JP5354755B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP5354755B2
JP5354755B2 JP2011542389A JP2011542389A JP5354755B2 JP 5354755 B2 JP5354755 B2 JP 5354755B2 JP 2011542389 A JP2011542389 A JP 2011542389A JP 2011542389 A JP2011542389 A JP 2011542389A JP 5354755 B2 JP5354755 B2 JP 5354755B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode tab
positive electrode
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011542389A
Other languages
English (en)
Other versions
JPWO2011111556A1 (ja
Inventor
裕太 中川
正人 上野
浩史 阿部
英樹 釣賀
陽平 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011542389A priority Critical patent/JP5354755B2/ja
Publication of JPWO2011111556A1 publication Critical patent/JPWO2011111556A1/ja
Application granted granted Critical
Publication of JP5354755B2 publication Critical patent/JP5354755B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Description

この発明は、リチウムイオン二次電池に関するものである。
従来、電気化学的にリチウムイオンの吸蔵および放出が行なわれる材料を主体とした正極および負極とをセパレータを介して捲回した捲回体、または正極と負極とをセパレータを介して積層した積層体(以下、これらを「発明要素」と言う。)を金属製またはラミネート製の外装体に収納してなるリチウムイオン二次電池が知られている。
これら発電要素は、正極および負極にそれぞれ接続された正極タブおよび負極タブを備える。通常のリチウムイオン二次電池は、外装体が角形または円筒型の金属缶である場合、外装缶や外装缶を封口する蓋体等に前記負極タブおよび正極タブを溶接接続した構造が一般的である。また、アルミニウム製などのラミネート体を外装体とした場合は、正極タブおよび負極タブの一方端がラミネート体を介して外部に引き出され、外部端子と接続させることで、電力の授受を行なうことができる。
そして、従来のリチウムイオン二次電池は、発電要素は、タブ溶接機、捲回機、タブ切断機などの各種組立装置を用いて、複数の生産工程を経て作製されるが、大量の生産に対応する等の目的で、複数の生産工程を1つの生産ラインとし、電池の生産個数などに対応して、少なくとも2つ以上の生産ラインを並行させて製造する方法が一般的である。
リチウムイオン二次電池の生産管理を行う上で、電池のトレーサビリティを向上することが重要である。特に、リチウムイオン二次電池の安全性は、電池の内部構造によって大きく左右されることが多く、非常時に備える意味も含め、不具合を生じた電池がいずれの生産ラインで製造されたかを追跡できるようにすることは極めて重要である。
そこで、タブや電極の集電体などに数字や図形を刻印して識別表示を設け、その識別表示からトレーサビリティをとる手法が提案されている(特許文献1)。
特開2006−40875号公報
しかし、特許文献1に開示された識別表示を設ける方法は、電池の非破壊での識別が、困難であり、識別するには、電池を分解調査する必要がある。また、識別表示を新たに設ける工程が必須であり、生産の工程数が増すことで電池の単価が上昇してしまうという問題がある。
リチウムイオン二次電池は、厳重に密閉されているので、電池の分解は、手間のかかる作業である。また、操作を誤ると、短絡する等の危険もあり、非破壊でトレーサビリティの取れる電池が求められていた。より好ましくは、簡易な工程で単価を増すことなく、トレーサビリティの取れる電池である。
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、不具合が生じた電池について、非破壊でも、その電池を組み立てた生産ラインの識別を可能としたリチウムイオン二次電池を提供することである。
この発明によれば、リチウムイオン二次電池は、発電要素と、外装体とを少なくとも備える。発電要素は、正極タブの一方端が接続された正極と、負極タブの一方端が接続された負極とをセパレータを介して配置される。そして、正極および負極にそれぞれ接続された正極タブおよび/または負極タブの一方端の平面形状は、円弧形状あるいは少なくとも2角を有する幾何学形状である。
また、この発明によれば、リチウムイオン二次電池は、正極タブの一方端が接続された正極と、負極タブの一方端が接続された負極とをセパレータを介して配置した発電要素と、外装体とを少なくとも備え、複数の生産工程から構成される生産工程ラインを経て作製されるリチウムイオン二次電池であって、発電要素は、正極タブおよび負極タブの切断工程と、正極タブおよび負極タブのそれぞれ正極および負極への接続工程と、正極と負極とをセパレータを介して配置する工程とから作製されており、生産工程ラインは、少なくとも2つ以上あり、かつ発電要素を作製する工程を少なくとも含む。そして、正極および負極にそれぞれ接続された正極タブおよび負極タブの一方端のうち、正極タブおよび負極タブの少なくとも一方の一方端は、生産工程ライン毎に対応して異なった平面形状からなる。
この発明の実施の形態によれば、リチウムイオン二次電池においては、正極タブおよび負極タブの少なくとも一方の一方端は、その平面形状が円弧形状あるいは少なくとも2角を有する幾何学形状であり、それら形状は、各電池を組み立てる生産工程ラインに対応して決定された平面形状からなる。即ち、ある1つの生産工程ライン(例えば、第1生産工程ライン)で製造したリチウムイオン二次電池におけるタブの一方端の平面形状と、別の生産工程ライン(例えば、第2生産工程ライン)で製造したリチウムイオン二次電池におけるタブの一方端の平面形状とは、別の形状を示す。
それぞれの生産工程ラインを経て完成したリチウムイオン二次電池をX線検査機を用いて非破壊にて検査し、正極および負極の配置に関する不具合、または正極タブおよび/または負極タブの外装体への接触の不具合等が検出されると、その不具合が検出されたリチウムイオン二次電池の正極タブおよび/または負極タブの一方端の平面形状を識別することによって、その電池を製造した生産工程ラインを特定することができる。
