込み、高いシール力が得られる。
その一方、流体制御弁は、操作エア圧により、ピストンを介して、付勢部材による押圧力に抗した反力で、弁座に当接した弁体を弁座から離間させて開弁し、入力ポートから出力ポートへ流体を流す。
流体制御弁のメーカーは、流体制御弁に流れる流体の圧力について、実際にユーザーで使用する大きさに対応させるため、弁座に対し、弁体を開閉させるときの設定圧力の仕様を複数用意して、種々のバリエーションで流体制御弁を製造している。
すなわち、制御する流体が高圧である場合、高圧向けの流体制御弁が用いられ、高圧向けの流体制御弁には、相当大きな押圧力を発生する付勢部材が用いられている。その反対に、制御する流体が低圧である場合、低圧向けの流体制御弁が用いられ、この流体制御弁には、比較的小さな押圧力で弁体を弁座に向けて付勢する付勢部材が用いられている。
ところで、流体制御弁で流通制御する流体の圧力が、例えば、0.3MPa、0.5MPa、1MPaと、流体制御弁を配設するA、B、Cの3箇所で異なっているような場合には、本来、制御する流体の圧力に合った仕様の流体制御弁を選択して配設することが望ましい。
ところが、流体制御弁のユーザーによっては、上記の例で言うと、流通制御する流体の圧力が、0.3MPa、0.5MPaであるところでも、1MPa用の流体制御弁を用いることがある。
このように、高圧向けの流体制御弁で低圧の流体を流通制御すると、流通する流体が低圧であるため、流体から受ける弁体への抗力が小さいところに、高圧向けの付勢部材により、相当大きな押圧力を弁座に向けて作用させてしまうことになる。
換言すれば、押圧力と抗力との相対的な差が大きくなってしまい、閉弁するのに、弁座に向けた押圧力を必要以上に大きく作用させて、弁体が弁座に当接する状況となっている。
ここで、低圧の流体に対し、高圧向けの流体制御弁で流通制御したことにより、弁体の弁座当接部に損傷が生じる様子を説明する説明図として、図18に示す。
前述したように、従来の流体制御弁のシール構造では、弁座は、上側に凸状に形成された弁座形成部の上端に形成され、当該弁座の軸心に対し、径内側に位置しており、この弁座形成部には、弁座の頂部からその径外側に向けて下降する外側テーパ面が形成されている。
従来のシール構造で構成された高圧向けの流体制御弁を、低圧の流体を流通制御するために用いると、閉弁に、弁座に向けた押圧力が必要以上に大きく作用させていることから、弁体の弁座当接部のうち、弁座の頂部と外側テーパ面の上端部とが当接する部分で、通常よりも大きな弾性変形が生じ、その変形量も大きくなっている。
特に、弁座310の頂部311付近で局部的に過度な弾性変形が生じると、相当大きな歪み(せん断歪)が弁座310の頂部311付近に集中するため、弁体320が損傷し易い状態となり、図18に示すように、弁体320の弁座当接部323のうち、頂部311より径内側にある弁座の最径内部Yが食い込む部分で、経時的に亀裂が生じてくる。その結果、弁体320と弁座310とのシール性能が、流体制御弁の使用後、短い使用時間で、低下してしまい、流体制御弁を閉弁させても、入力ポートと出力ポートとの間で流体の漏れが発生してしまい、問題であった。
本発明は、上記問題点を解決するためになされたものであり、耐久性の高い流体制御弁を提供することを目的とする。
上記の問題点を解決するために、本発明の流体制御弁は、次の構成を有している。
(1)弁座を有するボディと、弁座に弁体を当接または離間させて流体の流れを制御する流体制御弁において、弁体のうち、少なくとも弁座と当接または離間する弁座当接部は、弾性を有する材質からなり、弁座当接部の下面が平面状に形成され、弁座は、上側に凸状で、最上端に曲面状の頂部を有し、弁座には、当該弁座の径方向に沿う方向に対し、頂部を挟んだ径内側に、下側に向けて下降する弁座内側面が形成されていると共に、頂部を挟んだ径外側に、下側に向けて下降する弁座外側面が形成されており、弁座当接部を引張り破断したときの歪みである引張り破断時歪みの大きさを1としたとき、閉弁により弁座当接部に生じる閉弁時歪みが、引張り破断時歪みの1/6以下に設定され、前記弁座当接部の破断を抑制することを特徴とする。
(2)(1)に記載する流体制御弁において、閉弁状態にあるとき、前記弁体の前記弁座当接部は、前記弁座との当接により弾性変形して所定の潰し量で潰され、当該流体制御弁の軸心方向に沿う方向に対し、前記弁座内側面の高さを、前記潰し量より大きく設定することにより、前記弁体において閉弁時に前記弁座の頂部付近に当接する部位に局部的に生じていた過度な歪みの発生を抑制することを特徴とする。
(3)(1)又は(2)に記載する流体制御弁において、弁座の径方向に沿う水平面に対し、弁座内側面は、傾斜角θiの内側テーパ面であり、弁座外側面は、傾斜角θoの外側テーパ面であり、傾斜角θiは、傾斜角θoより小さく、閉弁時に前記弁座当接部に生じる歪みを抑制することを特徴とする。
(4)(1)又は(2)に記載する流体制御弁において、弁座内側面及び弁座外側面は、いずれも曲面であることを特徴とする。
(5)(1)乃至(4)の何れか一つに記載する流体制御弁において、弁体を、伸縮可撓性を有するダイアフラム弁体で形成したダイアフラム弁であることを特徴とする。
上記構成を有する流体制御弁の作用・効果について説明する。
本発明の流体制御弁では、
(1)弁体のうち、少なくとも弁座と当接または離間する弁座当接部は、弾性を有する材質からなり、弁座当接部の下面が平面状に形成され、弁座は、上側に凸状で、最上端に曲面状の頂部を有し、弁座には、当該弁座の径方向に沿う方向に対し、その径内側に、下側に向けて下降する弁座内側面が形成されていると共に、頂部を挟んだ径外側に、下側に向けて下降する弁座外側面が形成されているので、高圧用の仕様で構成された当該流体制御弁を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合でも、従来、弁座の頂部付近に局部的に生じていた過度な歪みの発生が抑制できるようになる。
すなわち、一般的な流体制御弁では、閉弁するのに、押圧力を弁体に直接的または間接的に作用させて弁体を弁座に当接させ、弁体の弁座当接部が弾性変形することにより、弁座の頂部付近が、弁体の弁座当接部に食い込んで、大きな反発力が発生できるようになっている。
従来の流体制御弁と同様、本発明の流体制御弁も、押圧力を弁体に直接的または間接的に作用させて、弁体を弁座に当接させて閉弁し、弁体に作用させる押圧力は、流体制御弁に実際に流れる流体の圧力の大きさに対応した設計値に基づいて、設定されている。
ところが、流体制御弁を使用するユーザーによっては、高圧用の仕様で構成された流体制御弁を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合がある。
このような使い方をすると、流体制御弁では、流通する流体が低圧であるため、流体から受ける弁体への抗力が小さいところに、高圧向けの設計値で設定された相当大きな押圧力で、弁体を弁座に向けて作用させてしまうことになる。
