JP2010182515A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2010182515A
JP2010182515A JP2009024412A JP2009024412A JP2010182515A JP 2010182515 A JP2010182515 A JP 2010182515A JP 2009024412 A JP2009024412 A JP 2009024412A JP 2009024412 A JP2009024412 A JP 2009024412A JP 2010182515 A JP2010182515 A JP 2010182515A
Authority
JP
Japan
Prior art keywords
reaction gas
communication hole
flow path
outlet
metal separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009024412A
Other languages
English (en)
Inventor
Osamu Ogami
統 大神
Masahiro Kesato
昌弘 毛里
Tsutomu Iwazawa
力 岩澤
Hiroto Chiba
裕人 千葉
Shuji Sato
修二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009024412A priority Critical patent/JP2010182515A/ja
Publication of JP2010182515A publication Critical patent/JP2010182515A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】簡単且つ経済的な構成で、反応ガス流路から出口バッファ部に導出される生成水を、反応ガス出口連通孔に容易且つ確実に排出することを可能にする。
【解決手段】燃料電池スタック10を構成する発電ユニット12は、第1金属セパレータ14を備える。第1金属セパレータ14は、第1燃料ガス流路36の上下に入口バッファ部37a及び出口バッファ部37bを有する。出口バッファ部37bには、第1金属セパレータ14の金属表面を加工して第1燃料ガス流路36の下部側から貫通孔42bに連続して連なる複数の溝部44が設けられる。
【選択図】図1

