JP5341580B2 - 燃料電池スタック - Google Patents

燃料電池スタック Download PDF

Info

Publication number
JP5341580B2
JP5341580B2 JP2009061850A JP2009061850A JP5341580B2 JP 5341580 B2 JP5341580 B2 JP 5341580B2 JP 2009061850 A JP2009061850 A JP 2009061850A JP 2009061850 A JP2009061850 A JP 2009061850A JP 5341580 B2 JP5341580 B2 JP 5341580B2
Authority
JP
Japan
Prior art keywords
electrode structure
electrolyte
flow path
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009061850A
Other languages
English (en)
Other versions
JP2010218771A (ja
Inventor
堅太郎 石田
健 牛尾
江利 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009061850A priority Critical patent/JP5341580B2/ja
Publication of JP2010218771A publication Critical patent/JP2010218771A/ja
Application granted granted Critical
Publication of JP5341580B2 publication Critical patent/JP5341580B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電解質の両側に電極が配設される第1及び第2電解質・電極構造体を備え、第1セパレータ、前記第1電解質・電極構造体、中間セパレータ、前記第2電解質・電極構造体及び第2セパレータの順に積層される燃料電池ユニットが複数積層される燃料電池スタックに関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持した単位セルを備えている。この種の燃料電池は、通常、所定の数の単位セルを積層することにより、燃料電池スタックとして使用されている。
上記の燃料電池では、セパレータの面内に、アノード側電極に対向して燃料ガスを流すための燃料ガス流路と、カソード側電極に対向して酸化剤ガスを流すための酸化剤ガス流路とが設けられている。また、セパレータ間には、冷却媒体を流すための冷却媒体流路が、前記セパレータの面方向に沿って設けられている。
ところで、燃料電池スタックでは、所定数の単位セル間に冷却媒体流路が形成される、所謂、間引き冷却構造を採用する場合がある。積層方向の寸法が有効に短尺化され、特に多数の単位セルが積層される燃料電池スタックでは、容易に小型化されるからである。
この種の間引き冷却構造を有する燃料電池は、例えば、図11に示す特許文献1に開示されているように、セパレータ1、セル2、セパレータ3、セル2及びセパレータ4が積層されている。
セル2は、固体高分子電解質膜2aの両面に燃料極2b及び空気極2cが配設されている。セパレータ1と一方のセル2との間には、燃料ガス通路5aが形成され、セパレータ3と前記一方のセル2との間には、酸化剤ガス通路6aが形成されている。セパレータ3と他方のセル2との間には、燃料ガス通路5bが形成されるとともに、セパレータ4と前記他方のセル2との間には、酸化剤ガス通路6bが形成されている。互いに隣接するセパレータ1、4間には、冷却水通路7が形成されている。
特開2002−289223号公報
上記の燃料電池では、特に、冷却水通路7に接する酸化剤ガス通路6bが、前記冷却水通路7に接する燃料ガス通路5aよりも高温になっている。一方、冷却水通路7に接しない酸化剤ガス通路6aは、前記冷却水通路7に接しない燃料ガス通路5bよりも高温になっている。このため、セル2間では、発電中の温度環境が異なってしまい、前記発電中に発生する結露水量が均一化されず、安定した発電が行われないという問題がある。
本発明はこの種の問題を解決するものであり、簡単且つ経済的な構成で、互いに隣接する燃料電池間で、発電中の温度環境を一定に維持し、効率的な発電を確実に行うことが可能な燃料電池スタックを提供することを目的とする。
本発明は、電解質の両側に電極が配設される第1及び第2電解質・電極構造体を備え、第1セパレータ、前記第1電解質・電極構造体、中間セパレータ、前記第2電解質・電極構造体及び第2セパレータの順に積層される燃料電池ユニットが複数積層される燃料電池スタックに関するものである。
この燃料電池スタックは、第1及び第2電解質・電極構造体間には、前記第1電解質・電極構造体に一方の反応ガスを供給する第1反応ガス流路と、前記第2電解質・電極構造体に他方の反応ガスを供給する第2反応ガス流路とが、電極面方向に沿って交互に設けられるとともに、前記第2反応ガス流路と前記第1電解質・電極構造体との間には、冷却媒体流路が形成されている。