そのため、従来の流体制御弁では、弁座の頂部付近で局部的に過度な弾性変形が生じて、相当大きな歪み(せん断歪み)が弁座の頂部付近に集中し、結果的に、使用後、短い使用時間で弁体と弁座とのシール性能が低下してしまい、流体制御弁を閉弁させても、入力ポートと出力ポートとの間で流体の漏れが発生してしまう。
これに対し、本発明の流体制御弁では、弁座は、上側に凸状で、最上端に曲面状の頂部を有し、弁座には、当該弁座の径方向に沿う方向に対し、その径内側に、下側に向けて下降する弁座内側面が形成されていると共に、頂部を挟んだ径外側に、下側に向けて下降する弁座外側面が形成されている。
これにより、閉弁時に、弁体に作用した押圧力により、弁座当接部が弾性変形して、弁座の頂部及び弁座外側面のほか、従来の弁座構造になかった弁座内側面が、弁体の弁座当接部に当接して食い込む。このとき、従来の流体制御弁と同様、本発明の流体制御弁でも、弁座当接部にはせん断歪みが生じる。
せん断歪みとは、弁体が弁座と当接または離間する上下方向と直交する径方向から、弁座当接部を見たとき、任意箇所にある所定面積あたりの第1基準断面と、この第1基準断面と同形状・同面積で、第1基準断面と径方向に平行に長さL0だけ離れた第2基準断面とに対し、弁体への押圧力が上下方向に作用したことにより、第2基準断面が、第1基準断面と上下方向にずれた分の相対変位L1を、上記の長さL0で除した変化量である。
従来の弁座構造で構成された流体制御弁では、上側に凸状で環状に形成された弁座の頂部は、当該弁座の径方向径内側に位置し、頂部の径内側は、当該弁座の上下方向にある内周面となっていた。そのため、従来の流体制御弁が閉弁状態となると、弁体の弁座当接部において、弁座の内周面付近から弁座の頂部にかけて食い込んだ部分で局部的に、上下方向の弾性変形が過度に生じていたため、せん断歪みが大きくなっていた。
しかしながら、本発明の流体制御弁では、従来の流体制御弁とは異なり、閉弁時に、弁座当接部と当接する部分として、弁座内側面が頂部からその径内側で下側に向けて下降しているので、弁座当接部において、弁座内側面から頂部にかけて食い込む部分で、上下方向の弾性変形が、従来の弁座構造に比べて小さく抑えられているため、せん断歪みの発生がより小さく抑制できている。
よって、弁体の弁座当接部のうち、弁座の頂部付近が当接する部分に、上下方向の弾性変形が過度に生じなくなり、局部的な歪みの発生が抑制できているため、弁座の食い込みに起因した亀裂が弁座当接部に経時的に生じ難くなる。
従って、高圧用の仕様で構成された本発明の流体制御弁を用いて、低圧の流体の流れを制御する使い方をする場合であっても、弁体の弁座当接部に局部的な歪みの発生が抑制できているため、弁座当接部が損傷にし難く、弁体と弁座とのシール性能を、当該流体制御弁の使用後、長期間にわたり維持できる耐久性の高い流体制御弁を提供することができる、という優れた効果を奏する。
(2)また、弁座の径方向に沿う水平面に対し、弁座内側面は、傾斜角θiの内側テーパ面であり、弁座外側面は、傾斜角θoの外側テーパ面であり、傾斜角θiは、傾斜角θoより小さいので、弁座当接部の耐久性を、上側に凸状の頂部から弁座の径外側に向けて下降する外側テーパ面で形成された従来の弁座構造に比べ、向上させることができる。
すなわち、従来の弁座構造では、頂部の径内側は、弁座における上下方向の内周面となっていたため、閉弁状態では、主に頂部付近と当接する部分で弁座当接部が局部的に弾性変形していたが、本発明の流体制御弁では、頂部のほか、弁座外側面の傾斜角θoより緩やかな傾斜角θiの内側テーパ面と当接する部分で、弁座当接部が広範囲に弾性変形する。そのため、弁座当接部において、弁座内側面から頂部にかけて食い込む部分で、上下方向の弾性変形が、従来の弁座構造に比べてより小さく抑えられているため、せん断歪みの発生がより確実に抑制できる。
従って、弁座当接部の耐久性を、上側に凸状の頂部から弁座の径外側に向けて下降する外側テーパ面で形成された従来の弁座構造に比べ、向上させることができる。
ところで、弁体の弁座当接部は、例えば、ゴム等、弾性を有した弾性材料からなり、延性を有している。弾性材料に引張り荷重をかけると、引張り荷重の増加に伴って弾性材料の歪みも増加する。
閉弁したときでも、弁座の頂部と、この頂部に近接する内側テーパ面の上端部及び外側テーパ面の上端部とが、弁体の弁座当接部に食い込むため、弁座当接部が弾性変形して、弁座当接部に歪みが生じる。すなわち、弁体の開閉を繰り返し行い、弁座当接部において、繰り返し一定の負荷(歪み)が断続的にかかり、弁座当接部に疲労が経時的に生じる。
本発明の流体制御弁では、弁座内側面が傾斜角θiの内側テーパ面に、弁座外側面が傾斜角θoの外側テーパ面に、それぞれなっており、傾斜角θiが傾斜角θoより小さくなっている。
これにより、閉弁時に弁座当接部に生じる歪みが、弁座当接部を引張り破断したときの歪みである引張り破断時歪みよりも、より小さく抑えることができるようになる。
従って、本発明の流体制御弁において、弁体の開閉を繰り返し行っても、弁座当接部での歪みを抑制でき、弁座当接部が破断に至るまでの弁体の開閉の繰り返し回数は飛躍的に増大するため、弁体の弁座当接部が、長期間にわたり破損し難くなる。
(3)また、弁座内側面及び弁座外側面は、いずれも曲面であるので、(1)と同様、高圧用の仕様で構成された当該流体制御弁を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合でも、従来、弁座の頂部付近に局部的に生じていた過度な歪みの発生が抑制できるようになる。
(4)また、弁座当接部を引張り破断したときの歪みである引張り破断時歪みの大きさを1としたとき、閉弁により弁座当接部に生じる閉弁時歪みが、引張り破断時歪みの1/6以下に設定されているので、弁座当接部が破断に至るまでの破断回数を、例えば、100万回以上とすることができる。
(5)また、閉弁状態にあるとき、弁体の弁座当接部は、弁座との当接により弾性変形して所定の潰し量で潰され、当該流体制御弁の軸心方向に沿う方向に対し、弁座内側面の高さは、潰し量より大きく設定されているので、高圧用の仕様で構成された本発明の流体制御弁を用いて低圧の流体の流れを制御する使い方で、弁座に向けた押圧力を必要以上に大きく作用させて、弁体を弁座に当接させて閉弁した場合でも、従来、弁体において弁座の頂部付近に局部的に生じていた過度な歪みの発生を、確実に抑制できるようになる。
(6)また、弁部材を、伸縮可撓性を有するダイアフラム弁体で形成したダイアフラム弁であるので、2次側の制御流体の圧力が大きく、制御流体からダイアフラム弁体に受ける圧力が大きくなるため、閉弁には、ダイアフラム弁体が受圧する圧力に打勝つだけの大きな閉止力が必要となる。このように、大きな閉止力でダイアフラム弁体の弁座当接部を弁座に当接させて閉弁するようにしても、本発明の流体制御弁では、弁体において弁座の頂部付近に過度な歪みの発生を抑制することができる。
