JPH05123873A - Resistance welding control method - Google Patents

Resistance welding control method

Info

Publication number
JPH05123873A
JPH05123873A JP31991891A JP31991891A JPH05123873A JP H05123873 A JPH05123873 A JP H05123873A JP 31991891 A JP31991891 A JP 31991891A JP 31991891 A JP31991891 A JP 31991891A JP H05123873 A JPH05123873 A JP H05123873A
Authority
JP
Japan
Prior art keywords
welding
value
resistance
resistance value
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31991891A
Other languages
Japanese (ja)
Other versions
JP3117764B2 (en
Inventor
Hiroshi Hasegawa
博 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NA DETSUKUSU KK
Original Assignee
NA DETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NA DETSUKUSU KK filed Critical NA DETSUKUSU KK
Priority to JP03319918A priority Critical patent/JP3117764B2/en
Publication of JPH05123873A publication Critical patent/JPH05123873A/en
Application granted granted Critical
Publication of JP3117764B2 publication Critical patent/JP3117764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control resistance welding by the resistance value variation of a threshold value of expulsion and surface flash and a welding current value by executing determination by the change of a resistance value between electrode tips to obtain the threshold value of expulsion and surface flash. CONSTITUTION:When a welding current is subjected to feedback control so that the variation of a secondary side resistance value during welding attains the preset resistance value variation, on both values initialized, the generation of expulsion and surface flash for every welding is determined by the sudden change of the resistance value between the electrode tips and the next welding current value is obtained to perform welding again. The threshold value of expulsion and surface flash of materials to be welded is then obtained and the resistance value variation and the welding current value at the limit time are automatically programmed in a computer as the initialization data to control resistance welding. Consequently, the quality of welding can be made uniform.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部に特別な付加装置
を付けることなく、電極チップの摩耗等による電流密度
の低下を自動的に補正して、溶接の品質を均一に保つ方
法と、その初期設定の自動化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically compensating for a decrease in current density due to wear of an electrode tip or the like without attaching a special additional device to the outside and for maintaining a uniform welding quality. Regarding the automation of its initial settings.

【0002】[0002]

【従来の技術】従来、被溶接部にチリが発生すると電極
チップ間の抵抗値が小さくなることを利用して、溶接機
の負荷力率の微小な変化から被溶接部にチリが発生した
ことを検出し、溶接電流をチリが発生する近辺の電流値
になるように制御している。
2. Description of the Related Art Conventionally, the occurrence of dust in the welded portion causes the resistance value between the electrode tips to decrease, and the dust has been generated in the welded portion due to a slight change in the load power factor of the welding machine. Is detected and the welding current is controlled so as to have a current value in the vicinity of the occurrence of dust.

【0003】[0003]

