JP5330677B2 - Resistance welding monitoring method and resistance welding control method - Google Patents

Resistance welding monitoring method and resistance welding control method Download PDF

Info

Publication number
JP5330677B2
JP5330677B2 JP2007293911A JP2007293911A JP5330677B2 JP 5330677 B2 JP5330677 B2 JP 5330677B2 JP 2007293911 A JP2007293911 A JP 2007293911A JP 2007293911 A JP2007293911 A JP 2007293911A JP 5330677 B2 JP5330677 B2 JP 5330677B2
Authority
JP
Japan
Prior art keywords
welding
section
voltage
resistance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007293911A
Other languages
Japanese (ja)
Other versions
JP2008142773A (en
Inventor
紫乃喜 森
雅也 山本
伸也 加治
丈夫 雪永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Sekisui Chemical Co Ltd
Original Assignee
Daihen Corp
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp, Sekisui Chemical Co Ltd filed Critical Daihen Corp
Priority to JP2007293911A priority Critical patent/JP5330677B2/en
Publication of JP2008142773A publication Critical patent/JP2008142773A/en
Application granted granted Critical
Publication of JP5330677B2 publication Critical patent/JP5330677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スポット溶接等の抵抗溶接による溶接品質の監視を行う抵抗溶接監視方法、及び抵抗溶接制御方法に関する。   The present invention relates to a resistance welding monitoring method for monitoring welding quality by resistance welding such as spot welding and a resistance welding control method.

従来技術として、溶接電流と電極チップ間電圧とを検出し、それら検出結果を用いて熱伝導モデルに基づいて被溶接材の温度分布を算出するとともに、その温度分布からナゲット寸法特性値を推定し、その推定結果から溶接品質を判別する抵抗溶接監視装置が知られている(例えば、特許文献1参照)。   As a conventional technique, the welding current and the voltage between the electrode tips are detected, the temperature distribution of the welded material is calculated based on the heat conduction model using these detection results, and the nugget dimension characteristic value is estimated from the temperature distribution. A resistance welding monitoring device is known that discriminates welding quality from the estimation result (see, for example, Patent Document 1).

また、溶接電流と電極チップ間電圧とを検出し、それら検出結果を用いて熱伝導モデルに基づいて被溶接材の温度分布を算出するとともに、その温度分布からナゲット寸法特性値を推定し、所定の溶接品質が得られるよう溶接制御を行う抵抗溶接制御装置が提案されている(例えば、特許文献2参照)。   In addition, the welding current and the voltage between the electrode tips are detected, the temperature distribution of the welded material is calculated based on the heat conduction model using the detection results, the nugget dimension characteristic value is estimated from the temperature distribution, There has been proposed a resistance welding control apparatus that performs welding control so as to obtain the welding quality of (see, for example, Patent Document 2).

さらに、溶接電流と電極チップ間電圧とを検出し、それら検出結果を用いて熱伝導モデルに基づいて被溶接材の温度分布を算出するとともに、その温度分布からナゲット寸法特性値を推定し、所定の溶接品質が得られるよう溶接制御を行う一方、治具による渦電流の影響を補正するようにした抵抗溶接制御装置も提案されている(例えば、特許文献3参照)。   Further, the welding current and the voltage between the electrode tips are detected, and the temperature distribution of the welded material is calculated based on the heat conduction model using the detection results, and the nugget dimension characteristic value is estimated from the temperature distribution, and the predetermined value is obtained. A resistance welding control device has been proposed in which welding control is performed so as to obtain the welding quality of the above, while the influence of the eddy current by the jig is corrected (for example, see Patent Document 3).

上記のような抵抗溶接監視装置もしくは抵抗溶接制御装置においては、被溶接材に加わる電圧(もしくは被溶接材の抵抗値)を正確に把握することが重要となる。一般的には、事前に無負荷の短絡状態における電極チップ間電圧を測定しておき、溶接時に測定される電極チップ間電圧から差し引くことで、被溶接部材に加わる溶接電圧を算出している。   In the resistance welding monitoring device or the resistance welding control device as described above, it is important to accurately grasp the voltage applied to the workpiece (or the resistance value of the workpiece). In general, the voltage between electrode tips in an unloaded short-circuit state is measured in advance, and the welding voltage applied to the member to be welded is calculated by subtracting from the voltage between electrode tips measured during welding.

実際に測定する際、チップホルダ近傍に取り付けられた、電極チップ間の電圧測定用の配線には、被溶接部材、周辺部材、溶接治具など溶接周辺の磁性体に発生した渦電流の影響を受けて起電力が誘起され、この起電力が加算された形で電極チップ間電圧が計測されることになる。   When actually measuring, the voltage measurement wiring between the electrode tips attached near the tip holder is affected by the eddy current generated in the magnetic material around the weld, such as the welded member, peripheral member, and welding jig. In response, an electromotive force is induced, and the voltage between the electrode tips is measured in a form in which the electromotive forces are added.

例えば、従来では、電圧計測線の配置を固定することで実効値を一定と考え、以下の計算時に相殺されるという仮定のもと、(計算に用いる電極チップ間電圧)=(無負荷の短絡状態における電極チップ間電圧)−(溶接時に測定される電極間電圧)という計算システムが構築されている(溶接学会全国大会講演概要第56集('95−4)「抵抗溶接でのチップ間インダクタンスの計測とその応用」参照)。
特許第3396602号公報 特表2004−510583号公報 特開2004−230425号公報
For example, in the past, assuming that the effective value is fixed by fixing the arrangement of the voltage measurement lines and canceling out at the time of the following calculation, (voltage between electrode tips used for calculation) = (no load short circuit) The inter-electrode voltage in the state)-(the inter-electrode voltage measured at the time of welding) has been constructed (Summary of the National Conference of the Japan Welding Society, Vol. 56 ('95 -4) "Inductance between Chips in Resistance Welding" Measurement and its application ”).
Japanese Patent No. 3396602 Japanese translation of PCT publication No. 2004-510583 Japanese Patent Laid-Open No. 2004-230425

しかしながら、電極計測線の配置が固定されていても、被溶接部材、周辺部材、溶接治具などが変化する場合、特に懐寸法の大きなC型スポット溶接ガンなどでは、この渦電流の影響による起電力が無視できなくなる。そうなると被溶接材にかかる溶接電圧の計算値が正しい値にならないため、計算誤差を生じ、溶接制御や品質判別の機能を果たせなくなってしまう。   However, even if the arrangement of the electrode measurement lines is fixed, if the member to be welded, peripheral members, welding jigs, etc. change, especially in a C-type spot welding gun with a large pocket size, it is caused by the influence of this eddy current. Electric power cannot be ignored. In this case, since the calculated value of the welding voltage applied to the material to be welded does not become a correct value, a calculation error occurs, and the functions of welding control and quality discrimination cannot be performed.

ここで、上記特許文献2に記載されているエネルギーバランスモデルに基づいて平均温度推定値のピーク値を用いて溶接品質を判断する溶接監視装置を例に挙げて説明する。図1に示すようなC型スポット溶接ガン(H=300mm,D=200mm)を用いて、図2に示すように、2枚の平板(板厚t=4.5mm,4.0mm)を重ねて溶接(溶接条件は120cyc/18kA)する場合、溶接部の平均温度推定値のピーク値と溶着面積との関係をグラフで示せば、図3のようになる。   Here, a welding monitoring apparatus that determines the welding quality using the peak value of the average temperature estimated value based on the energy balance model described in Patent Document 2 will be described as an example. Using a C-type spot welding gun (H = 300 mm, D = 200 mm) as shown in FIG. 1, two flat plates (plate thickness t = 4.5 mm, 4.0 mm) are overlapped as shown in FIG. In the case of welding (welding condition is 120 cyc / 18 kA), if the relationship between the peak value of the average temperature estimated value of the welded portion and the welding area is shown in a graph, it is as shown in FIG.

図3において、通常であれば、温度推定ピーク値により溶接品質を監視することが可能となる。ところが、例えば図4に示すような建築構造材に対して、図5(図5は図4をA方向から見た図である)に示すような溶接打点位置に溶接する場合、ワーク(被溶接材)の種類(板厚や付加部材の有無)などによって、平均温度推定値のピーク値と溶着面積との関係が、図6に示すように、溶接打点位置に応じて相関にズレが生じる。また、機械的に溶接ガンの停止位置がばらついてしまう場合にも相関にズレが生じる。その結果、溶接品質を適正に判断することが、困難となってしまう。   In FIG. 3, it is possible to monitor the welding quality based on the estimated temperature peak value. However, for example, when a building construction material as shown in FIG. 4 is welded to a welding spot position as shown in FIG. 5 (FIG. 5 is a view when FIG. 4 is viewed from the direction A), As shown in FIG. 6, the correlation between the peak value of the average temperature estimated value and the welded area varies depending on the position of the welding spot, depending on the type of material (plate thickness, presence / absence of additional members), and the like. Further, the correlation is also shifted when the stop position of the welding gun varies mechanically. As a result, it becomes difficult to properly determine the welding quality.

また、上記特許文献3においては、溶接ガンのアームの懐内にワークを保持する治具が入る際、その治具の影響による渦電流で溶接部抵抗値の算出値誤差を修正するようにしているが、この方法は、限られたパターンの治具構成に基づき所定溶接打点位置毎に短絡抵抗値を登録しておくことで計算補正を行っている。そして、この方法では、治具とワークによる渦電流の影響が無限にある場合、同一溶接打点位置においても溶接ガンの停止位置精度が安定しないなど設備の構造上からの影響で渦電流の影響度が変化してしまい、正確に計算値を補正することができない。   Further, in Patent Document 3, when a jig for holding a workpiece is inserted into the pocket of the arm of the welding gun, the calculation value error of the weld resistance value is corrected by an eddy current due to the influence of the jig. However, in this method, calculation correction is performed by registering a short-circuit resistance value for each predetermined welding spot position based on a jig configuration with a limited pattern. In this method, when the influence of eddy currents due to the jig and workpiece is infinite, the influence of the eddy current due to the influence of the equipment structure such as the stop position accuracy of the welding gun is not stable even at the same welding point position. Changes, and the calculated value cannot be accurately corrected.

本発明の課題は、渦電流による影響を正確に補正して、溶接品質を適正に判断することのできる抵抗溶接監視方法、及び抵抗溶接制御方法を提供することにある。   An object of the present invention is to provide a resistance welding monitoring method and a resistance welding control method capable of accurately correcting the influence of eddy currents and appropriately determining welding quality.

上記課題を解決するために、請求項1に記載の発明は、電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材に対する溶接品質を推測する抵抗溶接監視方法であって、測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(3)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(3)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定し、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正結果に基づいて前記被溶接材に印加する溶接電圧を算出し、溶接時の渦電流の影響による測定電圧を補正したとき、その補正電圧から溶接品質の指標値を算出し、前記指標値を用いて溶接品質の監視を行うことを特徴としている。
また、請求項2に記載の発明は、電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材に対する溶接品質を推測する抵抗溶接監視方法であって、測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(3’)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(3’)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定するに際して穴加工した溶接打点位置で電極を短絡させ、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正結果に基づいて前記被溶接材に印加する溶接電圧を算出することを特徴としている。
In order to solve the above problem, the invention according to claim 1 measures the current applied between the electrode tips and the voltage between the electrode tips, and uses the measurement result to determine the resistance value of the material to be welded. A resistance welding monitoring method for calculating and estimating the welding quality for the workpiece based on the calculation result, measuring voltage V, measuring current i, resistance between electrode tips in short-circuit state R, measuring When the mutual inductance of the welder circuit is M and the self-inductance of the welder circuit is L, the following equation (3) is used during energization:
V = i * R + (L + M) * di / dt (3)
A relational expression between (L + M) and R in a state where the electrode tip is short-circuited is set, and at the time of welding, the measurement voltage due to the influence of eddy current at the time of welding is corrected using the relational expression, and based on the correction result Calculating the welding voltage to be applied to the workpiece and correcting the measurement voltage due to the influence of eddy current during welding, calculating the welding quality index value from the corrected voltage, and using the index value, the welding quality It is characterized by monitoring.
The invention according to claim 2 measures the current applied between the electrode tips and the voltage between the electrode tips, calculates the resistance value of the welded material using the measurement result, and calculates the calculation A resistance welding monitoring method for inferring the welding quality of the material to be welded based on the result, wherein the measurement voltage is V, the measurement current is i, the resistance between the electrode tips in a short-circuit state is R, and the circuit between the measurement and the welding machine When the inductance is M and the self-inductance of the welder circuit is L, the following equation (3 ′) is used during energization:
V = i * R + (L + M) * di / dt (3 ')
When setting the relational expression between (L + M) and R with the electrode tip short-circuited, the electrode is short-circuited at the position where the hole is drilled , and the effect of eddy current during welding using the relational expression is used during welding. The measurement voltage is corrected, and the welding voltage applied to the workpiece is calculated based on the correction result.

請求項に記載の発明は、請求項1又は2において、前記電極チップを短絡させた状態で、アップスロープ・ダウンスロープを用いて通電することにより、MとRとの前記関係式を設定することを特徴としている。 According to a third aspect of the present invention, in the first or second aspect , the relational expression between M and R is set by energizing with an up slope / down slope in a state where the electrode tip is short-circuited. It is characterized by that.

請求項に記載の発明は、電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材の溶接品質を推測し、その推定結果が溶接品質目標値に近付くよう溶接電流を制御する抵抗溶接制御方法であって、測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(4)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(4)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定し、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正電圧に基づいて前記被溶接材に印加する溶接電圧を算出する一方、0.5〜1サイクル毎に(L+M)を求めるとともに前記補正電圧を用いて溶接品質指標値を算出することを特徴としている。
The invention according to claim 4 measures the current applied between the electrode tips and the voltage between the electrode tips, calculates the resistance value of the material to be welded using the measurement result, and A resistance welding control method for estimating a welding quality of the workpiece to be welded and controlling a welding current so that the estimation result approaches a welding quality target value, wherein the measurement voltage is V, the measurement current is i, and the short-circuit state When the resistance between the electrode tips is R, the mutual inductance of the circuit between the measurement and the welding machine is M, and the self-inductance of the welding machine circuit is L, the following equation (4) is used during energization:
V = i * R + (L + M) * di / dt (4)
A relational expression between (L + M) and R in a state where the electrode tip is short-circuited is set, and at the time of welding, the measurement voltage due to the influence of the eddy current at the time of welding is corrected using the relational expression, and based on the corrected voltage The welding voltage to be applied to the workpiece is calculated, while (L + M) is obtained every 0.5 to 1 cycle and the welding quality index value is calculated using the correction voltage.

請求項に記載の発明は、請求項において、溶接時の通電時間を下記の通り連続した第1区間、第2区間及び第3区間に分割して、溶接品質指標値を算出することを特徴としている。
第1区間:定電流制御を行い(L+M)の平均値を求める区間
第2区間:定電流制御を行い、第1区間で求めた(L+M)の平均値を用いるとともに、上記(2)式を用いて第1区間からの測定電圧を補正し、溶接品質指標値の算出を行う区間
第3区間:第2区間における溶接品質指標値の算出に引き続き、第1区間で求めた(L+M)の平均値を用いるとともに、前記補正電圧を用いて溶接品質指標値の算出を行う区間
The invention according to claim 5 calculates the welding quality index value in claim 4 by dividing the energization time at the time of welding into the first section, the second section, and the third section which are continuous as follows. It is a feature.
First section: section in which constant current control is performed to obtain an average value of (L + M) Second section: constant current control is performed, the average value of (L + M) obtained in the first section is used, and the above equation (2) is Section used to correct the measured voltage from the first section and calculate the welding quality index value Third section: Average of (L + M) obtained in the first section following calculation of the welding quality index value in the second section Section in which the welding quality index value is calculated using the correction voltage

請求項に記載の発明は、請求項において、溶接時の通電時間を下記の通り連続した第1区間、第2区間及び第3区間に分割して、溶接品質指標値を算出することを特徴としている。
第1区間:定電流制御を行い(L+M)の平均値を求める区間
第2区間:通電を停止し、第1区間で求めた(L+M)の平均値を用いるとともに、上記(2)式を用いて第1区間からの測定電圧を補正し、溶接品質指標値の算出を行う区間
第3区間:第2区間における溶接品質指標値の算出に引き続き、第1区間で求めた(L+M)の平均値を用いるとともに、前記補正電圧を用いて溶接品質指標値の算出を行う区間
According to a sixth aspect of the present invention, in the fourth aspect of the present invention, the welding quality index value is calculated by dividing the energization time during welding into the first section, the second section, and the third section that are continuous as follows. It is a feature.
First section: section in which constant current control is performed to obtain an average value of (L + M) Second section: energization is stopped, the average value of (L + M) obtained in the first section is used, and the above formula (2) is used Section for correcting the measured voltage from the first section and calculating the welding quality index value Third section: Average value of (L + M) obtained in the first section following calculation of the welding quality index value in the second section And using the correction voltage to calculate the weld quality index value

本発明によれば、渦電流による影響を正確に補正して、溶接品質を適正に判断することができる。   According to the present invention, it is possible to accurately correct the influence of eddy currents and appropriately determine the welding quality.

また、溶接打点位置毎に短絡抵抗値などを設定する工数、部材バリエーションごとに短絡抵抗値などを測定する工数を削減することができる。   Moreover, the man-hour which sets a short circuit resistance value etc. for every welding spot position, and the man-hour which measures a short circuit resistance value etc. for every member variation can be reduced.

以下、本発明の実施例を図面に従って説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は、C型スポット溶接ガン1の概略構成を示している。C型スポット溶接ガン1は、ほぼC型を成したスポット溶接ガン本体2と、スポット溶接ガン本体2上部のアーム2A先端に取り付けられた上チップホルダ3と、スポット溶接ガン本体2下部の脚部2B先端に取り付けられた下チップホルダ4とを備えている。そして、上下のチップホルダ3,4に電極チップ5,6がそれぞれ取り付けられている。   1 and 2 show a schematic configuration of the C-type spot welding gun 1. The C-type spot welding gun 1 includes a spot welding gun main body 2 that is substantially C-shaped, an upper tip holder 3 attached to the tip of an arm 2A at the top of the spot welding gun main body 2, and a leg portion at the bottom of the spot welding gun main body 2. And a lower chip holder 4 attached to the tip of 2B. Electrode chips 5 and 6 are attached to the upper and lower chip holders 3 and 4, respectively.

また、スポット溶接ガン本体2には、電極チップ5,6間に加えられる電圧を検出する電圧検出回路7が電気的に接続されている。さらに、スポット溶接ガン本体2にはトロイダルコイル8が設けられ、このトロイダルコイル8を流れる電流を検出する電流検出回路9が電気的に接続されている。   The spot welding gun body 2 is electrically connected to a voltage detection circuit 7 that detects a voltage applied between the electrode tips 5 and 6. Furthermore, the spot welding gun main body 2 is provided with a toroidal coil 8, and a current detection circuit 9 for detecting a current flowing through the toroidal coil 8 is electrically connected.

電圧検出回路7及び電流検出回路9はA/D変換器10に接続され、このA/D変換器10は演算装置11を介して溶接制御装置(又は品質監視装置)12に接続されている。   The voltage detection circuit 7 and the current detection circuit 9 are connected to an A / D converter 10, and the A / D converter 10 is connected to a welding control device (or quality monitoring device) 12 via an arithmetic device 11.

本実施例では、上記構成C型スポット溶接ガン1において、被溶接材に対して溶接を行う際に以下のような制御を行う。 In the present embodiment, in the C-type spot welding gun 1 configured as described above, the following control is performed when welding is performed on the workpiece.

溶接電流と電極チップ間電圧を測定し、その測定結果を用いて、熱伝導モデルに基づいて被溶接部材の温度分布を算出するとともに、その温度分布からナゲット寸法特性値を推定する。溶接品質を判別したり溶接条件を制御したりするシステムでは、電極チップを無負荷の短絡状態にして、そのときの電極チップ間電圧を事前に測定しておき、溶接時に測定される電極チップ間電圧から差し引くことで、被溶接部材に加わる溶接電流を算出している。   The welding current and the voltage between the electrode tips are measured, and using the measurement results, the temperature distribution of the member to be welded is calculated based on the heat conduction model, and the nugget dimension characteristic value is estimated from the temperature distribution. In a system that discriminates welding quality and controls welding conditions, the electrode tips are placed in a short-circuit state without load, the voltage between the electrode tips is measured in advance, and the electrode tips measured during welding are measured. By subtracting from the voltage, the welding current applied to the member to be welded is calculated.

無負荷の短絡状態で電極チップに通電を行った場合の測定値について式で表すと、下記(5)式のようになる。   When the measured value when the electrode tip is energized in a short-circuit state with no load is expressed by an equation, the following equation (5) is obtained.

V = i×Ro+(L+M)×di/dt ・・・・・・(5)
ここで、V:測定電圧
i:測定電流
Ro:無負荷の短絡状態における電極チップ間抵抗
M:計測と溶接機の回路相互インダクタンス
L:溶接機回路の自己インダクタンス
である。
V = i × Ro + (L + M) × di / dt (5)
Where V: measurement voltage
i: Measurement current Ro: Resistance between electrode tips in no-load short-circuit state
M: Circuit and mutual inductance of measurement and welding machine
L: Self-inductance of the welder circuit.

ごく短時間では抵抗やインダクタンスは変化しないと仮定し、通電の半サイクル内でサンプリングし得られた複数組の電流電圧データを上記(5)式に当てはめ、その複数組の式を最小二乗法により解析することで、Roと(L+M)が求まる(例えば、溶接学会全国大会講演概要 第56集('95−4)「抵抗溶接でのチップ間インダクタンスの計測とその応用」参照)。   Assuming that resistance and inductance do not change in a very short time, apply multiple sets of current-voltage data obtained by sampling within a half cycle of energization to the above formula (5), and convert the multiple sets of formulas using the least squares method. By analyzing, Ro and (L + M) can be obtained (for example, refer to the National Welding Society Conference Summary Vol. 56 ('95 -4) "Measurement of Inductance between Chips in Resistance Welding and Its Application").

しかし、実際に測定する際、チップホルダ近傍に取り付けられた電極チップ間電圧測定用の配線が、スポット溶接ガン本体のアームに添う形で配線されたり、被溶接部材、周辺部材、溶接治具など溶接周辺の磁性体に発生した渦電流の影響を受ける範囲に配線されたりしている場合、それらの影響で発生した起電力が誘起され、この起電力が加算された形で電極チップ間電圧が計算されることになる。この渦電流の影響で発生した電圧Vmは、スポット溶接ガン本体での自己インダクタンスと、流れる電流値に強く影響を受けていると考えられる。   However, when actually measuring, the wiring for measuring the voltage between the electrode tips attached in the vicinity of the tip holder is wired to follow the arm of the spot welding gun body, or the member to be welded, peripheral member, welding jig, etc. When wiring is made within the range affected by the eddy current generated in the magnetic material around the weld, the electromotive force generated by the influence is induced, and the voltage between the electrode tips is calculated by adding this electromotive force. Will be calculated. The voltage Vm generated by the influence of this eddy current is considered to be strongly influenced by the self-inductance in the spot welding gun body and the value of the flowing current.

実際に、無負荷状態と渦電流負荷を受ける状態で両電極チップを短絡し通電を行うと、図7に示すように、スポット溶接ガン本体の形状と電圧検出線の配線状態による固有の(L+M)とRの関係が求められる。この結果から、(L+M)に関係した渦電流の起電力Vm(≒i×(R−Ro))が発生していると予測できる。   Actually, when both electrode tips are short-circuited and energized in a no-load state and in an eddy current load state, as shown in FIG. 7, a characteristic (L + M) depending on the shape of the spot welding gun main body and the wiring state of the voltage detection line. ) And R are required. From this result, it can be predicted that an electromotive force Vm (≈i × (R−Ro)) of eddy current related to (L + M) is generated.

本実施例では、その(L+M)とRの関係を利用して、溶接している際に電圧については、次のような補正を行う。   In the present embodiment, using the relationship between (L + M) and R, the following correction is performed on the voltage during welding.

溶接時に測定される電流電圧を式で表すと、下記(6)式のようになる。   When the current voltage measured at the time of welding is expressed by an equation, the following equation (6) is obtained.

V = i×(Ro+Rt)+(L+M)×di/dt ・・・・・・(6)
ここで、V:測定電圧
i:測定電流
Ro:無負荷の短絡状態における電極チップ間抵抗
Rt:溶接対象である鋼板の抵抗
M:計測と溶接機の回路相互インダクタンス
L:溶接機回路の自己インダクタンス
である。
V = i × (Ro + Rt) + (L + M) × di / dt (6)
Where V: measurement voltage
i: Measurement current Ro: Resistance between electrode tips in a short-circuit state without load Rt: Resistance of a steel plate to be welded
M: Circuit and mutual inductance of measurement and welding machine
L: Self-inductance of the welder circuit.

通常であれば、i及びVを測定し、短時間に得られた複数組の電流電圧データから最小二乗法により(Ro+Rt)と(L+M)が求まり、事前に測定しておいたRo(無負荷の短絡状態における電極チップ間抵抗)を差し引くことで、鋼板の抵抗分Rtが求まる。
このRtを用いて熱伝導計算が可能となるはずである。
Normally, i and V are measured, and (Ro + Rt) and (L + M) are obtained from a plurality of sets of current and voltage data obtained in a short time by the least square method, and Ro (no load) measured in advance. The resistance Rt of the steel sheet can be obtained by subtracting the resistance between the electrode tips in the short-circuit state.
Heat transfer calculation should be possible using this Rt.

しかし、渦電流負荷が大きく、その影響の起電力分が含まれている場合、実際としては、下記(7)式となり、前述の計算では、真のRtの値とはかけ離れた値になってしまう。   However, when the eddy current load is large and the electromotive force component of the influence is included, the following equation (7) is actually obtained. In the above calculation, the value is far from the true Rt value. End up.

V = i×(Ro+Rt)+(L+M)×di/dt+Vm ・・・・・・(7)
ここで、Vm:渦電流の影響による起電力である。
V = i × (Ro + Rt) + (L + M) × di / dt + Vm (7)
Here, Vm is an electromotive force due to the influence of eddy current.

そこで、本実施例では、(L+M)の値を利用して、事前に求めた図7の関係からR値を算出する。このRをRoと置き換えることにより、渦電流の影響分を相殺する。つまり、下記(8)式及び(9)式のようになる。   Therefore, in this embodiment, the value of (L + M) is used to calculate the R value from the relationship shown in FIG. Replacing R with Ro cancels the influence of eddy currents. That is, the following equations (8) and (9) are obtained.

Vm = i×Ro≒i×R ・・・・・・(8)
V = i×(R+Rt)+(L+M)×di/dt ・・・・・・(9)
ここで、V:測定電圧
i:測定電流
R:(6)式で求めた(L+M)から図7に基づいて求めた値
Rt:溶接対象である鋼板の抵抗
M:計測と溶接機の回路相互インダクタンス
L:溶接機回路の自己インダクタンス
である。
Vm = i × Ro≈i × R (8)
V = i × (R + Rt) + (L + M) × di / dt (9)
Where V: measurement voltage
i: Measurement current
R: Value obtained from (L + M) obtained by equation (6) based on FIG. 7 Rt: Resistance of the steel sheet to be welded
M: Circuit and mutual inductance of measurement and welding machine
L: Self-inductance of the welder circuit.

そして、上記(9)式で求めた(R+Rt)からRを差し引くことで、Rtを求める。このRtを用いることで、渦電流の影響を補正した正確な熱伝導計算を行うことが可能となる。   And Rt is calculated | required by subtracting R from (R + Rt) calculated | required by said (9) Formula. By using this Rt, it is possible to perform accurate heat conduction calculation in which the influence of eddy current is corrected.

短絡通電での(L+M)とR関係のとり方としては、溶接ガンの形状と電圧検出線の配線状態によるが、以下の(a)〜(c)が挙げられる。   Depending on the shape of the welding gun and the wiring state of the voltage detection line, the following (a) to (c) may be mentioned as a method of taking the R relationship with (L + M) in short circuit energization.

(a) 半サイクル毎に算出が可能な(L+M)とRの関係式を利用する。   (a) A relational expression of (L + M) and R that can be calculated every half cycle is used.

(b) 通電全サイクルにてサイクル毎に算出された(L+M)の平均値とRの最小値の関係式を利用する。   (b) The relational expression between the average value of (L + M) and the minimum value of R calculated for each cycle in all energization cycles is used.

(c) 通電全サイクルにてサイクル毎に算出された(L+M)の平均値とRの平均値の関係式を利用する。   (c) A relational expression between the average value of (L + M) and the average value of R calculated for each cycle in all energization cycles is used.

上記(a)〜(c)のうち、(a)が好ましいと考える。   Of the above (a) to (c), (a) is considered preferable.

実際のデータのとり方としては、以下の(d)及び(e)が挙げられる。   The following methods (d) and (e) are mentioned as actual data collection methods.

(d) 実ワークの打点位置に穴加工を施し、溶接打点位置で電極を短絡させることを可能にしたテストワークを用いる方法(図8参照)
(e) 溶接ガン周辺に鉄部材などの磁性体を配置する方法
また、上述の(a)の場合には、渦電流負荷を変える代わりに、溶接電流を変動させることで(L+M)も変動する(図9参照)点を利用し、溶接ガンに取り付けやすい渦電流負荷用治具を作成し、通電時にアップスロープ・ダウンスロープなどの機能を用いて、通電する電流値の幅を広げることで、より広範囲の(L+M)とRの関係を求めることが可能となる。
(d) A method using a test work that makes it possible to short-circuit the electrode at the welding spot position by drilling holes at the spot position of the actual workpiece (see Fig. 8)
(e) Method of arranging a magnetic material such as an iron member around the welding gun In the case of (a) above, instead of changing the eddy current load, (L + M) is also changed by changing the welding current. (Refer to Fig. 9) Using points, create an eddy current load jig that is easy to attach to the welding gun, and by using functions such as up-slope and down-slope during energization, A wider range of relationship between (L + M) and R can be obtained.

溶接時のRoの補正の方法としては、以下の方法が挙げられる。   As a method for correcting Ro at the time of welding, the following methods may be mentioned.

(f) 半サイクル毎に算出された(L+M)の値を用い、関係式よりRを算出する。   (f) Using the value of (L + M) calculated every half cycle, R is calculated from the relational expression.

(g) 通電全サイクルにてサイクル毎に算出された(L+M)の平均値を用い、関係式よりRを算出する。   (g) R is calculated from the relational expression using an average value of (L + M) calculated for each cycle in all energization cycles.

次に、図10及び図11は、図4示したような建築構造物に対してスポット溶接を行った際の溶接部推定温度−溶着面積の評価結果を示している。図10は溶接時の渦電流の影響による測定電圧の補正を行わなかった場合であり、図11は溶接時の渦電流の影響による測定電圧の補正を行った場合である。 Next, FIGS. 10 and 11, welds estimated temperature when performing the spot welding against the building structure shown in FIG. 4 - shows the evaluation results of the welding area. FIG. 10 shows a case where the measurement voltage is not corrected due to the influence of the eddy current during welding, and FIG. 11 shows a case where the measurement voltage is corrected due to the influence of the eddy current during welding.

図10及び図11においてR2は相関係数を示しており、補正を行わなかった場合(図10)に比べて、補正を行った場合(図11)の方が溶接部推定温度と溶着面積との相関が大きいことが分かる。 10 and 11, R 2 indicates a correlation coefficient, and when the correction is made (FIG. 11) compared to the case where the correction is not made (FIG. 10), the estimated weld temperature and the welding area are increased. It can be seen that the correlation with is large.

次に、本実施例における溶接品質監視のフローについて、図12を用いて説明する。   Next, the flow of welding quality monitoring in this embodiment will be described with reference to FIG.

図12において、まず、無負荷短絡通電及び負荷短絡通電を行い、L(溶接機回路の自己インダクタンス)とM(計測と溶接機の回路相互インダクタンス)及びR(短絡状態での電極チップ間抵抗)を測定し、前述の(7)式を用いて、電極チップを短絡させた状態での(L+M)−Rの関係式を設定する(ステップS1)。   In FIG. 12, first, no-load short-circuit energization and load short-circuit energization are performed, and L (self-inductance of the welder circuit), M (measurement and circuit mutual inductance of the welder), and R (resistance between the electrode tips in the short-circuit state). And the relational expression (L + M) −R in a state where the electrode tip is short-circuited is set using the above-described formula (7) (step S1).

次に、溶接時に電流電圧の計測を行い(ステップS2)、0.5cyc(サイクル)毎に(L+M)の平均値を算出し、さらに(L+M)−Rの関係式からRt(溶接対象である鋼板の抵抗)を算出する(ステップS3)。   Next, current voltage is measured during welding (step S2), an average value of (L + M) is calculated every 0.5 cyc (cycle), and Rt (which is the object to be welded) from a relational expression of (L + M) -R. The resistance of the steel plate is calculated (step S3).

また、短絡抵抗値をRtとして熱伝導計算を実施し、溶接部平均温度推定値を算出する(ステップS4)。このとき、算出した溶接部平均温度推定値を記憶部に記憶する(ステップS5)。そして、ステップS2〜ステップS4の処理を溶接時に複数回繰り返す。   Further, the heat conduction calculation is performed with the short-circuit resistance value as Rt, and the average weld temperature estimated value is calculated (step S4). At this time, the calculated weld zone average temperature estimated value is stored in the storage unit (step S5). And the process of step S2-step S4 is repeated in multiple times at the time of welding.

溶接終了後、溶接部平均温度推定値を記憶部から読み込んで、溶接部平均温度推定値のピーク値を求め、そのピーク値を品質指標値として出力する(ステップS6)。   After the welding is completed, the estimated average temperature of the weld is read from the storage unit, the peak value of the estimated average temperature of the weld is obtained, and the peak value is output as a quality index value (step S6).

図13は、溶接品質監視の他の例によるフローを示している。図13において、まず、無負荷短絡通電及び負荷短絡通電を行い、LとM及びRを測定し、前述の(7)式を用いて、電極チップを短絡させた状態での(L+M)−Rの関係式を設定する(ステップS11)。   FIG. 13 shows a flow according to another example of welding quality monitoring. In FIG. 13, first, no-load short-circuit energization and load short-circuit energization are performed, L, M, and R are measured, and (L + M) −R in a state where the electrode tip is short-circuited using the above-described equation (7). Is set (step S11).

次に、溶接時に電流電圧の計測を行い(ステップS12)、計測結果を記憶部に記憶する(ステップS13)。また、0.5cyc毎に(L+M)の平均値を算出し(ステップS14)、その算出結果を記憶部に記憶する(ステップS15)。   Next, current voltage is measured during welding (step S12), and the measurement result is stored in the storage unit (step S13). Further, an average value of (L + M) is calculated every 0.5 cyc (step S14), and the calculation result is stored in the storage unit (step S15).

そして、通電完了後、記憶部から(L+M)の平均値を読み出し、(L+M)−Rの関係式からRtを算出する(ステップS16)。また、記憶部から電流電圧データを読み出し、短絡抵抗値をRtとして熱伝導計算を実施する(ステップS17)。   Then, after the energization is completed, the average value of (L + M) is read from the storage unit, and Rt is calculated from the relational expression of (L + M) −R (step S16). Further, the current voltage data is read from the storage unit, and the heat conduction calculation is performed with the short-circuit resistance value as Rt (step S17).

さらに、溶接部平均温度推定値のピーク値を求め、そのピーク値を品質指標値として出力する(ステップS18)。   Further, the peak value of the weld zone average temperature estimated value is obtained, and the peak value is output as a quality index value (step S18).

次に、抵抗溶接制御方法について説明する。図14は、定電流で溶接した際の溶接部平均温度の推移を示している。図に示すように、溶接部平均温度は、初期には上昇するが、その後は時間の経過とともに低下する。   Next, a resistance welding control method will be described. FIG. 14 shows the transition of the average temperature of the weld when welding is performed at a constant current. As shown in the figure, the average temperature of the weld zone rises in the initial stage, but then falls with the passage of time.

図15は、抵抗溶接制御方法の一例を示すフローチャートである。図15において、まず、無負荷短絡通電及び負荷短絡通電を行い、前述の(7)式を用いて、LとM及びRを測定し、電極チップを短絡させた状態での(L+M)−Rの関係式を設定する(ステップS21)。   FIG. 15 is a flowchart illustrating an example of a resistance welding control method. In FIG. 15, first, no-load short-circuit energization and load short-circuit energization are performed, L, M, and R are measured using the above-described equation (7), and (L + M) −R in a state where the electrode tips are short-circuited. Is set (step S21).

次に、設定電流を通電して(ステップS22)、電流電圧の計測を行う(ステップS23)。そして、0.5cyc毎に(L+M)の平均値を算出し、さらに(L+M)−Rの関係式からRtを算出する(ステップS24)。   Next, the set current is applied (step S22), and the current voltage is measured (step S23). Then, an average value of (L + M) is calculated every 0.5 cyc, and Rt is calculated from a relational expression of (L + M) −R (step S24).

また、短絡抵抗値をRtとして熱伝導計算を実施し、溶接部平均温度推定値を算出する(ステップS25)。このとき、算出した溶接部平均温度推定値を記憶部に記憶する(ステップS26)。さらに、設定温度レベルに近づくよう設定電流を調整する(ステップS27)。また、ステップS27における処理の後、フローはステップS22に戻る。   Moreover, heat conduction calculation is implemented by making short circuit resistance value into Rt, and a welding part average temperature estimated value is calculated (step S25). At this time, the calculated weld zone average temperature estimated value is stored in the storage unit (step S26). Further, the set current is adjusted so as to approach the set temperature level (step S27). Further, after the processing in step S27, the flow returns to step S22.

溶接終了後、溶接部平均温度推定値を記憶部から読み込んで、溶接部平均温度推定値のピーク値を求め、そのピーク値を品質指標値として出力する(ステップS28)。   After the end of welding, the welding portion average temperature estimated value is read from the storage portion, the peak value of the welding portion average temperature estimated value is obtained, and the peak value is output as the quality index value (step S28).

図16は、図15に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示している。   FIG. 16 shows the transition of the welding current and the average weld temperature in the resistance welding control method shown in FIG.

図17は、抵抗溶接制御方法の他の例を示すフローチャートである。図17において、まず、無負荷短絡通電及び負荷短絡通電を行い、前述の(7)式を用いて、LとM及びRを測定し、電極チップを短絡させた状態での(L+M)−Rの関係式を設定する(ステップS31)。   FIG. 17 is a flowchart illustrating another example of the resistance welding control method. In FIG. 17, first, no-load short-circuit energization and load short-circuit energization are performed, and L, M, and R are measured using the above-described equation (7), and (L + M) −R with the electrode tip short-circuited. Is set (step S31).

次に、設定電流を定電流で通電して(ステップS32)、電流電圧の計測を行う(ステップS33)。このとき、計測値を記憶部に記憶する(ステップS34)。   Next, the set current is energized with a constant current (step S32), and the current voltage is measured (step S33). At this time, the measured value is stored in the storage unit (step S34).

ステップ33における処理の後、ステップS32での通電時の(L+M)の平均値を算出し、さらに(L+M)−Rの関係式からRtを算出する(ステップS35)。その後、再び設定電流を定電流で通電して(ステップS36)、電流電圧の計測を行うとともに(ステップS37)、このときの計測値を記憶部に記憶する(ステップS38)。   After the process in step 33, the average value of (L + M) at the time of energization in step S32 is calculated, and further Rt is calculated from the relational expression of (L + M) -R (step S35). Thereafter, the set current is supplied again with a constant current (step S36), and the current voltage is measured (step S37), and the measured value at this time is stored in the storage unit (step S38).

また、ステップS35における処理の後、短絡抵抗値をRtとして、ステップS32及びS36での通電時の熱伝導計算を実施する(ステップS39)。さらに、通電時の熱伝導計算を実施して溶接部平均温度推定値を算出する(ステップS40)。このとき、記憶部は、算出した溶接部平均温度推定値を記憶する(ステップS41)。   Moreover, after the process in step S35, the heat conduction calculation at the time of energization in steps S32 and S36 is performed by setting the short-circuit resistance value to Rt (step S39). Furthermore, the heat conduction calculation at the time of energization is implemented and a welding part average temperature estimated value is calculated (step S40). At this time, a memory | storage part memorize | stores the calculated welding part average temperature estimated value (step S41).

また、ステップS37における処理の後、ステップS40での熱伝導の計算結果を取り込んで、設定温度レベルに近づくよう設定電流を調整する(ステップS42)。そして、設定電流を通電して(ステップS43)、電流電圧の計測を行う(ステップS44)。   Further, after the process in step S37, the calculation result of the heat conduction in step S40 is taken in and the set current is adjusted so as to approach the set temperature level (step S42). Then, the set current is applied (step S43), and the current voltage is measured (step S44).

溶接終了後、溶接部平均温度推定値のピーク値を求め、そのピーク値を品質指標値として出力する(ステップS45)。   After the end of welding, a peak value of the weld zone average temperature estimated value is obtained, and the peak value is output as a quality index value (step S45).

図18は、図17に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示している。   FIG. 18 shows transition of the welding current and the average weld temperature in the resistance welding control method shown in FIG.

図19は、抵抗溶接制御方法の更に他の例を示すフローチャートである。図19において、まず、無負荷短絡通電及び負荷短絡通電を行い、前述の(7)式を用いて、LとM及びRを測定し、電極チップを短絡させた状態での(L+M)−Rの関係式を設定する(ステップS51)。   FIG. 19 is a flowchart showing still another example of the resistance welding control method. In FIG. 19, first, no-load short-circuit energization and load short-circuit energization are performed, L, M, and R are measured using the above-described equation (7), and (L + M) −R in a state where the electrode tips are short-circuited. Is set (step S51).

次に、設定電流を定電流で通電して(ステップS52)、電流電圧の計測を行う(ステップS53)。このとき、計測値を記憶部に記憶する(ステップS54)。   Next, the set current is energized with a constant current (step S52), and the current voltage is measured (step S53). At this time, the measured value is stored in the storage unit (step S54).

ステップ53における処理の後、ステップS52での通電時の(L+M)の平均値を算出し、さらに(L+M)−Rの関係式からRtを算出する(ステップS55)。その後、計算時間待ちに入る(ステップS56)。   After the process in step 53, the average value of (L + M) at the time of energization in step S52 is calculated, and further Rt is calculated from the relational expression of (L + M) -R (step S55). Thereafter, the calculation time is waited (step S56).

また、ステップS55における処理の後、短絡抵抗値をRtとして、ステップS52及びS56での通電時の熱伝導計算を実施する(ステップS57)。さらに、通電時の熱伝導計算を実施して溶接部平均温度推定値を算出する(ステップS58)。このとき、記憶部は、算出した溶接部平均温度推定値を記憶する(ステップS59)。   Further, after the process in step S55, the short circuit resistance value is set to Rt, and the heat conduction calculation during energization in steps S52 and S56 is performed (step S57). Furthermore, the heat conduction calculation at the time of energization is implemented and a welding part average temperature estimated value is calculated (step S58). At this time, a memory | storage part memorize | stores the calculated welding part average temperature estimated value (step S59).

また、ステップS58における処理の後、熱伝導の計算結果を取り込んで、設定温度レベルに近づくよう設定電流を調整する(ステップS60)。   Further, after the process in step S58, the calculation result of heat conduction is taken in and the set current is adjusted so as to approach the set temperature level (step S60).

一方、ステップS56における処理の後、ステップS60での調整結果を取り込んで、設定電流を通電して(ステップS61)、電流電圧の計測を行う(ステップS62)。   On the other hand, after the process in step S56, the adjustment result in step S60 is taken in, the set current is applied (step S61), and the current voltage is measured (step S62).

溶接終了後、溶接部平均温度推定値のピーク値を求め、そのピーク値を品質指標値として出力する(ステップS63)。   After the end of welding, the peak value of the weld zone average temperature estimated value is obtained, and the peak value is output as a quality index value (step S63).

図20は、図19に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示している。   FIG. 20 shows the transition of the welding current and the average weld temperature in the resistance welding control method shown in FIG.

C型スポット溶接ガンの基本システム構成図である。It is a basic system block diagram of a C type spot welding gun. C型スポット溶接ガンを用いて平板重ねの溶接を行っている様子を示す図である。It is a figure which shows a mode that flat plate welding is performed using a C-type spot welding gun. 平板重ねの溶接において、溶接部の平均温度推定値のピーク値と溶着面積との関係を示した図である。It is the figure which showed the relationship between the peak value of the average temperature estimated value of a welding part, and the welding area in welding of a flat plate overlap. C型スポット溶接ガンを用いて建築構造材を溶接している様子を示す図である。It is a figure which shows a mode that the building construction material is welded using a C-type spot welding gun. 図4の建築構造材をA方向から見たものであり、スポット溶接打点位置を示す図である。It is the figure which looked at the building structural material of FIG. 4 from A direction, and is a figure which shows the spot welding hit point position. 溶接部の平均温度推定値のピーク値と溶着面積との関係が、溶接打点位置に応じて相関にズレが生じることを説明した図である。It is the figure explaining that the relationship of the peak value of the average temperature estimated value of a welding part and a welding area produces a shift | offset | difference in a correlation according to a welding spot position. (L+M)−Roの関係を示した図である。It is the figure which showed the relationship of (L + M) -Ro. 溶接打点位置で電極を短絡させるために、建築構造材の打点位置に穴加工を施した様子を示す図である。It is a figure which shows a mode that the hole processing was given to the spot position of a building structure material in order to short-circuit an electrode at the welding spot position. 電流、(L+M)、Rの関係を示した図である。It is the figure which showed the relationship between electric current, (L + M), and R. 溶接時の渦電流の影響による測定電圧の補正を行わなかった場合の溶接部推定温度−溶着面積の評価結果を示す図である。It is a figure which shows the evaluation result of welding part estimated temperature-welding area at the time of not correcting the measurement voltage by the influence of the eddy current at the time of welding. 溶接時の渦電流の影響による測定電圧の補正を行った場合の溶接部推定温度−溶着面積の評価結果を示す図である。It is a figure which shows the evaluation result of welding part estimated temperature-welding area at the time of performing correction of the measurement voltage by the influence of the eddy current at the time of welding. 溶接品質監視のフローを示す図である。It is a figure which shows the flow of welding quality monitoring. 溶接品質監視の他の例によるフローを示す図である。It is a figure which shows the flow by the other example of welding quality monitoring. 定電流で溶接した際の溶接部平均温度の推移を示す図である。It is a figure which shows transition of the welding part average temperature at the time of welding with a constant current. 抵抗溶接制御方法の一例を示すフローチャートである。It is a flowchart which shows an example of the resistance welding control method. 図15に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示す図である。It is a figure which shows transition of the welding current and welding part average temperature in the resistance welding control method shown in FIG. 抵抗溶接制御方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of a resistance welding control method. 図17に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示す図である。It is a figure which shows transition of the welding current and welding part average temperature in the resistance welding control method shown in FIG. 抵抗溶接制御方法の更に他の例を示すフローチャートである。It is a flowchart which shows the other example of the resistance welding control method. 図19に示した抵抗溶接制御方法における溶接電流と溶接部平均温度の推移を示す図である。It is a figure which shows transition of the welding current and welding part average temperature in the resistance welding control method shown in FIG.

符号の説明Explanation of symbols

1 C型スポット溶接ガン
2 スポット溶接ガン本体
5,6 電極チップ
7 電圧検出回路
9 電流検出回路
11 演算装置
12 溶接制御装置(制御手段)又は品質監視装置
DESCRIPTION OF SYMBOLS 1 C type spot welding gun 2 Spot welding gun main body 5,6 Electrode tip 7 Voltage detection circuit 9 Current detection circuit 11 Arithmetic device 12 Welding control device (control means) or quality monitoring device

Claims (6)

電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材に対する溶接品質を推測する抵抗溶接監視方法であって、
測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(1)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(1)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定し、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正結果に基づいて前記被溶接材に印加する溶接電圧を算出し、
溶接時の渦電流の影響による測定電圧を補正したとき、その補正電圧から溶接品質の指標値を算出し、前記指標値を用いて溶接品質の監視を行うことを特徴とする抵抗溶接監視方法。
The current applied between the electrode tips and the voltage between the electrode tips are measured, and the resistance value of the welded material is calculated using the measurement result, and the welding quality for the welded material based on the calculated result A resistance welding monitoring method for estimating
When the measurement voltage is V, the measurement current is i, the resistance between the electrode tips in a short-circuit state is R, the mutual inductance of the measurement and the welding machine is M, and the self-inductance of the welding machine is L, the following (1 )
V = i * R + (L + M) * di / dt (1)
A relational expression between (L + M) and R in a state where the electrode tip is short-circuited is set, and at the time of welding, the measurement voltage due to the influence of eddy current at the time of welding is corrected using the relational expression, and based on the correction result To calculate the welding voltage applied to the workpiece,
A resistance welding monitoring method comprising: calculating a welding quality index value from the corrected voltage when the measurement voltage due to the influence of eddy current during welding is corrected, and monitoring the welding quality using the index value.
電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材に対する溶接品質を推測する抵抗溶接監視方法であって、
測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(1’)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(1’)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定するに際して穴加工した溶接打点位置で電極を短絡させ、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正結果に基づいて前記被溶接材に印加する溶接電圧を算出することを特徴とする抵抗溶接監視方法。
The current applied between the electrode tips and the voltage between the electrode tips are measured, and the resistance value of the welded material is calculated using the measurement result, and the welding quality for the welded material based on the calculated result A resistance welding monitoring method for estimating
When the measurement voltage is V, the measurement current is i, the resistance between the electrode tips in a short-circuit state is R, the mutual inductance of the measurement and the welding machine is M, and the self-inductance of the welding machine is L, the following (1 ') Using the formula,
V = i * R + (L + M) * di / dt (1 ')
When setting the relational expression between (L + M) and R with the electrode tip short-circuited, the electrode is short-circuited at the position where the hole is drilled , and the effect of eddy current during welding using the relational expression is used during welding. A resistance welding monitoring method, comprising: correcting a measurement voltage according to claim 1 and calculating a welding voltage to be applied to the material to be welded based on the correction result.
前記電極チップを短絡させた状態で、アップスロープ・ダウンスロープを用いて通電することにより、MとRとの前記関係式を設定することを特徴とする請求項1又は2に記載の抵抗溶接監視方法。 3. The resistance welding monitor according to claim 1 , wherein the relational expression between M and R is set by energizing with an up slope / down slope in a state where the electrode tip is short-circuited. Method. 電極チップ間に印加される電流と前記電極チップ間の電圧とを測定し、その測定結果を用いて被溶接材の抵抗値を算出するとともに、前記算出結果に基づいて前記被溶接材の溶接品質を推測し、その推定結果が溶接品質目標値に近付くよう溶接電流を制御する抵抗溶接制御方法であって、
測定電圧をV、測定電流をi、短絡状態での電極チップ間抵抗をR、計測と溶接機の回路相互インダクタンスをM、溶接機回路の自己インダクタンスをLとしたとき、通電時に、下記(2)式を用いて、
V=i×R+(L+M)×di/dt ・・・・・・(2)
電極チップを短絡させた状態での(L+M)とRとの関係式を設定し、溶接時に、前記関係式を用いて溶接時の渦電流の影響による測定電圧を補正し、その補正電圧に基づいて前記被溶接材に印加する溶接電圧を算出する一方、
0.5〜1サイクル毎に(L+M)を求めるとともに前記補正電圧を用いて溶接品質指標値を算出することを特徴とする抵抗溶接制御方法
The current applied between the electrode tips and the voltage between the electrode tips are measured, and the resistance value of the workpiece is calculated using the measurement result, and the welding quality of the workpiece is calculated based on the calculation result. Is a resistance welding control method for controlling the welding current so that the estimation result approaches the welding quality target value,
When the measurement voltage is V, the measurement current is i, the resistance between the electrode tips in a short-circuit state is R, the mutual inductance of the measurement and the welding machine is M, and the self-inductance of the welding machine is L, the following (2 )
V = i * R + (L + M) * di / dt (2)
A relational expression between (L + M) and R in a state where the electrode tip is short-circuited is set, and at the time of welding, the measurement voltage due to the influence of the eddy current at the time of welding is corrected using the relational expression, and based on the corrected voltage While calculating the welding voltage applied to the workpiece to be welded,
A resistance welding control method characterized by obtaining (L + M) every 0.5 to 1 cycle and calculating a welding quality index value using the correction voltage .
溶接時の通電時間を下記の通り連続した第1区間、第2区間及び第3区間に分割して、溶接品質指標値を算出することを特徴とする請求項4に記載の抵抗溶接制御方法。5. The resistance welding control method according to claim 4, wherein the welding quality index value is calculated by dividing the energization time during welding into a first section, a second section, and a third section that are continuous as described below.
第1区間:定電流制御を行い(L+M)の平均値を求める区間First section: A section where constant current control is performed and an average value of (L + M) is obtained.
第2区間:定電流制御を行い、第1区間で求めた(L+M)の平均値を用いるとともに、上記(2)式を用いて第1区間からの測定電圧を補正し、溶接品質指標値の算出を行う区間Second section: Constant current control is performed, the average value of (L + M) obtained in the first section is used, the measured voltage from the first section is corrected using the above equation (2), and the welding quality index value Interval to calculate
第3区間:第2区間における溶接品質指標値の算出に引き続き、第1区間で求めた(L+M)の平均値を用いるとともに、前記補正電圧を用いて溶接品質指標値の算出を行う区間Third section: A section in which the average value of (L + M) obtained in the first section is used subsequent to the calculation of the welding quality index value in the second section, and the welding quality index value is calculated using the correction voltage.
溶接時の通電時間を下記の通り連続した第1区間、第2区間及び第3区間に分割して、溶接品質指標値を算出することを特徴とする請求項に記載の抵抗溶接制御方法。
第1区間:定電流制御を行い(L+M)の平均値を求める区間
第2区間:通電を停止し、第1区間で求めた(L+M)の平均値を用いるとともに、上記(2)式を用いて第1区間からの測定電圧を補正し、溶接品質指標値の算出を行う区間
第3区間:第2区間における溶接品質指標値の算出に引き続き、第1区間で求めた(L+M)の平均値を用いるとともに、前記補正電圧を用いて溶接品質指標値の算出を行う区間
5. The resistance welding control method according to claim 4 , wherein the welding quality index value is calculated by dividing the energization time during welding into a first section, a second section, and a third section that are continuous as described below.
First section: section in which constant current control is performed to obtain an average value of (L + M) Second section: energization is stopped, the average value of (L + M) obtained in the first section is used, and the above formula (2) is used Section for correcting the measured voltage from the first section and calculating the welding quality index value Third section: Average value of (L + M) obtained in the first section following calculation of the welding quality index value in the second section And using the correction voltage to calculate the weld quality index value
JP2007293911A 2006-11-17 2007-11-13 Resistance welding monitoring method and resistance welding control method Active JP5330677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293911A JP5330677B2 (en) 2006-11-17 2007-11-13 Resistance welding monitoring method and resistance welding control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006311859 2006-11-17
JP2006311859 2006-11-17
JP2007293911A JP5330677B2 (en) 2006-11-17 2007-11-13 Resistance welding monitoring method and resistance welding control method

Publications (2)

Publication Number Publication Date
JP2008142773A JP2008142773A (en) 2008-06-26
JP5330677B2 true JP5330677B2 (en) 2013-10-30

Family

ID=39603521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293911A Active JP5330677B2 (en) 2006-11-17 2007-11-13 Resistance welding monitoring method and resistance welding control method

Country Status (1)

Country Link
JP (1) JP5330677B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507774B1 (en) 2009-05-14 2010-08-15 Fronius Int Gmbh METHOD AND DEVICE FOR DETERMINING THE VOLTAGE ON THE ELECTRODES OF A POINT WELDING TONGUE
KR101507070B1 (en) * 2013-06-27 2015-03-31 주식회사 스마트로봇 Tip dressing checker of spot robot system
US9800044B2 (en) * 2015-05-29 2017-10-24 Abb Schweiz Ag Fault location of DC distribution systems
KR102082316B1 (en) * 2017-12-20 2020-02-27 주식회사 유니로보틱스 Welding Quality Measuring Apparatus
JP6897914B1 (en) * 2020-02-21 2021-07-07 株式会社オリジン Manufacturing method of joining equipment and joined members

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141143A (en) * 1977-05-16 1978-12-08 Osaka Denki Co Ltd Method of detecting voltage between chips in spot welding machine and its device
JPS608912B2 (en) * 1978-01-12 1985-03-06 トヨタ自動車株式会社 How to detect voltage between electrodes in resistance welding
JPS5847946B2 (en) * 1980-04-18 1983-10-25 松下電器産業株式会社 How to detect voltage between welding electrodes
JPS5794479A (en) * 1980-12-03 1982-06-11 Toyota Auto Body Co Ltd Method and device for monitoring of weld strength in spot welding
JPS58112673A (en) * 1982-12-13 1983-07-05 Matsushita Electric Ind Co Ltd Resistance welding control method
JP3172847B2 (en) * 1992-09-29 2001-06-04 松下電器産業株式会社 Method and apparatus for detecting voltage between chips of resistance welding machine
JPH11285848A (en) * 1998-03-31 1999-10-19 Dengensha Mfg Co Ltd Resistance spot welding method
JP2001058277A (en) * 1999-06-17 2001-03-06 Nadex Co Ltd Resistance welding equipment with enhanced accuracy of detection of timewise fluctuation of work resistance and method therefor

Also Published As

Publication number Publication date
JP2008142773A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
EP0878264B1 (en) Method and apparatus for evaluating quality of resistance welds
JP5330677B2 (en) Resistance welding monitoring method and resistance welding control method
KR101584495B1 (en) Resistance spot welding system
US6506997B2 (en) Spot welding system and method for sensing welding conditions in real time
EP1044753B1 (en) Control apparatus for resistance welding machine
US9266187B2 (en) Method of monitoring thermal response, force and current during resistance welding
JPH1133743A (en) Resistance welding system using accumulated heating value per unit cubage as index
US20070175869A1 (en) Method for monitoring a resistance welding process and device therefor
JP3211586B2 (en) Welding quality monitoring device
US20060157452A1 (en) Method and device to obtain information to evaluate the quality of a resistance welding connection and/or to control or regulate a resistance welding method
KR20180130173A (en) System and Method for Real time Monitoring of Electric Resistance Welding
JPH0716791B2 (en) Resistance spot welding method
KR20180001352A (en) Apparatus for assessing welding quality and method thereof
KR101010788B1 (en) Welding robot apparatus and its control method
JPH0671457A (en) Resistance welding controller
JP3265630B2 (en) Method for measuring welding resistance and welding apparatus for performing the method
JP2004160510A (en) Welding quality discriminating method and device for the same
JP3396602B2 (en) Method and apparatus for monitoring welding quality
JP3651276B2 (en) Method for estimating nugget diameter in resistance welding and control method for resistance welding
JPH09501771A (en) Methods and apparatus for determining the temperature of spot welds and their use for assessing the quality of spot welds
US20230294198A1 (en) Spot welding monitoring method and spot welding monitoring system
JP2002316270A (en) Method for deciding weld condition and device for the same
JP2747375B2 (en) Resistance welding equipment
JPH05123873A (en) Resistance welding control method
US20220297224A1 (en) Welding determination method and spot welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5330677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250