実施形態に係る流体制御弁の構成を示す断面図であり、閉弁状態を示す図である。 図1に示す流体制御弁の開弁状態を示す断面図である。 実施例1に係る流体制御弁の弁座の形状について説明する説明図である。 実施例1に係る流体制御弁の弁座の形状について、調査で用いたL9直交表の制御因子とその水準との関係を示す表である。 図4に示す制御因子の寄与率の結果を示す円グラフある。 実施例2に係る流体制御弁の弁座の形状について説明する説明図である。 実施例1に係る流体制御弁の弁座の形状について、解析結果を示す図である。 実施例2に係る流体制御弁の弁座の形状について、解析結果を示す図である。 比較例1に係る従来の流体制御弁の弁座の形状について、解析結果を示す図である。 比較例2に係る従来の流体制御弁の弁座の形状について、解析結果を示す図である。 実施例1に係る流体制御弁について、閉弁状態における弁座と弁体との位置関係を説明する説明図である。 実施例1に係る流体制御弁の弁座について、弁座内側面の形状を説明する説明図である。 ゴム製の試験片に係る材料の疲労線図である。 特許文献1に開示されたポペット弁の弁座シール構造を示す断面図である。 従来技術に係る流体用流体制御弁の弁座のシール構造の一例を示す図である。 特許文献2に開示された流体制御弁を示す断面図である。 図16中、X部を拡大して模式的に示した説明図である。 弁体の弁座当接部に損傷が生じる様子を説明する説明図である。
(実施形態)
以下、本発明に係る流体制御弁について、実施形態を図面に基づいて詳細に説明する。図1は、実施形態に係る流体制御弁の構成を示す断面図であり、閉弁状態を示す図である。図2は、図1に示す流体制御弁の開弁状態を示す断面図である。
実施形態に係る流体制御弁1は、例えば、太陽電池製造装置等に用いるダイアフラム弁であり、弁座10に弁体20を当接または離間させて流体の流れを制御する。流体制御弁1は、付勢バネ50の一端をピストン40に、他端をカバー60に支持させ、パイロットエアによる押圧力が作用しないときに、付勢バネ50の付勢力によって弁体20が弁座10に当接して閉弁するノーマルクローズタイプの流体制御弁である。
流体制御弁1で流通制御する流体としては、例えば、窒素等の不活性ガスのほか、純水などの流体であり、流体制御弁を流通するときの流体温度は、弁体にゴムが使用できる程度の温度である。
ボディ2には、入力ポート18と出力ポート19とが形成されている。入力ポート18と出力ポート19とは、周囲に弁座10が形成された弁孔によって連通している。弁座10は、一定の曲率をもつ環状に形成されており、上側に凸状で、最上端に曲面状の頂部11を有している。弁座10には、当該弁座10の径方向(図1及び図2中、左右方向)に沿う方向HXに対し、その径内側に、下側に向けて下降する弁座内側面12が形成されていると共に、頂部11を挟んだ径外側に、下側に向けて下降する弁座外側面13が形成されている。なお、弁座10の具体的な形状については、後に詳述する。
ボディ2には、中空状のシリンダ30が取り付けられている。シリンダ30の中空部のうち、ピストン40により分割された下中空部35は、操作ポート32と連通している。シリンダ30の中空部のうち、ピストン40により分割された上中空部36は、シリンダ30の中空部を閉塞するカバー60の空気抜きポート31と連通している。また、上中空部36には、ピストン40を下向きに付勢するための付勢バネ50が、カバー60と、ピストン40との間に配置されている。
また、シリンダ30の中空部には、ピストン40が上下方向に摺動可能に保持されている。ピストン40の中央部には、下側に向かって弁軸41が形成されている。弁軸41は、シリンダ30の弁軸ブラケット33により、シール部材を介して上下方向に摺動可能に保持されている。
弁軸41の下端には、図1に示すように、小径部41aが形成され、その周囲にネジ部41bが形成されている。
次に、弁体20について説明する。弁体20は、弁支持部材21と弁部材22とからなる。金属製の弁支持部材21は、ネジ部41bに螺合されている。弁支持部材21のフランジ21aには、弁部材22が取付けられ、フランジ21aが弁部材22の溝内に嵌め込むことにより、固定されている。
弁体20の弁部材22は、伸縮可撓性を有するダイアフラム弁体であり、ボディ2の流路を周囲の雰囲気と隔離している。また、この弁部材22は、弁座10と当接または離間する弁座当接部23を有し、弁座当接部23の下面23aは平面状に形成されている。
弁座当接部23を含む弁部材22は、例えば、ニトリルゴム(NBR)、フッ素ゴム(FKM,FFKM)、エチレンプロピレンゴム(EPM,EPDM)等のゴム製で、弾性を有する材質からなっている。
なお、前述したように、流体制御弁1で流通制御する流体の対象は、例えば、窒素等の不活性ガスのほか、純水などの流体であり、これらの流体の温度が、弁体にゴムが使用できる程度の温度であるため、弁座当接部23がゴム製となっている。
次に、上記構成を有する流体制御弁1の作用を説明する。
制御対象となる流体に対し、入力ポート18から出力ポート19に向けた流れを遮断するとき、操作ポート32にパイロットエアが供給されない。このとき、ピストン40は、付勢バネ50により下向きに付勢し、付勢バネ50による押圧力により、弁軸41と弁支持部材21とを介して、弁部材22の弁座当接部23が弁座10に押圧されている。
一方、制御対象の流体を出力ポート19に流すときは、図示しない電磁弁により操作ポート32にパイロットエアを供給する。パイロットエアの力により、ピストン40が上向きに移動して、図2の状態となる。弁部材22が、弁軸41と弁支持部材21を介して上向きに移動し、弁部材22の弁座当接部23が弁座10から離間して、流体が入力ポート18から出力ポート19へと流れる。
次に、弁座10の具体的な形状として、実施例1に係る弁座10の形状について、図3、図11及び図12を用いて説明する。図3は、図1中、F部を拡大した模式図であり、実施例1に係る流体制御弁の弁座の形状について説明する説明図である。
(実施例1)
本実施例は、図3に示すように、弁座10の径方向HXに沿う水平面HSに対し、弁座外側面13が傾斜角θoの外側テーパ面であり、弁座内側面12が、傾斜角θoより小さい傾斜角θiで形成された内側テーパ面である場合である。
本実施例では、流体制御弁1の弁座10の形状として、内側テーパ面12は、傾斜角θiが15°で形成され、外側テーパ面13は、傾斜角θoが25°で形成されている。また、頂部11における曲率Rが、例えば0.5mmの円弧形状に形成され、頂部11の面、内側テーパ面12及び外側テーパ面13が、幾何学的に変曲点のない曲線に沿う面で繋がっている。
実施例1に係る流体制御弁について、閉弁状態における弁座と弁体との位置関係を説明する説明図を、図11に示す。図12は、実施例1に係る流体制御弁の弁座について、弁座内側面の形状を説明する説明図である。