また、中間セパレータは、第1及び第2金属プレートを備え、前記第1金属プレートは、第1電解質・電極構造体から離間して第1反応ガス流路を形成する第1凹部と前記第1電解質・電極構造体側に突出する第1凸部とを交互に設ける一方、前記第2金属プレートは、第2電解質・電極構造体から離間して第2反応ガス流路を形成する第2凹部と前記第2電解質・電極構造体側に突出する第2凸部とを交互に設け、且つ前記第2凹部の裏面側が前記第1金属プレートの前記第1凸部の裏面側に間隙を有して配置されることにより、前記冷却媒体流路が形成されることが好ましい。
さらに、第1金属プレートは、第1凸部が第1電解質・電極構造体に接する一方、第1凹部の裏面が、第2電解質・電極構造体に接する第2金属プレートの第2凸部の裏面に接することが好ましい。
さらにまた、冷却媒体流路は、第1金属プレートの第1電解質・電極構造体に接する第1凸部の冷却媒体接触面積が、第2金属プレートの第2電解質・電極構造体に接する第2凸部の裏面の冷却媒体接触面積とは異なることが好ましい。
また、第1反応ガス流路は、酸化剤ガス流路である一方、第2反応ガス流路は、燃料ガス流路であり、第1電解質・電極構造体に接する第1凸部の冷却媒体接触面積は、第2電解質・電極構造体に接する第2凸部の裏面の冷却媒体接触面積より大きく設定されることが好ましい。
さらに、中間セパレータは、第1金属プレート及び第2金属プレートにシール部材が一体成形されて構成されることが好ましい。
本発明によれば、第1及び第2電解質・電極構造体間には、前記第1電解質・電極構造体に一方の反応ガスを供給する第1反応ガス流路と、前記第2電解質・電極構造体に他方の反応ガスを供給する第2反応ガス流路とが、電極面方向に沿って交互に設けられるとともに、前記第2反応ガス流路と前記第1電解質・電極構造体との間には、冷却媒体流路が形成されている。
このため、第1反応ガス流路と第2反応ガス流路とが、積層方向に重なり合う構成に比べて、前記積層方向の寸法が良好に短尺化される。これにより、間引き冷却構造と同様に、積層方向の寸法が有効に短尺化され、特に多数の単位セルが積層される燃料電池スタックでは、小型化が容易に図られる。
しかも、第1電解質・電極構造体と第2電解質・電極構造体との間には、冷却媒体流路が形成されている。従って、間引き冷却構造に比べて冷却性能が良好に向上する。これにより、簡単且つ経済的な構成で、互いに隣接する燃料電池ユニット間で、発電中の温度環境を一定に維持し、効率的な発電を確実に行うことが可能になる。
本発明の第1の実施形態に係る燃料電池スタックを構成する燃料電池ユニットの要部分解斜視説明図である。 前記燃料電池スタックの、図1中、II−II線断面説明図である。 前記燃料電池ユニットを構成する中間セパレータの正面説明図である。 前記燃料電池スタックの、図1中、IV−IV線断面説明図である。 前記燃料電池スタックの、図1中、V−V線断面説明図である。 前記燃料電池スタックの、図1中、VI−VI線断面説明図である。 本発明の第2の実施形態に係る燃料電池スタックを構成する燃料電池ユニットの要部分解斜視説明図である。 前記燃料電池スタックの、図7中、VIII−VIII線断面説明図である。 前記燃料電池ユニットを構成する中間セパレータの正面説明図である。 前記燃料電池スタックの、図7中、X−X線断面説明図である。 特許文献1に開示されている間引き冷却構造を有する燃料電池の説明図である。
図1及び図2に示すように、本発明の第1の実施形態に係る燃料電池スタック10は、複数の燃料電池ユニット12を水平方向(矢印A方向)に沿って互いに積層して構成される。燃料電池ユニット12は、アノード側セパレータ(第1セパレータ)14、第1電解質膜・電極構造体(電解質・電極構造体)(MEA)16a、中間セパレータ18、第2電解質膜・電極構造体16b及びカソード側セパレータ(第2セパレータ)20を設ける。
第1及び第2電解質膜・電極構造体16a、16bは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜22と、前記固体高分子電解質膜22を挟持するアノード側電極24及びカソード側電極26とを備える。アノード側電極24及びカソード側電極26は、固体高分子電解質膜22よりも小さな表面積を有する。
アノード側電極24及びカソード側電極26は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成される電極触媒層(図示せず)とを有する。電極触媒層は、固体高分子電解質膜22の両面に形成される。
図1に示すように、燃料電池ユニット12の水平方向(矢印B方向)の一端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔30a、冷却媒体を排出するための冷却媒体出口連通孔32b、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔34bが設けられる。
燃料電池ユニット12の水平方向(矢印B方向)の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔34a、冷却媒体を供給するための冷却媒体入口連通孔32a、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔30bが設けられる。
アノード側セパレータ14、中間セパレータ(後述するように、2枚の金属プレートからなる)18及びカソード側セパレータ20は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板により構成される。アノード側セパレータ14、中間セパレータ18及びカソード側セパレータ20は、金属製薄板を波形状にプレス加工することにより、断面凹凸形状を有する。なお、アノード側セパレータ14、中間セパレータ18及びカソード側セパレータ20は、例えば、カーボンセパレータにより構成してもよい。