Description

本発明は、電解質膜の両側に一対の電極を設けた電解質膜・電極構造体と金属セパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路と、前記反応ガスを積層方向に流通させる反応ガス入口連通孔及び反応ガス出口連通孔とが形成されるとともに、前記反応ガス流路と前記反応ガス出口連通孔とに連通する出口バッファ部が設けられる燃料電池に関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持した単位セルを備えている。この種の燃料電池は、通常、所定の数の単位セルを積層することにより、燃料電池スタックとして使用されている。
上記の燃料電池では、セパレータの面内に、アノード側電極に対向して燃料ガスを流すための燃料ガス流路(反応ガス流路)と、カソード側電極に対向して酸化剤ガスを流すための酸化剤ガス流路(反応ガス流路)とが設けられている。また、セパレータ間には、冷却媒体を流すための冷却媒体流路が、前記セパレータの面方向に沿って設けられている。
この種の燃料電池では、セパレータの積層方向に貫通する反応ガス入口連通孔、反応ガス出口連通孔、冷却媒体入口連通孔及び冷却媒体出口連通孔が前記燃料電池の内部に設けられる、所謂、内部マニホールドを構成する場合がある。
その際、一般的に、反応ガス入口連通孔と反応ガス流路との間には、前記反応ガス流路に反応ガスを均一に分散させて供給するために、入口バッファ部が設けられている。一方、反応ガス流路と反応ガス出口連通孔との間には、前記反応ガス出口連通孔に反応ガスを均一に合流させるために、出口バッファ部が設けられている。
例えば、特許文献1に開示されている燃料電池は、図7に示すように、水素ガス用の第1貫通孔1a、1b、酸素ガス用の第2貫通孔2a、2b及び冷却水用の第3貫通孔3a、3bを備えている。第1貫通孔1a、1bは、案内空間(バッファ部)4a、4bを介して方形空間5に連通するとともに、水素ガスを案内するためのフィン状案内部6a、6bが、本体部7に設けられている。
特開平11−283637号公報
上記の燃料電池では、発電時に生成される水が、方形空間5から案内空間4bに導入された後、第1貫通孔1bに排出されている。その際、生成水は、フィン状案内部6bに付着して案内空間4bに滞留し易い。このため、水素ガスの円滑な流れが阻害されて、安定した発電が遂行されないおそれがある。しかも、本体部7にフィン状案内部6bを設けているため、製造作業が煩雑化するとともに、案内空間4bが狭くなって排水性が低下するという問題がある。
本発明はこの種の問題を解決するものであり、簡単且つ経済的な構成で、反応ガス流路から出口バッファ部に導出される生成水を、反応ガス出口連通孔に容易且つ確実に排出することが可能な燃料電池を提供することを目的とする。
本発明は、電解質膜の両側に一対の電極を設けた電解質膜・電極構造体と金属性板材を波形状に成形した金属セパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路と、前記反応ガスを積層方向に流通させる反応ガス入口連通孔及び反応ガス出口連通孔とが形成されるとともに、前記反応ガス流路と前記反応ガス出口連通孔とに連通する出口バッファ部が設けられる燃料電池に関するものである。
そして、出口バッファ部には、金属セパレータの金属表面を加工して反応ガス流路側から反応ガス出口連通孔側に連なる複数の溝部が設けられている。
また、溝部は、反応ガス流路側から反応ガス出口連通孔側に連続して連なることが好ましい。
さらに、出口バッファ部と反応ガス出口連通孔との間には、反応ガスを流通させる連結流路が形成されるとともに、溝部は、反応ガス流路から前記連結流路までの間を連続して連結することが好ましい。
さらにまた、金属セパレータは、出口バッファ部に親水化処理を施すことが好ましい。
本発明によれば、出口バッファ部に導出された生成水は、反応ガス流路側から反応ガス出口連通孔側に連続して連なる複数の溝部に沿って、前記反応ガス出口連通孔に円滑に流れることができる。これにより、簡単且つ経済的な構成で、反応ガス流路から出口バッファ部に導出される生成水を、反応ガス出口連通孔に容易且つ確実に排出することが可能になる。
しかも、金属セパレータの金属表面に複数の溝部を形成するだけでよい。従って、製造コストを抑制することができるとともに、出口バッファ部の容積を狭めることがなく、反応ガス及び生成水の排出性が良好に向上する。
本発明の第1の実施形態に係る燃料電池スタックを構成する発電ユニットの要部分解斜視説明図である。 前記燃料電池スタックの、図1中、II−II線断面説明図である。 前記発電ユニットを構成する第1金属セパレータの正面説明図である。 前記発電ユニットを構成する第2金属セパレータの一方の正面説明図である。 前記第2金属セパレータの他方の正面説明図である。 本発明の第2の実施形態に係る燃料電池スタックを構成する第1金属セパレータの正面説明図である。 従来の燃料電池の説明図である。
図1は、本発明の第1の実施形態に係る燃料電池スタック10を構成する発電ユニット12の要部分解斜視説明図である。
燃料電池スタック10は、図2に示すように、複数の発電ユニット12を水平方向(矢印A方向)に沿って互いに積層して構成される。発電ユニット12は、第1金属セパレータ14、第1電解質膜・電極構造体(電解質・電極構造体)(MEA)16a、第2金属セパレータ18、第2電解質膜・電極構造体16b及び第3金属セパレータ20を設ける。
第1金属セパレータ14、第2金属セパレータ18及び第3金属セパレータ20は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板により構成される。第1金属セパレータ14、第2金属セパレータ18及び第3金属セパレータ20は、金属製薄板を波形状にプレス加工することにより、断面凹凸形状を有する。
図1及び図2に示すように、第1電解質膜・電極構造体16aは、第2電解質膜・電極構造体16bよりも小さな表面積に設定される。第1及び第2電解質膜・電極構造体16a、16bは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜22と、前記固体高分子電解質膜22を挟持するアノード側電極24及びカソード側電極26とを備える。アノード側電極24は、カソード側電極26よりも小さな表面積を有する、所謂、段差型MEAを構成している。
アノード側電極24及びカソード側電極26は、カーボンペーパ等からなるガス拡散層(図示せず)と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成される電極触媒層(図示せず)とを有する。電極触媒層は、固体高分子電解質膜22の両面に形成される。
図1に示すように、発電ユニット12の長辺方向(矢印C方向)の上端縁部には、矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔(反応ガス入口連通孔)30a、及び燃料ガス、例えば、水素含有ガスを供給するための燃料ガス入口連通孔(反応ガス入口連通孔)32aが設けられる。
発電ユニット12の長辺方向(矢印C方向)の下端縁部には、矢印A方向に互いに連通して、燃料ガスを排出するための燃料ガス出口連通孔(反応ガス出口連通孔)32b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔(反応ガス出口連通孔)30bが設けられる。
発電ユニット12の短辺方向(矢印B方向)の一端縁部には、矢印A方向に互いに連通して、冷却媒体を供給するための冷却媒体入口連通孔34aが設けられるとともに、前記発電ユニット12の短辺方向の他端縁部には、前記冷却媒体を排出するための冷却媒体出口連通孔34bが設けられる。
図1及び図3に示すように、第1金属セパレータ14の第1電解質膜・電極構造体16aに向かう面14aには、例えば、矢印C方向に延在する複数の溝部36aを有する第1燃料ガス流路(反応ガス流路)36が設けられる。第1燃料ガス流路36の入口側(上端側)には、入口バッファ部37aが連通する一方、前記第1燃料ガス流路36の出口側(下端側)には、出口バッファ部37bが連通する。入口バッファ部37a及び出口バッファ部37bは、突出する複数のエンボスを有する。
第1燃料ガス流路36と燃料ガス入口連通孔32a及び燃料ガス出口連通孔32bとは、第1入口側連通路部38a及び第1出口側連通路部38bを介して連通する。
図1及び図4に示すように、第1入口側連通路部38aは、面14aとは反対の面14bに設けられて燃料ガス入口連通孔32aに連通する複数の連結路40aと、第1金属セパレータ14を積層方向に貫通して前記連結路40a及び第1燃料ガス流路36に連通する複数の貫通孔42aとを有する。
第1出口側連通路部38bは、同様に、面14bに設けられて燃料ガス出口連通孔32bに連通する複数の連結路40bと、第1金属セパレータ14を積層方向に貫通して前記連結路40b及び第1燃料ガス流路36に連通する複数の貫通孔42bとを有する。
図3に示すように、出口バッファ部37bには、第1金属セパレータ14の金属表面を加工して第1燃料ガス流路36側から燃料ガス出口連通孔32b側に連続して連なる複数の溝部44が設けられる。溝部44は、第1燃料ガス流路36の各溝部36aをいずれかの貫通孔42bに連通するために、直線状に形成される。溝部44は、水を円滑に排出させるために、出口バッファ部37bのエンボスと交差しない位置が好ましい。
溝部44は、毛細管現象を利用して排水性を向上させるために、微少流路溝を構成している。具体的には、溝部44の幅寸法が1〜100μmで、前記溝部44の深さが1.5μm以上で且つ第1金属セパレータ14の厚さ未満に設定される。金属表面は、表面粗度Rzが1.5μm以上で親水性を発現するからである。
溝部44は、例えば、フォトリソ処理(フォトリソグラフィ)、YAGレーザ又はUVレーザ等のレーザ加工、あるいは、針状の工具により金属表面を引っ掻くように加工することにより形成される。特に、UVレーザによる加工処理では、同時にUV露光処理を行うことにより親水化処理が遂行される。
第1金属セパレータ14の面14bには、冷却媒体入口連通孔34aと冷却媒体出口連通孔34bとを連通する冷却媒体流路45の一部が形成される。
図4に示すように、第2金属セパレータ18の第1電解質膜・電極構造体16aに向かう面18aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとを連通する第1酸化剤ガス流路(反応ガス流路)46が形成される。第1酸化剤ガス流路46は、矢印C方向に延在する複数の溝部46aを有する。
第1酸化剤ガス流路46の入口側(上端側)には、入口バッファ部48aが連通する一方、前記第1酸化剤ガス流路46の出口側(下端側)には、出口バッファ部48bが連通する。入口バッファ部48a及び出口バッファ部48bは、突出する複数のエンボスを有する。
酸化剤ガス入口連通孔30aと入口バッファ部48aとの間には、入口連結流路(ブリッジ部)50aが形成されるとともに、酸化剤ガス出口連通孔30bと出口バッファ部48bとの間には、出口連結流路(ブリッジ部)50bが形成される。
第1酸化剤ガス流路46側から酸化剤ガス出口連通孔30b側に連続して連なる複数の溝部52が設けられる。溝部52は、第1酸化剤ガス流路46の各溝部46aをいずれかの出口連結流路50bに連通するために、直線状に形成される。溝部52は、上記の溝部44と同様に形成される。溝部52と溝部44とは、第1金属セパレータ14の表裏で互いに交差する方向に設けられる。
図5に示すように、第2金属セパレータ18の第2電解質膜・電極構造体16bに向かう面18bには、例えば、矢印C方向に延在する複数の溝部54aを有する第2燃料ガス流路(反応ガス流路)54が設けられる。第2燃料ガス流路54の入口側(上端側)には、入口バッファ部56aが連通する一方、前記第2燃料ガス流路54の出口側(下端側)には、出口バッファ部56bが連通する。入口バッファ部56a及び出口バッファ部56bは、複数のエンボスを有する。
第2燃料ガス流路54と燃料ガス入口連通孔32a及び燃料ガス出口連通孔32bとは、第2入口側連通路部60a及び第2出口側連通路部60bを介して連通する。
図1及び図5に示すように、第2入口側連通路部60aは、面18aに設けられて燃料ガス入口連通孔32aに連通する複数の連結路62aと、第2金属セパレータ18を積層方向に貫通して前記連結路62a及び第2燃料ガス流路54に連通する複数の貫通孔64aとを有する。
第2出口側連通路部60bは、同様に、面18aに設けられて燃料ガス出口連通孔32bに連通する複数の連結路62bと、第2金属セパレータ18を積層方向に貫通して前記連結路62b及び第2燃料ガス流路54に連通する複数の貫通孔64bとを有する。
第2出口側連通路部60bには、第2金属セパレータ18の金属表面を加工して第2燃料ガス流路54側から燃料ガス出口連通孔32b側に連続して連なる複数の溝部66が設けられる。溝部66は、第2燃料ガス流路54の各溝部54aをいずれかの貫通孔64bに連通するために、直線状に形成される。溝部66は、上記の溝部44と同様に形成される。
図1に示すように、第3金属セパレータ20の第2電解質膜・電極構造体16bに向かう面20aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとを連通する第2酸化剤ガス流路(反応ガス流路)68が形成される。第2酸化剤ガス流路68は、矢印C方向に延在する複数の溝部68aを有する。
第2酸化剤ガス流路68は、上記の第1酸化剤ガス流路46と同様に構成されており、その詳細な説明は省略する。第3金属セパレータ20の面20bには、冷却媒体流路45の一部が形成される。
図1〜図3に示すように、第1金属セパレータ14の面14a、14bには、この第1金属セパレータ14の外周端縁部を周回して第1シール部材70が一体成形される。図1、図2、図4及び図5に示すように、第2金属セパレータ18の面18a、18bには、この第2金属セパレータ18の外周端縁部を周回して第2シール部材72が一体成形されるとともに、第3金属セパレータ20の面20a、20bには、この第3金属セパレータ20の外周端縁部を周回して第3シール部材74が一体成形される(図1及び図2参照)。
発電ユニット12同士が互いに積層されることにより、一方の発電ユニット12を構成する第1金属セパレータ14と、他方の発電ユニット12を構成する第3金属セパレータ20との間には、矢印B方向に延在する冷却媒体流路45が形成される(図1参照)。
このように構成される燃料電池スタック10の動作について、以下に説明する。
先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔32aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔34aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2金属セパレータ18の第1酸化剤ガス流路46及び第3金属セパレータ20の第2酸化剤ガス流路68に導入される。この酸化剤ガスは、第1酸化剤ガス流路46に沿って矢印C方向(重力方向)に移動し、第1電解質膜・電極構造体16aのカソード側電極26に供給されるとともに、第2酸化剤ガス流路68に沿って矢印C方向に移動し、第2電解質膜・電極構造体16bのカソード側電極26に供給される。
一方、燃料ガスは、図2及び図3に示すように、燃料ガス入口連通孔32aから第1金属セパレータ14の第1入口側連通路部38aを構成する連結路40aに供給され、貫通孔42aを通って面14a側に移動する。このため、燃料ガスは、貫通孔42aに連通する第1燃料ガス流路36に沿って重力方向(矢印C方向)に移動し、第1電解質膜・電極構造体16aのアノード側電極24に供給される。
また、燃料ガスは、図2及び図5に示すように、燃料ガス入口連通孔32aから第2金属セパレータ18の第2入口側連通路部60aを構成する連結路62aに供給され、貫通孔64aを通って面18b側に移動する。従って、燃料ガスは、貫通孔64aに連通する第2燃料ガス流路54に沿って重力方向(矢印C方向)に移動し、第2電解質膜・電極構造体16bのアノード側電極24に供給される。
これにより、第1及び第2電解質膜・電極構造体16a、16bでは、カソード側電極26に供給される酸化剤ガスと、アノード側電極24に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。
次いで、第1及び第2電解質膜・電極構造体16a、16bの各カソード側電極26に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。
第1電解質膜・電極構造体16aのアノード側電極24に供給されて消費された燃料ガスは、図3に示すように、第1出口側連通路部38bを構成する貫通孔42bを通って第1金属セパレータ14の面14b側に導出される。面14b側に導出された燃料ガスは、連結路40bを通って燃料ガス出口連通孔32bに排出される。
また、第2電解質膜・電極構造体16bのアノード側電極24に供給されて消費された燃料ガスは、図5に示すように、第2出口側連通路部60bを構成する貫通孔64bを通って第2金属セパレータ18の面18a側に導出される。面18a側に導出された燃料ガスは、連結路62bを通って燃料ガス出口連通孔32bに排出される。
一方、冷却媒体入口連通孔34aに供給された冷却媒体は、一方の発電ユニット12を構成する第1金属セパレータ14と、他方の発電ユニット12を構成する第3金属セパレータ20との間に形成された冷却媒体流路45に導入された後、矢印B方向に流通する。この冷却媒体は、第1及び第2電解質膜・電極構造体16a、16bを冷却した後、冷却媒体出口連通孔34bに排出される。
この場合、第1の実施形態では、図3に示すように、第1燃料ガス流路36の下部側に出口バッファ部37bが設けられるとともに、この出口バッファ部37bには、第1金属セパレータ14の金属表面を加工して、前記第1燃料ガス流路36から複数の貫通孔42bに連続して連なる複数の溝部44が設けられている。
このため、発電により生成された水は、第1燃料ガス流路36から出口バッファ部37bに導出される際、複数の溝部44に沿って複数の貫通孔42bに円滑に流れることができる。特に、溝部44は、幅寸法が1〜100μmで且つ深さが1.5μm以上の微小流路溝に構成されている。
従って、出口バッファ部37bの金属表面には、毛細管現象が惹起されるとともに、親水性が向上し、第1燃料ガス流路36から排出される生成水は、溝部44に沿って貫通孔42bに容易且つ確実に排出することが可能になるという効果が得られる。これにより、燃料ガスが、第1燃料ガス流路36に沿って円滑に流れることを阻止されることがなく、安定した発電が確実に遂行されるという利点がある。
しかも、第1金属セパレータ14の金属表面に、複数の溝部44を形成するだけでよい。このため、第1金属セパレータ14の製造コストを抑制するとともに、出口バッファ部37bの容積を狭めることがなく、使用済みの燃料ガス及び生成水の排水性が良好に向上する。
一方、図5に示すように、第2金属セパレータ18の出口バッファ部56bには、この第2金属セパレータ18の金属表面を加工して、第2燃料ガス流路54側から貫通孔64bに連続して連なる複数の溝部66が設けられている。従って、第2燃料ガス流路54から排出される生成水を、貫通孔64bに円滑且つ確実に排出させることができる等、第1金属セパレータ14と同様の効果が得られる。
さらに、第2金属セパレータ18では、裏面側である面18aに第1酸化剤ガス流路46が設けられ、この第1酸化剤ガス流路46の下部側に複数の溝部52が形成されている(図4参照)。溝部52は、第1酸化剤ガス流路46の各溝部46aをいずれかの出口連結流路50bに連通している。このため、発電時に生成される水は、第1酸化剤ガス流路46から複数の溝部52に沿って出口連結流路50bに容易且つ確実に案内され、出口バッファ部48bに生成水が滞留することを確実に阻止することが可能になる。
さらに、出口バッファ部48bに溝部52を設けるだけでよく、前記溝部52は、裏面側の面18bに設けられる複数の溝部66とは、個別に形成することができる。各溝部52、66は、第2金属セパレータ18の厚さ方向に1.5μm以上の深さ、より好ましくは、前記第2金属セパレータ18の厚さ未満までに設定されるからである。これにより、単一の第2金属セパレータ18の面18a、18bには、それぞれ生成水を所望の方向(異なる方向)に流すために複数の溝部52、66を容易に形成することが可能になる。
図6は、本発明の第2の実施形態に係る燃料電池スタックを構成する第1金属セパレータ80の正面説明図である。
なお、第1の実施形態に係る燃料電池スタック10を構成する第1金属セパレータ14と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。
第1金属セパレータ80の面14aには、第1燃料ガス流路36の下部側に出口バッファ部37bが連通するとともに、前記出口バッファ部37bには、前記第1燃料ガス流路36の所定の溝部36aと貫通孔42bとに連続して連なる複数の溝部82が設けられる。溝部82は、一部の溝部36aと貫通孔42bとを連続して設けられている。
従って、第2の実施形態では、第1燃料ガス流路36から排出される生成水は、所定数の溝部36a毎に溝部82に合流し、前記溝部82の案内作用下に貫通孔42bに円滑且つ確実に排出される。これにより、第2の実施形態では、上記の第1の実施形態と同様の効果が得られる。
なお、第2の実施形態では、第2金属セパレータについての詳細な説明は省略しているが、この第2金属セパレータの両面に、それぞれ上記の溝部82に相当する溝部を形成することにより、上記の第1の実施形態と同様の効果が得られる。
また、上記の第1及び第2の実施形態では、2枚のMEAと3枚の金属セパレータとを備える発電ユニットとして構成しているが、これに限定されるものではない。例えば、2枚の金属セパレータ間に1枚のMEAを挟持した発電ユニットを備え、前記発電ユニットを複数積層した燃料電池スタックを用いてもよい。
10…燃料電池スタック 12…発電ユニット
14、18、20、80…セパレータ
16a、16b…電解質膜・電極構造体
22…固体高分子電解質膜 24…アノード側電極
26…カソード側電極 30a…酸化剤ガス入口連通孔
30b…酸化剤ガス出口連通孔 32a…燃料ガス入口連通孔
32b…燃料ガス出口連通孔 34a…冷却媒体入口連通孔
34b…冷却媒体出口連通孔 36、54…燃料ガス流路
36a、44、46a、52、54a、66、68a、82…溝部
37a、48a、56a…入口バッファ部
37b、48b、56b…出口バッファ部
38a、60a…入口側連通路部 38b、60b…出口側連通路部
40a、40b、62a、62b…連結路
42a、42b、64a、64b…貫通孔
46、68…酸化剤ガス流路 50a…入口連結流路
50b…出口連結流路

Claims (4)

  1. 電解質膜の両側に一対の電極を設けた電解質膜・電極構造体と金属性板材を波形状に成形した金属セパレータとが積層され、電極面に沿って反応ガスを供給する反応ガス流路と、前記反応ガスを積層方向に流通させる反応ガス入口連通孔及び反応ガス出口連通孔とが形成されるとともに、前記反応ガス流路と前記反応ガス出口連通孔とに連通する出口バッファ部が設けられる燃料電池であって、
    前記出口バッファ部には、前記金属セパレータの金属表面を加工して前記反応ガス流路側から前記反応ガス出口連通孔側に連なる複数の溝部が設けられることを特徴とする燃料電池。
  2. 請求項1記載の燃料電池において、前記溝部は、前記反応ガス流路側から前記反応ガス出口連通孔側に連続して連なることを特徴とする燃料電池。
  3. 請求項1又は2記載の燃料電池において、前記出口バッファ部と前記反応ガス出口連通孔との間には、前記反応ガスを流通させる連結流路が形成されるとともに、
    前記溝部は、前記反応ガス流路から前記連結流路までの間を連続して連結することを特徴とする燃料電池。
  4. 請求項1〜3のいずれか1項に記載の燃料電池において、前記金属セパレータは、前記出口バッファ部に親水化処理を施すことを特徴とする燃料電池。
JP2009024412A 2009-02-05 2009-02-05 燃料電池 Withdrawn JP2010182515A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024412A JP2010182515A (ja) 2009-02-05 2009-02-05 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009024412A JP2010182515A (ja) 2009-02-05 2009-02-05 燃料電池

Publications (1)

Publication Number Publication Date
JP2010182515A true JP2010182515A (ja) 2010-08-19

Family

ID=42763945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024412A Withdrawn JP2010182515A (ja) 2009-02-05 2009-02-05 燃料電池

Country Status (1)

Country Link
JP (1) JP2010182515A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118125A (ja) * 2011-12-05 2013-06-13 Toyota Motor Corp 燃料電池用セパレータ、および、燃料電池
JP2013131355A (ja) * 2011-12-21 2013-07-04 Honda Motor Co Ltd 燃料電池
CN103326046A (zh) * 2012-03-19 2013-09-25 本田技研工业株式会社 燃料电池
US8778554B2 (en) 2011-06-16 2014-07-15 Honda Motor Co., Ltd. Fuel cell
WO2015049863A1 (ja) * 2013-10-02 2015-04-09 トヨタ自動車株式会社 セパレータおよび燃料電池
JP2019216002A (ja) * 2018-06-12 2019-12-19 トヨタ自動車株式会社 燃料電池セルおよび燃料電池スタック

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8778554B2 (en) 2011-06-16 2014-07-15 Honda Motor Co., Ltd. Fuel cell
DE102012210162B4 (de) 2011-06-16 2024-04-18 Honda Motor Co., Ltd. Brennstoffzelle mit Membranelektrodenanordnung
JP2013118125A (ja) * 2011-12-05 2013-06-13 Toyota Motor Corp 燃料電池用セパレータ、および、燃料電池
JP2013131355A (ja) * 2011-12-21 2013-07-04 Honda Motor Co Ltd 燃料電池
CN103326046A (zh) * 2012-03-19 2013-09-25 本田技研工业株式会社 燃料电池
CN105594036A (zh) * 2013-10-02 2016-05-18 丰田自动车株式会社 分隔件及燃料电池
JP2015072756A (ja) * 2013-10-02 2015-04-16 トヨタ自動車株式会社 セパレータおよび燃料電池
KR101808970B1 (ko) 2013-10-02 2017-12-13 도요타지도샤가부시키가이샤 세퍼레이터 및 연료 전지
CN105594036B (zh) * 2013-10-02 2018-02-13 丰田自动车株式会社 分隔件及燃料电池
US10164266B2 (en) 2013-10-02 2018-12-25 Toyota Jidosha Kabushiki Kaisha Separator including tilted gas flow path grooves that retain water by capillary force and fuel cell using the same
WO2015049863A1 (ja) * 2013-10-02 2015-04-09 トヨタ自動車株式会社 セパレータおよび燃料電池
JP2019216002A (ja) * 2018-06-12 2019-12-19 トヨタ自動車株式会社 燃料電池セルおよび燃料電池スタック
JP6996430B2 (ja) 2018-06-12 2022-02-04 トヨタ自動車株式会社 燃料電池セルおよび燃料電池スタック

Similar Documents

Publication Publication Date Title
JP4960415B2 (ja) 燃料電池
JP4906891B2 (ja) 燃料電池
JP5208059B2 (ja) 燃料電池
JP2007005235A (ja) 燃料電池
JP2010282868A (ja) 燃料電池
JP2010182515A (ja) 燃料電池
JP2010009979A (ja) 燃料電池スタック
JP2010055858A (ja) 燃料電池スタック
JP5449838B2 (ja) 燃料電池スタック
JP2006278177A (ja) 燃料電池
JP5297990B2 (ja) 燃料電池
JP5180946B2 (ja) 燃料電池
JP5191951B2 (ja) 燃料電池
JP5274908B2 (ja) 燃料電池スタック
JP2007005237A (ja) 燃料電池
JP4989080B2 (ja) 燃料電池
JP2004171824A (ja) 燃料電池
JP5385033B2 (ja) 燃料電池
JP2009140672A (ja) 燃料電池
JP5265289B2 (ja) 燃料電池スタック
JP5583824B2 (ja) 燃料電池
JP5283520B2 (ja) 燃料電池スタック
JP5415122B2 (ja) 燃料電池スタック
JP6071680B2 (ja) 燃料電池スタックの運転方法
JP5336221B2 (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501