本実施例に係る流体制御弁1では、閉弁状態にあるとき、弁体20の弁座当接部23は、弁座10のうち、頂部11の面、内側テーパ面12及び外側テーパ面13との当接により弾性変形して所定の潰し量sで潰されるようになっている。また、流体制御弁1の軸心CL方向に沿う方向に対し、弁座10の弁座内側面10aと内側テーパ面12とが接続する交点から頂部11の頂点までの高さtは、潰し量sより大きく設定されている。
なお、図12に示すように、弁座内側面10aと内側テーパ面12とが接続する部分が曲面状に形成されている場合には、この曲面と弁座内側面10aとの交点と、頂部11の頂点までの高さが高さtとなる。
次に、実施例1において、傾斜角θiを15°と、傾斜角θoを25°と、それぞれ設定するまでに至った根拠について、説明する。
内側テーパ面12の傾斜角θiと外側テーパ面13の傾斜角θoは、シミュレーションを通じて設定されているが、シミュレーションの内容を説明する前に、まずシミュレーションを行った経緯について、簡単に触れることにする。
流体制御弁1のような、弁座当接部がゴム製で平面状に形成された弁体を弁座に当接または離間させて、流体を流通制御する流体制御弁のユーザーが、高圧用の仕様で構成された流体制御弁を用いて、実際に流れる低圧の流体を流通制御する使い方をすると、経時的に生じる弁体の損傷の進行が早まり、シール性能が低下して、当該流体制御弁の使用後、短い使用時間で流体の漏れが生じてしまう問題があった。
出願人は、この問題を解決するため、参照する図18に示すように、頂部311付近での局部的な歪みの発生を避け、弁体320の弁座当接部323の最径内部Yに亀裂が生じないようにするため、弁座310の頂部311付近に生じていた過度な弾性変形を引き起こしている要因が何であるかを、様々な角度から検討してみた。
影響すると考えられる4つの要因を、以下に挙げる。
A.弁支持部材21の外径Φ
B.弁座10の頂部11の半径R
C.弁座10の内側テーパ面12の傾斜角θi
D.弁座10の外側テーパ面13の傾斜角θo
そこで、これら4つの要因が、それぞれどれくらいの割合で影響し、過度な弾性変形を引き起こしているのかを調査するため、出願人は、品質管理手法の一つである実験計画法に基づいてシミュレーションを行った。シミュレーションで用いたL9直交表の制御因子とその水準との関係を示す表を、図4に示す。
具体的には、シミュレーションは、実験計画法にあるL9直交表に基づいて行い、図4に示すように、制御因子として、上記A乃至Dの各要因を、各要因の水準として、図4に掲載した第1水準から第3水準までの3水準を挙げた。
なお、各要因の水準は、流体制御弁1のメーカーとして、出願人の持つ豊富なノウハウと経験と、また必要とする流体制御弁1の仕様に合わせた設計値に基づいて、水準幅を大きくとって設定されている。
図5は、図4に示す制御因子の寄与率の結果を示す円グラフである。図5で明らかなように、4つの制御因子のうち、最も寄与率が高い制御因子は、82%を占める「C.弁座10の内側テーパ面12の傾斜角θi」であることが判る。次いで、9%であった「B.弁座10の頂部11の半径R」と続き、最も寄与率が低い制御因子は、僅か1%に過ぎない「D.弁座10の外側テーパ面13の傾斜角θo」であることが判る。
出願人は、シミュレーションにより、最も寄与率が高い「C.弁座10の内側テーパ面12の傾斜角θi」の第1水準である「傾斜角θi=15°」と、最も寄与率が低かった「D.弁座10の外側テーパ面13の傾斜角θo」の第1水準である「傾斜角θo=25°」との最適な水準値の組み合わせを、見出した。
実施例1は、最適な水準値の組み合わせとして得た「傾斜角θi=15°」と「傾斜角θo=25°」の場合である。
なお、「A.弁支持部材21の外径Φ」と「B.弁座10の頂部11の半径R」の両制御因子の寄与率は、「D.弁座10の外側テーパ面13の傾斜角θo」の制御因子よりも多少大きかったが、寄与率全体に占める割合は、相対的に低い。また、流体制御弁1の構成する仕様に対し、流体制御弁1のユーザーにニーズに合わせて多岐に対応できるようにすることも必要となる。そのため、流体制御弁1を実際に製造する上では、「A.弁支持部材21の外径Φ」と「B.弁座10の頂部11の半径R」の両制御因子に係る水準値に、自由度を持たせて、流体制御弁1は構成される。
(実施例2)
次に、実施例2に係る弁座10の形状について、図6を用いて説明する。図6は、図3と同様の模式図であり、実施例2に係る流体制御弁の弁座の形状について説明する説明図である。
本実施例は、弁座10の上端部において、頂部11、弁座内側面12及び弁座外側面13が、いずれも曲率rが同じで、円弧状の曲面で形成された場合である。
本実施例では、流体制御弁1の弁座10の形状として、弁座10において弁座内側面10aと弁座外周面10bとを、例えば、曲率rが1.25mmの円弧で繋ぎ、頂部11の面、弁座内側面12及び弁座外側面13が、幾何学的に変曲点のない曲線に沿う面で繋がっている。
前述した実施例1のほか、弁座の形状がそれぞれ異なる例として、上記の実施例2、及び従来技術に係る流体制御弁を対象とした比較例1,比較例2についても、実験計画法に基づいてシミュレーションを行っている。そして、実施例1,2及び比較例1,2に係る流体制御弁に対し、閉弁状態のときに、弁体の弁座当接部に生じるせん断歪みについて、FEMにより、解析を行い、せん断歪みの分布を調べた。
実施例1,2及び比較例1,2に係るシミュレーション条件のうち、実施例1,2及び比較例1,2で共通する条件は、実施例1,2に係る弁支持部材21の外径Φと、比較例1,2において、この弁支持部材21に対応する部分の外径Φであり、何れもΦ=25mmとした。
実施例1,2及び比較例1,2の各例で異なる部分のシミュレーション条件を示す。
(実施例1)
上記の実施例1であり、シミュレーション条件を再掲すると、
内側テーパ面12の傾斜角θi=15°
外側テーパ面13の傾斜角θo=25°
頂部11の半径R=0.5mm
(実施例2)
上記の実施例2であり、シミュレーション条件を再掲すると、
頂部11、内側テーパ面12及び外側テーパ面13が曲率r=1.25mmの半円弧状に形成された曲面
(比較例1)
弁座の上端面が、頂部の半径R=無限大のフラット状の面
(比較例2)
特許文献1,2のような、従来の弁座形状であり、以下の各条件が、それぞれ実施形態に係る流体制御弁1に相当する部分で、
内側テーパ面の傾斜角θi=90°
外側テーパ面の傾斜角θo=15°
頂部の半径R=0.5mm
実施例1の解析結果を図7に、実施例2の解析結果を図8に、比較例1の解析結果を図9に、比較例2の解析結果を図10に、それぞれ示す。図7乃至図10では、上下方向に対するせん断歪みの大きさに合わせて表示を変化させており、せん断歪みが最も大きくかかる分布を黒塗りにして、便宜上、応力の大きさをレベル1とした。その反対に、ドットのピッチを、せん断歪みが比較的小さくなるにつれて粗くし、せん断歪みが最も小さいところの分布をレベル9と表記した。
せん断歪みとは、弁体20が弁座10と当接または離間する上下方向と直交する径方向から、弁座当接部23を見たとき、任意箇所にある所定面積あたりの第1基準断面と、この第1基準断面と同形状・同面積で、第1基準断面と径方向に平行に長さL0だけ離れた第2基準断面とに対し、弁体20への押圧力が上下方向に作用したことにより、第2基準断面が、第1基準断面と上下方向にずれた分の相対変位L1を、上記の長さL0で除した変化量である。
なお、図7乃至図10では、せん断歪みの大きさに対応するレベルは、絶対的な大きさを表記したものであり、レベル1に相当するせん断歪みの大きさは90%と、レベル9に相当するせん断歪みの大きさは10%と、レベル1とレベル9との間には、歪みの大きさの比で9倍もの差異がある。
実施例1では、図7に示すように、弁座当接部23において、頂部11付近にある頂部付近当接部Maに生じるせん断歪みは、その周辺に比べるとより大きくなっているが、その大きさは、頂部付近当接部Maにおいて、最大でレベル3程度に留まり、頂部付近当接部Maの周囲Mb,Mcもレベル4、レベル5と、せん断歪みの分布も全体的に分散した傾向になっていることが判る。具体的には、弁座当接部23において頂部11付近に生じるせん断歪みは、44%であった。
次いで、実施例2では、図8に示すように、実施例1と同様、弁座当接部23において、頂部11付近にある頂部付近当接部Mにかかるせん断歪みは、その周辺に比べるとより大きくなっているが、その大きさが、最大でレベル3程度に留まっている。具体的には、弁座当接部23において頂部11付近に生じるせん断歪みは、51%であった。
その一方で、実施例2では、全体的なせん断歪みの分布が、実施例1に比べて、やや密に分布している傾向が見られたが、頂部付近当接部Maの周囲Mb,Mcはレベル4、レベル5と、流体制御弁1を実際に使用する上で影響のない誤差範囲であると考察される。
これに対し、比較例1では、図9に示すように、弁座当接部423において、弁座410の径内側角部411と当接する頂部付近当接部Na付近に、せん断歪みが局部的に集中しており、その大きさは、最大のレベル1にまで達している。このように、弁座当接部423で生じる過度な弾性変形により、頂部付近当接部Na付近にせん断歪みが局部的に集中すると、特に頂部付近当接部Na付近では、上下方向のせん断弾性歪みが最大値85%近くまで及んだ。
また、頂部付近当接部Na付近の周囲Nb,Ncにも、レベル1に続きレベル2、レベル3とせん断歪みが大きい部分が密集して分布していることも判る。
比較例1と同様、比較例2でも、図10に示すように、弁座当接部323において、弁座310の頂部311と当接する頂部付近当接部Na付近に、せん断歪みが局部的に集中しており、その大きさは、最大のレベル1に次ぐレベル2にまで達している。このように、弁座当接部323で生じる過度な弾性変形により、頂部付近当接部Na付近にせん断歪みが局部的に集中すると、特に頂部付近当接部Na付近では、せん断弾性歪みが最大で75%以上にまで及ぶことが判る。
また、頂部付近当接部Na付近の周囲Nb,Ncにも、レベル2に続きレベル3、レベル4とせん断歪みが大きい部分が密集して分布していることが判る。
次に、実施例1,2に係る流体制御弁1と、比較例2に係る流体制御弁とについて、上記のシミュレーションによる解析結果を検証するため、実際に耐久試験を行った。なお、比較例1に係る流体制御弁については、耐久試験を行っていない。
耐久試験は、実施例1,2に係る流体制御弁1と、比較例2に係る流体制御弁に流体を流さず、圧力0.5MPaの操作エアにより、弁体20等からの押圧力としての負荷を、弁座当接部23,321,421に3sec.間(ON状態)かけた後、この負荷を1sec.間(OFF状態)解除する工程を1サイクルとして行い、この工程を繰り返し複数回のサイクルで実施した。
耐久試験では、弁支持部材21の外径Φと、比較例1,2においてこれに対応する部分の外径については、何れもΦ=25mmで共通とした。また、弁座当接部の材質をフッ素系ゴムとした。
試験結果について説明する。
比較例2に係る流体制御弁の場合、弁座当接部323は、繰り返し回数が30万回で破断した。破断した様子は、参照する図18に示すように、最径内部Yで経時的な亀裂が生じていた。
これは、比較例2の場合、閉弁することにより、弁座当接部323において、弁座310の頂部311と当接する頂部付近当接部N付近に、せん断歪みが局部的に集中し、上下方向のせん断弾性歪みが75%以上に達しているために生じたものと考えられる。
これに対し、実施例1,2では、いずれの弁座当接部23は、300万回以上という、比較例2の10倍以上の繰り返し回数まで耐え得た。
これは、閉弁することにより、弁座当接部23において、弁座10の頂部11と当接する当接部付近に、局部的なせん断歪みの発生がなく、上下方向のせん断弾性歪みが50%程度までに留まっているためと考えられる。
ここで、弁座当接部に生じるせん断歪みと、弁座当接部の耐久性との関係について、図13を用いて説明する。
弁座当接部23を構成するゴム材では、金属の持つ機械的性質と同様、ロードセル等を用いてゴム材を引張り、ゴム材に繰り返し一定の負荷(歪み)を断続的にかけてゴム材の疲労試験を行うと、ゴム材は、繰り返し生じる歪みによる疲労により破断する。
疲労試験の試験条件として、JIS K6251規定のダンベル試験片3号形状を用いて、一定の応力(負荷)を、試験片に3sec.間(ON状態)かけた後、この負荷を1sec.間(OFF状態)解除する工程を1サイクルとして行い、この工程を繰り返し複数回のサイクルで実施するものである。
このように、ゴム材の一種であるNBR製の試験片の疲労試験を行うと、図13に示すような疲労線図が得られる。疲労線図は、複数の硬度のNBR製の試験片による累乗データである。
図13は、ゴム製の試験片に係る材料の疲労線図であり、縦軸に、試験片の引張り破断時の歪みに対する負荷歪みの割合を(%)で、横軸に、試験片が破断に至るまでの回数(破断回数)を(回)で、それぞれ表記したグラフである。試験片の引張り破断時の歪みとは、試験片における「(破断長さ−元の長さ)/元の長さ」であり、負荷歪みとは、試験片における「引張り長さ/元の長さ」である。
流体制御弁1のメーカーは、比較例2に係る流体制御弁の場合において、弁座当接部323の破断回数が30万回と短寿命であるため、少なくとも破断回数100万回を達成できるよう、弁体20(弁座当接部23)の耐久性を向上させる流体制御弁1の設計、製造を行っている。
図13から読み取れるように、破断回数100万回を実現するには、試験片の引張り破断時の歪みに対する負荷歪みの割合を、16%以下に抑える必要がある。すなわち、試験片の引張り破断時の歪みを「1」としたとき、その約1/6以下の範囲に、試験片にかかる負荷歪みが収まるように、弾性変形量を抑制しなければならない。
