JP5329105B2 - Manufacturing method of crystal unit - Google Patents

Manufacturing method of crystal unit Download PDF

Info

Publication number
JP5329105B2
JP5329105B2 JP2008042931A JP2008042931A JP5329105B2 JP 5329105 B2 JP5329105 B2 JP 5329105B2 JP 2008042931 A JP2008042931 A JP 2008042931A JP 2008042931 A JP2008042931 A JP 2008042931A JP 5329105 B2 JP5329105 B2 JP 5329105B2
Authority
JP
Japan
Prior art keywords
wafer
hole
main surface
crystal resonator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008042931A
Other languages
Japanese (ja)
Other versions
JP2009201018A (en
Inventor
宏和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2008042931A priority Critical patent/JP5329105B2/en
Publication of JP2009201018A publication Critical patent/JP2009201018A/en
Application granted granted Critical
Publication of JP5329105B2 publication Critical patent/JP5329105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水晶振動子の製造方法に関する。 The present invention relates to a method for manufacturing a quartz oscillator.


図9に示されるように、従来の水晶振動子512は、第一の凹部501を有する第一基板504と、水晶振動素子506と、一方の主面に開口部を有する第二の凹部509が形成された平板状のガラスまたは水晶からなる第二基板510から構成される。第一基板504は一方の主面に開口部を有する第一の凹部501と、略くさび形状の貫通孔503を有する。略くさび形状の貫通孔503は、第一の凹部底面502側の一方の端部から平板状のガラスまたは水晶からなる第一基板504の外側表面の他方端部に向かうにつれて孔の直径が大きくなる。水晶振動素子506の両主面には励振電極507が形成されている。この水晶振動素子506は第一基板504に搭載される。このとき水晶振動素子506の引き出し電極が第一基板504の貫通孔503にかかるように搭載される。この貫通孔503及び貫通孔503の周辺の第一基板504表面には予め金属膜をつけておく。第一基板504と水晶振動素子506を搭載した後に、導電ペースト515で貫通孔503の水晶振動素子506が搭載された側の開口を塞ぐ。この状態で第一基板504と第二基板510とを接合して水晶振動子512を得る。(例えば特許文献1参照)

As shown in FIG. 9, a conventional crystal unit 512 includes a first substrate 504 having a first recess 501, a crystal resonator element 506, and a second recess 509 having an opening on one main surface. It is comprised from the formed 2nd board | substrate 510 which consists of flat glass or quartz. The first substrate 504 has a first recess 501 having an opening on one main surface, and a substantially wedge-shaped through hole 503. The substantially wedge-shaped through-hole 503 has a diameter that increases from one end on the first concave bottom surface 502 side toward the other end of the outer surface of the first substrate 504 made of flat glass or crystal. . Excitation electrodes 507 are formed on both main surfaces of the crystal resonator element 506. The crystal resonator element 506 is mounted on the first substrate 504. At this time, the extraction electrode of the crystal resonator element 506 is mounted so as to cover the through hole 503 of the first substrate 504. A metal film is previously applied to the surface of the first substrate 504 around the through hole 503 and the through hole 503. After mounting the first substrate 504 and the crystal resonator element 506, the conductive paste 515 closes the opening of the through hole 503 on the side where the crystal resonator element 506 is mounted. In this state, the first substrate 504 and the second substrate 510 are bonded to obtain the crystal resonator 512. (For example, see Patent Document 1)

このような水晶振動子や水晶振動子の製造方法については、以下のような先行技術が開示されている。
特開平5−121985号公報
The following prior art is disclosed about such a crystal resonator and a method for manufacturing the crystal resonator.
Japanese Patent Laid-Open No. 5-121985

なお、前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を本件出願時までに発見するに至らなかった。   In addition to the prior art documents specified by the prior art document information described above, no prior art documents related to the present invention have been found by the time of filing of the present application.

しかしながら、従来の水晶振動子では貫通孔内に導電ペーストを充填しているが、この様な導電ペーストを用いた封止では、個々の水晶振動子で気密性が不均一になることがあり歩留まりを悪くさせてしまう。また気密性が低下すると水晶振動子の特性に影響が与えられるおそれがあった   However, in a conventional crystal unit, the through-hole is filled with a conductive paste. However, sealing with such a conductive paste may result in non-uniform airtightness in individual crystal units. Will make you worse. In addition, if the airtightness is reduced, the characteristics of the crystal unit may be affected.

本発明は上記の課題を解決するもので、従ってその目的は、気密性を向上させ生産性の
良い水晶振動子の製造方法を提供することである。
The present invention is intended to solve the above problems, therefore its object is to provide a method for producing a good crystal oscillator productivity improves airtightness.

上記の目的を達成するために本発明は、第一の凹部を有し、該第一の凹部内に貫通孔を有する第一基板と、第二の凹部を有する第二基板と、水晶片の両主面における所定の位置に励振電極と引き出し電極が設けられ、一方の主面に設けられた該引き出し電極がスルーホールを介して他方の主面に引き回された水晶振動素子と、該水晶振動素子の他方の主面に引き回された二つの該引き出し電極と該貫通孔との間を塞ぐ金属埋設部と、該金属埋設部を覆い該貫通孔を埋めるメッキ層とを備えた構成の水晶振動子の製造方法であって、ガラスまたは水晶からなる平板の所定の位置に、該平板の一方の主面に開口部を有する該第一の凹部を複数個形成し、該第一の凹部の開口部が設けられている一方の主面とは反対側の主面から該第一の凹部内に貫通する貫通孔を穿孔することにより、複数の該第一基板が連なって形成された構造の第一のウェハー部材を形成し、該第一のウェハー部材に設けられた各該第一の凹部を囲む側壁部開口側端面と、複数の該水晶振動素子が連なって一体で形成された水晶振動素子ウェハーの枠とを直接接合し、該貫通孔内に、該引き出し電極から該貫通孔内までを埋設する金属埋設部を形成し、該第一のウェハー部材の該水晶振動素子ウェハーが接合されている側とは反対の主面側に露出した該金属埋設部の表面と、該貫通孔内の露出している表面と、該第一のウェハー部材の該水晶振動素子ウェハーが接合されている側とは反対側の主面における該貫通孔の開口部周辺部分とを除いて、該第一のウェハー部材に接合されている主面とは反対側の該水晶振動素子ウェハーの主面と、該水晶振動素子ウェハーが接合されている側とは反対側の該第一のウェハー部材の主面とにレジスト膜を形成し、該第一のウェハー部材と該水晶振動素子ウェハーを電解メッキ溶液に浸けて、該レジスト膜のない部分に電解メッキを施しメッキ層を形成し、該レジスト膜を除去し、ガラスまたは水晶からなる平板の所定の位置に、該平板の一方の主面に開口部を有する該第二の凹部を複数個形成することにより、複数の該第二基板が連なって形成された構造の第二のウェハー部材を形成し、該第二のウェハー部材該第二の凹部を囲む側壁部開口側端面と、該水晶振動素子ウェハーとを直接接合で接合し、直接接合された該第二のウェハー部材、該水晶振動素子ウェハー及び該第一のウェハー部材を所定の位置で個割りして、個別に水晶振動子を得る水晶振動子の製造方法であることを特徴とする。 In order to achieve the above object, the present invention provides a first substrate having a first recess, a through-hole in the first recess, a second substrate having a second recess, and a crystal piece. A quartz resonator element in which an excitation electrode and an extraction electrode are provided at predetermined positions on both main surfaces, and the extraction electrode provided on one main surface is routed to the other main surface through a through hole, and the crystal A structure including a metal buried portion that covers between the two lead electrodes routed to the other main surface of the vibration element and the through hole, and a plating layer that covers the metal buried portion and fills the through hole. A method of manufacturing a crystal resonator, wherein a plurality of the first recesses having openings on one main surface of the flat plate are formed at predetermined positions on a flat plate made of glass or quartz, and the first recess transmural on the opposite side of the principal surface or found the first recess and the one main surface of the opening of is provided Forming a first wafer member having a structure in which a plurality of the first substrates are continuously formed, and surrounding each first recess provided in the first wafer member. The side wall opening side end face and the crystal vibration element wafer frame integrally formed by connecting a plurality of the crystal vibration elements are directly joined, and the through-hole is embedded from the lead-out electrode to the through-hole. Forming a metal buried portion to be exposed, the surface of the metal buried portion exposed on the main surface opposite to the side on which the quartz crystal vibration element wafer is bonded of the first wafer member, and the exposure in the through hole Except for the surface of the first wafer member and the peripheral portion of the opening of the through hole on the main surface of the first wafer member opposite to the side to which the crystal resonator element wafer is bonded. The quartz crystal element on the side opposite to the main surface joined to the member The principal surface of the wafer, the crystal oscillation element wafer resist film is formed on the principal surface of the opposite side of the first wafer member to the side that is joined, said first wafer member and the quartz crystal vibrating element A wafer is immersed in an electrolytic plating solution, and a portion without the resist film is electroplated to form a plating layer, the resist film is removed, and one of the flat plates is placed at a predetermined position of a flat plate made of glass or quartz. by form a plurality of said second recess having an opening on the main surface, forming a second wafer member formed by continuous multiple of the second substrate structure, said second wafer member The side wall opening side end surface surrounding the second recess and the crystal resonator element wafer are directly bonded, and the second wafer member, the crystal resonator element wafer, and the first wafer member that are directly bonded Is divided at a predetermined position. Thus, the present invention is characterized in that the method is a method of manufacturing a crystal resonator in which crystal resonators are individually obtained.

本発明の製造方法により製造された水晶振動子によれば、水晶振動子の金属埋設部の外側表面にメッキ層が形成されるので気密性を向上させることが出来る。また接合面に引き出し電極が位置しないため接合が容易となった。これにより水晶振動子の生産性を向上させることが出来る。 According to the crystal resonator manufactured by the manufacturing method of the present invention, since the plating layer is formed on the outer surface of the metal embedded portion of the crystal resonator, the airtightness can be improved. Further, since the extraction electrode is not located on the bonding surface, the bonding becomes easy. Thereby, the productivity of the crystal unit can be improved.

また、本発明の水晶振動子の製造方法によれば、貫通孔内部の金属埋設部の水晶振動子外側表面、及び金属埋設部の水晶振動子外側表面と、金属埋設部の貫通孔内側の間の部分がメッキ材で覆われるので気密性を向上させることが出来る。   Further, according to the method for manufacturing a crystal resonator of the present invention, the crystal resonator outer surface of the metal embedded portion inside the through hole, and the crystal resonator outer surface of the metal embedded portion and the inside of the through hole of the metal embedded portion. Since the portion is covered with a plating material, the airtightness can be improved.

また、複数の水晶振動子を一括に製造するために、個々の容器にわけられて生産される水晶振動子の製造工程で多数使用される搬送器を使用することが無く、生産効率良く、かつ生産コストを抑えて信頼性の高い水晶振動子を製造することが出来る。   Moreover, in order to manufacture a plurality of crystal resonators in a lump, there is no need to use a large number of carriers used in the manufacturing process of crystal resonators that are produced in individual containers. A crystal resonator with high reliability can be manufactured at a low production cost.

以下に図面を参照しながら本発明の実施形態について説明する。また、それぞれの図は、本発明を理解し易くするために誇張して図示されている。   Embodiments of the present invention will be described below with reference to the drawings. Each figure is exaggerated for easy understanding of the present invention.

(第一の実施形態)
図1は本発明の実施形態に係る概略の水晶振動子の斜視図である。図2は図1のA−A断面図である。図3は図2の概略の部分拡大図である。図4は本発明の水晶振動子に用いられる水晶振動素子を他方の面から見た概略の斜視図である。
(First embodiment)
FIG. 1 is a schematic perspective view of a crystal resonator according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a schematic partially enlarged view of FIG. FIG. 4 is a schematic perspective view of the crystal resonator element used in the crystal unit of the present invention as viewed from the other surface.

本発明の水晶振動子100は、第一基板10と金属埋設部15とメッキ層16と水晶振動素子20Aと第二基板30から主に構成されている。第一基板10は平板状のガラスまたは水晶から出来ており、第一基板10の一方の主面には、開口部を有する第一の凹部14が形成されている。また、第一基板10の第一の凹部底面11A内には貫通孔12が設けられている。貫通孔12は第一基板10と水晶振動素子20Aとを接合したときに水晶振動素子20A側を向く開口が第一基板10の厚さ方向にむかうにつれて直径が大きくなる略くさび形状となっている。この貫通孔12の孔径は水晶振動子20Aの内部側となる一方の端部の直径が約60μm程度、水晶振動子100の外部側となる他方の端部の直径で約140μm程度、貫通孔12の長さは約175μm程度である。また後述する引き出し電極24Aの端部に対応した位置に二つの貫通孔12が第一の凹部底面11A内に設けられている。   The crystal resonator 100 of the present invention is mainly composed of a first substrate 10, a metal buried portion 15, a plating layer 16, a crystal resonator element 20 </ b> A, and a second substrate 30. The first substrate 10 is made of flat glass or crystal, and a first recess 14 having an opening is formed on one main surface of the first substrate 10. A through hole 12 is provided in the first concave bottom surface 11 </ b> A of the first substrate 10. The through-hole 12 has a substantially wedge shape in which an opening that faces the crystal resonator element 20A side when the first substrate 10 and the crystal resonator element 20A are joined increases in diameter toward the thickness direction of the first substrate 10. . The diameter of the through-hole 12 is about 60 μm at one end that is on the inner side of the crystal unit 20A, and about 140 μm at the other end that is on the outer side of the crystal unit 100. The length of is about 175 μm. In addition, two through holes 12 are provided in the first recess bottom surface 11A at positions corresponding to end portions of an extraction electrode 24A described later.

水晶振動素子20Aは四角形状に形成されており、四角形の振動部とこの振動部を囲む枠部22とが一体で形成された状態となっている。この枠部22が第一基板10と第一の凹部14を囲む側壁部開口側端面13と直接接合されている。水晶振動素子20Aは水晶片の両主面に同じ形状の励振電極23Aが形成されている。この水晶振動素子20Aの第一の凹部10側表面には引き出し電極24Aが形成されている。引き出し電極24は図2にはその形状が示されていないが、励振電極23の一部と接続する電極であり水晶振動素子20Aの電気的出力信号の導通路である。この引き出し電極24は枠部22と連続している部分において、枠部22まで達しない様に振動部23の端部まで設けられている。また第一基板10と対向する引き出し電極24Aと、反対側の引き出し電極24Bは水晶振動素子20Aに設けられたスルーホールを介して反対側の面まで設けられる。従って、それぞれの引き出し電極24の端部は図4に示されるように水晶片の一方の主面で並んだ状態となる。なお、スルーホールは第一基板10の貫通孔12と同一軸線となるのが良い。   The crystal resonator element 20A is formed in a quadrangular shape, and a quadrangular vibrating portion and a frame portion 22 surrounding the vibrating portion are integrally formed. The frame portion 22 is directly joined to the side wall portion opening side end surface 13 surrounding the first substrate 10 and the first recess 14. In the crystal resonator element 20A, excitation electrodes 23A having the same shape are formed on both main surfaces of the crystal piece. A lead electrode 24A is formed on the surface of the quartz resonator element 20A on the first recess 10 side. Although the shape of the extraction electrode 24 is not shown in FIG. 2, the extraction electrode 24 is an electrode connected to a part of the excitation electrode 23 and is a conduction path of an electrical output signal of the crystal resonator element 20 </ b> A. The lead electrode 24 is provided up to the end of the vibration portion 23 so as not to reach the frame portion 22 in a portion continuous with the frame portion 22. The lead electrode 24A facing the first substrate 10 and the lead electrode 24B on the opposite side are provided up to the opposite surface through a through hole provided in the crystal resonator element 20A. Therefore, the end portions of the respective extraction electrodes 24 are arranged on one main surface of the crystal piece as shown in FIG. Note that the through hole is preferably the same axis as the through hole 12 of the first substrate 10.

第二基板30は、一方の主面に開口部を有する第二の凹部31が形成された平板状のガラスまたは水晶からなる。第二基板30の第二の凹部31を囲む側壁部開口側端面32と、水晶振動素子20Aの第一基板10の接合された表面の反対側の表面とが直接接合されて第一の凹部14及び第二の凹部31が気密封止されている。   The second substrate 30 is made of flat glass or crystal having a second recess 31 having an opening on one main surface. The side wall opening side end surface 32 surrounding the second recess 31 of the second substrate 30 and the surface opposite to the bonded surface of the first substrate 10 of the crystal resonator element 20A are directly bonded to each other to form the first recess 14. The second recess 31 is hermetically sealed.

第一の凹部底面11Aに設けられた貫通孔12の一方の端部と、この一方の端部と対向する水晶振動素子20Aの引き出し電極24A表面との隙間には金属埋設部15が形成されている。この金属埋設部15は引き出し電極24A表面から貫通孔12内部に形成されている。貫通孔12内部の金属埋設部15はCr、Cu、Ni、Au、Snのいずれか1つ、若しくは異なる2種の金属から形成されている。   A metal buried portion 15 is formed in a gap between one end portion of the through-hole 12 provided in the first recess bottom surface 11A and the surface of the extraction electrode 24A of the crystal resonator element 20A facing the one end portion. Yes. The metal buried portion 15 is formed in the through hole 12 from the surface of the extraction electrode 24A. The metal burying portion 15 inside the through hole 12 is made of one of Cr, Cu, Ni, Au, and Sn, or two different kinds of metals.

更にこの金属埋設部15の水晶振動子100の外側に露出した部分にはメッキ層16が形成されている。なお、第一の基板10表面の貫通孔12の周囲の一部までメッキ層16を設けても良い。このメッキ層16は気密封止を確実にする役割と外部端子としての役割を果す。メッキ層16が形成された貫通孔12の水晶振動子100外部側の表面形状は図1に示すように円形状である。なお、円形状の他に四角形などの多角形に形成しても良いし楕円形に形成しても良い。また、メッキ層16はCr、Cu、Ni、Au、Snのいずれか1つ、若しくは異なる2種の金属から形成されている。図2及び図3の金属埋設部15の水晶振動子100の外側表面に形成されるメッキ層16の厚みは例えば5μmから50μm程度としても良い。   Further, a plating layer 16 is formed on a portion of the metal burying portion 15 exposed outside the crystal unit 100. The plating layer 16 may be provided up to a part of the periphery of the through hole 12 on the surface of the first substrate 10. The plated layer 16 serves to ensure hermetic sealing and to serve as an external terminal. As shown in FIG. 1, the surface shape of the through-hole 12 in which the plated layer 16 is formed on the outside of the crystal unit 100 is circular. In addition to the circular shape, it may be formed in a polygon such as a quadrangle, or may be formed in an elliptical shape. Further, the plating layer 16 is formed of any one of Cr, Cu, Ni, Au, Sn, or two different metals. The thickness of the plating layer 16 formed on the outer surface of the crystal unit 100 of the metal embedding portion 15 in FIGS. 2 and 3 may be, for example, about 5 μm to 50 μm.

図2及び図3に示されるように金属埋設部15の水晶振動子100の外側表面にメッキ層16が形成されている為に、貫通孔12内部表面と金属埋設部15の間に微細な隙間をもつ場合でも隙間にメッキ層16が形成されて気密性が高くされ、その結果、信頼性の高い構造の水晶振動子100が得られる。   As shown in FIGS. 2 and 3, since the plating layer 16 is formed on the outer surface of the crystal unit 100 of the metal buried portion 15, a fine gap is formed between the inner surface of the through hole 12 and the metal buried portion 15. Even in the case of having a metal layer, the plated layer 16 is formed in the gap to increase the airtightness. As a result, the crystal resonator 100 having a highly reliable structure can be obtained.

図8は本発明の水晶振動子の製造方法を、工程を追って示した模式図である。以下に本発明の水晶振動子12の製造工程を、工程を追って詳細に説明する。   FIG. 8 is a schematic view showing the method of manufacturing the quartz crystal resonator according to the present invention step by step. Below, the manufacturing process of the crystal unit 12 of the present invention will be described in detail step by step.

第一のウェハー部材は、後述する水晶振動素子ウェハーを構成する個々の水晶振動素子20Aに、各々相対する第一の凹部14と貫通孔12が設けられた平板状のガラスまたは水晶からなる複数の第一基板10が連なって形成された構造となっている。まず、図8(a)に示すように第一のウェハー部材に、その第一の凹部14の開口部が設けられている表面とは反対側の表面(以下、「一方面」という。)から貫通孔12を穿孔する。貫通孔12は第一のウェハー部材の第一の凹部14の開口部が設けられている表面とは反対側の表面側から図8(a)に示されるようにサンドブラスト手段を用いて形成される。あけられた貫通孔12の断面形状は全て第一のウェハー部材の後述する水晶振動素子ウェハーと対向する開口部の直径寸法が小さく、水晶振動素子ウェハーと対向する側と反対の開口部の直径寸法が大きい略くさび形状となる。   The first wafer member includes a plurality of plate-shaped glass or quartz crystals each having a first concave portion 14 and a through-hole 12 provided in each of the crystal resonator elements 20A constituting a crystal resonator element wafer described later. The first substrate 10 is formed in a continuous manner. First, as shown in FIG. 8A, the surface of the first wafer member opposite to the surface on which the opening of the first recess 14 is provided (hereinafter referred to as “one surface”). The through hole 12 is drilled. The through-hole 12 is formed by using sand blasting means as shown in FIG. 8A from the surface side opposite to the surface of the first wafer member where the opening of the first recess 14 is provided. . All the cross-sectional shapes of the through-holes 12 are small in the diameter of the opening of the first wafer member facing a quartz vibrating element wafer, which will be described later, and the diameter of the opening opposite to the side facing the quartz vibrating element wafer. Has a large wedge shape.

次に、図8(b)に示すように第一のウェハー部材に設けられた各第一の凹部14を囲む側壁部開口側端面13と水晶振動素子ウェハーの枠とを直接接合する。なお、水晶振動素子ウェハーは、複数の水晶振動素子20Aが連なって一体で形成されている。それぞれの水晶振動素子20A部分の両主面に同じ形状の励振電極23が形成されている。また励振電極23と接続する引き出し電極24は第一の凹部14及び第二の凹部31内に収まる位置に形成されている。なお、引き出し電極24の端部は貫通孔12と対向する位置まで設けられている。図8(b)に示される様に水晶振動素子20Aの一方の主面上に形成された引き出し電極24Aの端部は貫通孔12と対向する位置に設けられている。   Next, as shown in FIG. 8B, the side wall opening side end face 13 surrounding each first recess 14 provided in the first wafer member and the frame of the crystal resonator element wafer are directly joined. The crystal resonator element wafer is integrally formed by connecting a plurality of crystal resonator elements 20A. Excitation electrodes 23 having the same shape are formed on both main surfaces of each crystal resonator element 20A. The extraction electrode 24 connected to the excitation electrode 23 is formed at a position that fits in the first recess 14 and the second recess 31. The end portion of the extraction electrode 24 is provided up to a position facing the through hole 12. As shown in FIG. 8B, the end portion of the extraction electrode 24 </ b> A formed on one main surface of the crystal resonator element 20 </ b> A is provided at a position facing the through hole 12.

次に、図8(c)に示すように貫通孔12が形成された第一のウェハー部材の一方面側から貫通孔12内面に向けて金属粉をサンドブラスト手段で吹き付ける。図8(c)に示される様に、金属粉は貫通孔12の内面に吹き付けられる際に、貫通孔12の内面との衝突で発生する摩擦熱で融解して、引き出し電極24Aの表面と貫通孔12一方の端部との隙間の部分を埋めるように引き出し電極24Aの上に堆積しながら固着する。そして、水晶振動素子20Aの引き出し電極24A上に堆積した金属粉は先述の隙間を埋め、更に貫通孔12内の一部を埋めて金属埋設部15を形成する。ここで、サンドブラスト手段によって金属粉を吹き付けて水晶振動素子20Aの引き出し電極24A表面と貫通孔12の端部のあいだの隙間を金属埋設部15で埋める方法の他に、真空蒸着法などで金属を貫通孔12の部分に転写する方法や、バブルジェット(登録商標)で導電ペーストを貫通孔12の部分に塗布する方法や、印刷方式で導電ペーストを貫通孔12の内部に入れ込むように塗布する方法を用いても良い。   Next, as shown in FIG. 8C, metal powder is sprayed from the one surface side of the first wafer member having the through holes 12 toward the inner surface of the through holes 12 by sandblasting means. As shown in FIG. 8C, when the metal powder is sprayed on the inner surface of the through hole 12, it melts by frictional heat generated by the collision with the inner surface of the through hole 12, and penetrates the surface of the extraction electrode 24A. The hole 12 is fixed while being deposited on the extraction electrode 24A so as to fill a gap between the hole 12 and one end. The metal powder deposited on the extraction electrode 24A of the crystal resonator element 20A fills the gaps described above, and further fills part of the through holes 12 to form the metal buried portion 15. Here, in addition to the method of blowing metal powder by sandblasting means and filling the gap between the surface of the extraction electrode 24A of the crystal resonator element 20A and the end of the through hole 12 with the metal burying portion 15, the metal is deposited by vacuum deposition or the like. A method of transferring to the through hole 12, a method of applying a conductive paste to the part of the through hole 12 using a bubble jet (registered trademark), or a method of applying the conductive paste into the through hole 12 by a printing method. A method may be used.

続いて、図8(d)に示すように、第一のウェハー部材の水晶振動素子ウェハーが接合されている側とは反対の主面側に露出した金属埋設部15の表面と、貫通孔12内の露出している表面と、第一のウェハー部材の水晶振動素子ウェハーが接合されている側とは反対側の主面における貫通孔12の開口部周辺部分とを除いて、第一のウェハー部材に接合されている主面とは反対側の水晶振動素子ウェハーの主面と、水晶振動素子ウェハーが接合されている側とは反対側の該第一のウェハー部材の主面とにレジスト膜17を形成する。 Subsequently, as shown in FIG. 8D , the surface of the metal buried portion 15 exposed on the main surface side opposite to the side on which the crystal vibration element wafer of the first wafer member is bonded, and the through hole 12. Except for the exposed surface of the first wafer member and the peripheral portion of the opening of the through hole 12 on the main surface of the first wafer member opposite to the side on which the crystal resonator element wafer is bonded. Resist film on the main surface of the crystal vibrating element wafer opposite to the main surface bonded to the member and the main surface of the first wafer member opposite to the side bonded to the crystal vibrating element wafer 17 is formed.

この状態で接合された第一のウェハー部材と水晶振動素子ウェハーを電解メッキ溶液に浸けて、レジスト膜17のない部分、即ち金属埋設部15の水晶振動子100の外側に露出した表面及び金属埋設部15の水晶振動子100外側の表面と金属埋設部15の貫通孔12内側の間の部分に電解メッキを施して続いて、図8(e)に示すようにメッキ層16を形成する。これにより水晶振動素子20Aの引き出し電極24Aの表面から金属埋設部15表面にいたる電気的導通経路を形成する。ここでメッキはセミアディティブ法や選択性のある通常の電解メッキ等を用いる。金属埋設部15の表面部分に形成されるメッキ層16の厚みは例えば5μmから50μm程度となるようにメッキ処理を行う。   The first wafer member and the crystal resonator element wafer bonded in this state are immersed in an electrolytic plating solution, and the surface where the resist film 17 is not present, that is, the surface exposed to the outside of the crystal unit 100 of the metal embedded portion 15 and the metal embedded. Electrolytic plating is applied to a portion between the surface of the portion 15 outside the crystal unit 100 and the inside of the through hole 12 of the metal burying portion 15, and then a plating layer 16 is formed as shown in FIG. As a result, an electrical conduction path from the surface of the extraction electrode 24A of the crystal resonator element 20A to the surface of the metal buried portion 15 is formed. Here, the plating uses a semi-additive method, a selective normal electrolytic plating, or the like. The plating process is performed so that the thickness of the plating layer 16 formed on the surface portion of the metal burying portion 15 is, for example, about 5 μm to 50 μm.

次に、図8(f)に示すようにレジスト膜17を除去する。   Next, the resist film 17 is removed as shown in FIG.

次いで、図8(g)に示すように第一のウェハー部材と接合している水晶振動素子ウェハーに、第二のウェハー部材の第二の凹部31を囲む側壁部開口側端面32を直接接合で接合する。これにより金属埋設部15とメッキ層16が形成された水晶振動素子20Aの励振電極23形成部分、及びその近傍が、一括に気密封止される。第二のウェハー部材は、平板状のガラスまたは水晶からなり、水晶振動素子20Aが連なって形成されている水晶振動素子ウェハーの各々の水晶振動素子20Aに相対する第二の凹部31が設けられている。   Next, as shown in FIG. 8 (g), the side wall portion opening side end surface 32 surrounding the second recess 31 of the second wafer member is directly bonded to the crystal resonator element wafer bonded to the first wafer member. Join. As a result, the excitation electrode 23 forming portion of the crystal resonator element 20A in which the metal burying portion 15 and the plating layer 16 are formed and the vicinity thereof are hermetically sealed together. The second wafer member is made of flat glass or crystal, and is provided with a second concave portion 31 facing each crystal resonator element 20A of the crystal resonator element wafer formed by connecting the crystal resonator elements 20A. Yes.

例えば、この直接接合は、水晶振動素子ウェハー(例えばW1)の接合面と第一のウェハー部材(例えばW2)の接合面とを予め硫酸過酸化水素混合液などの酸化性の液体で洗浄して親水化処理が成されている状態にしておき、これら水晶振動素子ウェハー(W1)の接合面と第一のウェハー部材(W2)の接合面とを重ね合わせることで、水晶振動素子ウェハー(W1)と第一のウェハー部材(W2)との界面で水酸基間の水素結合が起こって接合された状態となる。また、窒素ガス、アルゴンガス等の酸化防止ガスとしての役割を果たす不活性ガスの雰囲気中で直接接合を行うことで、常圧で接合しても、励振電極23Aや引出し電極24を構成する金属膜が酸化するのを防ぐことができる。また、これに代えて、常温状態で直接接合を行っても良い。例えば、真空チャンバー内に例えばAr(アルゴン)ガスを噴出させた状態の中で、イオンガンによって発生したプラズマによる活性化で、水晶振動素子ウェハー(W1)の接合面と第一のウェハー部材(W2)の接合面とを削った状態にし、その後、水晶振動素子ウェハー(W1)の接合面と第一のウェハー部材(W2)の接合面とを重ね合わせることで、接合された状態となる。なお、更に水晶振動素子ウェハー(W1)と第一のウェハー部材(W2)に熱が加えられることで、水晶振動素子ウェハー(W1)と基体ウェハ(W2)との接合強度を上げることができる。   For example, in this direct bonding, the bonding surface of the quartz-crystal vibrating element wafer (for example, W1) and the bonding surface of the first wafer member (for example, W2) are previously cleaned with an oxidizing liquid such as a sulfuric acid hydrogen peroxide mixture. The crystal vibrating element wafer (W1) is superposed on the bonded surface of the crystal vibrating element wafer (W1) and the bonded surface of the first wafer member (W2) in a state where the hydrophilic treatment is performed. And a first wafer member (W2) at the interface between the hydroxyl groups, hydrogen bonds between the hydroxyl groups occur, and the bonded state. Further, by directly bonding in an atmosphere of an inert gas that plays a role as an antioxidant gas such as nitrogen gas or argon gas, the metal constituting the excitation electrode 23A and the extraction electrode 24 even when bonded at normal pressure It is possible to prevent the film from being oxidized. Alternatively, direct bonding may be performed at room temperature. For example, in a state where Ar (argon) gas is jetted into the vacuum chamber, for example, activation by plasma generated by an ion gun activates the bonding surface of the crystal resonator element wafer (W1) and the first wafer member (W2). Then, the bonding surface of the quartz crystal vibration element wafer (W1) and the bonding surface of the first wafer member (W2) are superposed on each other to obtain a bonded state. In addition, the bonding strength between the crystal vibration element wafer (W1) and the base wafer (W2) can be increased by applying heat to the crystal vibration element wafer (W1) and the first wafer member (W2).

次に、図8(h)に示すように直接接合された第二のウェハー部材、水晶振動素子ウェハー及び第一のウェハー部材を所定の位置でスクライバー等を用いて個割りして、個別に水晶振動子100を得る。本発明の水晶振動子100の製造方法によれば、貫通孔12内部の金属埋設部15の水晶振動子100の外側表面、及び金属埋設部15の水晶振動子100外側の表面と、金属埋設部15の貫通孔12内側の間の部分がメッキ材で覆われるので、気密性の高い金属埋設部15を有する信頼性の高い水晶振動子100を製造することが出来る。   Next, as shown in FIG. 8 (h), the second wafer member, the crystal resonator element wafer, and the first wafer member that are directly bonded are divided by using a scriber or the like at a predetermined position, and the crystal is individually separated. A vibrator 100 is obtained. According to the method for manufacturing the crystal unit 100 of the present invention, the outer surface of the crystal unit 100 in the metal embedded unit 15 inside the through hole 12, the surface of the metal unit 15 outside the crystal unit 100, and the metal unit Since the portion between the insides of the 15 through-holes 12 is covered with the plating material, the highly reliable crystal resonator 100 having the metal-embedded portion 15 with high airtightness can be manufactured.

なお、第一のウェハー部材に接合された水晶振動素子ウェハーを電解メッキ溶液に浸けて、金属埋設部15の表面及び金属埋設部15の水晶振動子100外側の表面と金属埋設部15の貫通孔12内側のあいだの部分に電解メッキを施し、メッキ層16を形成する工程は、水晶振動素子ウェハー部材と第二のウェハー部材の第二の凹部31を囲む側壁部開口側端面32を直接接合で接合する工程の次でも良い。また、貫通孔12を形成する手段としサンドブラスト手段を用いることを説明したが、サンドブラスト手段に代えてウェットエッチング手段、またはドライエッチング手段を用いても構わない。   The crystal resonator element wafer bonded to the first wafer member is immersed in an electrolytic plating solution, so that the surface of the metal embedded portion 15, the surface of the metal embedded portion 15 outside the crystal unit 100, and the through hole of the metal embedded portion 15. 12, the step of electrolytically plating the portion between the inner side and forming the plating layer 16 is performed by directly bonding the side wall opening side end surface 32 surrounding the quartz resonator element wafer member and the second recess 31 of the second wafer member. It may be subsequent to the bonding step. Further, although the sand blasting means is used as the means for forming the through holes 12, wet etching means or dry etching means may be used instead of the sand blasting means.

この様にして水晶振動子100の製造方法を構成したので、気密性が著しく向上した貫通孔12内部を埋める金属埋設部15を有する水晶振動子100を製造することが出来る。   Since the method for manufacturing the crystal unit 100 is configured in this manner, the crystal unit 100 having the metal embedded portion 15 that fills the inside of the through hole 12 with significantly improved airtightness can be manufactured.

(第二の実施形態)
図5は第二の実施形態に係る水晶振動子に用いられる水晶振動素子の一例を示す概略の斜視図である。図5に示すように、図4での水晶振動素子20Aの形状が20Bの様に単板であり振動部とこれを囲む枠部を持たない構造である点が第一の実施形態と異なる。
(Second embodiment)
FIG. 5 is a schematic perspective view showing an example of a crystal resonator element used in the crystal resonator according to the second embodiment. As shown in FIG. 5, the crystal resonator element 20A in FIG. 4 is different from the first embodiment in that the shape of the crystal resonator element 20A is a single plate like 20B and does not have a vibrating portion and a frame portion surrounding it.

この水晶振動素子20Bは両主面に励振電極23Aと引き出し電極24とを備えている。この一方の主面に設けられた引き出し電極24Bは第一の基板10に達しない程度まで励振電極23Aから離れたスルーホールを介して他方の端部まで引き出されている。従って、それぞれの引き出し電極24の端部は、図5の24Aと24Bの様には水晶振動素子20Bの他方の主面で並んだ状態となっている。第二の実施形態においても、水晶振動子100の金属埋設部15の外側表面にメッキ層16が形成されている為に、貫通孔12内部表面と金属埋設部15の間に微細な隙間をもつ場合でも隙間にメッキ層16が形成されて気密性が高くされ、その結果、信頼性の高い構造の水晶振動子100が得られる効果を奏する。   The crystal resonator element 20B includes an excitation electrode 23A and a lead electrode 24 on both main surfaces. The extraction electrode 24B provided on the one main surface is extracted to the other end through a through hole separated from the excitation electrode 23A to the extent that it does not reach the first substrate 10. Therefore, the end portions of the respective extraction electrodes 24 are arranged on the other main surface of the crystal resonator element 20B as in 24A and 24B of FIG. Also in the second embodiment, since the plating layer 16 is formed on the outer surface of the metal buried portion 15 of the crystal unit 100, there is a fine gap between the inner surface of the through hole 12 and the metal buried portion 15. Even in this case, the plated layer 16 is formed in the gap to increase the airtightness. As a result, the crystal resonator 100 having a highly reliable structure can be obtained.

(第三の実施形態)
図6は本発明の第三の実施形態による振動子に用いられる水晶振動素子の一例を示す斜視図である。図6は水晶振動素子20Cの形状が音叉型の場合を示す。
この水晶振動素子20Cは両主面に励振電極23Bと引き出し電極24とを備えている。この一方の主面に設けられた引き出し電極24Bは第一の基板10に達しない程度まで励振電極23Bから離れた位置に形成されたスルーホールを介して他方の端部まで引き出されている。従って、それぞれの引き出し電極24の端部は、図6の引き出し電極24Aと引き出し電極24Bの様には水晶振動素子20Cの他方の主面で並んだ状態となっている。水晶振動素子20Cがこれらの形状をした場合においても、水晶振動子100の金属埋設部15の外側表面にメッキ層16が形成されている為に、貫通孔12内部表面と金属埋設部15の間に微細な隙間をもつ場合でも隙間にメッキ層16が形成されて気密性が高くされ、その結果、信頼性の高い構造の水晶振動子100が得られる第一の実施形態と同様の効果を奏する。
(Third embodiment)
FIG. 6 is a perspective view showing an example of a crystal resonator element used in the vibrator according to the third embodiment of the present invention. FIG. 6 shows a case where the crystal resonator element 20C has a tuning fork shape.
This crystal resonator element 20C includes an excitation electrode 23B and a lead electrode 24 on both main surfaces. The lead electrode 24B provided on one main surface is drawn to the other end through a through hole formed at a position away from the excitation electrode 23B to the extent that it does not reach the first substrate 10. Accordingly, the end portions of the respective extraction electrodes 24 are arranged on the other main surface of the crystal resonator element 20C as in the case of the extraction electrodes 24A and 24B in FIG. Even when the crystal resonator element 20 </ b> C has these shapes, the plating layer 16 is formed on the outer surface of the metal embedded portion 15 of the crystal resonator 100, so that the space between the inner surface of the through-hole 12 and the metal embedded portion 15 is formed. Even if there are fine gaps, the plated layer 16 is formed in the gaps to increase the airtightness. As a result, the same effect as in the first embodiment can be obtained, in which the crystal resonator 100 having a highly reliable structure can be obtained. .

(第四の実施形態)
図7は本発明の第四の実施形態による振動子に用いられる水晶振動素子の一例を示す斜視図である。図7は水晶振動素子20Dの形状が逆メサ型の場合を示す。この水晶振動素子20Dは両主面に励振電極23Cと引き出し電極24とを備えている。この一方の主面に設けられた引き出し電極24Bは第一の基板10に達しない程度までに励振電極23Cから離れた位置に形成されたスルーホールを介して他方の端部まで引き出されている。従って、それぞれの引き出し電極24の端部は、図7の引き出し電極24Aと引き出し電極24Bの様には水晶振動素子20Dの他方の主面で並んだ状態となっている。この様に水晶振動素子20Dがこれらの形状をした場合においても、水晶振動子100の金属埋設部15の外側表面にメッキ層16が形成されている為に、貫通孔12内部表面と金属埋設部15の間に微細な隙間をもつ場合でも隙間にメッキ層16が形成されて気密性が高くされ、その結果、信頼性の高い構造の水晶振動子100が得られる第一の実施形態と同様の効果を奏する。
(Fourth embodiment)
FIG. 7 is a perspective view showing an example of a crystal resonator element used in the vibrator according to the fourth embodiment of the present invention. FIG. 7 shows a case where the shape of the crystal resonator element 20D is an inverted mesa type. The crystal resonator element 20D includes an excitation electrode 23C and a lead electrode 24 on both main surfaces. The lead electrode 24B provided on the one main surface is drawn to the other end through a through hole formed at a position away from the excitation electrode 23C to the extent that it does not reach the first substrate 10. Accordingly, the end portions of the respective extraction electrodes 24 are arranged on the other main surface of the crystal resonator element 20D like the extraction electrodes 24A and 24B in FIG. Thus, even when the crystal resonator element 20D has these shapes, since the plating layer 16 is formed on the outer surface of the metal embedded portion 15 of the crystal unit 100, the inner surface of the through hole 12 and the metal embedded portion are formed. Even if there is a fine gap between 15, the plating layer 16 is formed in the gap to increase the airtightness, and as a result, the crystal resonator 100 having a highly reliable structure can be obtained as in the first embodiment. There is an effect.

本発明の実施形態に係る水晶振動子の概略の斜視図である。1 is a schematic perspective view of a crystal resonator according to an embodiment of the present invention. 図1の概略のA−A断面図である。It is AA sectional drawing of the outline of FIG. 図2の概略の部分拡大図である。FIG. 3 is a schematic partially enlarged view of FIG. 2. 本発明の水晶振動子に用いられる水晶振動素子を他方の面から見た概略の斜視図である。It is the schematic perspective view which looked at the crystal resonator element used for the crystal unit of the present invention from the other side. 本発明の第二の実施形態に係る水晶振動子に用いられる水晶振動素子の一例を示す概略の斜視図である。It is a schematic perspective view which shows an example of the crystal oscillation element used for the crystal resonator which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態による振動子に用いられる水晶振動素子の一例を示す概略の斜視図である。It is a schematic perspective view which shows an example of the crystal oscillation element used for the vibrator | oscillator by 3rd embodiment of this invention. 本発明の第四の実施形態による振動子に用いられる水晶振動素子の一例を示す概略の斜視図である。It is a schematic perspective view which shows an example of the crystal oscillation element used for the vibrator | oscillator by 4th embodiment of this invention. 本発明の水晶振動子の製造方法を、工程を追って示した模式図である。It is the schematic diagram which followed the process for the manufacturing method of the crystal oscillator of this invention. 従来の水晶振動子を示す概略の断面図である。It is a schematic sectional drawing which shows the conventional quartz oscillator.

符号の説明Explanation of symbols

14 第一の凹部
11A 第一の凹部底面
12 貫通孔
10 第一基板
13 第一の凹部を囲む側壁部開口側端面
20A、20B、20C、20D 水晶振動素子
22、22A 枠部
23A、23B、23C,23D 励振電極
24、24A、24B 引き出し電極
31 第二の凹部
30 第二基板
32 第二の凹部を囲む側壁部開口側端面
100 水晶振動子
15 金属埋設部
16 メッキ層
17 レジスト膜
14 1st recessed part 11A 1st recessed part bottom face 12 Through-hole 10 1st board | substrate 13 Side wall part opening side end surface 20A, 20B, 20C, 20D surrounding a 1st recessed part Crystal vibrating element 22, 22A Frame part 23A, 23B, 23C , 23D Excitation electrodes 24, 24A, 24B Lead electrode 31 Second recess 30 Second substrate 32 Side wall opening side end surface surrounding second recess 100 Crystal resonator 15 Metal buried portion 16 Plating layer 17 Resist film

Claims (1)

第一の凹部を有し、該第一の凹部内に貫通孔を有する第一基板と、第二の凹部を有する第二基板と、水晶片の両主面における所定の位置に励振電極と引き出し電極が設けられ、一方の主面に設けられた該引き出し電極がスルーホールを介して他方の主面に引き回された水晶振動素子と、該水晶振動素子の他方の主面に引き回された二つの該引き出し電極と該貫通孔との間を塞ぐ金属埋設部と、該金属埋設部を覆い該貫通孔を埋めるメッキ層とを備えた構成の水晶振動子の製造方法であって、
ガラスまたは水晶からなる平板の所定の位置に、該平板の一方の主面に開口部を有する該第一の凹部を複数個形成し、該第一の凹部の開口部が設けられている一方の主面とは反対側の主面から該第一の凹部内に貫通する貫通孔を穿孔することにより、複数の該第一基板が連なって形成された構造の第一のウェハー部材を形成し、
該第一のウェハー部材に設けられた各該第一の凹部を囲む側壁部開口側端面と、複数の該水晶振動素子が連なって一体で形成された水晶振動素子ウェハーの枠とを直接接合し、
該貫通孔内に、該引き出し電極から該貫通孔内までを埋設する金属埋設部を形成し、
該第一のウェハー部材の該水晶振動素子ウェハーが接合されている側とは反対の主面側に露出した該金属埋設部の表面と、該貫通孔内の露出している表面と、該第一のウェハー部材の該水晶振動素子ウェハーが接合されている側とは反対側の主面における該貫通孔の開口部周辺部分とを除いて、該第一のウェハー部材に接合されている主面とは反対側の該水晶振動素子ウェハーの主面と、該水晶振動素子ウェハーが接合されている側とは反対側の該第一のウェハー部材の主面とにレジスト膜を形成し、
該第一のウェハー部材と該水晶振動素子ウェハーを電解メッキ溶液に浸けて、該レジスト膜のない部分に電解メッキを施しメッキ層を形成し、
該レジスト膜を除去し、
ガラスまたは水晶からなる平板の所定の位置に、該平板の一方の主面に開口部を有する該第二の凹部を複数個形成することにより、複数の該第二基板が連なって形成された構造の第二のウェハー部材を形成し、該第二のウェハー部材の該第二の凹部を囲む側壁部開口側端面と、該水晶振動素子ウェハーとを直接接合で接合し、
直接接合された該第二のウェハー部材、該水晶振動素子ウェハー及び該第一のウェハー部材を所定の位置で個割りして、個別に水晶振動子を得る
ことを特徴とする水晶振動子の製造方法
A first substrate having a first recess and having a through hole in the first recess, a second substrate having a second recess, and an excitation electrode and a lead at predetermined positions on both main surfaces of the crystal piece An electrode is provided, and the lead electrode provided on one main surface is routed to the other main surface of the crystal resonator element by being routed to the other main surface through a through hole. A method of manufacturing a crystal resonator having a metal buried portion that covers between the two extraction electrodes and the through hole, and a plating layer that covers the metal buried portion and fills the through hole ,
A plurality of the first concave portions having openings on one main surface of the flat plate are formed at predetermined positions on the flat plate made of glass or quartz, and the one of the first concave portions provided with the opening is provided. By drilling a through-hole penetrating into the first recess from the main surface opposite to the main surface, a first wafer member having a structure in which a plurality of the first substrates are continuously formed is formed.
A side wall opening side end surface surrounding each of the first recesses provided on the first wafer member and a frame of the crystal resonator element wafer formed by integrating a plurality of the crystal resonator elements are directly bonded. ,
In the through hole, a metal buried portion is formed to bury from the lead electrode to the inside of the through hole,
A surface of the metal buried portion exposed on a main surface opposite to a side to which the crystal vibration element wafer is bonded of the first wafer member; an exposed surface in the through hole; Main surface bonded to the first wafer member, except for the peripheral portion of the opening of the through hole in the main surface on the opposite side of the main surface to which the quartz crystal vibration element wafer is bonded. Forming a resist film on the main surface of the quartz crystal vibration element wafer on the opposite side to the main surface of the first wafer member on the opposite side to the side on which the crystal vibration element wafer is bonded,
Immerse the first wafer member and the quartz crystal vibration element wafer in an electrolytic plating solution, and perform electrolytic plating on a portion without the resist film to form a plating layer;
Removing the resist film;
A structure in which a plurality of the second substrates are formed by forming a plurality of the second recesses having openings on one main surface of the flat plate at a predetermined position of a flat plate made of glass or quartz. Forming a second wafer member of the second wafer member, and joining the quartz crystal resonator element wafer to the side wall opening side end surface surrounding the second recess of the second wafer member by direct bonding,
A crystal resonator manufacturing method , wherein the directly bonded second wafer member, the crystal resonator element wafer, and the first wafer member are individually divided at predetermined positions to individually obtain a crystal resonator. Way .
JP2008042931A 2008-02-25 2008-02-25 Manufacturing method of crystal unit Active JP5329105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042931A JP5329105B2 (en) 2008-02-25 2008-02-25 Manufacturing method of crystal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042931A JP5329105B2 (en) 2008-02-25 2008-02-25 Manufacturing method of crystal unit

Publications (2)

Publication Number Publication Date
JP2009201018A JP2009201018A (en) 2009-09-03
JP5329105B2 true JP5329105B2 (en) 2013-10-30

Family

ID=41144004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042931A Active JP5329105B2 (en) 2008-02-25 2008-02-25 Manufacturing method of crystal unit

Country Status (1)

Country Link
JP (1) JP5329105B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337221A1 (en) * 2009-12-15 2011-06-22 The Swatch Group Research and Development Ltd. Resonator thermocompensated at least to the first and second orders
JP2011210906A (en) * 2010-03-29 2011-10-20 Seiko Instruments Inc Electronic component and method of manufacturing the same
JP5471987B2 (en) * 2010-09-07 2014-04-16 株式会社大真空 Electronic component package sealing member, electronic component package, and method of manufacturing electronic component package sealing member
CN105502967A (en) * 2014-10-17 2016-04-20 北京自动化控制设备研究所 Quartz bonding method based on gold-tin co-crystal

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106905A (en) * 1993-10-06 1995-04-21 Matsushita Electric Ind Co Ltd Oscillator
JPH0865093A (en) * 1994-08-26 1996-03-08 Matsushita Electric Ind Co Ltd Electronic component and manufacture thereof
JPH08335839A (en) * 1995-06-07 1996-12-17 Matsushita Electric Ind Co Ltd Production of vibrator
JPH1022773A (en) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd Vibrator and manufacture therefor
JP3318507B2 (en) * 1997-04-24 2002-08-26 京セラ株式会社 Piezoelectric resonator with built-in capacitance
JP2000269775A (en) * 1999-03-16 2000-09-29 Nippon Dempa Kogyo Co Ltd Thin crystal vibrator
JP2004208236A (en) * 2002-12-26 2004-07-22 Seiko Epson Corp Piezoelectric device, manufacturing method therefor, portable telephone unit utilizing piezoelectric device and electronic equipment utilizing piezoelectric device
JP2005125447A (en) * 2003-10-23 2005-05-19 Hitachi Ltd Electronic component and its manufacturing method
JP2007184810A (en) * 2006-01-10 2007-07-19 Epson Toyocom Corp Method for manufacturing piezoelectric vibrator
JP2007258917A (en) * 2006-03-22 2007-10-04 Epson Toyocom Corp Piezoelectric device

Also Published As

Publication number Publication date
JP2009201018A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
US8334639B2 (en) Package for electronic component, piezoelectric device and manufacturing method thereof
JPWO2010016487A1 (en) Piezoelectric vibration device sealing member and manufacturing method thereof
JP5329105B2 (en) Manufacturing method of crystal unit
JP2007214941A (en) Piezoelectric vibration chip and piezoelectric device
JP3390348B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2013055632A (en) Airtight sealing package and manufacturing method of the same
JP5278044B2 (en) Package member, method for manufacturing the package member, and piezoelectric vibration device using the package member
JP5498677B2 (en) Manufacturing method of crystal oscillator
JP5298835B2 (en) Device manufacturing method
JP5171210B2 (en) Method for manufacturing piezoelectric vibrator
JP2015084386A (en) Electronic device
JP4636170B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP6383138B2 (en) Electronic devices
JP2008252805A (en) Crystal oscillator and method of producing crystal oscillator
JP3945417B2 (en) Package structure of piezoelectric device and method for manufacturing piezoelectric device
JP5039929B2 (en) Method for manufacturing MEMS device
JP5188836B2 (en) Manufacturing method of crystal unit
JP2007184810A (en) Method for manufacturing piezoelectric vibrator
WO2013128496A1 (en) Crystal resonator, and production method therefor
JP2015167222A (en) Electronic part
JP2017126865A (en) Method of manufacturing electronic component, and the electronic component
JP2009111931A (en) Piezoelectric vibrator and method for manufacturing piezoelectric vibrator
JP7307569B2 (en) crystal oscillator
JP5188834B2 (en) Manufacturing method of crystal unit
JP6077386B2 (en) Method for manufacturing piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350