アノード側セパレータ14の第1電解質膜・電極構造体16aに向かう面14aには、例えば、矢印B方向に延在する第1燃料ガス流路36が設けられる。第1燃料ガス流路36は、凹部(流路溝)36aと凸部36bとを、矢印C方向に交互に設けることにより形成される(図2参照)。第1燃料ガス流路36は、燃料ガス入口連通孔34a及び燃料ガス出口連通孔34bと連通する。
アノード側セパレータ14の面14bには、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとを連通する第1冷却媒体流路38の一部が形成される。
中間セパレータ18は、図2に示すように、第1金属プレート40及び第2金属プレート42を接合して構成される。第1金属プレート40は、第1電解質膜・電極構造体16a側に配置される一方、第2金属プレート42は、第2電解質膜・電極構造体16b側に配置され、互いに溶接等によって一体化される。
図2及び図3に示すように、第1金属プレート40には、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとを連通する第1酸化剤ガス流路44が形成される。第1酸化剤ガス流路44は、第1電解質膜・電極構造体16aから離間する第1凹部(流路溝)44aと、前記第1電解質膜・電極構造体16aに接する第1凸部44bとを、矢印C方向に交互に設ける。
第2金属プレート42は、図1及び図2に示すように、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する第2燃料ガス流路46を設ける。第2燃料ガス流路46は、第2電解質膜・電極構造体16bから離間する第2凹部(流路溝)46aと、前記第2電解質膜・電極構造体16bに接する第2凸部46bとを、矢印C方向に交互に設ける。
図2に示すように、第2燃料ガス流路46を構成する第2凹部46aは、第1酸化剤ガス流路44を構成する第1凹部44aよりも積層方向(矢印A方向)の深さが小さく設定される。この第2凹部46aの裏面側は、第1金属プレート40の第1凸部44bの裏面側に所定の隙間Sを設けて配置される。
第1金属プレート40の第1凹部44aの裏面は、第2電解質膜・電極構造体16bに接する第2金属プレート42の第2凸部46bの裏面に接触している。第1凸部44bの裏面側と第2凹部46aの裏面側との間には、第2冷却媒体流路48が形成される。
第2冷却媒体流路48では、第1金属プレート40の第1電解質膜・電極構造体16aに接する第1凸部44bの冷却媒体接触面積(範囲H2の接触面積)は、第2金属プレート42の第2電解質膜・電極構造体16bに接する第2凸部46bの冷却媒体接触面積(範囲H1×2に対応する接触面積)より大きく設定される。
図1及び図4に示すように、冷却媒体入口連通孔32aと第2冷却媒体流路48の入口側との間には、第1金属プレート40と第2金属プレート42とを互いに所定の間隔だけ離間させることにより、入口側連通路50aが設けられる。同様に、冷却媒体出口連通孔32bと第2冷却媒体流路48の出口側との間には、第1金属プレート40と第2金属プレート42とを互いに所定の間隔だけ離間させることにより、出口側連通路50bが設けられる(図3参照)。
図1に示すように、カソード側セパレータ20の第2電解質膜・電極構造体16bに向かう面20aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとを連通する第2酸化剤ガス流路52が形成される。第2酸化剤ガス流路52は、凹部(流路溝)52aと凸部52bとを、矢印C方向に交互に設けることにより形成される。
図1及び図2に示すように、アノード側セパレータ14の面14a、14bには、このアノード側セパレータ14の外周端縁部を周回して第1シール部材54が一体成形される。図1〜図4に示すように、中間セパレータ18を構成する第1金属プレート40及び第2金属プレート42には、これらの外周端縁部を周回して第2シール部材56が一体成形される。カソード側セパレータ20の面20a、20bには、このカソード側セパレータ20の外周端縁部を周回して第3シール部材58が一体成形される(図1及び図2参照)。
燃料電池ユニット12同士が互いに積層されることにより、一方の燃料電池ユニット12を構成するアノード側セパレータ14と、他方の燃料電池ユニット12を構成するカソード側セパレータ20との間には、矢印B方向に延在する第1冷却媒体流路38が形成される(図1及び図2参照)。
このように構成される燃料電池スタック10の動作について、以下に説明する。
先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
このため、酸化剤ガスは、図1及び図5に示すように、酸化剤ガス入口連通孔30aから中間セパレータ18の第1酸化剤ガス流路44及びカソード側セパレータ20の第2酸化剤ガス流路52に導入される。この酸化剤ガスは、第1酸化剤ガス流路44に沿って矢印B方向(水平方向)に移動し、第1電解質膜・電極構造体16aのカソード側電極26に供給されるとともに、第2酸化剤ガス流路52に沿って矢印B方向に移動し、第2電解質膜・電極構造体16bのカソード側電極26に供給される。
一方、燃料ガスは、図1及び図6に示すように、燃料ガス入口連通孔34aからアノード側セパレータ14の第1燃料ガス流路36に沿って矢印B方向に移動し、第1電解質膜・電極構造体16aのアノード側電極24に供給される。同様に、燃料ガスは、燃料ガス入口連通孔34aから中間セパレータ18の第2燃料ガス流路46に沿って矢印B方向に移動し、第2電解質膜・電極構造体16bのアノード側電極24に供給される。