前述したように、従来の流体制御弁のほか、実施例1,2に係る流体制御弁1では、弁部材22の弁座当接部23は、例えば、ニトリルゴム(NBR)、フッ素ゴム(FKM,FFKM)、エチレンプロピレンゴム(EPM,EPDM)等のゴム製で、弾性を有する材質からなっている。
そのため、閉弁したときに、弁座10の頂部11と、この頂部11に近接する内側テーパ面12の上端部及び外側テーパ面13の上端部とが、弁体20の弁座当接部23に食い込むため、弁座当接部23が弾性変形して、弁座当接部23には、せん断歪みが生じる。
ところが、上記のゴム製の試験片のように、弁座当接部23において、引張り破断時の歪みに対し、弾性変形時の歪みを、約1/6以下の範囲に収まるよう、弾性変形量を抑制すると、弁座当接部23に、破断回数100万回という耐久性を持たせることができる。
弁座当接部23を構成する材質に対する「引張り破断時の歪み」は、フッ素ゴム(FKM)の場合、例えば、310%となり、その約1/6以下の範囲に収まる「弾性変形時の歪み(せん断弾性歪み)」は、約52%以下となる。
実際に行った上記の耐久試験では、実施例1及び実施例2のいずれの場合でも、破断回数300万回以上を達成できている。
これは、シミュレーション解析結果である「せん断弾性歪み44%」(実施例1の場合)と、「せん断弾性歪み51%」(実施例2の場合)が、何れの場合も、明らかに上記約52%の範囲に収まっているからであると考えられ、実際に、破断回数100万回をはるかに超えた破断回数300万回以上の耐久性が、耐久試験を通じて実証されている。
前述した構成を有する本実施形態に係る流体制御弁の作用・効果について説明する。
本実施形態では、弁体20のうち、弁座10と当接または離間する弁座当接部23は、例えば、フッ素ゴム(FKM,FFKM)、エチレンプロピレンゴム(EPM,EPDM)等のゴム製で、弾性を有する材質からなり、弁座当接部23の下面23aが平面状に形成され、弁座10は、上側に凸状で、最上端に曲面状の頂部11を有し、弁座10には、当該弁座10の径方向HXに沿う方向に対し、その径内側に、下側に向けて下降する弁座内側面12が形成されていると共に、頂部11を挟んだ径外側に、下側に向けて下降する弁座外側面13が形成されているので、高圧用の仕様で構成された当該流体制御弁1を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合でも、従来、弁座の頂部付近に局部的に生じていた過度な歪みの発生が抑制できるようになる。
すなわち、一般的な流体制御弁では、閉弁するのに、押圧力を弁体に直接的または間接的に作用させて弁体を弁座に当接させ、弁体の弁座当接部が弾性変形することにより、弁座の頂部付近が、弁体の弁座当接部に食い込んで、大きな反発力が発生できるようになっている。
従来の流体制御弁と同様、本実施形態に係る流体制御弁1も、押圧力を弁体20に、ピストン40を介して間接的に作用させて、弁体20を弁座10に当接させて閉弁し、弁体20に作用させる押圧力は、流体制御弁1において、実際に入力ポート18から出力ポート19に向けて流れる流体の圧力の大きさに対応した設計値に基づいて、設定されている。
ところが、流体制御弁を使用するユーザーによっては、高圧用の仕様で構成された流体制御弁を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合がある。
このような使い方をすると、流体制御弁では、流通する流体が低圧であるため、流体から受ける弁体への抗力が小さいところに、高圧向けの設計値で設定された相当大きな押圧力で、弁体を弁座に向けて作用させてしまうことになる。そのため、従来の流体制御弁では、弁座の頂部付近で局部的に過度な弾性変形が生じて、相当大きな歪み(せん断歪み)が弁座の頂部付近に集中し、結果的に、使用後、短い使用時間で弁体と弁座とのシール性能が低下してしまい、流体制御弁を閉弁させても、入力ポートと出力ポートとの間で流体の漏れが発生してしまう。
これに対し、本実施形態に係る流体制御弁1では、弁座10は、上側に凸状で、最上端に曲面状の頂部11を有し、弁座10には、当該弁座10の径方向HXに沿う方向に対し、その径内側に、下側に向けて下降する弁座内側面12が形成されていると共に、頂部11を挟んだ径外側に、下側に向けて下降する弁座外側面13が形成されている。
これにより、閉弁時に、弁体20に作用した押圧力により、弁座当接部23が弾性変形して、弁座10の頂部11及び弁座外側面13のほか、従来の弁座構造になかった弁座内側面12が、弁体20の弁座当接部23に当接して食い込む。このとき、従来の流体制御弁と同様、本実施形態に係る流体制御弁1でも、弁座当接部23にはせん断歪みが生じる。
従来の弁座構造で構成された流体制御弁では、上側に凸状で環状に形成された弁座の頂部は、当該弁座の径方向径内側に位置し、頂部の径内側は、当該弁座の上下方向にある内周面となっていた。そのため、従来の流体制御弁が閉弁状態となると、弁体の弁座当接部において、弁座の内周面付近から弁座の頂部にかけて食い込んだ部分で局部的に、上下方向の弾性変形が過度に生じていたため、せん断歪みが大きくなっていた。
しかしながら、本実施形態に係る流体制御弁1では、従来の流体制御弁とは異なり、閉弁時に、弁座当接部23と当接する部分として、弁座内側面12が頂部11からその径内側で下側に向けて下降しているので、弁座当接部23において、弁座内側面12から頂部11にかけて食い込む部分で、上下方向の弾性変形が、従来の弁座構造に比べて小さく抑えられているため、せん断歪みの発生がより小さく抑制できている。
よって、弁体20の弁座当接部23のうち、弁座10の頂部11付近が当接する部分に、上下方向の弾性変形が過度に生じなくなり、局部的なせん断歪みの発生が抑制できているため、弁座10の食い込みに起因した亀裂が弁座当接部23に経時的に生じ難くなる。
従って、高圧用の仕様で構成された、本実施形態に係る流体制御弁1を用いて、低圧の流体の流れを制御する使い方をする場合であっても、弁体20の弁座当接部23に局部的な歪みの発生が抑制できているため、弁座当接部23が損傷にし難く、弁体20と弁座10とのシール性能を、当該流体制御弁1の使用後、長期間にわたり維持できる耐久性の高い流体制御弁1を提供することができる、という優れた効果を奏する。
また、本実施形態に係る流体制御弁1のうち、実施例1では、弁座10の径方向HXに沿う水平面HSに対し、弁座内側面12は、傾斜角θiの内側テーパ面であり、弁座外側面13は、傾斜角θoの外側テーパ面であり、傾斜角θiは、傾斜角θoより小さいので、弁座当接部23の耐久性を、上側に凸状の頂部11から弁座10の径外側に向けて下降する外側テーパ面で形成された従来の弁座構造に比べ、向上させることができる。
すなわち、従来の弁座構造では、頂部の径内側は、弁座における上下方向の内周面となっていたため、閉弁状態では、主に頂部付近と当接する部分で弁座当接部が局部的に弾性変形していたが、実施例1に係る流体制御弁1では、頂部11のほか、弁座外側面13の傾斜角θoより緩やかな傾斜角θiの内側テーパ面12と当接する部分で、弁座当接部23が広範囲に弾性変形する。
