JPH06218548A - Welding control method for welding robot - Google Patents

Welding control method for welding robot

Info

Publication number
JPH06218548A
JPH06218548A JP2971193A JP2971193A JPH06218548A JP H06218548 A JPH06218548 A JP H06218548A JP 2971193 A JP2971193 A JP 2971193A JP 2971193 A JP2971193 A JP 2971193A JP H06218548 A JPH06218548 A JP H06218548A
Authority
JP
Japan
Prior art keywords
welding
torch
deviation
robot
weaving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2971193A
Other languages
Japanese (ja)
Inventor
Kimihiro Saitou
仁啓 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2971193A priority Critical patent/JPH06218548A/en
Publication of JPH06218548A publication Critical patent/JPH06218548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To correct the deviation of a weld line in the real time by monitoring and detecting the deviation of the actual weld line from the change of a welding current or the welding voltage in accordance with weaving and correcting the tip position of a torch during welding according to this deviation. CONSTITUTION:Both a robot controller 1 to control the operation and position of the welding robot and an arc sensor controller 2 to monitor and detect a welding state are formed of microcomputers. While the torch 4 of the welding robot is moved in the specified weld line direction, the torch tip is vibrated orthogonally to the moving direction periorically by weaving to proceed welding. The deviation of the actual weld line is monitored and detected from the change of the welding current or welding voltage following weaving and according to this monitoring and detection, the tip position of the torch 4 during welding is corrected according to the deviation. Consequently, an image pickup sensor such as a camera is obviated, this is hardly affected by heat and light of an arc and the welding quality is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接ロボットにより溶
接する際の溶接制御方法に関し、詳しくは溶接軌跡の制
御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding control method for welding by a welding robot, and more particularly to control of a welding locus.

【0002】[0002]

【従来の技術】従来、溶接ロボットを用いた溶接では、
その制御(溶接制御)にマイクロコンピュータの数値制
御(NC制御)が多用される。この場合、溶接精度は溶
接対象物の仮付け精度やセッティング精度の影響を受け
易く、しかも、溶接による熱で溶接対象物が変形して溶
接線も変化し易い。そこで、NCデータにより事前に指
示された溶接線に沿って正しく溶接を行うには、溶接ロ
ボットの溶接軌跡をリアルタイムに修正する機能が必要
になる。この修正は、従来、ITV倣いセンサや光切断
方式のセンサ等の撮影画像から溶接状態を監視して行わ
れる。
2. Description of the Related Art Conventionally, in welding using a welding robot,
Numerical control of a microcomputer (NC control) is often used for the control (welding control). In this case, the welding accuracy is easily influenced by the tacking accuracy and the setting accuracy of the welding object, and the welding object is deformed by the heat generated by the welding, and the welding line is also likely to change. Therefore, in order to perform welding correctly along the welding line designated in advance by the NC data, a function of correcting the welding locus of the welding robot in real time is required. This correction is conventionally performed by monitoring the welding state from a photographed image of an ITV scanning sensor or a light-section type sensor.

【0003】[0003]

【発明が解決しようとする課題】前記従来の溶接ロボッ
トの溶接制御方法の場合、溶接軌跡を修正するためのI
TV倣いセンサや光切断方式のセンサ等は、溶接中のア
ークにより発生する熱や光の影響を受け易く、溶接アー
クが発生するトーチ先端の近傍で長時間使用することが
困難であり、アークから離して配置する必要がある。そ
して、これらのセンサをアークから離して配置すると、
溶接状態を正確に把握することが困難になり、溶接の倣
い精度に限界が生じて溶接品質の向上が図れず、しか
も、溶接対象物との干渉の問題も生じる。
In the case of the welding control method for the conventional welding robot described above, I for correcting the welding locus is used.
TV scanning sensors and optical cutting type sensors are easily affected by heat and light generated by the arc during welding, and it is difficult to use them for a long time near the tip of the torch where the welding arc occurs. Must be placed separately. And if you place these sensors away from the arc,
It becomes difficult to accurately grasp the welding state, the welding copying accuracy is limited, the welding quality cannot be improved, and there is a problem of interference with the object to be welded.

【0004】さらに、この種カメラを用いる撮像センサ
は高価であり、しかも、その画像データの複雑,高度な
処理を要し、溶接ロボットの運転に連係してリアルタイ
ムに制御できない問題点もある。本発明はカメラ等の撮
像センサを用いることなく、アークの熱や光の影響を受
けにくい手法でリアルタイムに溶接線のずれを修正する
ことを目的とする。
Further, the image sensor using this type of camera is expensive, and moreover, it requires complicated and high-level processing of its image data, and there is a problem that it cannot be controlled in real time in association with the operation of the welding robot. An object of the present invention is to correct the deviation of the welding line in real time by a method that is less susceptible to the heat and light of the arc without using an image sensor such as a camera.

【0005】[0005]

【発明が解決しようとする課題】前記の目的を達成する
ために、本発明の溶接ロボットの溶接制御方法において
は、溶接ロボットのトーチを指定された溶接線方向に移
動しながらウィービングによりトーチ先端を周期的に移
動方向に直角に振動して溶接を進め、かつ、ウィービン
グに伴う溶接電流又は溶接電圧の変化から実際の溶接線
のずれを監視,検出し、該監視,検出により前記ずれに
応じて溶接中のトーチの先端位置を修正する。
To achieve the above object, in the welding control method of the welding robot of the present invention, the torch tip is moved by weaving while moving the torch of the welding robot in the designated welding line direction. Periodically vibrates at right angles to the moving direction to proceed with welding, and the deviation of the actual welding line is monitored and detected from the change in welding current or welding voltage due to weaving, and the deviation is detected by the monitoring and detection. Correct the torch tip position during welding.

【0006】[0006]

【作用】前記のように構成された本発明の溶接ロボット
の溶接制御方法の場合、トーチを指定された溶接線方向
に移動しながらウィービングによりトーチ先端が周期的
に振動して溶接が行われる。このとき、ウィービングに
よりトーチ先端と溶接対象物(ワーク)との距離が周期
的に変化し、この変化に伴って溶接電流又は溶接電圧が
変わる。
In the welding control method of the welding robot of the present invention configured as described above, the torch tip vibrates periodically by weaving while moving the torch in the designated welding line direction to perform welding. At this time, the distance between the tip of the torch and the object to be welded (workpiece) changes periodically due to weaving, and the welding current or welding voltage changes with this change.

【0007】そして、溶接電流又は溶接電圧の変化から
溶接中の実際の溶接線のずれが監視,検出され、この検
出の結果によりトーチ先端位置が修正されて溶接軌跡が
リアルタイムに修正される。この場合、溶接電流又は溶
接電圧から溶接状態が監視,検出されるため、従来のカ
メラ等の撮像センサが不要であり、アークにより発生す
る熱や光の影響を受けることもない。しかも、電流又は
電圧の大きさに基づく数値処理であり、画像処理より簡
単かつ迅速に溶接線のずれが検出され、溶接ロボットの
運転に連係したリアルタイムの修正(制御)が行える。
Then, the deviation of the actual welding line during welding is monitored and detected from the change of the welding current or welding voltage, and the torch tip position is corrected by the result of this detection to correct the welding trajectory in real time. In this case, since the welding state is monitored and detected from the welding current or the welding voltage, a conventional image sensor such as a camera is unnecessary, and is not affected by heat or light generated by the arc. Moreover, the numerical processing is based on the magnitude of the current or voltage, and the deviation of the welding line can be detected more easily and quickly than the image processing, and the real-time correction (control) associated with the operation of the welding robot can be performed.

【0008】[0008]

【実施例】1実施例について、図1ないし図10を参照
して説明する。図5は制御の構成を示し、溶接ロボット
の運転,位置を制御するロボット制御装置1及び溶接状
態を監視,検出するアークセンサ制御装置2はいずれも
マイクロコンピュータにより形成される。そして、アー
クセンサ制御装置2の入出力信号には、(a)溶接ロボ
ットに搭載された溶接機3側からのアナログ入力信号,
(b)ロボット制御装置1から与えられるデジタル入力
信号,(c)ロボット制御装置1に与えるデジタル出力
信号の3種類の信号がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment will be described with reference to FIGS. FIG. 5 shows a control configuration. The robot control device 1 for controlling the operation and position of the welding robot and the arc sensor control device 2 for monitoring and detecting the welding state are both formed by a microcomputer. The input / output signals of the arc sensor control device 2 include (a) an analog input signal from the welding machine 3 mounted on the welding robot,
There are three types of signals: (b) a digital input signal given from the robot controller 1, and (c) a digital output signal given to the robot controller 1.

【0009】この3種類の信号は、具体的にはつぎの各
信号からなる。まず、(a)のアナログ入力信号は溶接
電流の検出信号Saであり、溶接機3からトーチ4に給
電される溶接電流をシャント抵抗5により検出して電圧
信号に変換し、この電圧信号の高周波ノイズ成分をロー
パスフィルタ6により除去して形成される。つぎに、
(b)のデジタル入力信号は、溶接機3に与えられる出
力電流値としての予想溶接電流の指令信号Sb1 ,トー
チ4のウィービング1周期毎の位置判別用のウィービン
グ基準信号Sb2 ,溶接条件を示す各種制御パラメータ
の信号Sb3 の3種類の信号により形成される。
Specifically, the three types of signals are composed of the following signals. First, the analog input signal of (a) is the detection signal Sa of the welding current, the welding current supplied to the torch 4 from the welding machine 3 is detected by the shunt resistor 5 and converted into a voltage signal, and the high frequency of this voltage signal is detected. It is formed by removing the noise component by the low-pass filter 6. Next,
The digital input signal of (b) is a command signal Sb 1 of an expected welding current as an output current value given to the welding machine 3, a weaving reference signal Sb 2 for position determination of the torch 4 for each weaving cycle, and welding conditions. It is formed by three kinds of signals, which are signals Sb 3 of various control parameters shown.

【0010】そして、信号Sb3 の制御パラメータは、
溶接姿勢(下向水平,上向水平、立向上進等)や使用ガ
ス,トーチ4から突出する心線(ワイヤ)7等の溶接条
件が変わる毎に変化するものであり、ロボット制御装置
1の運転用NCデータと連動し、随時適当な値に変更し
てロボット制御装置1から転送される。この制御パラメ
ータはつぎの6個のデータP1 〜P6 を含む。 P1 :ウィービング1周期の溶接電流最大値と最小値と
の差。 P2 :ウィービング1周期の溶接電流平均値とつぎの周
期の平均値との差。 P3 :座標修正判定用設定値としての上方電流値と下方
電流値との差。 P4 :座標修正判定用設定値としてのウィービング1周
期の溶接電流平均値と予想溶接電流指令値との差。 P5 :座標修正の方向。 P6 :ウィービング1周期分の溶接電流の取込回数の指
定。 なお、上方電流値,下方電流値はウィービング1周期の
トーチ4が上方,下方それぞれのときの溶接電流値であ
る。つぎに、(c)のデジタル出力信号は、溶接線の座
標修正指令用の座標修正信号Sc1 ,溶接異常時に溶接
ロボットの停止を指令する溶接異常信号Sc2 により形
成される。
The control parameter of the signal Sb 3 is
It changes every time the welding position (downward horizontal, upward horizontal, upright progress, etc.), the gas used, the welding conditions such as the core wire (wire) 7 protruding from the torch 4, and the like are changed by the robot controller 1. It is transferred from the robot controller 1 while being changed to an appropriate value at any time in conjunction with the driving NC data. The control parameter includes six data P 1 to P 6 below. P 1 : The difference between the maximum value and the minimum value of the welding current in one weaving cycle. P 2 : The difference between the average value of the welding current in one weaving cycle and the average value of the next cycle. P 3 : The difference between the upper current value and the lower current value as the coordinate correction determination set value. P 4: the difference between the predicted welding current command value and the welding current average value of one weaving cycle of the coordinate correcting determination setting value. P 5 : Direction of coordinate correction. P 6 : Designation of the number of times the welding current is taken in for one weaving cycle. The upper current value and the lower current value are welding current values when the torch 4 in one cycle of weaving is above and below, respectively. Next, the digital output signal of (c) is formed by the coordinate correction signal Sc 1 for the coordinate correction command of the welding line and the welding abnormality signal Sc 2 which instructs the welding robot to stop at the time of welding abnormality.

【0011】つぎに、溶接制御のアルゴリズムを説明す
る。図6(a)に示すようにL字配置された溶接対象物
(ワーク)8,9を溶接する場合、紙面に直交する対象
物8,9の内壁側の接線方向が適正な溶接線方向とな
る。そして、ロボット制御装置1の運転,位置の制御に
より、トーチ4は溶接の進行に伴って溶接線方向に移動
しながらウィービングをくり返し、このウィービングに
よりトーチ4の位置はウィービング一周期毎に図中の
→→→→に移動し、トーチ先端が周期的に移動
方向に直角に振動する。
Next, a welding control algorithm will be described. When welding the objects to be welded (workpieces) 8 and 9 arranged in an L shape as shown in FIG. 6A, the tangential direction on the inner wall side of the objects 8 and 9 orthogonal to the paper surface is the proper welding line direction. Become. Then, by the operation and position control of the robot controller 1, the torch 4 repeats weaving while moving in the welding line direction as the welding progresses, and the position of the torch 4 is moved by this weaving every weaving cycle. →→→→ The torch tip periodically vibrates at right angles to the moving direction.

【0012】この振動によりトーチ4の先端と溶接対象
物1,2との距離が変化し、溶接電流は図6(b)に示
すようにトーチ4の先端と溶接対象物8,9とが最も離
れるの位置で低くなり,最も近づく,の位置で高
くなる。すなわち、トーチ4をウィービングすることに
より、溶接電流はウィービングの倍の周波数で脈動変化
し、しかも、その大きさが溶接対象物8,9とトーチ4
の先端との距離の逆に変化する。
Due to this vibration, the distance between the tip of the torch 4 and the objects to be welded 1 and 2 changes, and the welding current is highest between the tip of the torch 4 and the objects to be welded 8, 9 as shown in FIG. 6 (b). It becomes low at the far position and becomes high at the closest position. That is, when the torch 4 is weaved, the welding current pulsates at a frequency twice that of the weaving, and the size of the welding current is different from that of the objects to be welded 8 and 9.
It changes in the opposite direction to the tip.

【0013】そして、溶接中の実際の溶接線が適正な溶
接線方向からずれると、そのずれに応じて溶接電流の波
形の対称性のずれ及び大きさの変化が生じる。そこで、
この溶接電流の特性に着目し、アークセンサ制御装置2
により、ウィービングに伴う溶接電流の変化から実際の
溶接線のずれを監視,検出し、この結果によりロボット
制御装置1を介してトーチ先端位置を修正し、溶接線を
制御する。
When the actual welding line during welding deviates from the proper welding line direction, the symmetry of the waveform of the welding current deviates and the size of the welding current changes. Therefore,
Focusing on the characteristics of this welding current, the arc sensor control device 2
Thus, the deviation of the actual welding line is monitored and detected from the change of the welding current due to the weaving, and the torch tip position is corrected and the welding line is controlled via the robot controller 1 based on this result.

【0014】この制御は、具体的にはつぎの溶接電流の
平均値に基づく制御及び上方電流値,下方電流値の差に
基づく制御からなる。そして、溶接電流の平均値に基づ
く制御は図1のプロセスからなり、アークセンサ制御装
置2はウィービング基準信号Sb2 及び信号Sb3 の制
御パラメータに基づき、与えられた設定条件で同図のプ
ロセスを周期的に実行し、検出信号Saから溶接電流を
ウィービング1周期についてサンプリングして積算し、
その結果からウィービング1周期の実測の溶接電流平均
値を求める。
Specifically, this control includes control based on the next average value of the welding current and control based on the difference between the upper current value and the lower current value. Then, the control based on the average value of the welding current consists of the process of FIG. 1, and the arc sensor control device 2 executes the process of the same diagram under the given setting conditions based on the control parameters of the weaving reference signal Sb 2 and the signal Sb 3 . Periodically, the welding current is sampled from the detection signal Sa for one period of weaving and integrated,
From the result, the average welding current value for one period of weaving is obtained.

【0015】さらに、この実測の溶接電流平均値と指令
信号Sb1 により与えられる予想溶接電流(平均値)と
を比較して差を求め、この差が小さくなる方向に溶接ロ
ボットを移動する座標修正信号Sc1 をロボット制御装
置1に与える。この結果、図6の上方移動を+Z方向移
動,右方移動を−Y方向の移動とする下向溶接の場合、
例えば図2(a)に示すようにトーチ4が溶接対象物
8,9から離れ過ぎて実測の溶接電流平均が予想溶接電
流より低くなると、座標修正信号によりトーチ4の位置
が+Z方向,−Y方向いずれについても原点に近づくよ
うに修正され、図2(b)に示すようにトーチ4が溶接
対象物8,9に近づく。
Further, the average value of the measured welding current and the expected welding current (average value) given by the command signal Sb 1 are compared to obtain a difference, and the coordinate correction for moving the welding robot in the direction in which the difference becomes smaller. The signal Sc 1 is given to the robot controller 1. As a result, in the case of downward welding in which the upward movement in FIG. 6 is the + Z direction movement and the rightward movement is the −Y direction movement,
For example, as shown in FIG. 2A, when the torch 4 is too far away from the objects to be welded 8 and 9 and the average welding current measured is lower than the expected welding current, the position of the torch 4 is moved in the + Z direction, -Y by the coordinate correction signal. The correction is made so as to approach the origin in both directions, and the torch 4 approaches the welding objects 8 and 9 as shown in FIG.

【0016】そして、この制御のくり返しにより実際の
溶接電流平均値が予想溶接電流に一致するようにトーチ
4と溶接対象物8,9との距離が調整され、トーチ4の
先端位置が修正される。つぎに、上方電流値,下方電流
値の差に基づく制御は図3のプロセスからなり、アーク
センサ制御装置2はウィービング基準信号Sb2 からウ
ィービング中のトーチ4の位置を把握し、検出信号Sa
に基づき、ウィービング1周期の溶接電流をトーチ4が
上方に位置する図6(b)の側の上方電流値と,トー
チ4が下方に位置する図6(b)の側の下方電流値と
に分けて積算する。
By repeating this control, the distance between the torch 4 and the objects 8 and 9 to be welded is adjusted so that the actual welding current average value matches the expected welding current, and the tip position of the torch 4 is corrected. . Next, the control based on the difference between the upper current value and the lower current value consists of the process of FIG. 3, and the arc sensor control device 2 grasps the position of the torch 4 during weaving from the weaving reference signal Sb 2 and detects the detection signal Sa.
Based on the above, the welding current for one cycle of weaving is divided into an upper current value on the side of FIG. 6 (b) where the torch 4 is located above and a lower current value on the side of FIG. 6 (b) where the torch 4 is located below. Divide and total.

【0017】そして、この積算により求められた上方電
流値と下方電流値との差を演算し、この差の絶対値と制
御パラメータによって与えられるこの絶対値の適正値
(設定値)とを比較し、求められた絶対値が大きくなっ
て溶接電流の波形が非対称になるときは、差の正,負の
極性からトーチ4の位置の溶接対象物8,9側のずれを
検出し、前記差が小さくなる方向に溶接ロボットを移動
する座標修正信号Sc1をロボット制御装置1に与え
る。この結果、例えば下向溶接の場合、図4(a)に示
すように実際の溶接線がずれてトーチ4が溶接対象物9
寄りにずれると、同図(b)に示すように適正な溶接線
に一致するようにトーチ4の位置が制御され、トーチ4
の先端位置が修正される。
Then, the difference between the upper current value and the lower current value obtained by this integration is calculated, and the absolute value of this difference is compared with the appropriate value (set value) of this absolute value given by the control parameter. When the obtained absolute value becomes large and the waveform of the welding current becomes asymmetric, the deviation of the position of the torch 4 on the welding object 8 or 9 side is detected from the positive and negative polarities of the difference, and the difference is detected. A coordinate correction signal Sc 1 for moving the welding robot in a decreasing direction is given to the robot controller 1. As a result, for example, in the case of downward welding, the actual welding line is displaced as shown in FIG.
If the torch 4 is displaced to the side, the position of the torch 4 is controlled so as to match the proper welding line as shown in FIG.
The tip position of is corrected.

【0018】すなわち、アークセンサ制御装置2は信号
Sb1 〜Sb3 により与えられた溶接制御の各種条件及
び設定に基づき、溶接中に、溶接機3の溶接電流の検出
信号Saを周期的に取込んでウィービング1周期の溶接
電流の変化から溶接線のずれを監視,検出し、その結
果、座標修正信号Sc1 をロボット制御装置1に与えて
トーチ4の先端位置をリアルタイムに修正する。ところ
で、溶接対象物8,9間に隙間が生じたり溶落などが発
生して溶接線のずれが異常になると、アークセンサ制御
装置2は溶接異常と判断し、ロボット制御装置1に溶接
異常信号Sc2 を与え、溶接を停止する。
That is, the arc sensor control device 2 periodically obtains a welding current detection signal Sa of the welding machine 3 during welding based on various welding control conditions and settings given by the signals Sb 1 to Sb 3. In addition, the deviation of the welding line is monitored and detected from the change of the welding current for one cycle of weaving. As a result, the coordinate correction signal Sc 1 is given to the robot controller 1 to correct the tip position of the torch 4 in real time. By the way, when a gap occurs between the objects 8 and 9 to be welded or a burnout or the like occurs and the deviation of the welding line becomes abnormal, the arc sensor control device 2 determines that the welding is abnormal, and the robot control device 1 receives the welding error signal. Apply Sc 2 and stop welding.

【0019】そして、実際の溶接に適用して図7から図
10の結果を得た。図7,図8は上向溶接に適用し、溶
接開始時のトーチ4の位置を予め−Z方向に所定量ずら
して溶接した場合の溶接電流,溶接ビード10を示す。
なお、図8の(a)は溶接開始点,(b)は溶接途中,
(c)は溶接終了点それぞれの溶接ビード10の状態を
示す。
Then, the results of FIGS. 7 to 10 were obtained by applying the method to actual welding. FIGS. 7 and 8 show welding currents and welding beads 10 applied to upward welding and when welding is performed by shifting the position of the torch 4 at the start of welding by a predetermined amount in the −Z direction in advance.
8 (a) is the welding start point, FIG. 8 (b) is during welding,
(C) shows the state of the welding bead 10 at each welding end point.

【0020】そして、図7からも明らかなように、溶接
電流は溶接前半には振幅が大きく周波数も低い状態であ
ったが、トーチ先端位置の修正のくり返しにより、溶接
後半には振幅が小さくなって周波数も高くなり、正常な
波形に自動修正された。この修正に基づき、溶接ビード
10も溶接前半には図8(a)に示すように溶接線のず
れにしたがって下側に大きく片寄っていたが、溶接後半
には同図(b),(c)に示すように溶接線が正常に戻
って上,下に均等に形成された。
As is clear from FIG. 7, the welding current had a large amplitude and a low frequency in the first half of the welding, but the amplitude decreased in the latter half of the welding due to repeated correction of the torch tip position. The frequency also increased, and it was automatically corrected to a normal waveform. Based on this modification, the welding bead 10 was also largely deviated to the lower side according to the deviation of the welding line in the first half of the welding as shown in FIG. 8 (a), but in the latter half of the welding, the same figure (b), (c). As shown in Fig. 3, the weld line returned to normal and was evenly formed above and below.

【0021】また、図9,図10は下向溶接に適用し、
溶接開始時のトーチ4の位置を+Z方向に所定量ずらし
て溶接した場合の溶接電流,溶接ビード10を示す。な
お、図10の(a),(b)は溶接開始点,溶接終了点
それぞれの溶接ビード10の状態を示す。そして、この
下向溶接の場合も溶接電流は溶接後半に振幅が小さくな
って周波数が高くなり、正常な波形に自動修正され、溶
接ビード10は溶接開始点で下側に片寄っていたもの
が、溶接終了点では上,下均等に正常形成されるように
なった。
9 and 10 are applied to downward welding,
The welding current and welding bead 10 when the position of the torch 4 at the start of welding is shifted in the + Z direction by a predetermined amount and welding is performed are shown. 10A and 10B show the states of the welding bead 10 at the welding start point and the welding end point, respectively. Then, in the case of this downward welding, the welding current has a smaller amplitude and a higher frequency in the latter half of the welding, is automatically corrected to a normal waveform, and the welding bead 10 is biased downward at the welding start point. At the end of welding, the upper and lower parts were formed normally.

【0022】そして、溶接電流の変化を監視,検出して
溶接ロボットの溶接軌跡を修正するため、従来の撮像セ
ンサを用いる場合のようなアークの熱や光の影響を受け
ることがなく、溶接状態を正確に把握できるとともに溶
接対象物8,9との干渉も生じない。また、簡単な数値
演算の処理を行えばよいため、溶接ロボットの運転に連
係してリアルタイムに制御して溶接線のずれを修正でき
る。そのため、従来より溶接品質が著しく向上する。
Since the welding locus of the welding robot is corrected by monitoring and detecting the change of the welding current, the welding condition is not affected by the heat and light of the arc as in the case of using the conventional image sensor. Can be accurately grasped and no interference with the welding objects 8 and 9 occurs. Further, since it is sufficient to perform a simple numerical calculation process, it is possible to correct the deviation of the welding line by performing real-time control in association with the operation of the welding robot. Therefore, the welding quality is remarkably improved as compared with the conventional case.

【0023】そして、溶接対象物8,9との干渉が生じ
ないため、上向水平,下向水平,立向上進等の種々の溶
接姿勢の溶接に対応できる。また、溶接対象物8,9の
隙間,溶落などが発生すると、いわゆる異常監視機能が
動作して溶接が停止し、安全性も向上する。そして、溶
接線のずれが自動的に修正されるため、溶接開始点,溶
接終了点を予めセンシングして溶接するときは溶接途中
の曲がりや溶接による熱ひずみがあっても良好なビード
を得ることができる。また、溶接開始点のみセンシング
して溶接しても、終端検出機能により自動的に溶接線の
終点を検出することができ、この場合、溶接終了点のセ
ンシングが不要であるため、溶接タクトタイムが向上し
て効率的な作業が行える。
Since there is no interference with the objects 8 and 9 to be welded, it is possible to cope with various welding postures such as upward horizontal, downward horizontal, and vertical advance. In addition, when a gap between the objects 8 and 9 to be welded, a burnout, or the like occurs, a so-called abnormality monitoring function is activated to stop welding and improve safety. When the welding start point and the welding end point are sensed in advance and welding is performed, a good bead can be obtained even if there is a bend during welding or thermal strain due to welding because the deviation of the welding line is automatically corrected. You can Also, even if only the welding start point is sensed and welded, the end point detection function can automatically detect the end point of the welding line. In this case, since it is not necessary to sense the welding end point, the welding takt time is reduced. You can improve and work efficiently.

【0024】さらに、アークセンサ制御装置2に与えら
れる制御パラメータはNCデータ化することができ、こ
の場合、RAMベースで与えるようにしてロボット制御
装置1でのデータ変更が容易に行えるようにすることも
可能である。ところで、前記実施例では溶接電流の変化
から溶接線のずれを監視,検出したが、溶接電圧の変化
から溶接線のずれを監視,検出してもよい。
Further, the control parameters given to the arc sensor control device 2 can be converted into NC data. In this case, the data can be changed easily in the robot control device 1 by being given on a RAM basis. Is also possible. By the way, in the above-mentioned embodiment, the deviation of the welding line is monitored and detected from the change of the welding current, but the deviation of the welding line may be monitored and detected from the change of the welding voltage.

【0025】[0025]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。トーチ4を
指定された溶接線方向に移動しながらウィービングによ
りトーチ先端を周期的に振動して溶接が行われ、このと
き、ウィービングによりトーチ先端と溶接対象物8,9
との距離が周期的に変化し、この変化に伴って溶接電流
又は溶接電圧が変わり、この変化から溶接中の実際の溶
接線のずれが監視,検出され、この検出の結果によりト
ーチ先端位置が修正されて溶接軌跡がリアルタイムに修
正される。そして、溶接電流又は溶接電圧から溶接状態
が監視,検出されるため、従来のカメラ等の撮像センサ
が不要であり、アークにより発生する熱や光の影響を受
けることがない。
Since the present invention is configured as described above, it has the following effects. Welding is performed by periodically vibrating the torch tip by weaving while moving the torch 4 in the designated welding line direction. At this time, the torch tip and the welding object 8, 9 are weaved.
And the welding current or voltage changes with this change, the deviation of the actual welding line during welding is monitored and detected from this change, and the torch tip position is detected based on this detection result. It is corrected and the welding trajectory is corrected in real time. Further, since the welding state is monitored and detected from the welding current or the welding voltage, a conventional image sensor such as a camera is unnecessary, and is not affected by heat or light generated by the arc.

【0026】しかも、電流又は電圧の大きさに基づく数
値処理であり、画像処理より簡単かつ迅速にずれが検出
され、溶接ロボットの運転に連係した迅速な修正(制
御)が行える。したがって、撮像センサが不要でアーク
の熱や光の影響を受けにくい手法により、リアルタイム
に溶接線のずれを修正することができ、溶接品質の向上
等を図ることができる。
Moreover, since the numerical processing is based on the magnitude of the current or voltage, the deviation can be detected more easily and more quickly than the image processing, and the quick correction (control) associated with the operation of the welding robot can be performed. Therefore, it is possible to correct the deviation of the welding line in real time and improve the welding quality by a method that does not require an image sensor and is less susceptible to the heat and light of the arc.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の溶接電流の平均値に基づく
制御のフローチャートである。
FIG. 1 is a flowchart of control based on an average value of a welding current according to an embodiment of the present invention.

【図2】(a),(b)は図1の制御の前,後のトーチ
先端位置の説明図である。
2 (a) and 2 (b) are explanatory views of the torch tip position before and after the control of FIG.

【図3】本発明の1実施例の上方電流値と下方電流値と
の差に基づく制御のフローチャートである。
FIG. 3 is a flowchart of control based on a difference between an upper current value and a lower current value according to the first embodiment of the present invention.

【図4】(a),(b)は図3の制御の前,後のトーチ
先端位置の説明図である。
4 (a) and 4 (b) are explanatory views of the torch tip position before and after the control of FIG.

【図5】本発明の1実施例のブロック図である。FIG. 5 is a block diagram of one embodiment of the present invention.

【図6】(a),(b)はウィービングに伴うトーチ位
置の変化,溶接電流の変化の説明図である。
6 (a) and 6 (b) are explanatory diagrams of changes in the torch position and changes in welding current due to weaving.

【図7】溶接電流の1例の実測波形図である。FIG. 7 is an actually measured waveform diagram of an example of welding current.

【図8】(a),(b),(c)は図7の溶接電流によ
り形成される溶接ビードの説明図である。
8 (a), (b) and (c) are explanatory views of a welding bead formed by the welding current of FIG.

【図9】溶接電流の他の例の実測波形図である。FIG. 9 is a measured waveform diagram of another example of the welding current.

【図10】(a),(b)は図9の溶接電流により形成
される溶接ビードの説明図である。
10 (a) and 10 (b) are explanatory views of a welding bead formed by the welding current of FIG.

【符号の説明】[Explanation of symbols]

1 ロボット制御装置 2 アークセンサ制御装置 4 トーチ 7 心線 8,9 溶接対象物 1 Robot control device 2 Arc sensor control device 4 Torch 7 Core wire 8, 9 Welding object

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶接ロボットのトーチを指定された溶接
線方向に移動しながらウィービングによりトーチ先端を
周期的に移動方向に直角に振動して溶接を進め、 かつ、前記ウィービングに伴う溶接電流又は溶接電圧の
変化から実際の溶接線のずれを監視,検出し、該監視,
検出により前記ずれに応じて溶接中の前記トーチの先端
位置を修正することを特徴とする溶接ロボットの溶接制
御方法。
1. A welding robot torch is moved in a designated welding line direction while weaving to periodically vibrate the torch tip at right angles to the moving direction to proceed with welding, and a welding current or welding associated with the weaving is performed. The deviation of the actual welding line is monitored and detected from the change of the voltage,
A welding control method for a welding robot, characterized in that the position of the tip of the torch during welding is corrected according to the deviation by detection.
JP2971193A 1993-01-25 1993-01-25 Welding control method for welding robot Pending JPH06218548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2971193A JPH06218548A (en) 1993-01-25 1993-01-25 Welding control method for welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2971193A JPH06218548A (en) 1993-01-25 1993-01-25 Welding control method for welding robot

Publications (1)

Publication Number Publication Date
JPH06218548A true JPH06218548A (en) 1994-08-09

Family

ID=12283697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2971193A Pending JPH06218548A (en) 1993-01-25 1993-01-25 Welding control method for welding robot

Country Status (1)

Country Link
JP (1) JPH06218548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980013917A (en) * 1996-08-05 1998-05-15 이대원 Welding line following method using arc (ARC) sensor
KR19990032821A (en) * 1997-10-21 1999-05-15 이해규 Welding line tracking method of automatic welding device
JP2004188463A (en) * 2002-12-12 2004-07-08 Kobe Steel Ltd Arc welding method, and arc welding device
KR100544403B1 (en) * 2000-12-01 2006-01-23 현대중공업 주식회사 The Method of Robot's Round Welding By Detecting Workpiece's End Point
JP2019098401A (en) * 2017-11-29 2019-06-24 リンカーン グローバル,インコーポレイテッド Systems and methods for welding torch weaving

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980013917A (en) * 1996-08-05 1998-05-15 이대원 Welding line following method using arc (ARC) sensor
KR19990032821A (en) * 1997-10-21 1999-05-15 이해규 Welding line tracking method of automatic welding device
KR100544403B1 (en) * 2000-12-01 2006-01-23 현대중공업 주식회사 The Method of Robot's Round Welding By Detecting Workpiece's End Point
JP2004188463A (en) * 2002-12-12 2004-07-08 Kobe Steel Ltd Arc welding method, and arc welding device
JP4667706B2 (en) * 2002-12-12 2011-04-13 株式会社神戸製鋼所 Arc welding method and arc welding apparatus
JP2019098401A (en) * 2017-11-29 2019-06-24 リンカーン グローバル,インコーポレイテッド Systems and methods for welding torch weaving

Similar Documents

Publication Publication Date Title
JPH05329645A (en) Arc sensor monitoring device and its using method
EP0201641A1 (en) Welding torch position detection system and method
JPH06218548A (en) Welding control method for welding robot
JP3812914B2 (en) Left and right weaving width correction method for pipe circumference automatic welding equipment
JP3795165B2 (en) Arc length correction method for pipe circumference automatic welding equipment
JPH0550240A (en) Automatic welding device and its welding condition control method
JPH0910939A (en) Welding condition setting equipment for welding robot
JP6672551B2 (en) Display device and display method for arc welding
JP2002239733A (en) Weld line profiling judging device and profiling control device
JPH06155056A (en) Method and device for controlling laser beam welding
JP2009183976A (en) Welding control method and welding device
CN114951906A (en) Welding system and method for operating a welding system
JP2007313564A (en) System for sensing movement of welded parts
JP3795164B2 (en) Weaving locus correction method for pipe circumference automatic welding equipment
JPH0630809B2 (en) Control device of automatic arc welding machine
JPS60191668A (en) Arc welding robot
JPH09262675A (en) Right and left arc copy correcting method for pipe circumferential automatic welding equipment
JP3781139B2 (en) Welding line scanning control method
JP3209138B2 (en) Welding condition adaptive control method
JP3209139B2 (en) Welding condition adaptive control method
JP2502642B2 (en) Automatic welding method with arc sensor
JP2003225765A (en) Position detecting method in automatic welding machine
JPH09253846A (en) Measuring method for electric characteristics of welding equipment
JPS63192566A (en) Controller for arc welding robot
JPH09225640A (en) Control system for welding