これにより、第1及び第2電解質膜・電極構造体16a、16bでは、カソード側電極26に供給される酸化剤ガスと、アノード側電極24に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。
次いで、第1及び第2電解質膜・電極構造体16a、16bの各カソード側電極26に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。
第1及び第2電解質膜・電極構造体16a、16bでは、アノード側電極24に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。
一方、冷却媒体入口連通孔32aに供給された冷却媒体の一部は、一方の燃料電池ユニット12を構成するアノード側セパレータ14と、他方の燃料電池ユニット12を構成するカソード側セパレータ20との間に形成された第1冷却媒体流路38に導入された後、矢印B方向に流通する。
冷却媒体入口連通孔32aに供給された冷却媒体の他の一部は、中間セパレータ18を構成する第1金属プレート40と第2金属プレート42との間に形成された入口側連通路50aに導入される。
図4に示すように、入口側連通路50aは、中間セパレータ18内に形成された第2冷却媒体流路48に連通しており、冷却媒体は、前記第2冷却媒体流路48に沿って矢印B方向に流通する。従って、第1及び第2冷却媒体流路38、48に沿って移動する冷却媒体により、第1及び第2電解質膜・電極構造体16a、16bが冷却される。
第1冷却媒体流路38を流動した冷却媒体は、冷却媒体出口連通孔32bに排出されるとともに、第2冷却媒体流路48を流動した冷却媒体は、出口側連通路50bを通って前記冷却媒体出口連通孔32bに排出される。
この場合、第1の実施形態では、第1及び第2電解質膜・電極構造体16a、16b間には、前記第1電解質膜・電極構造体16aに酸化剤ガスを供給する第1酸化剤ガス流路44と、前記第2電解質膜・電極構造体16bに燃料ガスを供給する第2燃料ガス流路46とが、電極面方向に沿って交互に設けられるとともに、前記第2燃料ガス流路46と前記第1電解質膜・電極構造体16aとの間には、第2冷却媒体流路48が形成されている。
このため、各燃料電池ユニット12間のように、第2酸化剤ガス流路52と第1燃料ガス流路36とが積層方向(矢印A方向)に重なり合う構成に比べ、前記積層方向の寸法が良好に短尺化される。
これにより、燃料電池ユニット12では、所謂、間引き冷却構造と同様に、積層方向の寸法が有効に短尺化される。特に、多数の燃料電池ユニット12が積層される燃料電池スタック10では、小型化が容易に図られるという効果が得られる。
しかも、第1電解質膜・電極構造体16aと第2電解質膜・電極構造体16bとの間には、第2冷却媒体流路48が形成されている。従って、第1及び第2電解質膜・電極構造体16a、16b間に間引き冷却構造を用いる場合に比べ、冷却性能が有効に向上する。
さらに、第2冷却媒体流路48では、第1電解質膜・電極構造体16aを構成するカソード側電極26に接する第1凸部44bの冷却媒体接触面積が、第2電解質膜・電極構造体16bを構成するアノード側電極24に接する第2凸部46bの冷却媒体接触面積よりも大きく設定されている。
ここで、燃料電池スタック10の発電時に、カソード側電極26は、アノード側電極24よりも高温になり易い。従って、第2冷却媒体流路48において、カソード側電極26に接する冷却媒体接触面積を、アノード側電極24に接する冷却媒体接触面積よりも大きく設定することにより、前記カソード側電極26の冷却が促進される。
これにより、各燃料電池ユニット12内及び各燃料電池ユニット12間で、発電中の温度環境を一定に維持することができ、安定的且つ効率的な発電を確実に遂行することが可能になるという効果が得られる。
なお、第1の実施形態では、中間セパレータ18に設けられる入口側連通路50a及び出口側連通路50bが、隣接する燃料電池ユニット12の前記入口側連通路50a及び前記出口側連通路50bと積層方向に千鳥状に配置されてもよい。このため、積層方向の寸法の短尺化が一層容易に図られる。
図7は、本発明の第2の実施形態に係る燃料電池スタック60を構成する燃料電池ユニット62の要部分解斜視説明図である。
なお、第1の実施形態に係る燃料電池スタック10及び燃料電池ユニット12と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。
燃料電池ユニット62は、アノード側セパレータ(第1セパレータ)64、第1電解質膜・電極構造体(電解質・電極構造体)(MEA)66a、中間セパレータ(後述するように、2枚のプレートからなる)68、第2電解質膜・電極構造体66b及びカソード側セパレータ(第2セパレータ)70を設ける。
第1及び第2電解質膜・電極構造体66a、66bは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜22と、前記固体高分子電解質膜22を挟持するアノード側電極24及びカソード側電極26とを備える。アノード側電極24は、カソード側電極26よりも小さな表面積を有する、所謂、段差型MEAを構成している。
燃料電池ユニット62の長辺方向(矢印C方向)の上端縁部には、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス入口連通孔34aが設けられる。燃料電池ユニット62の長辺方向下端縁部には、酸化剤ガス出口連通孔30b、冷却媒体出口連通孔32b及び燃料ガス出口連通孔34bが設けられる。