そのため、弁座当接部23において、弁座内側面12から頂部11にかけて食い込む部分で、上下方向の弾性変形量を緩やかに変化させることができるため、せん断歪みの発生がより確実に抑制できる。
従って、弁座当接部23の耐久性を、上側に凸状の頂部から弁座の径外側に向けて下降する外側テーパ面で形成された従来の弁座構造に比べ、向上させることができる。
ところで、弁体20の弁座当接部23は、例えば、ゴム等、弾性を有した弾性材料からなり、延性を有している。弾性材料に、引張り破断が生じるところまで引張り荷重をかけると、引張り荷重の増加に伴って弾性材料の歪みも増加する。
閉弁したときでも、弁座10の頂部11と、この頂部11に近接する内側テーパ面12の上端部及び外側テーパ面13の上端部とが、弁体20の弁座当接部23に食い込むため、弁座当接部23が弾性変形して、弁座当接部23に歪が生じる。すなわち、弁体20の開閉を繰り返し行い、弁座当接部23において、繰り返し一定の負荷(歪み)が断続的にかかり、弁座当接部23に疲労が経時的に生じる。
実施例1に係る流体制御弁1では、弁座内側面12が傾斜角θiの内側テーパ面に、弁座外側面13が傾斜角θoの外側テーパ面に、それぞれなっており、傾斜角θiが傾斜角θoより小さくなっている。
これにより、閉弁時に弁座当接部23に生じる歪みが、弁座当接部23を引張り破断したときの歪みである引張り破断時歪みよりも、より低く抑えることができるようになる。
従って、本実施例に係る流体制御弁1において、弁体20の開閉を繰り返し行っても、弁座当接部23での歪みを抑制でき、弁座当接部23が破断に至るまでの弁体20の開閉の繰り返し回数は飛躍的に増大するため、弁体20の弁座当接部23が、長期間にわたり破損し難くなる。
また、本実施形態に係る流体制御弁1のうち、実施例2では、弁座内側面12及び弁座外側面13は、いずれも曲面であるので、実施例1と同様、高圧用の仕様で構成された当該流体制御弁1を用いて、実際に流通制御する流体として、低圧の流体の流れを制御する使い方をする場合でも、従来、弁座の頂部付近に局部的に生じていた過度な歪みの発生が抑制できるようになる。
また、本実施形態に係る流体制御弁1のうち、実施例1,2では、弁座当接部23を引張り破断したときの歪みである引張り破断時歪みの大きさを1としたとき、閉弁により弁座当接部23に生じる閉弁時歪みが、引張り破断時歪みの1/6以下に設定されているので、弁座当接部23が破断に至るまでの破断回数を、100万回以上をはるかに超える300万回以上とすることができる。
また、本実施形態では、閉弁状態にあるとき、弁体20の弁座当接部23は、弁座10との当接により弾性変形して所定の潰し量sで潰され、当該流体制御弁1の軸心CL方向に沿う方向に対し、弁座内側面12の高さtは、潰し量sより大きく設定されているので、高圧用の仕様で構成された、本実施形態に係る流体制御弁1を用いて低圧の流体の流れを制御する使い方で、弁座に向けた押圧力を必要以上に大きく作用させて、弁体を弁座に当接させて閉弁した場合でも、従来、弁体において弁座の頂部付近に局部的に生じていた過度な歪みの発生を、確実に抑制できるようになる。
また、本実施形態では、弁部材22を、伸縮可撓性を有するダイアフラム弁体で形成したダイアフラム弁22であるので、2次側の制御流体の圧力が大きく、制御流体からダイアフラム弁体22に受ける圧力が大きくなるため、閉弁には、ダイアフラム弁体22が受圧する圧力に打勝つだけの大きな閉止力が必要となる。このように大きな閉止力でダイアフラム弁体22を弁座に当接させて閉弁するようにしても、本実施形態に係る流体制御弁1では、弁体20において弁体10の頂部11付近に過度な歪みの発生を、確実に抑制することができる。
以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できる。
(1)例えば、実施例2では、弁座10における弁座内側面10aと弁座外周面10bとを、いずれも曲率rが1.25mmの円弧とし、頂部11の面、弁座内側面12及び弁座外側面13を、幾何学的に変曲点のない曲線に沿う面で繋げた。
しかしながら、弁座の形状として、頂部の面と、弁座内側面と弁座外周面とが幾何学的に変曲点のない曲線に沿う面で繋がっていれば、弁座内側面と弁座外周面とは、曲率が互いに異なる曲面で形成しても良い。
(2)また、実施形態では、流体制御弁1を、付勢バネ50の一端をピストン40に、他端をカバー60に支持させ、パイロットエアによる押圧力が作用しないときに、付勢バネ501の付勢力によって弁体20が弁座10に当接して閉弁するノーマルクローズタイプの流体制御弁とした。
しかしながら、流体制御弁は、本実施形態のピストン40の受圧側に相当するピストンの一方側と、シリンダ30の底部側との間に付勢部材を配設し、パイロットエアによる押圧力が作用しないときに、付勢バネの付勢力によって弁体が弁座から離間して開弁し、パイロットエアによる押圧力が作用すると、弁体が弁座に当接して閉弁するノーマルオープンタイプの弁としても良い。
なお、ノーマルオープンタイプの流体制御弁では、操作ポートが、ノーマルクローズタイプである本実施形態の流体制御弁1の空気抜きポート31の位置に配設され、空気抜きポートが、エアポート32の位置に配設される。
1 流体制御弁
2 ボディ
10 弁座
20 弁体
22 弁部材
23 弁座当接部
23a 下面
11 頂部
12 内側テーパ面(弁座内側面)
13 外側テーパ面(弁座外側面)
CL 流体制御弁の軸心
HX 径方向
HS 水平面
θi,θo 傾斜角
s 潰し量
t 弁座内側面の高さ

Claims (5)

  1. 弁座を有するボディと、前記弁座に弁体を当接または離間させて流体の流れを制御する流体制御弁において、
    前記弁体のうち、少なくとも前記弁座と当接または離間する弁座当接部は、弾性を有する材質からなり、前記弁座当接部の下面が平面状に形成され、
    前記弁座は、上側に凸状で、最上端に曲面状の頂部を有し、
    前記弁座には、当該弁座の径方向に沿う方向に対し、前記頂部を挟んだ径内側に、下側に向けて下降する弁座内側面が形成されていると共に、前記頂部を挟んだ径外側に、下側に向けて下降する弁座外側面が形成されており、
    前記弁座当接部を引張り破断したときの歪みである引張り破断時歪みの大きさを1としたとき、閉弁により弁座当接部に生じる閉弁時歪みが、前記引張り破断時歪みの1/6以下に設定され、前記弁座当接部の破断を抑制することを特徴とする流体制御弁。
  2. 請求項1に記載する流体制御弁において、
    閉弁状態にあるとき、前記弁体の前記弁座当接部は、前記弁座との当接により弾性変形して所定の潰し量で潰され、
    当該流体制御弁の軸心方向に沿う方向に対し、前記弁座内側面の高さを、前記潰し量より大きく設定することにより、前記弁体において閉弁時に前記弁座の頂部付近に当接する部位に局部的に生じていた過度な歪みの発生を抑制することを特徴とする流体制御弁。
  3. 請求項1又は請求項2に記載する流体制御弁において、
    前記弁座の径方向に沿う水平面に対し、前記弁座内側面は、傾斜角θiの内側テーパ面であり、前記弁座外側面は、傾斜角θoの外側テーパ面であり、
    前記傾斜角θiは、前記傾斜角θoより小さく、閉弁時に前記弁座当接部に生じる歪みを抑制することを特徴とする流体制御弁。
  4. 請求項1又は請求項2に記載する流体制御弁において、
    前記弁座内側面及び前記弁座外側面は、いずれも曲面であることを特徴とする流体制御弁。
  5. 請求項1乃至請求項4の何れか一つに記載する流体制御弁において、
    前記弁体を、伸縮可撓性を有するダイアフラム弁体で形成したダイアフラム弁であることを特徴とする流体制御弁。
JP2010156936A 2010-07-09 2010-07-09 流体制御弁 Active JP5364051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156936A JP5364051B2 (ja) 2010-07-09 2010-07-09 流体制御弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156936A JP5364051B2 (ja) 2010-07-09 2010-07-09 流体制御弁

Publications (2)

Publication Number Publication Date
JP2012017830A JP2012017830A (ja) 2012-01-26
JP5364051B2 true JP5364051B2 (ja) 2013-12-11

Family

ID=45603228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156936A Active JP5364051B2 (ja) 2010-07-09 2010-07-09 流体制御弁

Country Status (1)

Country Link
JP (1) JP5364051B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705530A (zh) * 2012-06-21 2012-10-03 昆山新莱洁净应用材料股份有限公司 膜片式气动隔膜阀
JP6255261B2 (ja) * 2014-01-31 2017-12-27 株式会社フジキン ダイヤフラム弁
CN218267285U (zh) * 2022-09-28 2023-01-10 宁波金盾电子工业股份有限公司 燃气切断阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434132A (en) * 1977-08-19 1979-03-13 Tokico Ltd Directional control valve
AU530314B2 (en) * 1978-09-01 1983-07-14 Advanced Medical Technologies, Inc. Apparatus for controlling the flow of intravenous fluid to patient
DE2914654C2 (de) * 1979-04-11 1982-10-14 Danfoss A/S, 6430 Nordborg Ventil, insbesondere Kältemittelventil, dessen Verschlußstück von einer Membran getragen ist
JP2730912B2 (ja) * 1988-07-06 1998-03-25 三洋電機株式会社 湯電磁弁
JP3701367B2 (ja) * 1996-02-22 2005-09-28 Smc株式会社 ポペット弁
JP3867995B2 (ja) * 2002-02-25 2007-01-17 シーケーディ株式会社 薬液制御弁
CN101218458A (zh) * 2005-07-12 2008-07-09 株式会社伊奈 先导式输出和阻止水与流量调节的阀装置
JP4519770B2 (ja) * 2005-12-26 2010-08-04 シーケーディ株式会社 流体制御弁

Also Published As

Publication number Publication date
JP2012017830A (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5243513B2 (ja) 流体制御弁の弁座構造
CN205047867U (zh) 调节装置
KR102445153B1 (ko) 감압 밸브
TWI795473B (zh) 流體控制閥
JP5364051B2 (ja) 流体制御弁
US9194501B2 (en) Pressure balanced spring loaded overtravel sealing apparatus
CN103732962A (zh) 止回阀
US10774938B2 (en) Diaphragm valve with metal seat
JP6294892B2 (ja) 制御弁におけるアクチュエータの推力の要件を軽減するための装置及び方法
KR20150018794A (ko) 다이아프램 및 다이아프램 밸브
US9046180B2 (en) Diaphragm and backing cushion shaping for increased membrane life
TWI684721B (zh) 流體控制器
US10371270B2 (en) Diaphragm valve
JP2018071670A (ja) 調節弁
JP2007120726A (ja) 油圧緩衝器
JP4519770B2 (ja) 流体制御弁
JP2007154929A (ja) ベローズ弁
KR101847052B1 (ko) 선박 엔진용 안전밸브
JP2015143534A (ja) ダイヤフラム弁
JP7337666B2 (ja) 弁装置
CN210566285U (zh) 一种蒸汽调节阀结构
JP6411738B2 (ja) 圧力平衡ばね荷重オーバートラベル密閉装置
CN206572004U (zh) 一种全焊接管线球阀
JP2022096399A (ja) 流体制御器
JP2024510451A (ja) 極めて高温で使用するための安全弁の改良

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Ref document number: 5364051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150