その結果、トレーサビリティを向上できる。
図1は、この発明の実施の形態によるリチウムイオン二次電池の斜視図である。 図2は、この発明の実施の形態におけるリチウムイオン二次電池の製造方法を示す工程図である。 図3は、図2に示すステップS2の工程を示す模式図である。 図4は、図2に示すステップS3〜ステップS7の工程を示す模式図である。 図5は、図2に示すステップS3〜ステップS7の工程を示す模式図である。 図6は、図2に示すステップS8〜ステップS12の工程を示す模式図である。 図7は、図2に示すステップS14の工程を示す模式図である。 図8は、図2に示すステップS14の工程を示す模式図である。 図9は、捲回体の長さ方向における断面図である。 図10は、リチウムイオン二次電池の一部の側面図である。
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
この発明は、従来公知の角形電池、円筒形電池およびラミネート形電池のいずれのリチウムイオン二次電池に好適に適用される。
図1は、この発明の実施の形態によるリチウムイオン二次電池の斜視図である。なお、図1においては、外装体4は、その内部が見えるように図示されている。
図1を参照して、この発明の実施の形態によるリチウムイオン二次電池10は、角形電池であり、捲回体1と、正極タブ2と、負極タブ3と、外装体4と、蓋体5と、ベント6と、端子7と、注入口8とを備える。
捲回体1は、正極と負極とをセパレータを介して捲回した構造からなる。また、捲回体1は、正極、負極およびセパレータを捲回した後に押圧して扁平形状とし、外装体4内に収納される。そして、捲回体1は、電解液を含む。
正極タブ2は、リチウムに対して貴な電位で安定な金属や炭素質などの導電性材料で構成される。そして、正極タブ2は、多くは、アルミニウム(Al)またはアルミニウム合金から構成され、短冊形からなる。但し、正極タブ2は、アルミニウムと他の金属(例えば、溶接性の良好なニッケル等)とのクラッド材等から構成されていてもよい。そして、正極タブ2は、一方端が捲回体1の正極に接続され、他方端が蓋体5に接続される。この場合、正極タブ2は、捲回体1と蓋体5との間で湾曲されて外装体4内に配置される。
負極タブ3は、リチウムに対して卑な電位で安定な部材からなり、正極タブ2と同様に短冊形状を有する。また、負極タブ3は、後述する外装体4よりもX線吸収能が高い部材で構成されることが好ましい。負極タブ3が外装体4よりもX線吸収能が高い部材で構成されると、外装体4に対する負極タブ3のコントラストを高めることができる。従って、電池内部を非破壊にて検査するためのX線検査機として、簡易に内部観察が可能な透過型X線検査装置を用いることができるので望ましい。そのような部材は、例えば、銅、銅合金、ニッケル、および銅とニッケル等の他の金属とのクラッド材のいずれかである。
金属がX線を吸収する度合は、金属の真密度が高くなれば大きくなり、金属の真密度が低くなれば小さくなる。従って、「X線吸収能が高い」とは、金属の真密度が高いことを言う。
負極タブ3を構成する銅、銅合金、およびニッケルの真密度は、それぞれ、8.9、8.5〜9.5および8.9g/cmであり、外装体4を構成するアルミニウムの真密度は、2.7g/cmである。従って、上述したように、負極タブ3は、外装体4よりもX線吸収能が高い部材で構成される。
また、負極タブ3は、その一方端が捲回体1の負極に接続され、他方端が端子7に接続される。この場合、負極タブ3は、捲回体1と端子7との間で折り曲げられて外装体4内に配置される。
負極タブ3の捲回体1の負極に接続された一方端は、任意の角度で切断された形状を有する。この形状は、負極タブ3の一方端の幅方向における左端および右端にそれぞれ角度を有した、本発明で言う少なくとも2角を有する幾何学形状を有する。負極タブ3を外装体4よりもX線吸収能が高い部材で構成することによって、透過型のX線検査機により非破壊で電池の内部を観察可能であり、負極タブ3の少なくとも2角を把握することができる。更に、捲回体1の負極に接続された負極タブ3の一方端を、例えば、±0〜60度の範囲で角度を変えて切断すると、いずれかの切断角度であることも認識することができる。
外装体4内に収納された負極タブ3の一方端を、X線検査機により非破壊で観察し、その幾何学形状や、タブの切断角度を認識すれば、本発明の目的を達成できるので、負極タブ3の任意の幾何学形状や、切断角度を設けた一方端部分(あるいはその周辺部)が外装体4よりもX線吸収能が高い部材で構成されていてもよい。
外装体4は、アルミニウム、アルミニウム合金およびニッケルを被覆した鉄等の金属材料、あるいはポリプロピレン等の樹脂材料からなる。そして、特定以上の機械強度を確保する目的、または電池外部へ電力を供給する媒体等の機能を兼ね備える目的を達成する場合、外装体4は、多くは、金属材料からなる。
負極タブ3が銅または銅合金、あるいは銅とニッケル等の他の金属とのクラッド材で構成される場合、外装体4は、負極タブ3の材料よりもX線吸収能が低い材料で構成されることが好ましく、例えば、アルミニウム(合金も含む)が挙げられる。また、負極タブ3の全面か、少なくとも切断角度を設けた一方端部分(あるいはその周辺部)が、例えば、金や白金で被覆されたものであれば、外装体4は、ニッケルを被覆した鉄等の金属材料によって構成されてもよい。そして、外装体4は、捲回体1、正極タブ2および負極タブ3を収納する。
蓋体5は、例えば、外装体4がアルミニウムで構成される場合、アルミニウムで構成される。そして、蓋体5は、レーザー等の溶接加工を施して外装体4の開口端に嵌合する。
ベント6は、蓋体5に設けられる。そして、ベント6は、外装体4内で発生したガス等により内圧が上昇した場合、開裂して圧力を開放する機能を果たす。端子7は、絶縁体(図示せず)を介して蓋体5に設けられ、負極タブ3の他方端に接続される。注入口8は、蓋体5に設けられる。そして、注入口8は、捲回体1に電解液を注入するための口である。電解液の注入後、ピン(図示せず)を嵌合して注入口8を塞ぎ、レーザー等で溶接して完全密封する。
正極は、正極集電体と、正極活物質層とからなる。正極集電体は、例えば、Al箔からなり、帯形状を有する。
正極活物質層は、正極集電体の片面または両面に形成される。より具体的には、正極活物質層は、例えば、正極活物質とバインダーとを混合したスラリーを正極集電体の両面に塗布し、その塗布したスラリーを乾燥し、次いで、厚み方向にプレスすることによって形成される。スラリーの塗布は、例えば、ドクターブレード法およびスプレー法等によって行なわれる。また、スラリーは、必要に応じて、導電性材料を更に含んでいてもよい。
正極活物質は、例えば、LiCoO、LiNiO、LiMn、LiNi1/3Co1/3Mn1/3、およびLiFePO等のいずれかからなる。
バインダーは、ポリテトラフルオロエチレン(PTFE)およびポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、スチレンブタジエンゴム(SBR)およびエチレンプロピレンジエンマルチブロックポリマー等のゴム系樹脂、カルボキシメチルセルロース(CMC)等のセルロース系樹脂等からなる。
導電性材料は、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、および非晶質炭素等の炭素材料からなる。これらの導電性材料は、単独または混合して用いられても良い。
負極は、負極集電体と、負極活物質層とからなる。負極集電体は、例えば、Cu箔からなり、帯形状を有する。
負極活物質層は、負極集電体の片面または両面に形成される。より具体的には、負極活物質層は、例えば、負極活物質とバインダーとを混合したスラリーを負極集電体の両面に塗布し、その塗布したスラリーを乾燥し、次いで、厚み方向にプレスすることによって形成される。スラリーの塗布は、上述したドクターブレード法およびスプレー法等によって行なわれる。また、スラリーは、必要に応じて、導電性材料を更に含んでいてもよい。
負極活物質は、例えば、SnおよびSi等のLiと合金化可能な金属、金属リチウム、LiAl合金、非晶質炭素、人造黒鉛、天然黒鉛、フラーレン、およびナノチューブ等のリチウム(Li)を吸蔵放出可能な炭素系材料、LiTi12、およびLiTi等のLiを吸蔵放出可能なチタン酸リチウム等からなる。
バインダーは、PTFE、PVDF、SBR、およびカルボキシメチルセルロース(CMC)等のいずれかからなる。これらのバインダーは、単独または混合して用いられても良い。
導電性材料は、AB、KB、および非晶質炭素等の炭素材料からなる。これらの導電性材料は、単独または混合して用いられても良い。
セパレータについては、特に制限は無く、従来、公知のものがセパレータとして適用される。例えば、厚みが5〜30μmで、開孔率が30〜70%の微多孔性ポリエチレンフィルムまたは微多孔性ポリプロピレンフィルム、およびポリエチレンポリプロピレン複合フィルム等がセパレートとして好適に用いられる。また、これらのセパレータの突き刺し強度や耐熱収縮性を改善する等の目的で、微多孔性フィルムの片面あるいは両面に、アルミナ、シリカ、およびベーマイト等の耐熱性および高強度の無機フィラー、イミドおよびアラミド等の耐熱性樹脂を被覆または積層したものをセパレータとして用いてもよい。
電解液は、例えば、Li塩が有機溶媒に溶解されたものからなる。Li塩としては、有機溶媒中で解離してLiイオンを生成可能であり、電解液を構成要素とする電池の電圧範囲で分解等の副反応を起こさないものが用いられる。
そして、Li塩は、例えば、LiPF、LiBF、LiAsF、およびLiClCO等の無機化合物、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO、LiPF6−n(C(nは1〜6の整数)、LiSOCF、LiSO、およびLiSO等の有機化合物等からなる。
有機溶媒は、Li塩を溶解でき、電池の電圧範囲で分解等の副反応を起こさないものであれば制限されない。有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、およびビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、およびエチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル、ジメトキシエタン、ジグライム、トリグライム、およびテトラグライム等の鎖状エーテル、ジオキサン、テトラヒドロフラン、および2−メチルテトラヒドロフラン等の環状エーテル、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、およびエトキシプロピオニトリル等のニトリル類等が挙げられる。これらの有機溶媒は、単独又は混合して用いることができる。
これらのうち、有機溶媒は、エチレンカーボネートと鎖状カーボネートとの混合溶媒が好ましい。この混合溶媒を用いれば、高い導電率が得られ、良好な電池特性を実現できる。
電解液には、安全性、サイクル性、高温貯蔵性等の特性を向上する目的で、適宜、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、およびt−ブチルベンゼン等の添加剤が含まれていてもよい。
また、電解液は、有機溶媒に代えて、エチル−メチルイミダゾリウムトリフルオロメチルスルホニウムイミド、へプチル−トリメチルアンモニウムトリフルオロメチルスルホニウムイミド、ピリジニウムトリフルオロメチルスルホニウムイミド、およびグアジニウムトリフルオロメチルスルホニウムイミド等の常温溶融塩を含んでいてもよい。
更に、電解液は、下記のホストポリマーによりゲル化されていてもよい。ホストポリマーとしては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体、主鎖または側鎖にエチレンオキシド鎖を含む架橋ポリマー、光及び熱により架橋可能であり側鎖にオキセタン化合物や脂環式エポキシ化合物を有する(メタ)アクリレート共重合体等が挙げられる。
図2は、この発明の実施の形態におけるリチウムイオン二次電池10の製造方法を示す工程図である。なお、図2は、5台の捲回機A〜Eを用いて捲回体1を捲回する場合について、リチウムイオン二次電池10の製造方法を示す。また、図3は、図2に示すステップS2の工程を示す模式図である。更に、図4および図5は、図2に示すステップS3〜ステップS7の工程を示す模式図である。更に、図6は、図2に示すステップS8〜ステップS12の工程を示す模式図である。更に、図7および図8は、図2に示すステップS14の工程を示す模式図である。
図2を参照して、リチウムイオン二次電池10の製造が開始されると、複数の正極および複数の負極が上述した方法によって作製され、複数のセパレータが作製される(ステップS1)。そして、テープ状のアルミニウム箔20の一方端20Aを溶接機を用いて正極11に溶接し、一方端20Aから所定の長さL1の位置でテープ状のアルミニウム箔20をカッター30で切断する(ステップS2、図3の(a)参照)。これによって、正極タブ2が正極11に接続される。この場合、正極タブ2は、例えば、正極11の長さ方向における一方端側で正極11に接続される。そして、正極タブ2の一方端2Aおよび他方端2Bは、正極タブ2の幅方向DR1に正極タブ2を切断した形状からなる(図3の(b)参照)。なお、ステップS2の工程は、ステップS1で作製された複数の正極11の全てに正極タブ2が接続されるまで繰り返し実行される。
その後、テープ状の銅箔40の一方端40Aを溶接機を用いて負極12に溶接し、一方端40Aから所定の長さL1の位置で+20度の切断角度でテープ状の銅箔40をカッター50で切断する(ステップS3、図4参照)。これによって、+20度の切断角度で切断された一方端31Aおよび他方端31Bを有する負極タブ3(31)が負極12に接続されたものが作製される(図5の(a)参照)。
また、テープ状の銅箔40の一方端40Aを溶接機を用いて負極12に溶接し、一方端40Aから所定の長さL1の位置で+10度の切断角度でテープ状の銅箔40をカッター50で切断する(ステップS4、図4参照)。これによって、+10度の切断角度で切断された一方端32Aおよび他方端32Bを有する負極タブ3(32)が負極12に接続されたものが作製される(図5の(b)参照)。
更に、テープ状の銅箔40の一方端40Aを溶接機を用いて負極12に溶接し、一方端40Aから所定の長さL1の位置で0度の切断角度でテープ状の銅箔40をカッター50で切断する(ステップS5、図4参照)。これによって、0度の切断角度で切断された一方端33Aおよび他方端33Bを有する負極タブ3(33)が負極12に接続されたものが作製される(図5の(c)参照)。
更に、テープ状の銅箔40の一方端40Aを溶接機を用いて負極12に溶接し、一方端40Aから所定の長さL1の位置で−10度の切断角度でテープ状の銅箔40をカッター50で切断する(ステップS6、図4参照)。これによって、−10度の切断角度で切断された一方端34Aおよび他方端34Bを有する負極タブ3(34)が負極12に接続されたものが作製される(図5の(d)参照)。
更に、テープ状の銅箔40の一方端40Aを溶接機を用いて負極12に溶接し、一方端40Aから所定の長さL1の位置で−20度の切断角度でテープ状の銅箔40をカッター50で切断する(ステップS7、図4参照)。これによって、−20度の切断角度で切断された一方端35Aおよび他方端35Bを有する負極タブ3(35)が負極12に接続されたものが作製される(図5の(e)参照)。
この場合、負極タブ3(31〜35)は、例えば、負極12の長さ方向における負極12の略中央部に接続される。
なお、+20度、+10度、0度、−10度、および−20度の切断角度は、テープ状の銅箔40の幅方向DR2を0度とし、反時計回りをプラス(+)、時計回りをマイナス(−)としたときの角度である(図4参照)。また、+20度、+10度、0度、−10度、および−20度の切断角度は、それぞれ、捲回機A〜Eに対応して決定された切断角度である。
更に、ステップS3〜ステップS7は、並行して実行される。即ち、ステップS1で作製された複数の負極12を5つの生産工程ラインに分け、それぞれ、ステップS3、ステップS4、ステップS5、ステップS6、およびステップS7を実行させる。
このように、ステップS3〜ステップS7が並行して実行されると、異なる切断角度で切断された一方端および他方端を有する負極タブ3が負極12に接続されたものが作製される。
引き続いて、正極タブ2付き正極11、セパレータ13、およびステップS3で作製された負極タブ3(31)付き負極12を積層し、その積層体を矢印ARW1の方向へ捲回機Aで捲回する(ステップS8、図6参照)。また、正極タブ2付き正極11、セパレータ13、およびステップS4で作製された負極タブ3(32)付き負極12を積層し、その積層体を矢印ARW1の方向へ捲回機Bで捲回する(ステップS9、図6参照)。更に、正極タブ2付き正極11、セパレータ13、およびステップS5で作製された負極タブ3(33)付き負極12を積層し、その積層体を矢印ARW1の方向へ捲回機Cで捲回する(ステップS10、図6参照)。更に、正極タブ2付き正極11、セパレータ13、およびステップS6で作製された負極タブ3(34)付き負極12を積層し、その積層体を矢印ARW1の方向へ捲回機Dで捲回する(ステップS11、図6参照)。更に、正極タブ2付き正極11、セパレータ13、およびステップS7で作製された負極タブ3(35)付き負極12を積層し、その積層体を矢印ARW1の方向へ捲回機Eで捲回する(ステップS12、図6参照)。
なお、ステップS8〜ステップS12は、ステップS3〜ステップS7と同様に、並行して実行される。即ち、ステップS3とステップS8とは、1つの生産工程ライン(第1生産工程ライン)を形成し、以下同様にして、ステップS4とステップS9とは、第2生産工程ラインを、ステップS5とステップS10とは、第3生産工程ラインを、ステップS6とステップS11とは、第4生産工程ラインを、そして、ステップS7とステップS12とは、第5生産工程ラインをそれぞれ形成する。
そして、第1〜第5生産工程ラインにおいて作製された捲回体1を外装体4に収納する(ステップS13)。
その後、外装体4に収納された捲回体1の正極11および負極12にそれぞれ接続された正極タブ2および負極タブ3の他方端を切り揃え、正極タブ2の他方端を蓋体5に接続し、負極タブ3の他方端を端子7に接続する(ステップS14)。この場合、正極タブ2の他方端は、正極タブ2の幅方向に切断され、負極タブ3の他方端は、負極タブ3の幅方向に切断される。従って、正極タブ2の他方端および負極タブ3の他方端は、同じ形状からなる。また、正極タブ2の他方端および負極タブ3の他方端は、正極タブ2および負極タブ3が相互に同じ長さになるように切断される。より具体的には、正極タブ2の他方端および負極タブ3の他方端は、捲回体1の端面1Aからの長さL2が捲回体1の端面1Aから外装体4の開口部までの距離L3よりも長くなるように切断される(図7参照)。そして、正極タブ2の切断された他方端は、蓋体5に接続され、負極タブ3の切断された他方端は、端子7に接続される(図8参照)。
そして、蓋体5を外装体4の開口部に嵌合する(ステップS15)。この場合、正極タブ2のうち、捲回体1と蓋体5との間の部分が外装体4の内壁に接触しないように曲げられる。負極タブ3についても同様である。その後、電解液を注入口8から捲回体1に注入する(ステップS16)。これによって、リチウムイオン二次電池10が完成する。
なお、ステップS13〜ステップS16は、ステップS8〜ステップS12で作製された複数の捲回体1の全てに対して実行される。
図2においては、ステップS3〜ステップS7の工程と、ステップS8〜ステップS12の工程とを組み合わせて、前記第1〜第5生産工程ラインを形成させたが、一定の生産物量を確保すること、あるいは、より高いトレーサビリティを確保するなどの目的から、その前後の生産工程である、ステップS1〜S2、およびステップS13〜S16も、第1〜第5生産工程ラインに含めて並行に行ってもよい。
上述したように、一方端31Aが銅箔40を+20度の角度で切断した平面形状からなる負極タブ3(31)を用いた捲回体は、第1生産工程ラインで作製され(ステップS3,S8参照)、一方端32Aが銅箔40を+10度の角度で切断した平面形状からなる負極タブ3(32)を用いた捲回体は、第2生産工程ラインで作製され(ステップS4,S9参照)、一方端33Aが銅箔40を0度の角度で切断した平面形状からなる負極タブ3(33)を用いた捲回体は、第3生産工程ラインで作製され(ステップS5,S10参照)、一方端34Aが銅箔40を−10度の角度で切断した平面形状からなる負極タブ3(34)を用いた捲回体は、第4生産工程ラインで作製され(ステップS6,S11参照)、一方端35Aが銅箔40を−20度の角度で切断した平面形状からなる負極タブ3(35)を用いた捲回体は、第5生産工程ラインで作製される(ステップS7,S12参照)。このように、負極タブ3(31〜35)の一方端31A〜35Aは、それぞれ、第1〜第5生産工程ラインに対応して決定され、負極タブ3の長さ方向において幅が変化した平面形状または負極タブ3の長さ方向において幅が一定である平面形状を有する(図5の(a)〜(e)参照)。
その結果、完成したリチウムイオン二次電池10の負極タブ3(31〜35)の一方端31A〜35A(負極と溶接される側の端)の平面形状を認識できれば、その電池が第1〜第5生産工程ラインのいずれの生産工程ラインによって作製されたかを特定できる。
そして、負極タブ3(31〜35)は、外装体4よりもX線吸収能が高い銅等によって構成されているので、リチウムイオン二次電池10の厚み方向からX線をリチウムイオン二次電池10に照射し、リチウムイオン二次電池10を透過したX線によってリチウムイオン二次電池10の内部を観察するX線検査を行なうことにより、負極タブ3(31〜35)の一方端31A〜35Aの平面形状を認識できる。特許文献1では、突起および穿孔等を識別表示として正極タブ等に形成するが、正極タブ等が缶と同じ材料によって構成されている場合、X線検査によって識別表示を認識することが困難な可能性がある。
また、従来のリチウムイオン二次電池を製造する工程数を変更することなく、負極タブ3となるテープ状の銅箔40を切断するときの切断角度を変えるだけで、負極タブ3(31〜35)の一方端31A〜35Aの形状を第1〜第5生産工程ラインに対応して決定された平面形状に設定できる。従って、リチウムイオン二次電池を製造するときの工程数を増加させることなく、電池を作製した生産工程ラインを特定できるように負極タブ3(31〜35)の一方端31A〜35Aの平面形状を変えることができる。
即ち、特許文献1においては、正極タブを正極に溶接し、負極タブを負極に溶接した後に、正極タブ等および/または負極タブ等に識別表示を付する工程を増やす必要があるが、この発明の実施の形態においては、特許文献1におけるような識別表示を付する工程が不要であり、従来の銅箔40を切断する工程において、負極タブ3(31〜35)の一方端31A〜35Aの平面形状を各生産工程ラインに対応させて、角度を変えるだけでよい。
図9は、捲回体1の長さ方向における断面図である。また、図10は、リチウムイオン二次電池10の一部の側面図である。図9を参照して、負極12は、幅方向DR3における両端の各々が正極11よりも0.5mmだけ突出しており、長さ方向(図9の紙面に垂直な方向)における両端の各々が正極11よりも2mm程度突出している。即ち、負極12は、幅方向DR3において1mmだけ正極11よりも広く、長さ方向において4mmだけ正極11よりも長い。
そして、正常な捲回体1においては、正極11は、その幅方向DR3において負極12内に配置されている(図9の(a)参照)。
一方、不正常な捲回体1においては、正極11は、その幅方向DR3において負極12内に配置されていない(図9の(b)参照)。その結果、正極11の一部11Aにリチウムが溜まり、発火の原因になる。
前記正極11および負極12の配置は、捲回機における捲回不良が原因で不正常になることが多い。そこで、X線検査機を用いて正極11および負極12の配置と、捲回体1における負極タブ3の一方端の切断角度とを確認し、配置の不正常が検出された場合、負極タブ3の一方端の切断角度が+20度であると、第1生産工程ラインにおける捲回機Aによる捲回が原因で正極11および負極12の不正常な配置が生じたことを識別できる。その判別された切断角度が+20度以外である場合も同様である。
図10を参照して、蓋体5が外装体4の開口部に嵌合すると、正極タブ2および負極タブ3は、捲回体1と蓋体5との間で折り曲げられている。そして、正常である場合、折り曲げられた正極タブ2および負極タブ3は、外装体4と接触していない(図10の(a)参照)。
一方、不正常である場合、折り曲げられた正極タブ2および/または折り曲げられた負極タブ3は、外装体4に接触している(図10の(b)参照)。
正極タブ2および/または負極タブ3の外装体4への接触も捲回機における捲回不良が原因で生じることが多い。そこで、X線検査機を用いて正極タブ2、および負極タブ3の外装体4への接触と、生産工程ラインにおける負極タブ3の一方端の切断角度とを確認し、不正常が検出された場合、負極タブ3の一方端の切断角度が−20度であると、第5生産工程ラインにおける捲回機Aにおける捲回が原因で正極11および負極12の不正常な配置が生じたことを識別できる。その判別された切断角度が−20度以外である場合も同様である。
このように、X線検査機を用いて、例えば、上記の2項目について検査し、その検査結果が不正常である場合、不正常な結果が得られた捲回体1の負極タブ3の一方端の切断角度を判別すれば、不正常な電池がいずれの生産工程ラインで作製されたものであるかを判別することができる。即ち、トレーサビリティを向上できる。
負極タブ3の一方端の切断角度を20度、10度、0度、−10度および−20度と変化させた場合について、負極タブ3の一方端のX線写真から負極タブ3の一方端の切断角度を判別する実験を行った結果について説明する。
5人のX線作業担当者が各1回ずつ実験を行った結果、全員が、100%、20度、10度、0度、−10度および−20度の切断角度を判別可能であった。
また、負極タブ3の一方端の切断角度を+10度、+5度、0度、−5度および−10度と変化させた場合について、負極タブ3の一方端のX線写真から負極タブ3の一方端の切断角度を判別する実験を行った結果について説明する。
5人のX線作業担当者が各1回ずつ実験を行った結果、90%程度の正答率であった。従って、負極タブ3の一方端の切断角度を変化させる場合、切断角度は、10度単位以上で変化させることが好ましい。
負極タブ3の一方端の切断角度を絶対値で30度以上になるように+側または−側へ10度づつ変化させた場合、切断角度が+側または−側に大きくなるに従って、負極タブ3の負極への溶接面積が小さくなるので、溶接不良を起こすことが判明した。実験の結果、切断角度は、±60度まで(+60度、+50度、+40度、+30度、+20度、+10度、0度、−10度、−20度、−30度、−40度、−50度、および−60度)が好適であることを確認した。
上述したように、リチウムイオン二次電池10は、作製された生産工程ラインに対応して決定された切断角度で切断された一方端を有する負極タブ3を備えるので、リチウムイオン二次電池10の完成後にリチウムイオン二次電池10をX線検査機で検査し、正極11および負極12の配置に関する不具合、または正極タブ2および/または負極タブ3の外装体4への接触の不具合が検出されると、その不具合が検出されたリチウムイオン二次電池10の負極タブ3の一方端の切断角度を識別することによって、その電池を作製した生産工程ラインの判別が可能となる。その結果、トレーサビリティを向上できる。
上記においては、負極タブ3の一方端の切断角度を各生産工程ラインに対応付けて変化させると説明したが、この発明の実施の形態においては、これに限らず、正極タブ2の一方端の切断角度を各生産工程ラインに対応付けて変化させてもよい。
また、この発明の実施の形態においては、正極タブ2の一方端および負極タブ3の一方端の両方の切断角度を各生産工程ラインに対応付けて変化させてもよい。そして、一般的には、正極タブ2の一方端および負極タブ3の一方端の少なくとも1つの切断角度が各生産工程ラインに対応付けて変化されていればよい。そして、各生産工程ラインとの対応付けとは他の目的で、正極タブ2および負極タブ3のいずれか一方の一方端を切断角度を変えて切断してもよい。
以上、正極タブ2および/または負極タブ3の一方端の形状を少なくとも2角とし、更に切断角度を変化させて正極タブ2および/または負極タブ3の一方端の形状を識別する例について説明したが、この発明の実施の形態においては、これに限らず、正極タブ2および/または負極タブ3の一方端の平面形状を他の幾何学形状を用いて各生産工程ラインに対応付けて変化させてもよい。
この場合、正極タブ2および/または負極タブ3の一方端は、円弧状あるいは3角以上(階段状、および三角波状等)の任意の形状からなる切断形状を有していればよい。具体的には、切断工程や識別工程における作業の容易性や信頼性を確保するなどの意味で、前記2角形状と円弧状の他に、3角形状、4角形状、5角形状が挙げられる。
つまり、この発明の実施の形態においては、正極タブ2および/または負極タブ3の一方端は、正極タブ2および/または負極タブ3の長さ方向における幅が変化した平面形状であれば、どのような平面形状からなっていてもよい。
更に、上記においては、電池を第1〜第5生産工程ラインを用いて作製すると説明したが、この発明の実施の形態においては、これに限らず、電池は、2つ以上の生産工程ラインを用いて作製されていればよく、6つ以上の生産工程ラインを用いて作製されてもよい。
更に、上記においては、正極11および負極12の配置に関する不具合と、正極タブ2および/または負極タブ3の外装体4への接触の不具合との2項目をX線検査機を用いて検査すると説明したが、これらは、製造工程における不具合調査の一例を示したものであり、この発明の実施の形態においては、これらに限らず、この発明は、非破壊検査をすることが好ましい他の検査についても好適に適用される。
上記においては、外装体4が角柱形状である角形のリチウムイオン二次電池10を例にして、負極タブ3の一方端の切断角度を各生産工程ラインに対応付けて変化させる例を説明したが、この発明の実施の形態においては、これに限らず、この発明は、外装体が円柱形状である円筒形のリチウムイオン二次電池、または外装体がラミネート材によって構成されたラミネート形のリチウムイオン二次電池にも好適に適用される。
円筒形のリチウムイオン二次電池においては、外装体は、鉄またはニッケルを含む金属材料で構成され、負極タブは、鉄またはニッケルよりもX線吸収能が高い金属材料で構成され、正極タブは、アルミニウムで構成される。従って、負極タブと同様に、正極タブの一方端の切断角度を各生産工程ラインに対応付けて変化させてもよいし、負極タブの代わりに正極タブのみの一方端の切断角度を各生産工程ラインに対応付けて変化させてもよい。この場合、正極タブについてX線検査機による非破壊の検査を行なうとき、正極タブは、外装体よりもX線吸収能が高い部材で構成されることが望ましい。
なお、一般の円筒形のリチウムイオン二次電池は、外装体が円柱形状であるので、捲回体もそれにならって外見が円柱形状となるが、捲回体の形状の違いによって本発明の実施に支障をきたす要因はない。
ラミネート形のリチウムイオン二次電池は、正極と負極とをセパレータを介して捲回した捲回体をラミネートフィルムによってシールした構造、または正極と負極とをセパレータを介して積層した積層体をラミネートフィルムによってシールした構造からなる。そして、捲回体または積層体の正極には、正極タブが溶接され、捲回体または積層体の負極には、負極タブが溶接される。ラミネート形のリチウムイオン二次電池においては、正極タブは、アルミニウムまたはアルミニウム合金からなり、負極タブは、ニッケル、ニッケルメッキした銅、およびニッケルと銅とのクラッド材のいずれか(即ち、銅またはニッケルを少なくとも含む金属材料)からなり、ラミネートフィルムは、アルミニウムまたは溶融性樹脂からなる。
そして、ラミネート形のリチウムイオン二次電池が捲回体を備える場合、捲回体の構造は、上述した捲回体1の構造と概ね同じである。正極タブおよび負極タブの正極および負極タブへの接続方法、および接続位置等も上述した角形のリチウムイオン二次電池10とほぼ同様であり、正極タブおよび/または負極タブを外装体よりもX線吸収能が高い材料で構成することによって、本発明を好適に実施できる。
一方、ラミネート形のリチウムイオン二次電池が積層体を備える場合、積層体は、正極と負極とをセパレータを介して積層した構造からなる。そして、正極タブは、正極を構成する正極集電体のうち、正極活物質層が形成されていない部分に溶接され、負極タブは、負極を構成する負極集電体のうち、負極活物質層が形成されていない部分に溶接される。また、正極、負極およびセパレータは、積層装置によって積層される。従って、正極タブおよび負極タブの少なくとも一方をその積層装置を含む生産工程ラインに応じて決定された切断角度で切断することによって、ラミネート形のリチウムイオン二次電池の完成後に、正極タブおよび負極タブの少なくとも一方の平面形状をX線検査機によって認識すれば、その電池を作製した生産工程ラインを特定できる。この場合、正極タブおよび負極タブの少なくとも一方を外装体(=ラミネート材)よりもX線吸収能が高い部材で構成することが好ましい。
そして、円筒形のリチウムイオン二次電池またはラミネート形のリチウムイオン二次電池においても、正極および負極の配置に関する不具合と、正極タブおよび/または負極タブの外装体への接触の不具合との2項目の少なくとも1つをX線検査機を用いた検査の対象としてもよく、非破壊検査をすることが好ましい他の検査をX線検査機を用いた検査の対象としてもよい。
上述したように、角形のリチウムイオン二次電池、円筒形のリチウムイオン二次電池およびラミネート形のリチウムイオン二次電池においては、正極タブおよび負極タブの少なくとも一方の一方端は、各電池を作製した生産工程ラインに応じて決定された平面形状からなり、正極タブおよび負極タブの少なくとも一方は、外装体よりもX線吸収能が高い部材で構成されることが好ましい。
しかし、角形のリチウムイオン二次電池、円筒形のリチウムイオン二次電池およびラミネート形のリチウムイオン二次電池において、X線CTによって、前記リチウムイオン二次電池等を厚み方向に検査する場合、正極タブおよび負極タブの少なくとも一方は、外装体よりもX線吸収能が高い部材で構成されていなくてもよく、外装体と同じ材料で構成されていてもよい。X線CTによって、リチウムイオン二次電池等を厚み方向に検査した場合、電池の厚み方向で切断したときの断面画像が得られるので、正極タブおよび負極タブの少なくとも一方が外装体よりもX線吸収能の高い部材で構成されていなくても、正極タブおよび負極タブの一方端の平面形状を認識できるからである。
従って、この発明の実施の形態によるリチウムイオン二次電池は、外装体と、外装体内に収納され、正極および負極がセパレータを介して配置された発電要素と、発電要素の正極に溶接された正極タブと、発電要素の負極に溶接された負極タブとを備え、正極タブおよび負極タブの少なくとも一方の一方端は、円弧形状あるいは少なくとも2角を有する幾何学形状であり、あるいは切断角度を変化させた形状であり、それら形状は、平面形状からなるものであればよい。

Claims (6)

  1. 正極タブの一方端が接続された正極と、負極タブの一方端が接続された負極とをセパレータを介して配置した発電要素と、外装体とを少なくとも備え、複数の生産工程から構成される生産工程ラインを経て作製されるリチウムイオン二次電池であって、
    前記発電要素は、前記正極タブおよび負極タブの切断工程と、前記正極タブおよび負極タブのそれぞれ前記正極および前記負極への接続工程と、前記正極と前記負極とをセパレータを介して配置する工程とから作製されており、
    前記生産工程ラインは、少なくとも2つ以上あり、かつ前記発電要素を作製する工程を少なくとも含み、
    前記正極および負極にそれぞれ接続された前記正極タブおよび前記負極タブの一方端のうち、前記正極タブおよび前記負極タブの少なくとも一方の一方端は、前記生産工程ライン毎に対応して異なった平面形状からなり、
    前記平面形状は、前記負極タブの幅方向を基準とし、かつ、複数の生産工程から構成される生産工程ラインに対応して決定された切断角度で前記負極タブを直線状に切断した形状からなる、リチウムイオン二次電池。
  2. 前記正極タブおよび前記負極タブの少なくとも一方は、前記外装体よりもX線吸収能が高い部材で構成されている、請求項1に記載のリチウムイオン二次電池。
  3. 前記外装体は、アルミニウムまたはアルミニウム合金で構成されており、
    前記負極タブは、銅、ニッケル、および銅とニッケルとのクラッド材の中から選択される材料で構成されている、請求項1または請求項2に記載のリチウムイオン二次電池。
  4. 前記外装体は、鉄またはニッケルを含む金属材料で構成されており、
    前記負極タブは、鉄またはニッケルよりもX線吸収能が高い金属材料で構成されている、請求項1または請求項2に記載のリチウムイオン二次電池。
  5. 前記外装体は、アルミニウムおよび溶融性樹脂を含むラミネート体で構成されており、
    前記負極タブは、銅またはニッケルを少なくとも含む金属材料で構成されている、請求項1または請求項2に記載のリチウムイオン二次電池。
  6. 記平面形状は、+60度、+50度、+40度、+30度、+20度、+10度、0度、−10度、−20度、−30度、−40度、−50度、および−60度のいずれかの切断角度で前記負極タブを直線状に切断した形状からなる、請求項1から請求項5のいずれか1項に記載のリチウムイオン二次電池。
JP2011542389A 2010-03-08 2011-02-28 リチウムイオン二次電池 Active JP5354755B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011542389A JP5354755B2 (ja) 2010-03-08 2011-02-28 リチウムイオン二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010050744 2010-03-08
JP2010050744 2010-03-08
PCT/JP2011/054450 WO2011111556A1 (ja) 2010-03-08 2011-02-28 リチウムイオン二次電池
JP2011542389A JP5354755B2 (ja) 2010-03-08 2011-02-28 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JPWO2011111556A1 JPWO2011111556A1 (ja) 2013-06-27
JP5354755B2 true JP5354755B2 (ja) 2013-11-27

Family

ID=44563363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011542389A Active JP5354755B2 (ja) 2010-03-08 2011-02-28 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US8876917B2 (ja)
JP (1) JP5354755B2 (ja)
KR (1) KR101292252B1 (ja)
CN (1) CN102473890B (ja)
WO (1) WO2011111556A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137303B (zh) * 2012-04-16 2017-08-08 株式会社Lg 化学 包含具有不同焊接部形状的正极和负极的电极组件及包含所述电极组件的二次电池
WO2013157827A1 (ko) * 2012-04-16 2013-10-24 주식회사 엘지화학 서로 다른 형상의 양극과 음극을 포함하는 전극조립체 및 이차전지
KR101563578B1 (ko) * 2013-09-05 2015-10-27 주식회사 엘지화학 금속 판재를 사용한 각형 전지셀의 제조방법
KR102143624B1 (ko) * 2014-01-08 2020-08-11 삼성에스디아이 주식회사 이차 전지
KR102394689B1 (ko) * 2014-11-24 2022-05-06 삼성에스디아이 주식회사 가요성 이차 전지
KR102510882B1 (ko) * 2015-07-16 2023-03-16 삼성에스디아이 주식회사 이차전지의 제조방법
JP6700525B2 (ja) * 2016-06-15 2020-05-27 エリーパワー株式会社 タブリードの製造方法及びタブリードを用いた電池の製造方法
KR102093386B1 (ko) 2016-06-22 2020-03-25 주식회사 엘지화학 이차 전지 및 이차 전지의 전류 차단 방법
KR102190447B1 (ko) * 2019-05-14 2020-12-14 주식회사 뷰웍스 전수 검사 자동화를 위한 배터리 셀 검사 장치 및 검사 방법
JP7466362B2 (ja) * 2020-04-13 2024-04-12 東芝Itコントロールシステム株式会社 非破壊検査装置
CN112510303B (zh) * 2020-12-02 2023-03-17 新余赣锋电子有限公司 一种扣式电池及其电极组件连接方法
CN112635922B (zh) * 2020-12-16 2022-03-08 宁德新能源科技有限公司 电芯、电池及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188469U (ja) * 1984-05-25 1985-12-13 松下電器産業株式会社 端子付電池
JPH1064525A (ja) * 1996-08-22 1998-03-06 Dainippon Printing Co Ltd 非水電解液二次電池用電極板及びその製造方法
JP2003031186A (ja) * 2001-07-18 2003-01-31 Sony Corp 電池及び電池に対するマーキング方法
JP2006040875A (ja) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウム二次電池
JP2007026844A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd 電池
JP2008204686A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd 電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532799B2 (ja) * 1992-07-16 1996-09-11 富士電気化学株式会社 筒形電池の溶接ワ―ク配置状態判定方法
JP2000090958A (ja) * 1998-09-14 2000-03-31 Fuji Photo Film Co Ltd 電池の検査装置及び検査方法
JP4095912B2 (ja) 2003-02-07 2008-06-04 三菱化学株式会社 平板積層型電池及び平板積層型電池の製造方法
KR100561303B1 (ko) * 2004-09-22 2006-03-15 삼성에스디아이 주식회사 파우치형 리튬 이차전지
ATE415712T1 (de) * 2004-09-22 2008-12-15 Samsung Sdi Co Ltd Kompositmaterialband für sekundäre lithiumbatterien und sekundäre lithiumbatterien dieses verwendend
JP4954468B2 (ja) 2004-12-10 2012-06-13 日立マクセルエナジー株式会社 捲回電極およびその製造方法、並びに電池の製造方法
CN2849999Y (zh) * 2005-12-20 2006-12-20 比亚迪股份有限公司 锂离子电池
KR100770091B1 (ko) * 2005-12-29 2007-10-24 삼성에스디아이 주식회사 원통형 리튬 이차전지
JP2007335352A (ja) * 2006-06-19 2007-12-27 Sony Corp 非水電解質二次電池及び電池制御システム
JP2010033949A (ja) * 2008-07-30 2010-02-12 Panasonic Corp 電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188469U (ja) * 1984-05-25 1985-12-13 松下電器産業株式会社 端子付電池
JPH1064525A (ja) * 1996-08-22 1998-03-06 Dainippon Printing Co Ltd 非水電解液二次電池用電極板及びその製造方法
JP2003031186A (ja) * 2001-07-18 2003-01-31 Sony Corp 電池及び電池に対するマーキング方法
JP2006040875A (ja) * 2004-07-29 2006-02-09 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウム二次電池
JP2007026844A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd 電池
JP2008204686A (ja) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd 電池

Also Published As

Publication number Publication date
CN102473890B (zh) 2014-05-28
CN102473890A (zh) 2012-05-23
US8876917B2 (en) 2014-11-04
WO2011111556A1 (ja) 2011-09-15
KR101292252B1 (ko) 2013-08-01
KR20120022994A (ko) 2012-03-12
JPWO2011111556A1 (ja) 2013-06-27
US20120121968A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5354755B2 (ja) リチウムイオン二次電池
JP5954674B2 (ja) 電池および電池の製造方法
JP4586820B2 (ja) 巻回型非水電解質二次電池
WO2018180828A1 (ja) 円筒形電池
JPWO2006049167A1 (ja) 電池およびセンターピン
JP6961103B2 (ja) 電池及び電池パック
JP5554181B2 (ja) 非水電解質二次電池
JP2013254561A (ja) 円筒形非水電解質二次電池
KR20100114515A (ko) 전지
JP7247353B2 (ja) 電極、電池、及び電池パック
JP2011070932A (ja) リチウム二次電池
JP2012009308A (ja) 非水電解質二次電池
JP2017162633A (ja) 非水二次電池
JP5869354B2 (ja) 角形リチウムイオン二次電池用外装缶および角形リチウムイオン二次電池
JP2012038582A (ja) 電池パック
WO2020209176A1 (ja) 電池
JP6908073B2 (ja) 非水電解液二次電池
JP2012190711A (ja) 非水電解液二次電池
JP2017130320A (ja) 二次電池
JP2012195122A (ja) 非水電解液二次電池
JP7350761B2 (ja) 非水電解質二次電池、その製造方法および非水電解質二次電池システム
JP5776948B2 (ja) リチウム二次電池およびその製造方法
WO2022019078A1 (ja) 二次電池
WO2022138243A1 (ja) 電池
JPH06333552A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5354755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250