アノード側セパレータ64は、第1燃料ガス流路36と燃料ガス入口連通孔34aとを連通する第1入口側連通路部72a、及び前記第1燃料ガス流路36と燃料ガス出口連通孔34bとを連通する第1出口側連通路部72bとを設ける。
図7及び図8に示すように、第1入口側連通路部72aは、面14bに設けられて燃料ガス入口連通孔34aに連通する複数の連結路74aと、前記アノード側セパレータ64を貫通して前記連結路74a及び第1燃料ガス流路36に連通する複数の貫通孔76aとを有する。
第1出口側連通路部72bは、同様に、面14bに設けられて燃料ガス出口連通孔34bに連通する複数の連結路74bと、アノード側セパレータ64を貫通して前記連結路74b及び第1燃料ガス流路36に連通する複数の貫通孔76bとを有する(図7参照)。
中間セパレータ68は、第1金属プレート78と第2金属プレート80とを接合するとともに、前記第1及び第2金属プレート78、80の外周縁部を第2シール部材56で一体成形して構成される。
中間セパレータ68は、第2燃料ガス流路46と燃料ガス入口連通孔34aとを連通する第2入口側連通路部82a、及び前記第2燃料ガス流路46と燃料ガス出口連通孔34bとを連通する第2出口側連通路部82bを設ける。
図9に示すように、第2入口側連通路部82aは、第1金属プレート78に設けられて燃料ガス入口連通孔34aに連通する複数の連結路84aと、中間セパレータ18を貫通して前記連結路84a及び第2燃料ガス流路46に連通する複数の貫通孔86aとを有する。
第2出口側連通路部82bは、同様に、第1金属プレート78に設けられて燃料ガス出口連通孔34bに連通する複数の連結路84bと、中間セパレータ68を貫通して前記連結路84b及び第2燃料ガス流路46に連通する複数の貫通孔86bとを有する。
第1金属プレート78には、冷却媒体入口連通孔32aと第2冷却媒体流路48とを連通する複数の貫通孔88a、及び冷却媒体出口連通孔32bと前記第2冷却媒体流路48とを連通する複数の貫通孔88bが設けられる(図9及び図10参照)。
このように構成される燃料電池スタック60では、酸化剤ガス入口連通孔30aに供給された酸化剤ガスは、中間セパレータ68の第1酸化剤ガス流路44及びカソード側セパレータ70の第2酸化剤ガス流路52に沿って矢印C方向(重力方向)に移動する。
一方、燃料ガス入口連通孔34aに供給された燃料ガスは、アノード側セパレータ64の第1入口側連通路部72aを構成する連結路74aに供給され、貫通孔76aを通って面14a側に移動する。このため、燃料ガスは、第1燃料ガス流路36に沿って(矢印C方向)に移動する。
また、燃料ガスは、中間セパレータ68の第2入口側連通路部82aを構成する連結路84aに供給され、貫通孔86aを通って第2金属プレート80側に移動する。従って、燃料ガスは、第2燃料ガス流路46に沿って重力方向(矢印C方向)に移動する。
これにより、第1及び第2電解質膜・電極構造体66a、66bでは、カソード側電極26に供給される酸化剤ガスとアノード側電極24に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて、発電が行われる。反応に使用された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って排出される。反応に使用された燃料ガスは、第1及び第2出口側連通路部72b、82bを構成する貫通孔76b、86bを通って連結路74b、84bから燃料ガス出口連通孔34bに排出される。
一方、冷却媒体入口連通孔32aに供給された冷却媒体は、各燃料電池ユニット62間に形成された第1冷却媒体流路38に沿って矢印C方向に流通する。また、冷却媒体の一部は、中間セパレータ68を構成する第1金属プレート78に形成された貫通孔88aを通って第1及び第2金属プレート78、80間に形成された第2冷却媒体流路48に供給される(図9及び図10参照)。このため、冷却媒体は、第2冷却媒体流路48に沿って矢印C方向に流動する。
第1冷却媒体流路38を流動した冷却媒体は、冷却媒体出口連通孔32bに排出される一方、第2冷却媒体流路48に沿って流動した冷却媒体は、図9に示すように、第1金属プレート78に形成された貫通孔88bを通って冷却媒体出口連通孔32bに排出される。
このように、構成される第2の実施形態では、中間セパレータ68が第1及び第2金属プレート78、80を接合して構成されるとともに、前記第1及び第2金属プレート78、80内に第2冷却媒体流路48が形成されており、上記の第1の実施形態と同様の効果が得られる。
10、60…燃料電池スタック 12、62…燃料電池ユニット
14、64…アノード側セパレータ
16a、16b、66a、66b…電解質膜・電極構造体
20、70…カソード側セパレータ 22…固体高分子電解質膜
24…アノード側電極 26…カソード側電極
30a…酸化剤ガス入口連通孔 30b…酸化剤ガス出口連通孔
32a…冷却媒体入口連通孔 32b…冷却媒体出口連通孔
34a…燃料ガス入口連通孔 34b…燃料ガス出口連通孔
36、46…燃料ガス流路 36a、44a、46a、52a…凹部
36b、44b、46b、52b…凸部
38、48…冷却媒体流路 40、42…金属プレート
44、52…酸化剤ガス流路 50a…入口側連通路
50b…出口側連通路 68…中間セパレータ
72a、82a…入口側連通路部 72b、82b…出口側連通路部
88a、88b…貫通孔

Claims (1)

  1. 電解質の両側に電極が配設される第1及び第2電解質・電極構造体を備え、第1セパレータ、前記第1電解質・電極構造体、中間セパレータ、前記第2電解質・電極構造体及び第2セパレータの順に積層される燃料電池ユニットが複数積層される燃料電池スタックであって、
    前記第1及び第2電解質・電極構造体間には、前記第1電解質・電極構造体に一方の反応ガスを供給する第1反応ガス流路と、前記第2電解質・電極構造体に他方の反応ガスを供給する第2反応ガス流路とが、電極面方向に沿って交互に設けられるとともに、
    前記第2反応ガス流路と前記第1電解質・電極構造体との間には、冷却媒体流路が形成され
    前記中間セパレータは、第1及び第2金属プレートを備えるとともに、前記第1及び前記第2金属プレートにはシール部材が一体成形され、
    前記第1金属プレートは、前記第1電解質・電極構造体から離間して前記第1反応ガス流路を形成する第1凹部と前記第1電解質・電極構造体側に突出して前記第1電解質・電極構造体に接する第1凸部とを交互に設ける一方、
    前記第2金属プレートは、前記第2電解質・電極構造体から離間して前記第2反応ガス流路を形成する第2凹部と前記第2電解質・電極構造体側に突出して前記第2電解質・電極構造体に接する第2凸部とを交互に設け、且つ前記第2凹部の裏面側が前記第1金属プレートの前記第1凸部の裏面側に間隙を有して配置されることにより、前記冷却媒体流路が形成され、
    前記第2凸部の第2電解質・電極構造体と接する面の裏面には、前記燃料電池ユニットの長辺方向において前記第2凸部よりも短く設けられた前記第1金属プレートの前記第1凹部が接することにより、前記第1凹部が接する部分と前記第1凹部が接しない部分が設けられ、
    前記第1凸部が前記第1電解質・電極構造体に接する面積は、前記第2凸部が第2電解質・電極構造体と接する面の裏面のうち、前記第1凹部が接していない部分の面積よりも大きいことを特徴とする燃料電池スタック。
JP2009061850A 2009-03-13 2009-03-13 燃料電池スタック Expired - Fee Related JP5341580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061850A JP5341580B2 (ja) 2009-03-13 2009-03-13 燃料電池スタック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061850A JP5341580B2 (ja) 2009-03-13 2009-03-13 燃料電池スタック

Publications (2)

Publication Number Publication Date
JP2010218771A JP2010218771A (ja) 2010-09-30
JP5341580B2 true JP5341580B2 (ja) 2013-11-13

Family

ID=42977388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061850A Expired - Fee Related JP5341580B2 (ja) 2009-03-13 2009-03-13 燃料電池スタック

Country Status (1)

Country Link
JP (1) JP5341580B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2509319A (en) * 2012-12-27 2014-07-02 Intelligent Energy Ltd Fluid flow plate for a fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493097B2 (ja) * 1995-06-15 2004-02-03 本田技研工業株式会社 固体高分子電解質膜型燃料電池
KR100436456B1 (ko) * 1999-09-17 2004-06-22 마쯔시다덴기산교 가부시키가이샤 고분자 전해질형 연료전지
JP4476463B2 (ja) * 2000-09-26 2010-06-09 本田技研工業株式会社 燃料電池用セパレータと燃料電池
JP2002289223A (ja) * 2001-03-27 2002-10-04 Aisin Seiki Co Ltd 固体高分子電解質膜型燃料電池
JP4813707B2 (ja) * 2001-09-28 2011-11-09 本田技研工業株式会社 燃料電池スタック
JP5081494B2 (ja) * 2006-05-01 2012-11-28 本田技研工業株式会社 燃料電池

Also Published As

Publication number Publication date
JP2010218771A (ja) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5227543B2 (ja) 燃料電池
JP2002260689A (ja) 固体高分子型セルアセンブリ、燃料電池スタックおよび燃料電池の反応ガス供給方法
JP2009043493A (ja) 燃料電池スタック
JP5334469B2 (ja) 燃料電池スタック
JP4268536B2 (ja) 燃料電池
JP5226431B2 (ja) 燃料電池スタック
JP2004087311A (ja) 燃料電池スタックおよび燃料電池スタック用金属製セパレータ
JP5042507B2 (ja) 燃料電池
JP2010182515A (ja) 燃料電池
KR102701412B1 (ko) 언듈레이팅 채널들이 구비된 바이폴라 플레이트
JP2011119061A (ja) 燃料電池
JP2009064643A (ja) 燃料電池スタック
JP4981400B2 (ja) 燃料電池
JP2007207570A (ja) 燃料電池
JP4726186B2 (ja) 燃料電池スタック
JP5341580B2 (ja) 燃料電池スタック
JP2004171824A (ja) 燃料電池
JP2010153175A (ja) 燃料電池
JP5265289B2 (ja) 燃料電池スタック
JP5283520B2 (ja) 燃料電池スタック
JP5336221B2 (ja) 燃料電池スタック
JP5203060B2 (ja) 燃料電池スタック
JP5336210B2 (ja) 燃料電池スタック
JP5318715B2 (ja) 固体高分子型燃料電池
JP5265455B2 (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5341580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees