JP5331224B2 - Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus - Google Patents

Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus Download PDF

Info

Publication number
JP5331224B2
JP5331224B2 JP2012116294A JP2012116294A JP5331224B2 JP 5331224 B2 JP5331224 B2 JP 5331224B2 JP 2012116294 A JP2012116294 A JP 2012116294A JP 2012116294 A JP2012116294 A JP 2012116294A JP 5331224 B2 JP5331224 B2 JP 5331224B2
Authority
JP
Japan
Prior art keywords
reaction tube
gas
substrate
cleaning
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012116294A
Other languages
Japanese (ja)
Other versions
JP2012199566A (en
Inventor
定夫 中嶋
賢治 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2012116294A priority Critical patent/JP5331224B2/en
Publication of JP2012199566A publication Critical patent/JP2012199566A/en
Application granted granted Critical
Publication of JP5331224B2 publication Critical patent/JP5331224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate manufacturing method, a semiconductor device manufacturing method, a substrate processing method, a cleaning method, and a processing device capable of improving operation rates. <P>SOLUTION: There is provided a substrate manufacturing method comprising the steps of: causing a gas introduction nozzle provided in a reaction tube to form an oxide film on a substrate supported by a supporter by introducing an oxidizable gas into the reaction tube; and cleaning the inside of the reaction tube by exporting the substrate on which the oxide film is formed from the reaction tube. The step of cleaning the inside of the reaction tube includes: a step of removing an oxide film formed on at least one of the reaction tube, the supporter, and the gas introduction nozzle by supplying the inside of the reaction tube with a hydrogen fluoride gas, a hydrogen fluoride gas and a hydrogen gas, or a gas containing at least a hydrogen fluoride gas and steam while the inside of the reaction tube is maintained at a predetermined temperature; and a step of supplying the inside of the reaction tube with an inactive gas while the predetermined temperature is maintained. <P>COPYRIGHT: (C)2013,JPO&amp;INPIT

Description

本発明は、半導体ウエハやガラス基板等の基板を処理するための基板の製造方法、半導体装置の製造方法、基板処理方法、クリーニング方法及び処理装置に関するものである。   The present invention relates to a substrate manufacturing method, a semiconductor device manufacturing method, a substrate processing method, a cleaning method, and a processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate.

この種の熱処理装置を用いて基板を熱処理する際に、炭化珪素(SiC)製もしくはシリコン(Si)製の反応管、基板支持具及びガス導入ノズル等の各部材に酸化珪素膜が形成される場合において、この酸化珪素膜が成長(累積)して膜厚が大きくなると、各部材と酸化珪素膜との熱膨張の差により該酸化珪素膜が剥離し、反応炉内でパーティクルが発生するとの問題があった。そこで、酸化珪素膜が形成された各部材から酸化珪素膜を除去するクリーニング工程が定期的に実施されている。   When a substrate is heat-treated using this type of heat treatment apparatus, a silicon oxide film is formed on each member such as a silicon carbide (SiC) or silicon (Si) reaction tube, a substrate support, and a gas introduction nozzle. In this case, when this silicon oxide film grows (accumulates) and becomes thicker, the silicon oxide film peels off due to the difference in thermal expansion between each member and the silicon oxide film, and particles are generated in the reaction furnace. There was a problem. Therefore, a cleaning process for removing the silicon oxide film from each member on which the silicon oxide film is formed is periodically performed.

しかしながら、このクリーニング工程は、反応炉内の各部材を取り外し、フッ化水素(又はフッ化水素とフッ化アンモニウムとの混合)等の水溶液で酸化珪素膜を除去するものであり、該クリーニング工程には多くの時間がかかっていた。また、クリーニング後の酸化珪素膜が除去された各部材を取り付ける際に、炉内にパーティクルや汚染物等が混入するため、基板の熱処理前に反応炉内を空焼きしたり、塩化水素等で処理したりして、これらのパーティクルや汚染物を除去する工程が不可欠であり、装置の稼働率を低下させる要因となっていた。   However, in this cleaning process, each member in the reaction furnace is removed, and the silicon oxide film is removed with an aqueous solution such as hydrogen fluoride (or a mixture of hydrogen fluoride and ammonium fluoride). Took a lot of time. Also, when attaching each member from which the cleaned silicon oxide film has been removed, particles, contaminants, etc. are mixed in the furnace. A process for removing these particles and contaminants by treatment is indispensable, which has been a factor in reducing the operating rate of the apparatus.

本発明の目的は、上記従来の問題を解消し、稼働率を向上させる基板の製造方法及び熱処理装置を提供することにある。   An object of the present invention is to provide a substrate manufacturing method and a heat treatment apparatus that solve the above-mentioned conventional problems and improve the operating rate.

本発明の第1の特徴とするところは、反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程とを有し、前記反応管内をクリーニングする工程は、前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス、フッ化水素ガスと水素ガス、または、フッ化水素ガスと水蒸気を少なくとも含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのうちの少なくとも何れかの部材に形成された酸化膜を除去する工程と、前記所定の温度を維持した状態で前記反応管内に不活性ガスを供給する工程とを含むことを特徴とする基板の製造方法にある。   The first feature of the present invention is that a gas introduction nozzle provided in a reaction tube introduces an oxidizing gas into the reaction tube and forms an oxide film on a substrate supported by a support; Unloading the substrate after film formation from the inside of the reaction tube and cleaning the inside of the reaction tube, and the step of cleaning the inside of the reaction tube maintains the inside of the reaction tube at a predetermined temperature. By supplying a gas containing at least hydrogen fluoride gas, hydrogen fluoride gas and hydrogen gas, or hydrogen fluoride gas and water vapor into the tube, at least one of the reaction tube, the support, and the gas introduction nozzle And a step of removing the oxide film formed on the member and a step of supplying an inert gas into the reaction tube while maintaining the predetermined temperature. It lies in the way.

本発明の第2の特徴とするところは、反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程とを有し、前記反応管内をクリーニングする工程は、前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス、フッ化水素ガスと水素ガス、または、フッ化水素ガスと水蒸気を少なくとも含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのうちの少なくとも何れかの部材に形成された酸化膜を除去する工程と、前記所定の温度を維持した状態で前記反応管内に不活性ガスを供給する工程とを含むことを特徴とする半導体装置の製造方法にある。   The second feature of the present invention is that a gas introduction nozzle provided in a reaction tube introduces an oxidizing gas into the reaction tube and forms an oxide film on a substrate supported by a support; Unloading the substrate after film formation from the inside of the reaction tube and cleaning the inside of the reaction tube, and the step of cleaning the inside of the reaction tube maintains the inside of the reaction tube at a predetermined temperature. By supplying a gas containing at least hydrogen fluoride gas, hydrogen fluoride gas and hydrogen gas, or hydrogen fluoride gas and water vapor into the tube, at least one of the reaction tube, the support, and the gas introduction nozzle A step of removing an oxide film formed on the member, and a step of supplying an inert gas into the reaction tube while maintaining the predetermined temperature. It lies in the way of production.

本発明の第3の特徴とするところは、反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程とを有し、前記反応管内をクリーニングする工程は、前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス、フッ化水素ガスと水素ガス、または、フッ化水素ガスと水蒸気を少なくとも含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのうちの少なくとも何れかの部材に形成された酸化膜を除去する工程と、前記所定の温度を維持した状態で前記反応管内に不活性ガスを供給する工程とを含むことを特徴とする基板処理方法にある。   A third feature of the present invention is that a gas introduction nozzle provided in a reaction tube introduces an oxidizing gas into the reaction tube and forms an oxide film on a substrate supported by a support; Unloading the substrate after film formation from the inside of the reaction tube and cleaning the inside of the reaction tube, and the step of cleaning the inside of the reaction tube maintains the inside of the reaction tube at a predetermined temperature. By supplying a gas containing at least hydrogen fluoride gas, hydrogen fluoride gas and hydrogen gas, or hydrogen fluoride gas and water vapor into the tube, at least one of the reaction tube, the support, and the gas introduction nozzle A substrate process comprising: removing an oxide film formed on the member; and supplying an inert gas into the reaction tube while maintaining the predetermined temperature. There is the law.

本発明の第4の特徴とするところは、反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する処理を行った後の前記反応管内をクリーニングする方法であって、前記反応管内をクリーニングする工程は、前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス、フッ化水素ガスと水素ガス、または、フッ化水素ガスと水蒸気を少なくとも含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのうちの少なくとも何れかの部材に形成された酸化膜を除去する工程と、前記所定の温度を維持した状態で前記反応管内に不活性ガスを供給する工程とを含むことを特徴とするクリーニング方法にある。   The fourth feature of the present invention is that a gas introduction nozzle provided in the reaction tube is used to introduce an oxidizing gas into the reaction tube and form an oxide film on the substrate supported by the support. A method of cleaning the inside of the reaction tube later, wherein the step of cleaning the inside of the reaction tube is performed with hydrogen fluoride gas, hydrogen fluoride gas and hydrogen in the reaction tube while maintaining the inside of the reaction tube at a predetermined temperature. A step of removing an oxide film formed on at least one of the reaction tube, the support, and the gas introduction nozzle by supplying a gas or a gas containing at least hydrogen fluoride gas and water vapor And a step of supplying an inert gas into the reaction tube while maintaining the predetermined temperature.

本発明の第5の特徴とするところは、基板を処理する反応菅と、前記反応管内で基板を支持する支持具と、前記反応管に設けられ、前記反応管内に基板に酸化膜を形成するための酸化性ガスを導入するガス導入ノズルとを有し、前記反応管内を所定の温度に維持した状態で、前記反応管、前記支持具及び前記ガス導入ノズルの少なくとも何れかの部材に形成された酸化膜を除去するためのフッ化水素ガス、フッ化水素ガスと水素ガス、または、フッ化水素ガスと水蒸気を少なくとも含むガスを供給するクリーニングガス供給ラインと、前記所定の温度を維持しながら前記反応管内に不活性ガスを供給するパージガス供給ラインとが設けられることを特徴とする処理装置にある。   A fifth feature of the present invention is that a reaction vessel for processing a substrate, a support for supporting the substrate in the reaction tube, and a reaction tube are provided, and an oxide film is formed on the substrate in the reaction tube. A gas introduction nozzle for introducing an oxidizing gas for forming the reaction tube, and is formed on at least one of the reaction tube, the support, and the gas introduction nozzle in a state in which the inside of the reaction tube is maintained at a predetermined temperature. A cleaning gas supply line for supplying hydrogen fluoride gas, hydrogen fluoride gas and hydrogen gas, or a gas containing at least hydrogen fluoride gas and water vapor to remove the oxidized film, and maintaining the predetermined temperature In the processing apparatus, a purge gas supply line for supplying an inert gas is provided in the reaction tube.

本発明によれば、反応管内にフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給して各部材に形成された酸化膜を除去することより、各部材の取外し及び取付け等の作業を省略することが可能となり、装置の稼働率を向上させることができる。   According to the present invention, the gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas is supplied into the reaction tube to remove the oxide film formed on each member, thereby removing and attaching each member. Work can be omitted, and the operating rate of the apparatus can be improved.

本発明の実施形態に係る熱処理装置全体を示す斜視図である。It is a perspective view which shows the whole heat processing apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る熱処理装置に用いた反応炉を示す断面図である。It is sectional drawing which shows the reaction furnace used for the heat processing apparatus which concerns on embodiment of this invention.

次に本発明の実施の形態を図面に基づいて説明する。
図1に、本発明の実施の形態に係る熱処理装置10の一例を示す。この熱処理装置10は、バッチ式縦型熱処理装置であり、主要部が配置される筺体12を有する。この筺体12の正面側には、ポッドステージ14が接続されており、このポッドステージ14にポッド16が搬送される。ポッド16には、例えば25枚の被処理基板としてのウエハが収納され、図示しない蓋が閉じられた状態でポッドステージ14にセットされる。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a heat treatment apparatus 10 according to an embodiment of the present invention. This heat treatment apparatus 10 is a batch type vertical heat treatment apparatus and has a casing 12 in which a main part is arranged. A pod stage 14 is connected to the front side of the housing 12, and the pod 16 is conveyed to the pod stage 14. For example, 25 wafers as substrates to be processed are stored in the pod 16 and set on the pod stage 14 with a lid (not shown) closed.

筺体12内の正面側であって、ポッドステージ14に対向する位置には、ポッド搬送装置18が配置されている。また、このポッド搬送装置18の近傍には、ポッド棚20、ポッドオープナ22及び基板枚数検知器24が配置されている。ポッド棚20はポッドオープナ22の上方に配置され、基板枚数検知器24はポッドオープナ22に隣接して配置される。ポッド搬送装置18は、ポッドステージ14とポッド棚20とポッドオープナ22との間でポッド16を搬送する。ポッドオープナ22は、ポッド16の蓋を開けるものであり、この蓋が開けられたポッド16内の基板の枚数が基板枚数検知器24により検知される。   A pod transfer device 18 is disposed on the front side in the housing 12 and at a position facing the pod stage 14. Further, a pod shelf 20, a pod opener 22, and a substrate number detector 24 are arranged in the vicinity of the pod transfer device 18. The pod shelf 20 is disposed above the pod opener 22, and the substrate number detector 24 is disposed adjacent to the pod opener 22. The pod carrying device 18 carries the pod 16 among the pod stage 14, the pod shelf 20, and the pod opener 22. The pod opener 22 opens the lid of the pod 16, and the number of substrates in the pod 16 with the lid opened is detected by the substrate number detector 24.

さらに、筺体12内には、基板移載機26、ノッチアライナ28及び支持具としての炭化珪素(SiC)製の基板支持具(ボート)30が配置されている。基板移載機26は、例えば5枚の基板を取り出すことができるアーム(ツイーザ)32を有し、このアーム32を動かすことにより、ポッドオープナ22の位置に置かれたポッド、ノッチアライナ28及び基板支持具30間で基板を搬送する。ノッチアライナ28は、基板に形成されたノッチまたはオリフラを検出して基板のノッチまたはオリフラを一定の位置に揃えるものである。   Further, a substrate transfer machine 26, a notch aligner 28, and a substrate support (boat) 30 made of silicon carbide (SiC) as a support are arranged in the housing 12. The substrate transfer machine 26 has, for example, an arm (tweezer) 32 that can take out five substrates. By moving this arm 32, the pod placed at the position of the pod opener 22, the notch aligner 28, and the substrate. The substrate is transferred between the support tools 30. The notch aligner 28 detects notches or orientation flats formed on the substrate and aligns the notches or orientation flats of the substrate at a certain position.

さらに、筺体12内の背面側上部には反応炉40が配置されている。この反応炉40内に、複数枚の基板を装填した基板支持具30が搬入され熱処理が行われる。   Further, a reaction furnace 40 is disposed at the upper part on the back side in the housing 12. The substrate support 30 loaded with a plurality of substrates is carried into the reaction furnace 40 and subjected to heat treatment.

図2に反応炉40の一例を示す。この反応炉40は、炭化珪素(SiC)製の反応管42を有する。この反応管42は、上端部が閉塞され下端部が開放された円筒形状をしており、開放された下端部はフランジ状に形成されている。この反応管42の周囲には、ヒータ46が配置されている。   An example of the reaction furnace 40 is shown in FIG. The reaction furnace 40 has a reaction tube 42 made of silicon carbide (SiC). The reaction tube 42 has a cylindrical shape in which the upper end is closed and the lower end is opened, and the opened lower end is formed in a flange shape. A heater 46 is disposed around the reaction tube 42.

反応管42の下部は、基板支持具30を挿入するために開放され、この開放部分(炉口部)は炉口シールキャップ48がOリング49を挟んで当接することにより密閉されるようにしてある。炉口シールキャップ48は、炭化珪素(SiC)製の基板支持具30を支持し、基板支持具30と共に昇降可能に設けられている。炉口シールキャップ48と基板支持具30との間には、石英製の第1の断熱部材52と、この第1の断熱部材52の上部に配置された炭化珪素(SiC)製の第2の断熱部材50とが設けられている。基板支持具30は、基板を支持する支持具として用いられ、多数枚、例えば25〜100枚の基板54を略水平状態で隙間をもって多段に支持し、反応管42内に装填される。   The lower part of the reaction tube 42 is opened to insert the substrate support 30, and this open part (furnace port part) is sealed by the furnace port seal cap 48 contacting the O-ring 49. is there. The furnace port seal cap 48 supports the substrate support 30 made of silicon carbide (SiC) and is provided so as to be movable up and down together with the substrate support 30. Between the furnace port seal cap 48 and the substrate support 30, there is a first heat insulating member 52 made of quartz, and a second made of silicon carbide (SiC) disposed above the first heat insulating member 52. A heat insulating member 50 is provided. The substrate support 30 is used as a support for supporting the substrate. The substrate support 30 supports a large number of, for example, 25 to 100 substrates 54 in multiple stages with a gap in a substantially horizontal state, and is loaded into the reaction tube 42.

反応管42には、ガス供給ライン60とガス排気ライン62とが設けられている。ガス導入ノズル66は反応管42内に設けられ、ガス供給ライン60の下流方向先端部に接続されている。ガス供給ライン60に導入された処理ガスは、ガス導入ノズル66を介して反応管42内に供給される。なお、ガス導入ノズル66は、反応管42の内壁に沿って基板配列領域の上端よりも上方、すなわち基板支持具30の上端よりも上方まで延びるように構成される。   The reaction tube 42 is provided with a gas supply line 60 and a gas exhaust line 62. The gas introduction nozzle 66 is provided in the reaction tube 42 and is connected to the downstream end of the gas supply line 60. The processing gas introduced into the gas supply line 60 is supplied into the reaction tube 42 via the gas introduction nozzle 66. The gas introduction nozzle 66 is configured to extend above the upper end of the substrate arrangement region along the inner wall of the reaction tube 42, that is, above the upper end of the substrate support 30.

ガス供給ライン60は、窒素(N2)ガス、アルゴン(Ar)ガス、水素(H2)ガス、酸素(O2)ガス、フッ化水素(HF)ガス、フッ化塩素(ClF3)ガス及び水蒸気(H2O)等のガス供給源(図示省略)と接続されており、これらのガス(又は少なくとも2種以上の混合ガス)がガス供給ライン60及びガス導入ノズル66を介して反応管40内に供給されるようになっている。なお、反応管42内に供給されるガスの流量はコントローラ70により制御されるようになっている。   The gas supply line 60 includes nitrogen (N2) gas, argon (Ar) gas, hydrogen (H2) gas, oxygen (O2) gas, hydrogen fluoride (HF) gas, chlorine fluoride (ClF3) gas, and water vapor (H2O). These gases (or at least two kinds of mixed gases) are supplied into the reaction tube 40 via the gas supply line 60 and the gas introduction nozzle 66. It has become. The flow rate of the gas supplied into the reaction tube 42 is controlled by the controller 70.

次に、熱処理装置10の作用について説明する。
なお、以下の説明において、熱処理装置10を構成する各部の動作はコントローラ70により制御される。
Next, the operation of the heat treatment apparatus 10 will be described.
In the following description, the operation of each part constituting the heat treatment apparatus 10 is controlled by the controller 70.

まず、ポッドステージ14に複数枚の基板54を収容したポッド16がセットされると、ポッド搬送装置18によりポッド16をポッドステージ14からポッド棚20へ搬送し、このポッド棚20にストックする。次に、ポッド搬送装置18により、このポッド棚20にストックされたポッド16をポッドオープナ22に搬送してセットし、このポッドオープナ22によりポッド16の蓋を開き、基板枚数検知器24によりポッド16に収容されている基板54の枚数を検知する。   First, when the pod 16 containing a plurality of substrates 54 is set on the pod stage 14, the pod 16 is transferred from the pod stage 14 to the pod shelf 20 by the pod transfer device 18 and stocked on the pod shelf 20. Next, the pod 16 stocked on the pod shelf 20 is transported and set to the pod opener 22 by the pod transport device 18, the lid of the pod 16 is opened by the pod opener 22, and the pod 16 is detected by the substrate number detector 24. The number of substrates 54 accommodated in is detected.

次に、基板移載機26により、ポッドオープナ22の位置にあるポッド16から基板54を取り出し、ノッチアライナ28に移載する。このノッチアライナ28においては、基板54を回転させながら、ノッチを検出し、検出した情報に基づいて複数枚の基板54のノッチを同じ位置に整列させる。次に、基板移載機26により、ノッチアライナ28から基板54を取り出し、基板支持具30に移載する(基板支持工程)。   Next, the substrate transfer machine 26 takes out the substrate 54 from the pod 16 at the position of the pod opener 22 and transfers it to the notch aligner 28. In the notch aligner 28, the notch is detected while rotating the substrate 54, and the notches of the plurality of substrates 54 are aligned at the same position based on the detected information. Next, the substrate transfer device 26 takes out the substrate 54 from the notch aligner 28 and transfers it to the substrate support 30 (substrate support step).

このようにして、1バッチ分の基板54を基板支持具30に移載すると、例えば600℃程度の温度に設定された反応炉40(反応容器43)内に複数枚の基板54を装填した基板支持具30を装入(搬入)し、炉口シールキャップ48により反応炉40内を密閉する(基板搬入工程)。次に、炉内温度を熱処理温度まで昇温させて、ガス供給ライン60及びガス導入ノズル66を介して反応管42内に酸素(O2)ガスや水蒸気(H2O)等の基板54を酸化させるための酸化性ガスを導入する。基板54を熱処理する際、基板54は例えば1350℃程度以上の温度に加熱され、該基板54の表面が酸化される(酸化工程)。   In this way, when one batch of the substrates 54 is transferred to the substrate support 30, for example, a substrate in which a plurality of substrates 54 are loaded in the reaction furnace 40 (reaction vessel 43) set to a temperature of about 600 ° C. The support 30 is loaded (carrying in), and the inside of the reaction furnace 40 is sealed with the furnace port seal cap 48 (substrate carrying-in process). Next, the furnace temperature is raised to the heat treatment temperature to oxidize the substrate 54 such as oxygen (O 2) gas or water vapor (H 2 O) in the reaction tube 42 via the gas supply line 60 and the gas introduction nozzle 66. Introducing the oxidizing gas. When the substrate 54 is heat-treated, the substrate 54 is heated to a temperature of about 1350 ° C. or more, for example, and the surface of the substrate 54 is oxidized (oxidation process).

基板54の熱処理が終了すると、例えば炉内温度を600℃程度の温度に降温した後、熱処理後(酸化後)の基板54を支持した基板支持具30を反応管42内から搬出し(搬出工程)、基板支持具30に支持された全ての基板54が冷えるまで、基板支持具30を所定位置で待機させる。次に、待機させた基板支持具30の基板54が所定温度まで冷却されると、基板移載機26により、基板支持具30から基板54を取り出し、ポッドオープナ22にセットされている空のポッド16に搬送して収容する。次に、ポッド搬送装置18により、基板54が収容されたポッド16をポッド棚20、またはポッドステージ14に搬送して一連の処理が完了する。なお、上述した一連の処理を所定回数(所定時間)行なった後、または所望のタイミングで反応管42内のクリーニングを行なう(クリーニング工程)。   When the heat treatment of the substrate 54 is completed, for example, the temperature in the furnace is lowered to a temperature of about 600 ° C., and then the substrate support 30 supporting the substrate 54 after the heat treatment (after oxidation) is unloaded from the reaction tube 42 (unloading step). ) The substrate support 30 is made to wait at a predetermined position until all the substrates 54 supported by the substrate support 30 are cooled. Next, when the substrate 54 of the substrate support 30 that has been put on standby is cooled to a predetermined temperature, the substrate transfer device 26 takes out the substrate 54 from the substrate support 30, and the empty pod set in the pod opener 22. It is conveyed to 16 and accommodated. Next, the pod transport device 18 transports the pod 16 containing the substrate 54 to the pod shelf 20 or the pod stage 14 to complete a series of processes. The reaction tube 42 is cleaned after the above-described series of processing is performed a predetermined number of times (predetermined time) or at a desired timing (cleaning step).

次に、上述したクリーニング工程の一例を説明する。
クリーニング工程は、上述した酸化工程により、反応管42内壁、基板支持具30、第1の断熱部材52、第2の断熱部材54及びガス導入ノズル66等に所定膜厚の酸化珪素膜が形成された場合に実施される。
Next, an example of the above-described cleaning process will be described.
In the cleaning step, a silicon oxide film having a predetermined thickness is formed on the inner wall of the reaction tube 42, the substrate support 30, the first heat insulating member 52, the second heat insulating member 54, the gas introduction nozzle 66, and the like by the above-described oxidation step. To be implemented.

まず、コントローラ70は、ガス供給源(図示省略)より反応管42内にフッ化水素(HF)ガス及びフッ化塩素(ClF3)ガスの少なくとも一方を含むクリーニングガスを供給する。より具体的には、コントローラ70は、フッ化水素(HF)ガスと窒素(N2)ガスとの混合ガス(HF+N2)、フッ化水素(HF)ガスとアルゴン(Ar)ガスとの混合ガス(HF+Ar)、フッ化水素(HF)ガスと水素(H2)ガスとの混合ガス(HF+H2)及びフッ化水素(HF)ガスと水蒸気(H2O)との混合ガス(HF+H2O)から選択されるガスをガス供給ライン60及びガス導入ノズル66を介して反応管40内に所定時間供給する。なお、少量の水蒸気(H2O)や水素(H2)を反応管42内に供給することでクリーニング反応が加速される。   First, the controller 70 supplies a cleaning gas containing at least one of hydrogen fluoride (HF) gas and chlorine fluoride (ClF 3) gas into the reaction tube 42 from a gas supply source (not shown). More specifically, the controller 70 includes a mixed gas (HF + N2) of hydrogen fluoride (HF) gas and nitrogen (N2) gas, and a mixed gas (HF + Ar) of hydrogen fluoride (HF) gas and argon (Ar) gas. ), A gas selected from a mixed gas (HF + H2) of hydrogen fluoride (HF) gas and hydrogen (H2) gas and a mixed gas (HF + H2O) of hydrogen fluoride (HF) gas and water vapor (H2O) The reaction tube 40 is supplied for a predetermined time through the line 60 and the gas introduction nozzle 66. The cleaning reaction is accelerated by supplying a small amount of water vapor (H 2 O) or hydrogen (H 2) into the reaction tube 42.

これにより、反応管42内壁、基板支持具30、第1の断熱部材52、第2の断熱部材54及びガス導入ノズル66等の表面に形成された酸化珪素膜がクリーニングガスとの反応により除去される。なお、クリーニングガス種は、上述したフッ化水素(HF)ガス、フッ化塩素(ClF3)を含むものに限らず、酸化珪素膜と反応し、かつ炭化珪素(SiC)又はシリコン(Si)の部材と反応しない、もしくは反応性が低いガスであればよい。   Thereby, the silicon oxide films formed on the inner wall of the reaction tube 42, the substrate support 30, the first heat insulating member 52, the second heat insulating member 54, the gas introduction nozzle 66, and the like are removed by the reaction with the cleaning gas. The The cleaning gas species is not limited to those containing hydrogen fluoride (HF) gas and chlorine fluoride (ClF 3) described above, but reacts with the silicon oxide film and is a member of silicon carbide (SiC) or silicon (Si). Any gas that does not react with or has low reactivity may be used.

続いて、コントローラ70は、ガス供給源(図示省略)より反応管42内に不活性ガスを供給する。より具体的には、コントローラ70は、例えばアルゴン(Ar)ガス、窒素(N2)ガス等をガス供給ライン60及びガス導入ノズル66を介して反応管42内に所定時間供給する(パージする)。これにより、反応管42内のクリーニングガスが不活性ガスと置換される。   Subsequently, the controller 70 supplies an inert gas into the reaction tube 42 from a gas supply source (not shown). More specifically, the controller 70 supplies (purges), for example, argon (Ar) gas, nitrogen (N 2) gas or the like into the reaction tube 42 through the gas supply line 60 and the gas introduction nozzle 66 for a predetermined time. Thereby, the cleaning gas in the reaction tube 42 is replaced with the inert gas.

このクリーニング工程は、コントローラ70の制御により自動的に実施されるようになっている。なお、クリーニングガスは、処理ガスが供給されるガス供給ライン60及びガス導入ノズルとは別の経路で反応管40内に供給されるようにしてもよい。   This cleaning process is automatically performed under the control of the controller 70. The cleaning gas may be supplied into the reaction tube 40 through a different path from the gas supply line 60 to which the processing gas is supplied and the gas introduction nozzle.

次に、実施例及び比較例について説明する。   Next, examples and comparative examples will be described.

[実施例]
まず、熱処理装置10において酸化工程(アニール工程を含む)を実施した。この酸化工程における酸化(又はアニール)温度は1350℃、酸化時間は750時間(連続使用時間)とした。続いて、熱処理装置10においてクリーニング工程を実施した。すなわち、コントローラ70の制御により、ガス供給ライン60及びガス導入ノズル66を介して反応管40内にクリーニングガスを所定時間供給した。続いて、コントローラ70の制御により、ガス供給ライン60及びガス導入ノズル66を介して反応管40内に不活性ガスを所定時間供給した(パージした)。本実施例におけるクリーニングガス種は、フッ化水素(HF)ガスとアルゴン(Ar)ガスとの混合ガス(HF+Ar)とした。
[Example]
First, an oxidation process (including an annealing process) was performed in the heat treatment apparatus 10. The oxidation (or annealing) temperature in this oxidation step was 1350 ° C., and the oxidation time was 750 hours (continuous use time). Subsequently, a cleaning process was performed in the heat treatment apparatus 10. That is, the cleaning gas was supplied into the reaction tube 40 through the gas supply line 60 and the gas introduction nozzle 66 under the control of the controller 70 for a predetermined time. Subsequently, under the control of the controller 70, an inert gas was supplied (purged) into the reaction tube 40 through the gas supply line 60 and the gas introduction nozzle 66 for a predetermined time. The cleaning gas species in this example was a mixed gas (HF + Ar) of hydrogen fluoride (HF) gas and argon (Ar) gas.

反応管42内壁、基板支持具30、ガス導入ノズル66、第1の断熱部材52等の各部材に形成された酸化珪素膜の除去には60分、パージ時間には20分要した。クリーニング温度は80℃とした。すなわち、本実施例におけるクリーニング工程に要する時間は80分となった。   It took 60 minutes to remove the silicon oxide film formed on each member such as the inner wall of the reaction tube 42, the substrate support 30, the gas introduction nozzle 66, and the first heat insulating member 52, and 20 minutes to purge time. The cleaning temperature was 80 ° C. That is, the time required for the cleaning process in this example was 80 minutes.

[比較例]
まず、熱処理装置10において上記実施例同様の酸化工程(アニール工程を含む)を実施した。続いて、クリーニング工程を実施した。本比較例におけるクリーニング工程は、反応管42、基板支持具30、ガス導入ノズル66、第1の断熱部材52等の各部材を作業員2名で取り外し、クリーニング液により該各部材に形成された酸化珪素膜を除去し、各部材を水洗い及び乾燥させた後、作業員2名で反応炉40内に該各部材を取り付け及び調整し、反応炉40を加熱(空焼き)するものである。本比較例におけるクリーニング液種は、フッ化水素(HF)とフッ化アンモニウム水溶液(NH4F)との混合液(HF+NH4F)とした。また、クリーニング後の水洗いには水(H2O)を使用した。
[Comparative example]
First, an oxidation step (including an annealing step) similar to that in the above example was performed in the heat treatment apparatus 10. Subsequently, a cleaning process was performed. In the cleaning process in this comparative example, each member such as the reaction tube 42, the substrate support 30, the gas introduction nozzle 66, the first heat insulating member 52, and the like was removed by two workers, and each member was formed with a cleaning liquid. After removing the silicon oxide film and washing and drying each member, the two members attach and adjust each member in the reaction furnace 40 to heat (bake) the reaction furnace 40. The cleaning liquid type in this comparative example was a mixed liquid (HF + NH4F) of hydrogen fluoride (HF) and an aqueous ammonium fluoride solution (NH4F). In addition, water (H 2 O) was used for washing after cleaning.

反応管42、基板支持具30、ガス導入ノズル66、第1の断熱部材52等の各部材の取り外しには120分、各部材に形成された酸化珪素膜の除去及び水洗いには1440分、各部材の乾燥には240分、各部材の取り付け及び調整には240分、反応炉40の加熱(空焼き)には1440分要した。したがって、本比較例におけるクリーニング工程に要する時間は、3480分となった。   120 minutes for removing each member such as the reaction tube 42, the substrate support 30, the gas introduction nozzle 66, the first heat insulating member 52, and 1440 minutes for removing the silicon oxide film formed on each member and washing with water, It took 240 minutes to dry the members, 240 minutes to attach and adjust each member, and 1440 minutes to heat (blank) the reactor 40. Therefore, the time required for the cleaning process in this comparative example was 3480 minutes.

以上のように、本発明の熱処理装置10におけるクリーニング工程は、比較例におけるクリーニング工程と比較し、該クリーニング工程にかかる時間を大幅に短縮することができ、もって装置の稼働率を向上させることができる。また、本発明の熱処理装置10におけるクリーニング工程は、コントローラ70により自動的に実施されるので、比較例におけるクリーニング工程と比較し、作業員の負担が軽減される。   As described above, the cleaning process in the heat treatment apparatus 10 of the present invention can significantly reduce the time required for the cleaning process as compared with the cleaning process in the comparative example, thereby improving the operating rate of the apparatus. it can. In addition, since the cleaning process in the heat treatment apparatus 10 of the present invention is automatically performed by the controller 70, the burden on the operator is reduced as compared with the cleaning process in the comparative example.

なお、反応管42、基板支持具30、ガス導入ノズル66、第1の断熱部材52等の各部材は炭化珪素(SiC)製ではなくシリコン(Si)製でもよい。この場合、シリコン(Si)製の各部材に形成された酸化珪素膜は、フッ化水素(HF)ガスを含むクリーニングガスで除去することが好ましい。   Each member such as the reaction tube 42, the substrate support 30, the gas introduction nozzle 66, and the first heat insulating member 52 may be made of silicon (Si) instead of silicon carbide (SiC). In this case, the silicon oxide film formed on each member made of silicon (Si) is preferably removed with a cleaning gas containing hydrogen fluoride (HF) gas.

本発明の熱処理装置は、基板の製造工程に適用することができる。
SOI(Silicon On Insulator)ウエハの一種であるSIMOX(Separation by Implanted Oxygen)ウエハの製造工程の一工程に本発明の熱処理装置を適用する例について説明する。
The heat treatment apparatus of the present invention can be applied to a substrate manufacturing process.
An example in which the heat treatment apparatus of the present invention is applied to one process of manufacturing a SIMOX (Separation by Implanted Oxygen) wafer, which is a kind of SOI (Silicon On Insulator) wafer, will be described.

まずイオン注入装置等により単結晶シリコンウエハ内への酸素イオンをイオン注入する。その後、酸素イオンが注入されたウエハを上記実施の形態の熱処理装置を用いて、例えばAr、O2雰囲気のもと、1300℃〜1400℃、例えば1350℃以上の高温でアニールする。これらの処理により、ウエハ内部にSiO2層が形成された(SiO2層が埋め込まれた)SIMOXウエハが作製される。   First, oxygen ions are implanted into the single crystal silicon wafer by an ion implantation apparatus or the like. Thereafter, the wafer into which oxygen ions are implanted is annealed at a high temperature of 1300 ° C. to 1400 ° C., for example, 1350 ° C. or higher, for example, in an Ar, O 2 atmosphere using the heat treatment apparatus of the above embodiment. By these processes, a SIMOX wafer in which a SiO 2 layer is formed inside the wafer (an SiO 2 layer is embedded) is produced.

このような基板の製造工程の一工程として行なう高温アニール処理を行なう場合であっても、本発明の熱処理装置を適用することができる。   The heat treatment apparatus of the present invention can be applied even when performing a high-temperature annealing treatment performed as one step of such a substrate manufacturing process.

また、本発明の熱処理装置は、半導体装置(デバイス)の製造工程に適用することも可能である。特に、比較的高い温度で行なう熱処理工程、例えば、ウェット酸化、ドライ酸化、水素燃焼酸化(パイロジェニック酸化)、HCl酸化等の熱酸化工程等に適用するのが好ましい。   The heat treatment apparatus of the present invention can also be applied to a semiconductor device (device) manufacturing process. In particular, it is preferably applied to a heat treatment step performed at a relatively high temperature, for example, a thermal oxidation step such as wet oxidation, dry oxidation, hydrogen combustion oxidation (pyrogenic oxidation), HCl oxidation, or the like.

このような半導体デバイスの製造工程の一工程としての熱処理工程を行なう場合においても、本発明の熱処理装置を適用することができる。   The heat treatment apparatus of the present invention can also be applied when performing a heat treatment step as one step of the semiconductor device manufacturing step.

本発明は、半導体ウエハやガラス基板等の基板の製造方法及び熱処理装置において、反応管及び反応管内の各部材をクリーニングする必要があるものに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in a method for manufacturing a substrate such as a semiconductor wafer or a glass substrate and a heat treatment apparatus that require cleaning of the reaction tube and each member in the reaction tube.

10 熱処理装置
30 基板支持具
42 反応管
54 基板
60 ガス供給ライン
66 ガス導入ノズル
DESCRIPTION OF SYMBOLS 10 Heat processing apparatus 30 Substrate support 42 Reaction tube 54 Substrate 60 Gas supply line 66 Gas introduction nozzle

Claims (5)

反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、
酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程と
を有し、
前記反応管内をクリーニングする工程は、
前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルそれぞれの部材が炭化珪素で構成され、前記炭化珪素で構成された部材に形成された酸化膜を除去する工程と、
前記反応管内に不活性ガスを供給する工程と
を含む
ことを特徴とする基板の製造方法。
A step of introducing an oxidizing gas into the reaction tube by a gas introduction nozzle provided in the reaction tube to form an oxide film on a substrate supported by a support;
Removing the substrate after forming the oxide film from the inside of the reaction tube, and cleaning the inside of the reaction tube,
The step of cleaning the inside of the reaction tube includes:
By supplying a gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas into the reaction tube while maintaining the inside of the reaction tube at a predetermined temperature, the reaction tube, the support, and the gas introduction nozzle Each member is made of silicon carbide, and removing the oxide film formed on the member made of silicon carbide ;
And a step of supplying an inert gas into the reaction tube.
反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、
酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程と
を有し、
前記反応管内をクリーニングする工程は、
前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのそれぞれの部材が炭化珪素で構成され、前記炭化珪素で構成された部材に形成された酸化膜を除去する工程と、
前記反応管内に不活性ガスを供給する工程と
を含む
ことを特徴とする半導体装置の製造方法。
A step of introducing an oxidizing gas into the reaction tube by a gas introduction nozzle provided in the reaction tube to form an oxide film on a substrate supported by a support;
Removing the substrate after forming the oxide film from the inside of the reaction tube, and cleaning the inside of the reaction tube,
The step of cleaning the inside of the reaction tube includes:
By supplying a gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas into the reaction tube while maintaining the inside of the reaction tube at a predetermined temperature, the reaction tube, the support, and the gas introduction nozzle Each of the members is made of silicon carbide, and the step of removing the oxide film formed on the member made of silicon carbide ;
The method of manufacturing a semiconductor device which comprises a step of supplying an inert gas into the reaction tube.
反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する工程と、
酸化膜形成後の基板を前記反応管内から搬出して、前記反応管内をクリーニングする工程と
を有し、
前記反応管内をクリーニングする工程は、
前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのそれぞれの部材が炭化珪素で構成され、前記炭化珪素で構成された部材に形成された酸化膜を除去する工程と、
前記反応管内に不活性ガスを供給する工程と
を含む
ことを特徴とする基板処理方法。
A step of introducing an oxidizing gas into the reaction tube by a gas introduction nozzle provided in the reaction tube to form an oxide film on a substrate supported by a support;
Removing the substrate after forming the oxide film from the inside of the reaction tube, and cleaning the inside of the reaction tube,
The step of cleaning the inside of the reaction tube includes:
By supplying a gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas into the reaction tube while maintaining the inside of the reaction tube at a predetermined temperature, the reaction tube, the support, and the gas introduction nozzle Each of the members is made of silicon carbide, and the step of removing the oxide film formed on the member made of silicon carbide ;
And a step of supplying an inert gas into the reaction tube.
反応管に設けられたガス導入ノズルにより、前記反応管内に酸化性ガスを導入して支持具により支持した基板に酸化膜を形成する処理を行った後の前記反応管内をクリーニングする方法であって、
前記反応管内をクリーニングする工程は、
前記反応管内を所定の温度に維持した状態で、前記反応管内にフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給することにより、前記反応管、前記支持具及び前記ガス導入ノズルのそれぞれの部材が炭化珪素で構成され、前記炭化珪素で構成された部材に形成された酸化膜を除去する工程と、
前記反応管内に不活性ガスを供給する工程と
を含む
ことを特徴とするクリーニング方法。
A method of cleaning the inside of the reaction tube after performing a process of introducing an oxidizing gas into the reaction tube and forming an oxide film on a substrate supported by a support by a gas introduction nozzle provided in the reaction tube. ,
The step of cleaning the inside of the reaction tube includes:
By supplying a gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas into the reaction tube while maintaining the inside of the reaction tube at a predetermined temperature, the reaction tube, the support, and the gas introduction nozzle Each of the members is made of silicon carbide, and the step of removing the oxide film formed on the member made of silicon carbide ;
Cleaning method which comprises a step of supplying an inert gas into the reaction tube.
基板を処理する反応菅と、
前記反応管内で基板を支持する支持具と、
前記反応管に設けられ、前記反応管内に基板に酸化膜を形成するための酸化性ガスを導入するガス導入ノズルと
を有し、
前記反応管内を所定の温度に維持した状態で、前記反応管、前記支持具及び前記ガス導入ノズルそれぞれの部材が炭化珪素で構成され、前記炭化珪素で構成された部材に形成された酸化膜を除去するためのフッ化水素ガス及びフッ化塩素ガスの少なくとも一方を含むガスを供給するクリーニングガス供給ラインと、
前記反応管内に不活性ガスを供給するパージガス供給ラインと
が設けられる
ことを特徴とする処理装置。
A reaction vessel for processing the substrate;
A support for supporting the substrate in the reaction tube;
A gas introduction nozzle that is provided in the reaction tube and introduces an oxidizing gas for forming an oxide film on the substrate in the reaction tube;
In a state where the inside of the reaction tube is maintained at a predetermined temperature, each member of the reaction tube, the support, and the gas introduction nozzle is made of silicon carbide, and an oxide film formed on the member made of silicon carbide is formed. A cleaning gas supply line for supplying a gas containing at least one of hydrogen fluoride gas and chlorine fluoride gas for removal;
And a purge gas supply line for supplying an inert gas into the reaction tube.
JP2012116294A 2012-05-22 2012-05-22 Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus Active JP5331224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116294A JP5331224B2 (en) 2012-05-22 2012-05-22 Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116294A JP5331224B2 (en) 2012-05-22 2012-05-22 Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006201854A Division JP2008028307A (en) 2006-07-25 2006-07-25 Manufacturing method of substrate and heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2012199566A JP2012199566A (en) 2012-10-18
JP5331224B2 true JP5331224B2 (en) 2013-10-30

Family

ID=47181418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116294A Active JP5331224B2 (en) 2012-05-22 2012-05-22 Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus

Country Status (1)

Country Link
JP (1) JP5331224B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645294A (en) * 1992-07-23 1994-02-18 Nec Corp Diffusing apparatus for impurity in semiconductor wafer
JP2000021845A (en) * 1998-06-26 2000-01-21 Shin Etsu Handotai Co Ltd Treatment of silicon semiconductor single crystalline board
JP4426671B2 (en) * 1998-11-27 2010-03-03 東京エレクトロン株式会社 Heat treatment apparatus and cleaning method thereof
JP2001127056A (en) * 1999-10-29 2001-05-11 Applied Materials Inc Method of cleaning process chamber and substrate treatment equipment
JP2001250818A (en) * 1999-12-28 2001-09-14 Tokyo Electron Ltd Oxidization system and its cleaning method
JP2002164335A (en) * 2000-11-27 2002-06-07 Canon Sales Co Inc Method for cleaning semiconductor manufacturing apparatus, and the semiconductor manufacturing apparatus
JP2006114780A (en) * 2004-10-15 2006-04-27 Tokyo Electron Ltd Thin film formation device, washing method thereof and program
JP2008028307A (en) * 2006-07-25 2008-02-07 Hitachi Kokusai Electric Inc Manufacturing method of substrate and heat treatment equipment

Also Published As

Publication number Publication date
JP2012199566A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
WO2016038664A1 (en) Semiconductor annealing apparatus
JP5495847B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and substrate processing method
JP2008218984A (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2003133284A (en) Batch type vacuum treatment equipment
TWI431684B (en) Vacuum treatment method and vacuum processing device
WO2011024777A1 (en) Vacuum processing apparatus and vacuum processing method
JP2010165954A (en) Vacuum processing apparatus and vacuum processing method
WO2014192870A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP2008277777A (en) Semiconductor device manufacturing method
JP5069967B2 (en) Manufacturing method of heat treatment member
CN109778140B (en) Cleaning method and film forming method
JP2008028307A (en) Manufacturing method of substrate and heat treatment equipment
KR102072531B1 (en) Processing method, method of manufacturing semiconductor device, substrate processing apparatus and program
CN116344339A (en) Wafer surface treatment process
JP5331224B2 (en) Substrate manufacturing method, semiconductor device manufacturing method, substrate processing method, cleaning method, and processing apparatus
JP2007073628A (en) Method and device for manufacturing semiconductor
JP5690219B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2907095B2 (en) Method for manufacturing semiconductor device
JP2006351582A (en) Manufacturing method of semiconductor device, and substrate treatment device
JP2010283153A (en) Method for manufacturing semiconductor device, heat treatment apparatus, and member for heat treatment
JP2008078427A (en) Heat treatment apparatus
JP2008078179A (en) Method of cleaning member
JP2007227470A (en) Substrate processor
JP2007335608A (en) Manufacturing method of semiconductor device
JP2011199134A (en) Substrate processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5331224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250