【発明が解決しようとする課題】この場合、負荷力率は
負荷の抵抗成分とリアクタンス成分の比率で表されるた
め、負荷力率の変化量は抵抗値とリアクタンスの相対的
な変化量を表し、抵抗値自体の変化量を検出するもので
はなく、従って、溶接電流による反発力で溶接ケーブル
がキックしてインダクタンス成分が変化するような溶接
機や溶接箇所によってインダクタンスが変化するような
溶接機には使用できず、又、力率角やインダクタンスの
大きさによって抵抗値の変化量の大きさも異なり、初期
設定として幾つものパラメータがカットアンドトライに
よって調整しなければならないと言う欠点があった。そ
の結果、現実の作業においては、溶接作業中にチリが発
生することによってチリ限界を求めるしかなく、チリを
発生させないと溶接制御ができない。その場合、溶接部
の強度が低下し、外観が悪くなるばかりか、チリの発生
は作業の安全上好ましくない。そこで本発明の目的は、
溶接トランスの2次側抵抗値の変化量を容易に検出し
て、電極チップの摩耗等に影響されることなく溶接の品
質を均一にすることができ、しかも、溶接作業中にチリ
を発生させない最適状態で溶接作業を行うことができる
抵抗溶接制御方法を提供することにある。
In this case, since the load power factor is represented by the ratio of the resistance component and the reactance component of the load, the change amount of the load power factor represents the relative change amount of the resistance value and the reactance. However, it does not detect the amount of change in the resistance value itself.Therefore, it can be applied to a welder in which the welding cable kicks due to the repulsive force due to the welding current and the inductance component changes, or where the inductance changes depending on the welding location. Cannot be used, and the magnitude of the amount of change in the resistance value varies depending on the magnitude of the power factor angle and the inductance, and there is a drawback that several parameters must be adjusted by cut-and-try as an initial setting. As a result, in the actual work, there is no choice but to find the dust limit due to dust being generated during the welding work, and welding control cannot be performed unless dust is generated. In that case, not only the strength of the welded portion is deteriorated and the appearance is deteriorated, but also the occurrence of dust is not preferable in terms of work safety. Therefore, the purpose of the present invention is to
The amount of change in the secondary resistance value of the welding transformer can be easily detected, and the quality of welding can be made uniform without being affected by wear of the electrode tip, etc., and dust does not occur during welding work. It is to provide a resistance welding control method capable of performing a welding operation in an optimum state.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、溶接中
の1次電流の変化率が0のタイミングにおいて溶接トラ
ンスの1次側電圧と1次側電流を測定して溶接トランス
の2次側抵抗値を計算するとともに、溶接中における2
次側抵抗値の変化量が予め設定した抵抗値変化量になる
ように溶接電流をフィードバック制御する抵抗溶接制御
方法にある。この場合において、初期設定の抵抗値変化
量と溶接電流値は、溶接毎にチリの発生を電極チップ間
の抵抗値が急激に変化したかどうかで判定して次の溶接
電流値を求めて再度溶接を行いながら被溶接物のチリ限
界値を求め、このチリ限界時の抵抗値変化量と溶接電流
値を初期設定データとしてコンピュータに自動的にプロ
グラムする。
That is, according to the present invention, the secondary voltage of the welding transformer is measured by measuring the primary voltage and the primary current of the welding transformer at the timing when the rate of change of the primary current during welding is zero. While calculating the side resistance value, 2 during welding
There is a resistance welding control method in which the welding current is feedback-controlled so that the change amount of the secondary side resistance value becomes a preset change amount of the resistance value. In this case, the resistance change amount and the welding current value of the initial setting are determined by determining whether the resistance value between the electrode tips changes abruptly for each welding to determine the next welding current value, and then again. While welding, the dust limit value of the object to be welded is obtained, and the resistance change amount and welding current value at the dust limit are automatically programmed in the computer as initial setting data.

【0005】[0005]

【作用】このように構成された抵抗溶接制御の場合、実
際の溶接作業に入る前にまず、抵抗値変化量と溶接電流
値をチリ限界で設定するため、試験的溶接毎にチリの発
生を電極チップ間の抵抗値が急激に変化したかどうかで
判定し、チリが発生していない状態において次の溶接電
流値を増大させて再度溶接を行いながら被溶接物のチリ
限界値を求め、このチリ限界時の抵抗値変化量と溶接電
流値を初期設定データとしてコンピュータに自動的にプ
ログラムする。このように最適溶接に対応した抵抗値変
化量と溶接電流値を初期設定した状態において、溶接作
業を開始し、溶接中の1次電流の変化率が0のタイミン
グ、例えば電源の各サイクル別溶接電流波形のピーク時
において溶接トランスの1次側電圧と1次側電流を測定
して溶接トランスの2次側抵抗値を計算するとともに、
溶接中における2次側抵抗値の変化量が予め設定した前
記抵抗値変化量になるように溶接電流をフィードバック
制御する。
In the resistance welding control configured as described above, the amount of change in the resistance value and the welding current value are set at the dust limit before the actual welding work is performed, so that dust is generated at each trial welding. Judgment is made based on whether the resistance value between the electrode tips has changed abruptly, and in the state where no dust is generated, increase the next welding current value and perform welding again to obtain the dust limit value of the workpiece. The amount of change in resistance value at the limit of dust and the welding current value are automatically programmed in the computer as initial setting data. In this way, the welding work is started in the state where the resistance change amount and the welding current value corresponding to the optimum welding are initialized, and the primary current change rate during welding is 0, for example, welding for each cycle of the power supply. At the peak of the current waveform, the primary side voltage and primary side current of the welding transformer are measured to calculate the secondary side resistance value of the welding transformer,
The welding current is feedback-controlled so that the change amount of the secondary side resistance value during welding becomes the preset change amount of the resistance value.

【0006】[0006]

【発明の効果】その結果、本発明は、溶接制御の初期設
定において、チリ限界の抵抗値変化量ΔR値を絶対値で
プログラムし、溶接作業中にチリを発生させない最適状
態のチリ限界で溶接制御を行うことができ、これによっ
て、電極チップの摩耗等に影響されることなく溶接の品
質を均一にすることができ、しかも、強度と外観を含む
溶接の仕上がりを最良均一に保つことができる効果があ
る。
As a result, according to the present invention, in the initial setting of welding control, the resistance change amount ΔR value of the dust limit is programmed with an absolute value, and welding is performed at the dust limit of the optimum state where dust is not generated during welding work. It is possible to control, which makes it possible to make the quality of the welding uniform without being affected by wear of the electrode tip, etc., and moreover, to keep the finish of the welding including the strength and the appearance to be the most uniform. effective.

【0007】[0007]

【実施例】次に、本発明の一実施例の構成を図によって
説明する。図1は溶接トランスWTの2次側抵抗値を1
次側で検出するブロック回路図を示し、1次変流器CT
は溶接トランスWTの1次側に流れる電流を検出するた
めの空芯CTで、この回路には実際の電流波形の微分信
号が入力され、この微分信号は積分回路ICによって電
流波形に復元される。1次電圧入力は溶接電源を計測器
用トランスMTで降圧された信号で増幅回路AMCによ
ってレベル調整されるとともに、これらの電流信号と電
圧信号はサンプルホールド回路SHCによって1次変流
器CT波形からdi /dt =0検出回路DDCで検出さ
れるdi /dt =0のタイミング信号毎にサンプルホー
ルドされる一方、このタイミング信号はマイクロコンピ
ュータMCに入力されて割り込みを発生させ、A/D変
換器ADCによってA/D変換された電流、電圧データ
がサンプリングされ、サンプリングされたデータから溶
接トランスWTの2次側抵抗値Rが次式によりマイクロ
コンピュータMCで計算される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the structure of an embodiment of the present invention will be described with reference to the drawings. Figure 1 shows the secondary resistance of the welding transformer WT as 1.
The block circuit diagram to detect on the secondary side is shown, and the primary current transformer CT
Is an air-core CT for detecting the current flowing through the primary side of the welding transformer WT. A differential signal of the actual current waveform is input to this circuit, and this differential signal is restored to the current waveform by the integrating circuit IC. .. The primary voltage input is a signal obtained by stepping down the welding power source by the transformer MT for measuring instrument and the level thereof is adjusted by the amplifier circuit AMC. These current and voltage signals are converted from the waveform of the primary current transformer CT by the sample and hold circuit SHC. While the sampling signal is sampled and held for each timing signal of di / dt = 0 detected by the / dt = 0 detection circuit DDC, this timing signal is input to the microcomputer MC to generate an interrupt, and the A / D converter ADC converts the timing signal. The A / D converted current and voltage data is sampled, and the secondary resistance value R of the welding transformer WT is calculated by the microcomputer MC from the sampled data by the following equation.

【0008】 この抵抗値Rの最大値から溶接終了までの溶接1サイク
ルにおける抵抗値の差分ΔRも計算される。
[0008] The difference ΔR in resistance value in one welding cycle from the maximum value of the resistance value R to the end of welding is also calculated.

【0009】次に、本実施例の作用について説明する。
このように構成された抵抗溶接制御の場合、実際の溶接
作業に入る前にまず、抵抗値変化量ΔRと溶接電流値I
をチリ限界で設定するため、試験的溶接毎にチリの発生
を電極チップ1、1間の抵抗値が急激に変化したかどう
かで判定し、チリが発生していない状態において次の溶
接電流値Iを増大させて再度溶接を行いながら被溶接物
2のチリ限界値を求め、このチリ限界時の抵抗値変化量
ΔRと溶接電流値Iを初期設定データとしてマイクロコ
ンピュータMCに自動的にプログラムする。
Next, the operation of this embodiment will be described.
In the case of resistance welding control configured as described above, first, the resistance value change amount ΔR and the welding current value I
Is set as the dust limit, the occurrence of dust is determined for each trial welding by checking whether the resistance value between the electrode tips 1 and 1 has changed rapidly. While increasing I and performing welding again, the dust limit value of the workpiece 2 is determined, and the resistance change amount ΔR and the welding current value I at the dust limit are automatically programmed in the microcomputer MC as initial setting data. ..

【0010】即ち、溶接電流Iの初期値は電極チップ1
の交換やチップ1研磨の作業時に増加された電流値Iを
初期値にリセットするためのものであり、従って、この
自動設定操作は電極チップ1交換やチップ1研磨後に行
うのが望ましい。そこで、まず、溶接制御装置3の動
作モードを〔設定モード〕にセットした状態で仮の溶
接電流を設定して(設定モードでは、この値は溶接毎に
更新される)、所定の被溶接物2を溶接する。このと
き、マイクロコンピュータMC内部ではチリの発生有無
と抵抗値変化量ΔRを計算して、次回溶接のための電流
値Iを設定するとともに、このときのティーチングボ
ックスに表示される判定結果が〔OK〕であれば〔設定
キー〕を押すことによって現在の抵抗値変化量ΔRと溶
接電流値IがマイクロコンピュータMCの所定のプログ
ラムエリアに書き込まれ、〔NG〕の場合はの動作を
繰り返す。
That is, the initial value of the welding current I is the electrode tip 1
Is for resetting the current value I increased at the time of the work of replacing or polishing the tip 1, and therefore, this automatic setting operation is preferably performed after the replacement of the electrode tip 1 or the polishing of the tip 1. Therefore, first, a temporary welding current is set in a state where the operation mode of the welding control device 3 is set to [setting mode] (this value is updated for each welding in the setting mode), and a predetermined workpiece is welded. Weld two. At this time, inside the microcomputer MC, the occurrence of dust and the amount of change in resistance value ΔR are calculated, and the current value I for the next welding is set, and the determination result displayed in the teaching box at this time is [OK]. ], The current resistance value variation ΔR and the welding current value I are written in a predetermined program area of the microcomputer MC by pressing the [setting key], and the operation of [NG] is repeated.

【0011】以上の制御を示したのが第2図、第3図の
ΔR目標値、溶接電流初期値自動設定フローチャートで
あって、ステップ101で仮の溶接電流を設定した後、
システムはステップ102で設定モードにジャンプし、
ステップ103で試験溶接ステップ=0がセットされた
後、ステップ104で溶接が実施されるとともに、ステ
ップ105でチリが発生したか否かが判定され、チリが
発生した状態においてステップ106で試験溶接ステッ
プ=0か否かが判定され、0の場合においてステップ1
07で溶接電流値を−5%にし、ステップ108でNG
判定をした後、ステップ109で設定モード処理フロー
による全試験溶接終了か否かが判定され、終了していな
い状態においてステップ104で溶接電流値−5%の状
態で再度溶接が実施される。
The above control is shown in the flowchart for automatically setting the ΔR target value and the initial value of the welding current in FIGS. 2 and 3, and after setting the temporary welding current in step 101,
The system jumps to setting mode in step 102,
After the test welding step = 0 is set in step 103, welding is performed in step 104, and it is determined in step 105 whether or not dust has occurred. In the state where dust has occurred, the test welding step is performed in step 106. It is determined whether or not = 0, and if 0, step 1
The welding current value is set to -5% at 07, and NG at step 108.
After the determination, in step 109, it is determined whether or not all the test welding according to the setting mode processing flow is completed, and if not completed, in step 104, welding is performed again at a welding current value of -5%.

【0012】この溶接でチリが発生したか否かがステッ
プ105で判定され、チリが発生しなかった状態におい
てステップ110で試験溶接ステップ=0か否かが判定
され、0である場合においてステップ111で試験溶接
ステップ=1をセットするとともに、ステップ112で
溶接電流値を+5%にし、ステップ108でNG判定を
した後、ステップ109で設定モード処理フローによる
全試験溶接終了か否かが判定され、まだ終了していない
状態においてステップ104で溶接電流値+5%の状態
で再度溶接が実施される。
In step 105, it is determined whether or not dust has occurred in this welding, and in the state in which no dust has occurred, it is determined in step 110 whether or not the test welding step = 0, and if 0, step 111. In step 112, the welding current value is set to + 5%, NG is determined in step 108, and then in step 109, it is determined whether or not all the test welding is completed according to the setting mode process flow. In a state where the welding current value + 5% has not been completed yet, welding is performed again in a state of the welding current value + 5%.

【0013】この溶接でチリが発生したか否かがステッ
プ105で判定され、チリが発生した状態においてステ
ップ106で試験溶接ステップ=0か否かが判定され、
0でない場合においてステップ113で試験溶接ステッ
プ=1か否かが判定され、1である場合においてステッ
プ114で試験溶接ステップ=2がセットされた後、ス
テップ115で溶接電流値を−1%にし、ステップ10
8でNG判定をした後、ステップ109で設定モード処
理フローによる全試験溶接終了か否かが判定され、まだ
終了していない状態においてステップ104で溶接電流
値−1%の状態で再度溶接が実施される。
In step 105, it is determined whether dust occurs in this welding. In the state where dust occurs, it is determined in step 106 whether the test welding step = 0.
When it is not 0, it is determined in step 113 whether or not the test welding step = 1, and when it is 1, after the test welding step = 2 is set in step 114, the welding current value is set to -1% in step 115, Step 10
After the NG judgment in step 8, it is judged in step 109 whether or not all the test welding according to the setting mode processing flow is completed, and in the state where it is not completed yet, the welding is performed again in the state of the welding current value -1% in step 104. To be done.

【0014】この溶接でチリが発生したか否かがステッ
プ105で判定され、チリが発生した状態においてステ
ップ106で試験溶接ステップ=0か否かが判定され、
0でない場合においてステップ113で試験溶接ステッ
プ=1か否かが判定され、1でない場合においてステッ
プ115で溶接電流値を更に−1%にして、前記同様の
試験溶接が繰り返された後、ステップ105でのチリ発
生判定でチリが発生しなかった場合、ステップ110で
試験溶接ステップ=0か否かが判定され、0でない場合
においてステップ116で試験溶接ステップ=1か否か
が判定され、1でない場合においてステップ117で試
験溶接ステップ=2か否かが判定され、2である場合に
おいてステップ118で試験溶接ステップ=3がセット
された後、ステップ119でOK判定をした後、ステッ
プ109で設定モード処理フローによる全試験溶接終了
か否かが判定され、まだ終了していない場合、ステップ
104で再度溶接が実施される。
In step 105, it is determined whether or not dust has occurred in this welding. In the state in which dust has occurred, it is determined in step 106 whether or not the test welding step = 0.
If it is not 0, it is determined in step 113 whether or not the test welding step = 1, and if it is not 1, the welding current value is further set to -1% in step 115, and the same test welding as described above is repeated, and then step 105 If the occurrence of dust does not occur in the determination of the occurrence of dust in step 110, it is determined in step 110 whether the test welding step = 0, and if it is not 0, it is determined in step 116 whether the test welding step = 1 and not 1. In this case, it is determined in step 117 whether or not the test welding step = 2, and if it is 2, the test welding step = 3 is set in step 118, an OK determination is made in step 119, and then the setting mode is set in step 109. It is determined whether or not all the test weldings according to the processing flow are completed, and if they are not completed yet, welding is performed again in step 104. It is carried out.

【0015】この溶接でチリが発生したか否かがステッ
プ105で判定され、チリが発生しなかった場合、ステ
ップ110で試験溶接ステップ=0か否かが判定され、
0でない場合においてステップ116で試験溶接ステッ
プ=1か否かが判定され、1でない場合においてステッ
プ117で試験溶接ステップ=2か否かが判定され、2
でない場合においてステップ120で試験溶接ステップ
=2がセットされた後、ステップ121で溶接電流値を
+1%にして、ステップ108でNG判定をした後、ス
テップ109で設定モード処理フローによる全試験溶接
終了か否かが判定され、終了していない状態においてス
テップ104で溶接電流値+1%の状態で再度溶接が実
施される。
In step 105, it is determined whether or not dust is generated in this welding. If no dust is generated, it is determined in step 110 whether or not the test welding step = 0.
If it is not 0, it is determined in step 116 whether the test welding step = 1, and if it is not 1, it is determined in step 117 whether the test welding step = 2 or not.
If not, after the test welding step = 2 is set in step 120, the welding current value is set to + 1% in step 121, NG judgment is made in step 108, and then all test welding by the setting mode process flow is completed in step 109. It is determined whether or not it is determined that the welding current value is + 1% and welding is performed again in step 104 when the welding is not completed.

【0016】このように溶接電流値を増減しての溶接に
よって被溶接物2のチリ限界値が図5に示す2次回路全
体の抵抗値変化から図6のように求められ、この状態
で、設定モード処理フローは終了してメインルーチンに
戻るとともに、ステップ122でこのチリ限界時の抵抗
値変化量ΔRと溶接電流値Iが初期設定データとしてマ
イクロコンピュータMCに自動的にプログラムされ、ス
テップ123で設定モードは解除される。
As described above, the dust limit value of the object to be welded 2 is obtained from the change in the resistance value of the entire secondary circuit shown in FIG. 5 as shown in FIG. 6 by the welding in which the welding current value is increased or decreased, and in this state, The setting mode process flow ends and returns to the main routine. At step 122, the resistance value variation ΔR and the welding current value I at the limit of dust are automatically programmed in the microcomputer MC as initial setting data, and at step 123. The setting mode is released.

【0017】このようにして得られた各溶接打点毎の抵
抗値変化量ΔRは抵抗溶接制御装置3のティーチングボ
ックスにμΩ単位で表示され、マニアル設定する場合は
溶接条件の設定を変えながら最良の溶接が行われたとき
のモニタ値を読み取って、マイクロコンピュータMCの
抵抗値変化量ΔR目標値のプログラムエリアに書き込
み、これによって溶接作業前の設定作業は終了する。
The resistance value variation ΔR for each welding point thus obtained is displayed in the teaching box of the resistance welding control device 3 in units of μΩ, and in the case of manual setting, it is best to change the setting of welding conditions. The monitor value at the time of welding is read and written in the program area of the resistance change amount ΔR target value of the microcomputer MC, whereby the setting work before welding work is completed.

【0018】このように最適溶接に対応した抵抗値変化
量ΔRと溶接電流値Iを初期設定した状態において、溶
接作業を開始し、溶接中の1次電流の変化率が0のタイ
ミング、例えば図7に示す電源の各サイクル別溶接電流
波形のピーク時において溶接トランスWTの1次側電圧
と1次側電流を測定して溶接トランスWTの2次側抵抗
値Rを計算するとともに、各溶接毎に計算された抵抗値
変化量ΔRは過去数打点の抵抗値変化量ΔRと平均化さ
れ、平均化された抵抗値変化量ΔRは初期設定の抵抗値
変化量ΔR目標値と比較され、平均化された抵抗値変化
量ΔRが抵抗値変化量ΔR目標値を下回る場合は、溶接
電流Iを増加させ、越える場合は溶接電流を減少させ
て、2次側抵抗値Rの変化量ΔRが予め設定した前記抵
抗値変化量ΔRになるように溶接電流Iをフィードバッ
ク制御する。その結果、この抵抗溶接は常にチリ限界の
最適状態で行うことができる上、溶接の仕上がりを均一
に保つことができる。
As described above, the welding work is started in the state where the resistance value variation ΔR and the welding current value I corresponding to the optimum welding are initially set, and the rate of change of the primary current during welding is 0. The primary side voltage and primary side current of the welding transformer WT are measured at the peak of the welding current waveform for each cycle of the power source shown in FIG. 7 to calculate the secondary side resistance value R of the welding transformer WT, and for each welding. The resistance value change amount ΔR calculated in step 1 is averaged with the resistance value change amount ΔR at the past several dots, and the averaged resistance value change amount ΔR is compared with the initial setting resistance value change amount ΔR target value and averaged. If the resistance change amount ΔR is less than the resistance value change amount ΔR target value, the welding current I is increased, and if it exceeds, the welding current is decreased to set the change amount ΔR of the secondary side resistance value R in advance. So that the resistance change amount ΔR becomes The welding current I is feedback controlled. As a result, this resistance welding can always be performed in the optimum state of the dust limit, and the finish of the welding can be kept uniform.

【0019】即ち、図4に示す溶接電流値制御システム
のステップ201において溶接が実施されるとともに、
この溶接途上においてチリが発生したか否かがステップ
202で判定され、チリが発生しないか、発生してもス
テップ203で連続的に発生しない一時的な現象と判定
された場合、ステップ204でΔR値及び過去数打点の
ΔR平均値を計算するとともに、ステップ205でΔR
値がΔR下限値(図6参照)以下か否かを判定し、以下
のときは設定不良か何らかの異常があることからステッ
プ206で空打ち又は溶接不良の異常を報知し、ΔR値
がΔR下限値以下でない場合、ステップ207でΔR値
及びΔR平均値がΔR目標値の+10%以上か否かが判
定され、以上のときはステップ208で溶接電流率を−
1%して次の溶接を繰り返し、ΔR目標値の+10%以
下のときにはステップ209でΔR値及びΔR平均値が
ΔR目標値の−10%以下か否かが判定され、以上のと
きは溶接電流値を変化させることなくそのまま次の溶接
を繰り返し、ΔR目標値の−10%以下のときにはステ
ップ210で溶接電流率を+1%して次の溶接を繰り返
す。
That is, welding is performed in step 201 of the welding current value control system shown in FIG.
In step 202, it is determined whether or not dust is generated during the welding process. If it is determined that dust is not generated, or if it is a temporary phenomenon that does not continuously occur in step 203, ΔR is determined in step 204. Value and the ΔR average value of the past several hit points are calculated, and ΔR is calculated in step 205.
It is determined whether or not the value is equal to or less than the ΔR lower limit value (see FIG. 6), and if it is less than the above, there is a setting error or some abnormality, so in step 206, an abnormality such as blank driving or welding failure is notified, and the ΔR value is the ΔR lower limit. If it is not less than the value, it is determined in step 207 whether or not the ΔR value and the ΔR average value are + 10% or more of the ΔR target value.
After 1%, the next welding is repeated. If the ΔR target value is + 10% or less, it is determined in step 209 whether the ΔR value and the ΔR average value are −10% or less of the ΔR target value. The next welding is repeated as it is without changing the value, and when the ΔR target value is -10% or less, the welding current rate is increased by + 1% in step 210 and the next welding is repeated.

【図面の簡単な説明】[Brief description of drawings]

【図1】抵抗溶接の2次抵抗検出ブロック回路図であ
る。
FIG. 1 is a secondary resistance detection block circuit diagram of resistance welding.

【図2】抵抗溶接の初期設定操作フローチャート図であ
る。
FIG. 2 is a flowchart of an initial setting operation of resistance welding.

【図3】抵抗溶接の設定処理モードフローチャート図で
ある。
FIG. 3 is a flowchart of a setting process mode for resistance welding.

【図4】抵抗溶接の溶接電流値制御フローチャート図で
ある。
FIG. 4 is a flowchart of welding current value control for resistance welding.

【図5】抵抗溶接の通電サイクルにおける2次回路抵抗
値〔μΩ〕波形図である。
FIG. 5 is a waveform diagram of a secondary circuit resistance value [μΩ] in an energization cycle of resistance welding.

【図6】抵抗溶接のチリ限界ΔRを求める2次回路抵抗
値〔μΩ〕波形図である。
FIG. 6 is a waveform diagram of a secondary circuit resistance value [μΩ] for obtaining a dust limit ΔR of resistance welding.

【図7】抵抗溶接の1次側溶接電流と溶接電圧の波形図
である。
FIG. 7 is a waveform diagram of a primary welding current and a welding voltage in resistance welding.

【符号の説明】[Explanation of symbols]

1 電極チップ 2 被溶接物 3 溶接制御装置 CT 1次変流器 WT 溶接トランス IC 積分回路 MT 計測器用トランス MC マイクロコンピュータ AMC 増幅回路 SHC サンプルホールド回路 DDC di /dt =0検出回路 ADC A/D変換器 1 Electrode tip 2 Welding object 3 Welding control device CT Primary current transformer WT Welding transformer IC Integrating circuit MT Measuring instrument transformer MC Microcomputer AMC Amplifying circuit SHC Sample hold circuit DDC di / dt = 0 Detection circuit ADC A / D conversion vessel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶接中の1次電流の変化率が0のタイミ
ングにおいて溶接トランスの1次側電圧と1次側電流を
測定して溶接トランスの2次側抵抗値を計算するととも
に、溶接中における2次側抵抗値の変化量が予め設定し
た抵抗値変化量になるように溶接電流をフィードバック
制御することを特徴とする抵抗溶接制御方法。
1. The primary side voltage and primary side current of the welding transformer are measured at the timing when the rate of change of the primary current during welding is 0 to calculate the secondary side resistance value of the welding transformer and at the same time during welding. 2. The resistance welding control method, wherein the welding current is feedback-controlled so that the change amount of the secondary side resistance value in step 1 becomes a preset change amount of resistance value.
【請求項2】 溶接毎にチリの発生を電極チップ間の抵
抗値が急激に変化したかどうかで判定して次の溶接電流
値を求めて再度溶接を行いながら被溶接物のチリ限界値
を求め、このチリ限界時の抵抗値変化量と溶接電流値を
初期設定データとしてコンピュータに自動的にプログラ
ムすることを特徴とする抵抗溶接制御方法。
2. The occurrence of dust for each welding is determined by determining whether the resistance value between the electrode tips has changed abruptly, the next welding current value is obtained, and the dust limit value of the workpiece is determined while performing welding again. A resistance welding control method characterized in that the resistance change amount and the welding current value at the dust limit are automatically programmed into a computer as initial setting data.
JP03319918A 1991-11-06 1991-11-06 Resistance welding control method Expired - Fee Related JP3117764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03319918A JP3117764B2 (en) 1991-11-06 1991-11-06 Resistance welding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03319918A JP3117764B2 (en) 1991-11-06 1991-11-06 Resistance welding control method

Publications (2)

Publication Number Publication Date
JPH05123873A true JPH05123873A (en) 1993-05-21
JP3117764B2 JP3117764B2 (en) 2000-12-18

Family

ID=18115690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03319918A Expired - Fee Related JP3117764B2 (en) 1991-11-06 1991-11-06 Resistance welding control method

Country Status (1)

Country Link
JP (1) JP3117764B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149144A (en) * 2008-12-25 2010-07-08 Honda Motor Co Ltd Dust detection method
CN105772920A (en) * 2014-08-04 2016-07-20 合肥国声电子通信有限责任公司 Robot intermediate-frequency resistance welding control cabinet
JP2020131270A (en) * 2019-02-25 2020-08-31 マツダ株式会社 Method for detecting scattering in electric resistance welding, and device therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041702B1 (en) * 2018-02-27 2019-11-06 선린대학 산학협력단 Urine Cup

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149144A (en) * 2008-12-25 2010-07-08 Honda Motor Co Ltd Dust detection method
CN105772920A (en) * 2014-08-04 2016-07-20 合肥国声电子通信有限责任公司 Robot intermediate-frequency resistance welding control cabinet
CN105772920B (en) * 2014-08-04 2017-09-29 合肥国声电子通信有限责任公司 A kind of robot intermediate frequency resistance welding switch board
JP2020131270A (en) * 2019-02-25 2020-08-31 マツダ株式会社 Method for detecting scattering in electric resistance welding, and device therefor

Also Published As

Publication number Publication date
JP3117764B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
US5676867A (en) Apparatus and method for monitoring and evaluating weld quality
US6744011B1 (en) Online monitoring system and method for a short-circuiting gas metal arc welding process
US4527045A (en) Control apparatus for an arc welder
JP5196642B2 (en) Resistance welding method monitoring method and apparatus for carrying out the method
US20110210098A1 (en) Control of a welding device
JPH05329645A (en) Arc sensor monitoring device and its using method
CN102971105A (en) Systems and methods for statistically analyzing welding operations
JPH08112673A (en) Device and method for correction of welding route of automatic welding machine
JP2006247663A (en) Welding method and welding apparatus
KR20150109327A (en) Waveform compensation system and methods for compensation of inductance phenomena in welding control
CN104602848B (en) The method, controller and the welding system that are used to control welding operation based on compensation column voltage
JPH05123873A (en) Resistance welding control method
JP5330677B2 (en) Resistance welding monitoring method and resistance welding control method
JP3812914B2 (en) Left and right weaving width correction method for pipe circumference automatic welding equipment
US6184491B1 (en) Method and apparatus for monitoring weld quality
KR101597347B1 (en) Arc welding voltage detecting system and the voltage detection method
KR101584421B1 (en) Monitoring system for arc welding
JP2002239733A (en) Weld line profiling judging device and profiling control device
JP2007313564A (en) System for sensing movement of welded parts
JPH07276075A (en) Method for detecting abnormality at welding time
JPH06218548A (en) Welding control method for welding robot
JP3396602B2 (en) Method and apparatus for monitoring welding quality
JP3265630B2 (en) Method for measuring welding resistance and welding apparatus for performing the method
Kuban et al. Control and inspection systems for resistance welding
JPH09216059A (en) Electrode non-consumption type welding robot and arc welding method using it

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees