JP5322157B2 - スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置及び方法並びに試料加工装置 - Google Patents

スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置及び方法並びに試料加工装置 Download PDF

Info

Publication number
JP5322157B2
JP5322157B2 JP2008548251A JP2008548251A JP5322157B2 JP 5322157 B2 JP5322157 B2 JP 5322157B2 JP 2008548251 A JP2008548251 A JP 2008548251A JP 2008548251 A JP2008548251 A JP 2008548251A JP 5322157 B2 JP5322157 B2 JP 5322157B2
Authority
JP
Japan
Prior art keywords
spin
polarized
ion beam
ions
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008548251A
Other languages
English (en)
Other versions
JPWO2008069110A1 (ja
Inventor
拓 鈴木
泰 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006321044A external-priority patent/JP5212962B2/ja
Priority claimed from JP2007190277A external-priority patent/JP5196362B2/ja
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JPWO2008069110A1 publication Critical patent/JPWO2008069110A1/ja
Application granted granted Critical
Publication of JP5322157B2 publication Critical patent/JP5322157B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/24Ion sources; Ion guns using photo-ionisation, e.g. using laser beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/282Means specially adapted for hyperpolarisation or for hyperpolarised contrast agents, e.g. for the generation of hyperpolarised gases using optical pumping cells, for storing hyperpolarised contrast agents or for the determination of the polarisation of a hyperpolarised contrast agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24557Spin polarisation (particles)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、スピン偏極イオンビーム発生装置と、この発生装置で発生したスピン偏極イオンビームを試料に照射し試料から散乱するイオンを分光して材料の表面及び界面の磁性特性を調べるための散乱分光装置と、上記スピン偏極イオンビームを用いて試料の改質等の加工を行なう装置に関する。
なお、本明細書において、以下の用語を以下の意味で使用する。
偏極率:
上向きと下向きのスピンを持つイオンの個数を、それぞれn↑とn↓とすれば、偏極率は(n↑−n↓)/(n↑+n↓)で定義される。本明細書では、これに100を乗じて、パーセント表示する。なお、イオンの種類を特定した場合には、上記のn↑を、N↑(ここで、Mはイオン名)と表記する。例えば、上向きスピンを有する偏極した一価のヘリウム陽イオンの個数を、NHe+↑と表わす。本発明においては、「偏極」はスピンによる偏極、つまり、スピン偏極を意味している。
線、D線、D線、2などの記号:
準安定ヘリウム原子2の光ポンピングに関与するエネルギー準位を、図19を用いて説明する。光ポンピングによる準安定へリウム原子2のスピン偏極では、2と2Pの間の遷移を使う。この2P準位はスピン−軌道相互作用により微細構造を持ち、2からこれらへの遷移のことを、遷移エネルギーが大きい方から、D線、D線、D線と呼んでいる。本文中で使用するD線、D線、D線の記号は、特に断りのない限り、この準安定ヘリウム原子2の2Pへの遷移を示すこととする。
非特許文献1には、光ポンピングされた準安定ヘリウム原子(He(2))のペニングイオン化により、スピン偏極ヘリウムイオンが生起することが報告されている。
ペニングイオン化は下記反応式(1)で表わされる。
He+He→He+He+e (1)
ここで、Heは準安定ヘリウム原子、Heは一価のヘリウム陽イオン、eは電子である。この反応では、ヘリウムのスピン角運動量の成分は保存されている。
したがって、準安定ヘリウム原子(He)が光ポンピングされてスピン偏極した場合には、発生したヘリウムイオン(He)の電子もスピン偏極している。このようなイオンを本発明では偏極イオン又はスピン偏極イオンと呼ぶ。
偏極イオンビームにより材料の表面及び界面の磁性を調べる検査方法においては、偏極イオンビームは表面に極めて敏感であることから、測定中の表面汚染を防ぐため測定時間は可能な限り短縮する必要がある。
従来は、非特許文献2に示されているように、準安定ヘリウム原子2の2への遷移に対応するD線の波長を持つ円偏光を用いた光ポンピングにより、ヘリウムイオンの偏極がなされてきた。直交した円偏光及び直線偏光したポンピング光により準安定ヘリウム原子からスピン偏極した電子を発生させる技術が非特許文献3及び4に報告されている。
この従来技術によるヘリウムイオンの偏極率は18%であり、これ以上の偏極率を持つ偏極ヘリウムイオンの発生は不可能であった。このため、測定中の表面汚染を避けることが困難でその測定結果にもおのずから限界が生じていた。
また、偏極イオンビームを用いた表面改質などの加工においては、偏極イオンビームの偏極率が低いことで、加工精度に限界が生じていた。
中性子散乱(非特許文献5)や磁気円二色性分光(非特許文献6)などの従来技術では、元素を識別した磁気構造解析は可能であるが、分析試料の表面に対して敏感でないため、表面の数原子層に限定した磁気構造解析は不可能であった。
他方、スピン偏極光電子分光法(非特許文献7)やスピン偏極準安定原子脱励起分光法(非特許文献8)などの従来技術は表面敏感性を有するが、元素識別能力がないため、元素と原子層とを選別した磁気構造解析は不可能であった。
このように、従来技術では、表面数原子層の元素を選別した磁気構造解析は不可能であった。
また、従来のイオン散乱分光法(非特許文献9)では、表面・界面の組成分析や構造解析は可能であったが、試料表面・界面のスピン解析はできなかった。
要するに、表面や界面の磁気構造の解明は、新規デバイス開発等において重要な課題となっているが、従来の分析技術では、最表面2〜3原子層程度の、元素と原子層とを選別した磁気構造解析は不可能であった。
Physical Review Letters 22 (1969) 629, L. D. Schearer Review of Scientific Instruments 70 (1999) 240, Bixler Nuclear Instruments and Methods in Physics Research A334 (1994) 315-318, S. Essabaa et al. Physical Review A, Vol.42, N0.7(1 OCTOBER, 1990) 4028-4031, L. D. Schearer et al. Physical Review 50 (1951) 912, C. G. Shull 日本物理学会誌 55 (2000) 20、今田真 Journal of Physics: Condensed Matter lO (1998) 95, P. D. Johnson Physical Review Letters 52 (1984) 380, M. Onellion Journal of Applied Physic s 38 (1967) 340, D. P. Smith Review of Modern Physic s 44 (1972) 169, W. Happer Japanese Journal of Applied Physics 24 (1985) 1249 第53回応用物理学関係連合講演会講演予稿集、2(2006)782、鈴木拓 Surface Science 179 (1987) 199, R. Souda et al.
本発明は、このような実情に鑑み、測定時間を短縮して従来にはない高精度の測定や加工が可能になるように、偏極率が18%を超える高い偏極率をもったスピン偏極イオンビーム発生装置を提供することを第1の目的とする。
本発明は、最表面からの浅い層、例えば2〜3原子層における元素と原子層とを選別した磁気構造解析ができるスピン偏極イオン散乱分光装置を提供することを第2の目的とする。
さらに本発明は、試料にスピン偏極したイオンを照射して試料の加工を行うことができる、スピン偏極イオンビームを用いた試料加工装置を提供することを第3の目的とする。
上記第1の目的を達成するために、本発明のスピン偏極イオンビーム発生装置は、イオン発生用の高周波放電管と、レーザー発振器と、レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって高周波放電管に照射するポンピング光発生部と、を備え、スピン偏極イオンを引き出すための引き出し電極を、高周波放電管の端部に設けている。
上記構成において、スピン偏極イオンビームの引き出し方向は、好ましくは、円偏光及び前記直線偏光の何れにも直交する方向である。高周波放電管は、好ましくは、引き出し電極に対向するリペラー電極を備えている。引き出し電極は、好ましくは、排気コンダクタンスが小さくなるように細孔状構造を有している。ポンピング光発生部は、好ましくは、第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている。レーザー発振器は、好ましくは、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する。好ましくは、イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線であり、プローブ光の波長はD0線である。高周波放電管内のヘリウム圧力を、好ましくは、15Pa以上50Pa以下とする。
上記第2の目的を達成するために、本発明のスピン偏極イオン散乱分光装置は、スピン偏極イオンビーム発生部と、スピン偏極イオンビーム発生部から発生させたスピン偏極イオンビームを試料に照射するスピン偏極イオンビームラインと、試料とスピン偏極イオンビームとの相互作用により散乱するイオンのエネルギーを計測する計測部と、を備え、スピン偏極イオンビーム発生部は、イオン発生用の高周波放電管と、レーザー発振器と、レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって高周波放電管に照射するポンピング光発生部と、を有し、スピン偏極イオンを引き出すための引き出し電極を、高周波放電管の端部に設けている。
上記構成において、好ましくは、スピン偏極イオンビームの引き出し方向は、円偏光及び前記直線偏光の何れにも直交する方向である。前記高周波放電管は、好ましくは、引き出し電極に対向するリペラー電極を備えている。引き出し電極は、好ましくは、細孔状構造有している。ポンピング光発生部は、好ましくは、第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている。レーザー発振器は、好ましくは、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する。好ましくは、試料に入射するスピン偏極イオンに対する入射角が制御可能な試料台を備えている。好ましくは、イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線であり、プローブ光の波長はD0線である。
本発明のスピン偏極イオン散乱分光法は、上記記載のスピン偏極イオン散乱分光装置を用い、スピン偏極イオンを試料に入射し、試料からの散乱イオンを計測し、入射イオン種のスピン別に散乱イオン強度を計測し、試料に入射するイオンの中性化確率のスピン依存性から試料表面の磁気構造を解析する。
上記構成において、好ましくは、散乱イオン強度を、静電アナライザで検出し、前記イオンのスピンの向きによる散乱イオン強度の違いから試料表面の磁気構造を解明する。好ましくは、散乱イオン強度の試料へのスピン偏極イオンの入射角度依存性を測定し、散乱イオン強度の測定から試料表面からの深さ方向の原子層と元素とを選別してスピンを解析する。好ましくは、イオンのスピンの向きを変える前後で、静電アナライザによる検出量から試料表面の磁気構造を解明する。
上記第3の目的を達成するために、本発明のスピン偏極イオンビームを用いた試料加工装置は、スピン偏極イオンビーム発生部と、スピン偏極イオンビーム発生部から発生させたスピン偏極イオンビームを試料に照射するスピン偏極イオンビームラインと、スピン偏極イオンビームラインから整形されたスピン偏極イオンビームを試料に照射する超高真空槽と、を備え、スピン偏極イオンビーム発生部は、イオン発生用の高周波放電管と、レーザー発振器と、レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって高周波放電管に照射するポンピング光発生部と、を有し、スピン偏極イオンを引き出すための引き出し電極を、高周波放電管の端部に設けている。
上記構成において、スピン偏極イオンビームの引き出し方向は、好ましくは、円偏光及び前記直線偏光の何れにも直交する方向である。高周波放電管は、好ましくは、引き出し電極に対向するリペラー電極を備えている。引き出し電極は、好ましくは、細孔を備えている。ポンピング光発生部は、好ましくは、第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている。レーザー発振器は、好ましくは、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する。好ましくは、試料に入射するスピン偏極イオンに対する入射角が制御可能な試料台を備えている。スピン偏極イオンビームラインは、好ましくは、排気孔となる細孔部を設けた非磁性体からなるレンズを備える。イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線である。
本発明のスピン偏極イオンビーム発生装置によれば、従来と比較して1.5倍以上の偏極率を有するスピン偏極イオンビームが得られ、従来と同様な精度での測定では、その測定時間を2/3以下に減少することができた。
本発明のスピン偏極イオン散乱分光装置によれば、試料最表面の2〜3原子層において、元素と原子層とを選別して表面スピン解析を行うことができた。このため、最表面2〜3原子層程度の深さ領域における磁気構造解析が可能となった。
さらに、本発明のスピン偏極イオン散乱分光装置では、スピン偏極イオンを試料表面に入射し、散乱イオンのエネルギー分析を入射イオンのスピン別に計測、つまり、スピン偏極計測をすることができ、試料表面における入射イオン中性化確率のスピン依存を測定することが可能である。
本発明のスピン偏極イオンビームを用いた試料加工装置によれば、試料最表面をスピン偏極したイオンビームにより加工できる。従来と同様な加工方法を用いても、イオンと被加工物との相互作用のスピン依存に基づく加工精度を1.5倍以上に上げることができる。本発明により可能となった高偏極イオンビームを用いることによって、試料の改質やスピン伝導を利用した素子の製造装置工程におけるスピンの制御等に利用でき、より高度な機能を備えた材料を得ることができる。
本発明の第1の実施の形態に係るスピン偏極イオンビーム発生装置の構成を模式的に示す図である。 図1のスピン偏極イオンビーム発生装置において発生させた偏極イオンの偏極率を評価するシステムの模式図である。 高周波放電管の構成の一例を示す図で、(A)は正面断面図、(B)は左側面図、(C)は右側面図である。 引き出し電極の一例を示す拡大断面図である。 図4のオリフィスプレートの一例を示す図で、(A)は正面断面図、(B)は右側面図である。 偏極イオンビーム整形部の構成の一部を模式的に示す断面図である。 スピン偏極イオンビーム発生装置に用いるポンピング光波長調整部の構成を示す模式図である。 本発明の第2の実施の形態に係るスピン偏極イオン散乱分光装置の構成を模式的に示す図である。 第2の実施形態に係るスピン偏極イオン散乱分光装置の具体的な構成を示す模式図である。 超高真空槽の構成例を示す正面図である。 超高真空槽の構成例を示す上面図である。 イオン散乱分光を説明する図で、(A)は模式図、(B)はイオン散乱分光で得られる分光スペクトルを示す図である。 スピン偏極イオン散乱分光イオン散乱分光を説明する図で、(A)は模式図、(B)はスピン偏極イオン散乱分光で得られる分光スペクトルを示す図、(C)は(B)で求めたスピン別の分光スペクトルの差スペクトルを示す図である。 本発明の第3の実施形態に係るスピン偏極イオンビームを用いた試料加工装置の構成を示す模式図である。 実施例1の結果で、ヘリウム圧力の変化に伴う偏極率の変化を示すグラフである。 酸素が吸着した鉄(100)表面において、(A)はイオン散乱分光(ISS)スペクトルを、(B)はスピン偏極イオン散乱分光(SP−ISS)スペクトルとスピン非対称率を示す。 鉄(100)表面におけるスピン偏極イオン散乱分光の入射角依存性を測調べたグラフ及び特定の入射角度に対するスピン非対称率を示す図である。 図17のピーク(1)〜(4)に対応するフオーカシング効果におけるシャドーコーンと原子位置との幾何学的関係を示す構成図である。 準安定ヘリウム原子2の光ポンピングに関与するエネルギー準位を説明する図である。
符号の説明
1:レーザー発振器
2:光ファイバー増幅器
3:光ファイバーコネクタ
4,8,67:レンズ
5,10:1/2波長板
6,56:ハーフミラー
7,65:1/4波長板
9,9A,58,59,64,66:ミラー
11:凹面鏡
12,15:高周波放電管
15A:本体部
15B:フランジ部
15C:Heガス導入口
15D:Heガス排出口
15E:配線用ポート
15F:引き出し電極挿入部
13:コイル
14,87:直流電源
16:高周波電極
17:引き出し電極
17A:オリフィスプレート保持部
17B:オリフィスプレート
17Ba:円筒部
17Bb:オリフィスプレート部
17Bc:螺子部
17C:円筒部
17D:フランジ部
18:マッチングユニット
19:高周波電源
20:リペラー電極
21:コンデンサーレンズ
22:フォーカシングレンズ
23,26:ディフレクター
24:アインツェルレンズ
25:減速器
27,73:試料(O/Fe/MgO磁性体基板)
28:スピン偏極イオンビーム
30:偏極イオンビーム発生装置
31:高周波放電部
32:磁場印加部
33:ポンピング光発生部
34:第1のポンピング光(円偏光)
35:第2のポンピング光(直線偏光)
36,36A:偏極イオンビーム整形部
38:グランレーザープリズム
39:フランジ
41,81:静電アナライザ
42:二次電子増倍管
43:プリアンプ
44:マルチチャンネルスケーラー
45,82:コンピュータ
50:ポンピング光波長調整部
51:プローブ光発振部
52:透過光測定部
53:プローブ光用レーザー発振器
53A:プローブ光用レーザー発振器用電源
54,54A,54B,54C,54D,54E:プローブ光
55:ビームスプリッタ
57,68:スリット
60:プローブ用ヘリウム放電管
61:光検出器
62:ロックイン増幅器
63:減衰器
69:透過光検出器
70:スピン偏極イオン散乱分光装置
71:スピン偏極イオンビーム発生部
72:スピン偏極イオンビームライン
74,103:超高真空槽
75:計測部
76:光ポンピング照射光
77:ヘリウムガス導入口
78:高周波へリウムイオン源
79,80:差動排気ポート
81A:静電アナライザ用電源
84:円偏光制御部
84A:モーター
84B:モーター駆動部
85:試料磁化部
86:試料磁化用コイル
88:コンデンサ
89:スイッチ
90:架台
91:真空排気部
93,95,97:ポート
94:Stern-Gerlach分析器
96:RHEED
98:マニュピレータ
99:試料搬入部
100:スピン偏極イオンビームを用いた試料加工装置
101:被加工物
102:試料載置部
(第1の実施形態)
以下、図面に示した実施形態に基づいて、本発明を詳細に説明する。
最初に、第1の実施の形態に係るスピン偏極イオンビーム発生装置について説明する。
図1は、第1の実施の形態に係るスピン偏極イオンビーム発生装置30の構成を模式的に示す図である。スピン偏極イオンビーム発生装置30は、高周波放電管12等からなる高周波放電部31と磁場印加部32とポンピング光を発生するポンピング光発生部33とから構成されている。
高周波放電管12は、偏極イオンとなる原子からなるガスが導入され、高周波電源19等の印加でプラズマが形成され、準安定状態の原子のイオン化を行う。さらに、高周波放電管12には、磁場印加部32から磁場(図1の↑B参照)が印加され、ポンピング光発生部33から互いに直交した第1のポンピング光34と第2のポンピング光35が入射されることで高周波放電管12内のイオンが偏極イオンビームとなり、紙面垂直方向(Z方向)に出射する。
本発明においては、発生させるスピン偏極したイオンは、高周波放電に限らず放電により生成するイオンに対してポンピング光34,35を照射して偏極したイオンが発生できれば、イオンの種類は問わない。
ポンピング光発生部33は、高周波放電管12に光ポンピングを行うための照射装置であり、光ファイバーレーザー等の光ポンピングを行うためレーザー発振器1と光ファイバー増幅器2と光ファイバーコネクタ3とレンズ4と1/2波長板5とハーフミラー6と1/4波長板7とレンズ8とミラー9と1/2波長板10と凹面鏡11とを含んで構成されている。
光ファイバーレーザーからの出力光は、光ファイバー経由で光ファイバー増幅器2に入力される。この入力光が、光ファイバー増幅器2で増幅され、光ファイバーコネクタ3から空間に放出される。光ファイバーレーザー内に設置された偏光器を用いて、この放出光が直線偏光となるように予め調整されている。空間に放出された光を、1/2波長板5を用いて偏光方向を調整しその凡そ半分の強度の光の進路をハーフミラー6を用いて変えている。この進路を変えた光を、1/4波長板7を用いて円偏光(シグマ(σ)光とも呼ばれている)の第1のポンピング光34とし、高周波放電管12へ照射する。つまり、第1のポンピング光34は、1/4波長板7により円偏光に調整される。さらに、円偏光された第1のポンピング光34の照射方向が、磁場印加部32で作られる磁場と平行となるように調整されている。したがって、ポンピング光発生部33は、レーザー発振器1から円偏光した第1のポンピング光34と直線偏光した第2のポンピング光35を発生することができる。つまり、ポンピング光発生部33は、第1のポンピング光34と直線偏光した第2のポンピング光35を発生する光偏光器の作用をする。
ここで、光ファイバーレーザーからの放出光を直線偏光にするには、空間に放出された光を、1/2波長板5と図示しないグランレーザープリズムを使用してもよい。グランレーザープリズムは、方解石などを用いた偏光プリズムである。
磁場印加部32は、コイル13と直流電源14とからなる電磁石から構成することができる。コイル13で作られる磁場は、1〜3ガウス程度となるように直流電源14により調整される。高周波放電管12に印加される磁場は、第1のポンピング光34と平行である必要がある。地球磁場は0.5ガウス程度であり、その向きは、一般には伏角をもって地面と非平行であるので、地球磁場よりも大きな1〜3ガウス程度の磁場を印加して、高周波放電管12における磁場を第1のポンピング光34と平行にすることが出来る。コイル13で作られる磁場は3ガウスを越えると、スピン偏極したイオンの軌道に影響を与えるので好ましくない。もちろん、高周波放電管12における磁場が、第1のポンピング光34と平行になっていればよいので、ヘルムホルツコイルなどを用いて、地球磁場をキャンセルする方式でもよい。
第1及び第2のポンピング光34,35の波長は、偏極イオンビームがヘリウムの場合には、準安定ヘリウム原子2の2への遷移に対応するD線とすることができる。また、第1及び第2のポンピング光34,35の線幅は2GHz以下である。
一方、ハーフミラー6を通過した光が高周波放電管12を照射するようにミラー9と凹面鏡11が調整される。この直線偏光(パイ(π)光とも呼ばれている)とした第2のポンピング光35の照射方向は、コイル13で作られる磁場と垂直となるよう調整されている。さらに、直線偏光の偏光成分がコイル13で作られる磁場と平行となるように、1/2波長板10で偏光方向が調整される。
上記のポンピング光発生部33は、レーザー発振器1から出射する直線偏光のレーザー光を二つに分岐し、一方を円偏光とし、他方を直線偏光として、相互に90°の照射角度差、つまり、直交配置で高周波放電管12に照射する機能を有している。
図2は、スピン偏極イオンビーム発生装置30において発生させた偏極イオンの偏極率を評価するシステムの模式図である。このシステムは、試料27に偏極イオンを照射するスピン偏極イオンビーム照射装置30としても使用できる。本発明のスピン偏極イオンビーム発生装置30は、試料27にスピン偏極したイオンを照射して、試料27の加工を行うことができる。
ここで、プラズマの発生を、高周波電力の印加で生起させる場合、高周波放電管15に設ける高周波電極16と高周波電源19との電力伝送を効率良く行うためにインピーダンス整合用のマッチングユニット18を挿入する。マッチングユニット18は、トランス、コイル、コンデンサなどから構成することができる。高周波電極16は、所謂容量結合などの電極構成とすることができる。高周波電源19の周波数は、特に制限はないが13.56MHzなどを使用することができる。
スピン偏極イオンビーム発生装置30により発生するスピン偏極イオンビーム28は、偏極イオンビーム整形部36を介して試料27に照射される。図示の場合には、偏極イオンビーム整形部36は、引き出し電極17から出射する偏極イオンを、リペラー電極20、レンズ21,22,24、ディフレクター23,26、減速器25を用いて、試料27まで輸送する構成例を示している。
試料27に到達した偏極イオンの大部分は、試料27との間の相互作用において中性化し、基底状態の原子となる。この相互作用において、試料27から電子が放出される。この電子の強度が、その運動エネルギーの関数として、偏極イオンのスピンの向き別に、静電アナライザ41と二次電子倍増管42とプリアンプ43とマルチチャンネルスケーラー44とパーソナルコンピュータ45とを用いて計測される。
偏極イオンビーム整形部36と、試料27の載置部や静電アナライザ41は、図示しない真空排気装置により10−8Pa程度の超高真空に排気されている。また、上記の評価システムは、図示しないヘルムホルツコイルで囲まれ、これによりシステム全体にわたって100ミリガウスオーダーの定義磁場が与えられている。以下の説明では、偏極イオンを、ヘリウムからなる偏極ヘリウムイオンとして説明する。
ヘリウムイオンの偏極の向き(上向き又は下向き)は、図1に示す1/4波長板7の向きを変えることで制御することができる。上向きと下向きのスピン成分を持つヘリウムイオンによる放出電子強度は、それぞれNHe+↑とNHe+↓に比例するので、スピン非対称率は下記(2)式で表わされる。
スピン非対称率=(NHe+↑−NHe+↓)/{(NHe+↑+NHe+↓)×P} (2)
ここで、Pは入射するスピン偏極したヘリウムイオンの偏極率である。
したがって、(2)式から次式が求まる。
P=(NHe+↑−NHe+↓)/{(NHe+↑+NHe+↓)×スピン非対称率}}
同じ試料27での測定なので、スピン非対称率は一定として、Pの相対変化が求まる。要するに、測定量は(NHe+↑−NHe+↓)/(NHe+↑+NHe+↓)であり、これはP×(スピン非対称率)に等しいことから偏極ヘリウムイオンの偏極率に比例するので、(NHe+↑−NHe+↓)/(NHe+↑+NHe+↓)を図2に示された装置で測定することで、偏極ヘリウムイオンの偏極率の変化が求まる。このように、本手法ではヘリウムイオン偏極率はスピン非対称率の測定から評価される。試料27は磁性体が望ましい。
図2に示すように、高周波放電管15は、さらに引き出し電極17と、リペラー電極20と、を備えている。高周波放電管15の外周には、高周波電極16が配設されている。高周波電極16には、マッチングユニット18を介して高周波電源19が接続される。この構成により、高周波放電管15は、ヘリウムプラズマを発生させる。次いで、図1で示したポンピング光発生部33による光ポンピングによって、このプラズマ中の準安定ヘリウム原子2がスピン偏極される。この偏極ヘリウムイオンは、この偏極準安定ヘリウム原子(He)のペニングイオン化反応を利用して発生させることができる。以下の説明においては、高周波放電管12,15がヘリウム放電管である場合には、適宜に高周波ヘリウム放電管と呼ぶ。
ヘリウムから偏極した電子を発生させる偏極電子源の場合にはHeとCOガスとのペニングイオン化を利用しているが、HeとHeとのペニングイオン化におけるペニングイオン化断面積は、HeとCOガスとのペニングイオン化の断面積に比べて小さい。このため、HeとHeとのペニングイオン化を生起させるために、十分な量のHeを発生させる必要がある。したがって、偏極電子源に比べて、より多量のHeガスを、高周波放電管15へ導入する必要がある。後述するが、偏極率の高い偏極ヘリウムイオンを発生させるには約10Pa以上の圧力が必要となる。
図3は、高周波放電管15の構成の一例を示す図で、(A)は正面断面図、(B)は左側面図、(C)は右側面図である。
図3(A)に示すように、高周波放電管15は、本体部15Aとフランジ部15Bとから構成されている。本体部15Aはガラス等からなり、Z方向の左端側に配設された引き出し電極17と、Z方向の右端側に配設されたリペラー電極20と、Z方向の右端側から垂直上方(Y方向)に配設されたHeガス導入口15Cと、Z方向の左端側から垂直下方(−Y方向)に配設されたHeガス排出口15Dと、配線用ポート15Eと、引き出し電極挿入部15Fと、から構成されている。
図3(C)に示すように、本体部15AのXY平面における断面形状は、円弧とこの円弧の両端にその一端が接続される2つの直線とからなり、2つの直線の他端は所定の角度をなすように接続されている。一般に、屈折率の異なる媒質に入射して反射した光の偏光は、入射光の偏光とは異なる。つまり、第1のポンピング光(σ光)34が完全な円偏光であっても、高周波放電管15の底面からの反射光は完全な円偏光ではない。このように、円偏光度が低下すると、最終的に、偏極イオンビームの偏極率が低下する。これを防ぐために、高周波放電管15の底面で反射した第1のポンピング光(σ光)34がプラズマに再入射しないような構造として、高周波放電管15の断面を、円弧とこの円弧の両端にその一端が接続される2つの直線とからなる構造としている。もちろん、これ以外でも、第1のポンピング光(σ光)34が偏光度を失わないような構造であれば、どのような構造でもかまわない。
引き出し電極17は、後述するように略円錐面形状の電極であり、底面側が図3(C)に示すフランジ部15Bに対向しており、円錐面の頂点側の開口には、細孔を設けた電極17が形成されている。
リペラー電極20は、高周波へリウム放電管15のZ方向の中心軸に沿って配設される金属線からなる電極であり、W線などが使用される。
図3(C)に示すように、フランジ部15Bは、偏極イオンビーム整形部36に接続される。さらに、フランジの上端側から垂直上方には、引き出し電極17に電位を与えるための配線を真空内に導入するためのポート15Eが接続されている。
図4は、引き出し電極17の一例を示す拡大断面図である。引き出し電極17は高周波放電管15の引き出し電極挿入部15Fに挿入される。引き出し電極17は、円錐面状のオリフィスプレート保持部17Aと、オリフィスプレート保持部17Aの頂部開口に挿入されるオリフィスプレート17Bと、オリフィスプレート保持部17Aの左端に接続する円筒部17Cと、円筒部17Cの左端に接続するフランジ部17Dと、から構成されている。オリフィスプレート保持部17A、円筒部17C及びフランジ部17Dは、ステンレスなどからなる金属製である。オリフィスプレート保持部17Aとオリフィスプレート17Bとは溶接や螺合により一体接続され、電気抵抗が生じないようにされている。図示の場合には、オリフィスプレート17Bは、オリフィスプレート保持部17Aに螺子込みされるように、オリフィスプレート保持部17Aの開口の軸側内面とオリフィスプレート17Bの外周部の所定箇所には螺子が設けられている。フランジ部17Dは、高周波放電管15のフランジ部15Bに接続される。引き出し電極挿入部15Fにおいて、引き出し電極17の先端に相当する部分は開口している。引き出し電極17を図4に示すような円錐形状とすることで、プラズマ・シース近傍の準安定ヘリウム原子に、第1及び第2のポンピング光34,35を効率的に照射することが出来る。
一例として、各電極電圧を挙げれば、リペラー電極20が1.44keV、引き出し電極17が1.2keVで、この時、約1.4keVの運動エネルギーを持ったHeイオンビームが発生する。もちろん、これらの電極電圧を適宜変えることにより、これ以外の所望のイオンの運動エネルギーを得ることが出来る。
図5は図4のオリフィスプレート17Bの一例を示し、(A)は正面断面図、(B)は右側面図である。
オリフィスプレート17Bは、円筒部17Baと円筒部17Cの右端部に設けられたオリフィスプレート部17Bbとから構成されている。円筒部17Baの左側の所定箇所には螺子部17Bcが設けられている。オリフィスプレート部17Bbの中心には、直径dで長さがLの細孔(オリフィス)が設けられている。細孔は、高周波放管の本体部15Aに対向している。オリフィスプレート17Bの材料は、例えばモリブデンである。細孔の寸法は、例えば、直径が0.5mm、中心軸上の長さLは0.8mmである。細孔の直径は0.3〜1mmが好適である。細孔の直径が0.3mm以下では、生成した偏極イオンが引き出し量が小さくなる。細孔の直径が1mm以上では、高周波放電管15内部のヘリウムガスが、偏極イオンビーム整形部36に多量に流入するので好ましくない。同様の理由から、細孔の長さは0.3〜2mmが好ましい。
上記構成の高周波放電管15によれば、高周波放電管15内部のヘリウムガス圧力が高くなっても、引き出し電極17に設けた細孔があるために高周波放電管15からビームライン間のコンダクタンスを小さくすることができ、ヘリウムガスの偏極イオンビーム整形部36への流入を効果的に抑圧することができる。
一方、偏極ヘリウムイオンは、リペラー電極20に正電圧、例えば引き出し電極17に対して50V〜300V程度の電圧を印加することで、偏極イオンビーム整形部36へ効果的に輸送することができ、偏極ヘリウムイオンの偏極イオンビーム整形部36への引き出し量を増大させることができる。
試料27に到達する偏極イオンビーム電流は、偏極イオンビーム整形部36中の真空度に大きく依存する。偏極イオンビーム整形部36中の残留ガスの主成分は、偏極イオンビーム発生装置30から流入するヘリウムガスである。このヘリウムガスの流入を防止するための偏極イオンビーム整形部36の構造を説明する。
図6は、偏極イオンビーム整形部の構成の一部36Aを模式的に示す断面図である。図6に示す偏極イオンビーム整形部36Aにおいて、紙面水平左側がスピン偏極イオンビーム発生装置30に接続される偏極イオンの入射側であり、紙面水平右側が出射側である。図示の場合には、入射側から、コンデンサーレンズ21a,21b,21cとフォーカシングレンズ22a,22b,22cとが順に配設されている。上記各レンズ21,22は真空槽の内部に配設され、その配設された領域は真空に排気されている。なお、フランジ39は図示しない真空ポンプ39Aに接続されている。
真空ポンプ39Aにより排気されている。
偏極イオンビーム発生装置30から流入するヘリウムガスを効果的に排気するために、上記の全てのレンズ21,22は、その外周部に複数の細孔部を備えている。この各細孔の直径は約1mmである。偏極イオンビーム整形部36A中の図示しないアインツェルレンズ24(図2参照)もコンデンサーレンズ21及びフォーカシングレンズ22と同様に細孔部を備えている。コンデンサーレンズ21及びフォーカシングレンズ22は、静電レンズである。偏極イオンビームの脱偏極を防ぐために、偏極イオンビーム整形部36A中のコンデンサーレンズ21、フォーカシングレンズ22、図示しないアインツェルレンズ24及びディフレクター23、26は、全て、非磁性体材料からなる銅製である。
(スピン偏極ヘリウムイオンの発生方法)
次に、スピン偏極イオンビーム発生装置30によりスピン偏極ヘリウムイオンを発生させる手順について説明する。
光ポンピングの照射光の波長が、準安定ヘリウム原子2の2への遷移に対応するD線となるように光ファイバーレーザーの波長を調整する。光ファイバーレーザー(D線)からの出力光を、光ファイバー経由で光ファイバー増幅器2に入力する。この入力光を光ファイバー増幅器2で増幅し、光ファイバーコネクタ3から空間に放出する。また、光ファイバーレーザー内に設置されたポンピング光発生部33を用いて、この放出光が直線偏光となるように予め調整しておく。放出光を直線偏光とするために、グランレーザープリズムを用いてもよい。
空間に放出された光を、1/2波長板5を用いて偏光方向を調整し、その凡そ半分の強度の光の進路をハーフミラー6を用いて変える。この進路を変えた光を、次いで、1/4波長板7を用いて円偏光とし、放電した高周波ヘリウム放電管12,15へ照射する。この円偏光の照射方向を、コイル13で作られる磁場と平行となるように調整する。ここで、コイル13で作られる磁場が1ガウス程度となるように直流電源14を調整する。
一方、ハーフミラー6を通過した光が高周波ヘリウム放電管12,15を照射するようにミラー9と凹面鏡11を調整する。この直線偏光の照射方向は、コイル13で作られる磁場と垂直となるよう調整する。この直線偏光の偏光成分がコイル13で作られる磁場と平行となるように、1/2波長板10で偏光方向を調整する。
その際、プラズマ中の準安定へリウム原子の偏極率を非特許文献2に記載の方法で観察しながら、その偏極率が最大となるように微調整することで、スピン偏極したヘリウムイオンを発生させることができる。準安定ヘリウム原子の偏極率を観察する方法としては、非特許文献2以外の方法以外にも、後述の方法を用いてもかまわない。
本発明のスピン偏極イオンビーム発生装置30によれば、スピン偏極率の大きいスピン偏極したイオンビームを発生させることができる。スピン偏極したイオンはスピン偏極ヘリウムイオンに限らず、電子スピン偏極可能なすべてのイオン(例えばCd、Sr、Zn、Ba)を使用することができる。特に、イオンがヘリウムイオン(He)の場合には、第1及び第2のポンピング光34,35をD線とすることができる。
スピン偏極イオンビーム発生装置30の高周波ヘリウム放電管15にオリフィスプレート17Bを有する引き出し電極17及びリペラー電極20を備えることにより、高周波ヘリウム放電管15内の圧力を15〜50Paという圧力範囲とすることが可能である。これにより、約25%という高スピン偏極率のスピン偏極したヘリウムイオンを発生させることができる。本発明により初めて、高スピン偏極率を有する偏極したヘリウムイオを生成することができる。
したがって、本発明のスピン偏極イオンビーム発生装置30を用いて試料27の改質や試料27の表面の分析を行うことで、高スピン偏極率を有するイオンビームを試料27に照射できるので、加工時間や測定時間を短縮でき、スループットが向上し、加工精度が向上し、試料27の表面の汚染(コンタミネーション)を効果的に防止することができる。
(ポンピング光波長調整部)
第1の実施形態に係るスピン偏極イオンビーム発生装置30に用いる光ポンピングの波長はD線であり、その波長は1082.909nmである。一方、D線に近接しているD線、D線の波長は、それぞれ、1083.025nm、1083.034nmである。D線とD線との周波数差は30GHzであり、D線とD線との周波数差は2.3GHzである(図19参照)。これから、D線は、D線及びD線に近接しているので、レーザー発振器1がD線の波長を発振するように正確に調整されていないと、He偏極率が低下するので好ましくない。したがって、高い偏極率を有するHe発生には、第1及び第2のポンピング光34,35を発生するレーザー発振器1の波長をD線に正確に調整する技術が不可欠である。
スピン偏極イオンビーム発生装置30に用いるレーザー発振器1の波長をD線に調整するポンピング光波長調整部について説明する。
図7は、スピン偏極イオンビーム発生装置30に用いるポンピング光波長調整部50の構成を示す模式図である。図7において点線で囲まれた領域が、スピン偏極イオンビーム発生装置30に付加されるポンピング光波長調整部50である。ポンピング光波長調整部50は、正確なD線に波長が調整されるプローブ光発振部51と、透過光測定部52とから構成されている。
プローブ光発振部51は、プローブ光用レーザー発振器53とプローブ光用レーザー発振器用電源53Aと、ビームスプリッタ55と、ハーフミラー56と、スリット57と、第1のミラー58と第2のミラー59と、第1及び第2のミラー58,59との間に挿入されるプローブ用ヘリウム放電管60と、を含んで構成されている。
プローブ光用レーザー発振器53から出射したプローブ用レーザー光54は、ビームスプリッタ55により紙面垂直下方に光路が曲げられ、ハーフミラー56により紙面水平左方向に光路が曲げられ、スリット57を通って第1のミラー58を介してプローブ用ヘリウム放電管60を通過し、第2のミラー59で反射された後、再びハーフミラー56を通過し、ビームスプリッタ55を通過して光検出器61に入射する。第2のミラー59から光検出器61までの光路54Aは図7において点線で示している。
ハーフミラー56を紙面の垂直下方へ通過したプローブ用レーザー光54Bは、第2のミラー59で反射された後、プローブ用ヘリウム放電管60を通過し、第1のミラー58で反射されるが、スリット57を通過しないようにしている。
プローブ光発振部51のプローブ用ヘリウム放電管60においては、上記したように二つのプローブ用レーザー光54A及び54Bが互いに交差し、一方のプローブ用レーザー光54Aが光検出器61に到達し、プローブ用ヘリウム放電管60内の吸収が計測され、所謂飽和吸収分光が行われる。二つのプローブ用レーザー光54A及び54Bを互いに交差させているので、吸収計測におけるドップラー効果の影響を排除することができる。
光検出器61からの出力は、ロックイン増幅器62へ入力される。ロックイン増幅器62の出力によりプローブ光用のレーザー発振器用電源53Aがフィードバック制御されることで、プローブ光用レーザー発振器53の波長が正確なD線に調整される。プローブ光用レーザー発振器53として、電流で波長が制御できるレーザーダイオードなどを使用することができる。このような波長制御により、プローブ光の波長は5MHz以下に安定化される。
次に、透過光測定部52について説明する。
透過光測定部52は、減衰器63と第3のミラー64と1/4波長板65と第4のミラー66とレンズ67とスリット68と透過光検出器69とから構成されている。
プローブ光発振部51から出射するD線を有するプローブ光54は、ビームスプリッタ55を通過し紙面の水平右方向へ出射する光54Cとなり、NDフィルタなどの減衰器63と第3のミラー64と1/4波長板65を通過して左回り又は右回りの円偏光54Dに変換される。減衰器63を通過した後のプローブ光の強度は、通常1mW程度、又はそれ以下である。この円偏光プローブ光54Dは、磁場Bの向きに平行となるようにして、高周波放電管15に入射する。したがって、円偏光プローブ光54Dの進行方向は、第1のポンピング光34の進行方向と同じである。高周波放電管15から出射するプローブ光54Eは、第4のミラー66とレンズ67とスリット68を通過した後、透過光検出器69に入射する。
ここで、プローブ光54は、高周波放電管15中の光路の全てがポンプ光と重なるように入射する。また、プローブ光54の光軸や、高周波放電管15を出射した後のミラー66,レンズ67,スリット68の形状や幾何学的位置関係を微調整することにより、高周波放電管15の無放電時にパワーメータで計測される光強度を、ポンプ光に対して10%以下に制御する。
高周波放電管15内のヘリウムプラズマを通過したプローブ光54Eの強度を、パワーメータなどの透過光検出器69により測定する。このとき、プローブ光54Eの透過強度をI、入射するプローブ光強度54CをI、m=+1の準安定ヘリウム原子(He)密度をn、m=−1の準安定ヘリウム原子(He)密度をnとすれば、右回りの円偏光(rhcp)による透過強度I(rhcp)及び左回りの円偏光(lhcp)による透過強度I(lhcp)は、下記(3)及び(4)式で表わされる。
I(rhcp)=I(rhcp)exp(nσL) (3)
I(lhcp)=I(lhcp)exp(nσL) (4)
ここで、rhcp、lhcpは、それぞれ右回り、左回りの各円偏光を示し、σは光吸収断面積、Lは上記プローブ光のプラズマ中の伝搬長さである。
偏極率((n↑−n↓)/(n↑+n↓))の定義により、n−nの絶対値が大きくなれば、Heの偏極率が上がる。逆に、n−nの絶対値が最大となるように、第1のポンピング光34の波長がD線となるように調整すれば、最大のHeの偏極率が得られる。この方法を、「本発明の準安定ヘリウム原子の偏極率測定方法」と呼ぶ。
このn−nの絶対値が最大となるのは、上記(3)及び(4)式から、円偏光プローブ光54Dの吸収が最大又は最小となるときである。この吸収が最大又は最小となるのは、単に、Heスピンが上向き又は下向きかによるので、1/4波長板65を調整することにより左回り又は右回りの円偏光とすればよい。つまり、1/4波長板65を調整することによりHeスピンの向きを、上向き、下向きの何れかに調整することができる。
ポンピング光波長調整部50では、以下の手順により、第1及び第2のポンピング光34,35の波長を正確にD線に調整することができる。
最初に、第1のポンピング光34を高周波放電管15中のHeプラズマに入射し、その吸収をパワーメータで計測し、第1のポンピング光34の波長を走査し、D線、D線、D線に対応する3つの吸収を観測することで、第1のポンピング光34の波長が大凡1083nmD線となるように粗調整する。この際、プローブ光発振部51を停止状態にしておけば、透過光測定部52の第4のミラー66とレンズ67とスリット68と透過光検出器69とにより第1のポンピング光34の吸収を検出することができる。透過光検出器69としては、パワーメータを用いることが出来る。
次に、ポンピング光波長調整部50から正確なD線を飽和吸収分光により発生し、このプローブ光54を透過光測定部52を介して高周波放電管15に入射し、透過光検出器69の出力、つまり、プローブ光54Eの吸収が最大又は最小となるようにポンピング光34,35を発生させるレーザー発振器1の波長を調整すればよい。
従来技術では、放電中のHe偏極率を求める方法は複数あるが、これらの方法によってHe偏極率を計測しながら、これが最大となるように第1及び第2のポンピング光34,35の波長を調整することで、第1及び第2のポンピング光34,35をD線に調整することは、原理的には可能である。しかしながら、これらの方法は何れかもプローブ光の波長を走査して吸収を計測するという操作を、それぞれの偏光(例えば、右回り、左回り、直線)に対して行う必要があった。このため、偏極率の計測には時間が掛かり、現実には、偏極率を計測しながら波長を正確に調整することは不可能であった。
上記の従来技術に対して、本発明のポンピング光波長調整部50によれば、右回りか左回りの何れかの偏光による透過強度をパワーメータ69で計測し、それが最大又は最小となるように調整すればよいので、波長調整を容易に行うことができる。
上記ポンピング光波長調整部50によれば、さらに、短時間でスピン偏極したイオンビームを発生させることができる。これにより、ポンピング光波長調整部50を付加した本発明のスピン偏極イオンビーム発生装置30を用いて試料27の改質や試料27の表面の分析を行う場合に、さらに加工時間や測定時間の短縮でき、スループットが向上すると共に、加工精度が向上し、試料27の表面の汚染(コンタミネーション)を効果的に防止することができる。ここで、レーザー発振器は、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力すれば、上記の準安定ヘリウム原子の場合と同様にポンピング光の波長を正確に調整することができる。
(第2の実施形態)
次に、第2の実施形態に係るスピン偏極イオン散乱分光装置について説明する。
図8は、第2の実施の形態に係るスピン偏極イオン散乱分光装置70の構成を模式的に示す図である。図8のスピン偏極イオン散乱分光装置70は、スピン偏極イオンを発生させるスピン偏極イオンビーム発生部71と、スピン偏極イオンビーム発生部71からのスピン偏極イオンを所望のエネルギーで試料表面に入射させるスピン偏極イオンビームライン72と、試料73を保持する超高真空槽74と、超高真空槽74内に位置して、試料73に照射されて散乱したスピン偏極イオンを計測する計測部75と、からなる。後述するように、計測部75は、超高真空槽74内に配設された静電アナライザ81と、静電アナライザ用電源81Aと、静電アナライザ81の検出信号を処理するコンピュータ82等から構成されている。コンピュータ82は、超高真空槽74の外部にあり、パーソナルコンピュータ等を使用することができる。
スピン偏極イオンビーム発生部71は、光ポンピング照射光76を、ヘリウムガス導入口77からヘリウムガスを導入した高周波へリウムイオン源78へ照射し、スピン偏極ヘリウムイオンを発生させるようにしている。
発生させたスピン偏極ヘリウムイオンは、差動排気ポート79,80を備えた偏極ヘリウムイオンビームライン72を用いて、超高真空槽74内に設置された試料73に所望のエネルギーで入射する。イオンのエネルギーは、スピン偏極ヘリウムイオンをスピン偏極イオンビーム発生部71からスピン偏極イオンビームライン72へ引き出す際に用いる電場によって制御する。
入射イオンの試料表面への入射角度は、試料73を入射イオンビームと垂直な方向に回転することで制御する。入射イオンの一部は試料表面における中性化を免れて散乱し、この散乱イオンは、計測部75内の静電アナライザ81で検出される。その検出信号はコンピュータ82で処理される。
図9は、第2の実施形態に係るスピン偏極イオン散乱分光装置70の具体的な構成を示す模式図である。スピン偏極イオンビーム発生部71は、本発明の第1の実施形態で説明した偏極イオンビーム発生装置30及びその変形例を使用することができる。図示のスピン偏極イオンビーム発生部71は、レンズ4とミラー9Aとの間にグランレーザープリズム38を挿入した点で、図1の偏極イオンビーム発生装置30と異なる。この構成によれば、1/2波長板5とグランレーザープリズム38との組み合わせにより、レーザー発振器1からの放出光の偏光方向を制御した直線偏光とすることができる。第2の相違点は、高周波放電管15に入射させる第1のポンピング光34の円偏光制御部84を設けていることである。
円偏光制御部84は、1/4波長板7を制御するためのモーター84Aと、モーター駆動部84Bとからなる。モーター駆動部84Bはコンピュータ82で制御され、第1のポンピング光34の円偏光を右回り及び左回りの何れかに制御することができる。さらに、第1及び第2のポンピング光34,35をD線に正確に調整するためのポンピング光波長調整部50を備えてもよい。
スピン偏極イオンビームライン72は、アインツェルレンズ24,24と、ディフレクター23,23,アインツェルレンズ24,25、ディフレクター23,23の順に配設して構成されている。
超高真空槽74からなる分析チャンバーには、試料73の位置を制御するための図示しない試料台を備えている。試料台は、超高真空槽74の外部に設けるマニュピレータ97によりその位置が制御されると共に、試料73へのスピン偏極ヘリウムイオンの入射角度の制御を行う。
超高真空槽74内には、試料73に磁場を印加するための試料磁化部85を設けてもよい。試料磁化部85は、試料磁化用コイル86と直流電源87と、コンデンサ88と、スイッチ89を備えている。最初に、スイッチ89が直流電源87側に接続されコンデンサ88が充電される。充電後、スイッチ89が、図示するように試料磁化用コイル86側に接続されると、試料磁化用コイル86にパルス状電流が流れ、試料磁化用コイル86からパルス磁場が発生する。このパルス磁場により試料73の磁化方向を変えることができる。コンデンサ88は電解コンデンサであり、その容量は330μF、耐圧は500Vであり、直流電源87の電圧は360Vである。
図10及び図11は、超高真空槽74の構成例であり、それぞれ正面図及び上面図である。
超高真空槽74は架台90上に載置され、ターボ分子ポンプ等でなる真空排気部91を備えており、本発明のスピン偏極ビームライン72が接続されるポート93を備え、図示しない静電アナライザ81は超高真空槽74の内部に配設されている。この超高真空槽74は、後述する、準安定ヘリウム原子の偏極率を測定するためのStern-Gerlach分析器94が接続されるポート95の他にRHEED96等の分析機器が接続できるポート97をさらに備えている。超高真空槽74のStern-Gerlach分析器94に対向する位置には、図示しない準安定ヘリウム原子の発生装置が取り付けられる。超高真空槽74の上部には、試料台の位置を制御するマニュピレータ98が配設され、試料73は超高真空槽74へ試料搬入部(ロードロック)99から超高真空を破らずに挿入できる。
次に、スピン偏極イオン散乱分光装置70による分析方法について説明する。
先ず、試料73へ偏極しないイオンビームを照射した場合には、従来のイオン散乱分光(Ion Scattering Spectroscopy、以下ISSと呼ぶ)を行うことができる。
図12は、イオン散乱分光を説明する図で、(A)は模式図、(B)はイオン散乱分光で得られる分光スペクトルを示す。
図12(A)に示すように、試料73へ1〜10keV程度の運動エネルギーを有するヘリウムイオンが入射すると、ヘリウムイオンの大部分は、基板表面との間の相互作用において中性化し、基底状態のへリウム原子となる。この相互作用において、中性化を免れた散乱イオンの強度をその運動エネルギーの関数として、静電アナライザ81等で分析することで、試料73の表面の数原子又は数分子層に存在する原子の組成分析を行うことができる。
図12(B)に示すAやBのピーク位置は、入射イオンと標的原子の古典的な2体衝突から計算されたエネルギーである。この計算式は、
=E(M/M1+[cosθ±(M /M −sinθ)1/2]
と表される(非特許文献11参照)。
ただし、E、Eは、入射エネルギーと散乱エネルギー、MとMは入射イオンと標的原子の質量、βは散乱角である。
スピン偏極イオン散乱分光装置70は、試料73へ偏極したイオンビームを照射して、スピン偏極イオン散乱分光(Spin Polaraized Ion Scattering Spectroscopy、以下SP−ISSと呼ぶ)を行うことができる。この方法は従来できなかった新しい分光方法である。
図13は、スピン偏極イオン散乱分光を説明する図で、(A)は模式図、(B)はスピン偏極イオン散乱分光で得られる分光スペクトルを示す図、(C)は(B)のスペクトルから求めた差スペクトルを示す。
図13(A)に示すように、試料73に1〜10keV程度の運動エネルギーを有するスピン偏極ヘリウムイオンが試料73に入射すると、上記したようにヘリウムイオンの大部分は、基板表面との間の相互作用において中性化し、基底状態のへリウム原子となる。この相互作用で中性化を免れた散乱イオンをその運動エネルギーの関数として、静電アナライザ81等で分析することで、試料73の表面の数原子又は数分子層に存在する原子の組成分析を行うことができる。さらに、スピン偏極ヘリウムイオンのスピンの向きを変えることで、試料73表面に存在する原子のスピンに応じて、スピンが平行か反平行かによる散乱強度変化を測定することができる。
図13(C)は、図13(B)で得たスペクトルから計算した差スペクトルであり、後述するが、この値により検出した元素の有しているスピンの正負をも判別することができる。
さらに、偏極したヘリウムイオンビームの試料73への入射角度依存性を測定することにより、試料73の最表面から数原子層程度の深さにある各原子層の元素及びスピン状態の分析を行うことができる。
具体的には、上記のスピン偏極イオン散乱分光スペクトルは、スピン偏極イオン散乱分光装置70の静電アナライザ81の検出値からコンピュータ82を用いた解析により得ることができる。解析の手順は、下記の通りである。
(イ)試料73を試料周囲の磁場の方向と平行にパルス磁化する。
(ロ)磁化と平行にスピン偏極したヘリウムイオンの散乱強度を、静電アナライザ81を用いて、一定時間計測する。
(ハ)磁化と反平行にスピン偏極したヘリウムイオンの散乱強度を、静電アナライザ81を用いて、(イ)と同じ時間計測する。
(ニ)時間変化の効果を除去するために、(イ)と(ロ)の計測を所定回数繰り返す。
(ホ)一連の測定後に、(イ)と(ロ)の繰り返し測定で求めた信号強度を、コンピュータ82を用いてスピンの向き別に積算して、最終的に求めるスピン偏極散乱イオン強度を得ることができる。
また、入射イオン種の試料表面における中性化確率が表面の磁気構造に依存することにより上記のスピン偏極イオン散乱分光を行うことができる。このような現象を発現するものとして、入射イオン種はヘリウムイオンに限らず、電子スピン偏極可能なすべてのイオン(例えばCd、Sr、Zn、Ba)や原子(例えば、Li、Na、K、Rb、Cs(非特許文献9,10参照))を使用することができる。
本発明のスピン偏極イオン散乱分光装置によれば、試料最表面の2〜3原子層において、元素と原子層とを選別して表面スピン解析を行うことができる。このため、最表面2〜3原子層程度の深さ領域における磁気構造解析ができる。さらに、スピン偏極イオンを試料表面に入射し、散乱イオンのエネルギー分析を入射イオンのスピン別に計測、つまり、スピン偏極計測をすることができ、試料表面における入射イオン中性化確率のスピン依存を測定することが可能である。
(第3の実施形態)
次に、第3の実施形態に係るスピン偏極イオンビームを用いた試料加工装置について説明する。
図14は、第3の実施形態に係るスピン偏極イオンビームを用いた試料加工装置100の構成を示す模式図である。スピン偏極イオンビームを用いた試料加工装置100は、第1の実施形態で説明した偏極イオンビーム発生装置30を用いたスピン偏極イオンビーム発生部71と、このスピン偏極イオンビーム発生部71に接続されるスピン偏極イオンビームライン72と、被加工物となる試料101を載置する試料載置部102を備えた超高真空槽103などから構成されている。
ここで、スピン偏極イオンビーム発生部71とスピン偏極イオンビームライン72と超高真空槽103は、スピン偏極イオン散乱分光装置70と同様の構成とすることができる。スピン偏極イオンビーム発生部71から発生したスピン偏極イオンは、電界などによりスピン偏極イオンビームライン72に輸送される。スピン偏極イオンビームライン72は、試料の加工目的に応じて、ビームを細く絞る、ビーム径を広げる、スキャンするなどのビーム整形やビーム操作を行う。通常、イオンビーム電流は、スピン偏極イオンビームライン72の真空度に大きく依存するので、十分な排気を行う。このように所望の形態を持つ偏極イオンビームを、最後に、被加工物である試料101に照射し、表面改質、イオン注入、表面加工などを施す。この被加工物101は、通常真空中に保持される。とくに、その表面の反応性が高い場合等には、被加工物101は超高真空中に保持する。
超高真空槽103は、スピン偏極イオンのビーム強度等を測定するために、スピン偏極イオン散乱分光装置70と同様に静電アナライザ81等の各種分析部を設けてもよい。
本発明の第3の実施形態に係るスピン偏極イオンビームを用いた試料加工装置100によれば、試料101の最表面をスピン偏極したイオンビームにより加工できる新規な試料加工装置を提供することができる。従来と同様な加工方法を用いても、イオンと被加工物との相互作用のスピン依存に基づく加工精度を1.5倍以上に上げることができる。本発明により可能となった高偏極イオンビームを用いることによって、試料の改質やスピン伝導を利用した素子の製造装置工程におけるスピンの制御等に利用でき、より高度な材料を得ることができる。
次に、実施例に基づいて本発明をさらに詳細に説明する。
実施例1のスピン偏極イオンビーム発生装置30は、図1〜図7に示した高周波ヘリウム放電管15や偏極イオンビーム整形部36を用いた。高周波ヘリウム放電管15の本体部15Aと引き出し電極挿入部15Fとは、パイレックス(登録商標)製ガラスから成り、フランジ部15B、Heガス導入口15C、Heガス排出口15D、配線用ポート15Eはステンレスから成るフランジや管材を用いた。本体部15Aのパイレックス(登録商標)製ガラスと上記のステンレス製のフランジや管材とは、コバールを用いて接合した。
引き出し電極17におけるオリフィスプレート17Bの細孔の直径dは、0.5mmであり、長さLは0.8mmとした。引き出し電極17とリペラー電極20との距離は50mmとした。引き出し電極17及びリペラー電極20に印加した電圧は、それぞれ、1.26kV,1.44kVとした。高周波放電は、13,56MHz、出力500Wの高周波電源19を用いた。ただし、通常は5W以下で使用した。
実施例1のスピン偏極イオンビーム発生装置30を用いて、以下の手順でスピン偏極ヘリウムイオンを発生させた。
光ファイバーレーザーの波長約1083nm(D線)出力光を、光ファイバー経由で光ファイバー増幅器2に入力した。この入力光を光ファイバー増幅器2で増幅し、光ファイバーコネクタ3から空間に放出した。光ファイバー増幅器2は、出力が3Wとなるように調整した。
また、光ファイバーレーザー内に設置された偏光器を用いて、この放出光が直線偏光となるように予め調整した。この場合、光ファイバーレーザーからの放出光をグランレーザープリズムと1/2波長板との組み合わせにより光学的に配置しても、上記放出光の偏光方向を直線偏光に調整することができた。
空間に放出された光を、1/2波長板5を用いて偏光方向を調整し、その凡そ半分の強度の光の進路をハーフミラー6を用いて変えた。この進路を変えた光を、次いで、1/4波長板7を用いて円偏光(σ光)とし、高周波ヘリウム放電管12へ照射した。この円偏光の照射方向を、コイル13で作られる磁場と平行となるように調整した。また、コイル13で作られる磁場が1ガウス程度となるように直流電源14を調整した。一方、ハーフミラー6を通過した光が放電管12を照射するようにミラー9と凹面鏡11を調整した。この直線偏光(π光)の照射方向は、コイル13で作られる磁場と垂直となるよう調整した。また、直線偏光(π光)の偏光成分がコイル13で作られる磁場と平行となるように、1/2波長板10で偏光方向を調整した。光ポンピングの照射光の波長は、準安定ヘリウム原子2の2への遷移に対応するD線へ調整した。
上記の方法で発生したプラズマ中の準安定へリウム原子の偏極率を非特許文献2に記載されている方法で観察しながら、その偏極率が最大となるように微調整した。また、非特許文献2の方法ではなく、「本発明の準安定ヘリウム原子の偏極率測定方法」で説明した方法によっても準安定ヘリウム原子の偏極率が最大となるように微調整できることを確認した。
次に、偏極ヘリウムイオン源において発生したイオンの偏極率を、図2の偏極イオンの偏極率を評価するシステムを用いて評価した。
まず、高周波ヘリウム放電管15において、高周波電源等16〜19を用いてヘリウムプラズマを発生させた。次いで、図1で示された光ポンピングによって、このプラズマ中の準安定ヘリウム原子2をスピン偏極した。偏極ヘリウムイオンは、この偏極準安定ヘリウム原子のペニングイオン化反応を利用して発生させた。
この偏極ヘリウムイオンを、リペラー電極20、引き出し電極17、レンズ21,22,24、ディフレクター23,26、減速器25を用いて0/Fe/MgO磁性体基板27まで輸送した。
0/Fe/MgO磁性体基板27は、下記の作製方法により得た。
先ず、MgO(001)単結晶基板に体心立方構造のFe単結晶薄膜50nm程度を室温で成長させ、これを真空中で約600℃で10分間加熱し、この基板を100ラングミュアーの酸素雰囲気に曝した後、基板を真空中で約500℃で10分間加熱し、真空中でパルス磁化した。
このO/Fe/MgO基板27に到達した偏極ヘリウムイオンの大部分は、基板表面との間の相互作用において中性化し、基底状態のへリウム原子となる。この相互作用において、O/Fe/MgO基板27から電子が放出される。この電子の強度をその運動エネルギーの関数として、偏極イオンのスピンの向き別に、静電アナライザ41、二次電子倍増管42、プリアンプ43、マルチチャンネルスケーラー44及びパーソナルコンピュータ45を用いて計測した。ヘリウムイオンの偏極の向き(上向き又は下向き)は、図1の1/4波長板7の向きで制御した。
偏極イオンの絶対値は、準安定ヘリウム原子の偏極率を予めStern-Gerlach分析器94で求めておいた上で、準安定ヘリウム原子の放出電子スペクトル(スピン偏極準安定原子脱励起分光)と、同一の表面における偏極イオンの放出電子スペクトル(スピン偏極イオン中性化分光)とを比較することで求めた。この方法により、ヘリウム圧力が20Paのときのへリウムイオンの偏極率は16.6%であると予め求めておいた(詳しくは、非特許文献12参照)。
実施例1及び従来技術におけるヘリウムイオンの偏極率を、放電管中のへリウムガス圧の関数として調べた。
図15は、実施例1の結果で、ヘリウム圧力の変化に伴う偏極率の変化を示すグラフである。図15の横軸は、放電管中のへリウムガス圧(Pa)、縦軸はヘリウムイオン偏極率(%)である。高周波電源18の電力を1Wに調整して測定した。へリウム圧力が15Paの時の偏極率が、上記の予め求めておいた20Paの時の偏極率16.6%と等しいと仮定してプロットしてある。なお、図には従来のデータも比較のために示している。
スピン非対称率は、運動エネルギーが7.7eVから9.4eVの電子を測定して求めた。従来技術による光ポンピングは、図1のミラー9を傾けて直線偏光の照射光が高周波ヘリウム放電管15を照射しない状態にした上で、照射光波長をD線に調整して行われた。
図15から、実施例1による偏極の最大値は、従来技術のそれの1.5倍以上であることが示される。つまり、本発明のスピン偏極イオンビーム発生装置30によれば、ヘリウム圧力が15Paでヘリウムイオン偏極率(図15の黒四角(■)参照)は約17.5%となり従来の値(図15の白丸(○)参照)を上回り、15Pa以上〜約50Paの圧力でヘリウムイオン偏極率は20〜25%という大きな値が得られることが判明した。ヘリウム圧力の上限は約50Pa以下とすることが好ましい。これは、ヘリウム圧力を50Pa以上とすると、偏極イオンビーム整形部36への流入が大きくなるからである。
実施例1のスピン偏極イオンビーム発生装置30に、図7に示したポンピング光波長調整部50を付加した実施例2のスピン偏極イオンビーム発生装置30について説明する。
プローブ光用レーザー発振器53は、レーザーダイオード(SDL,Inc製、SDL 6072)を用いた。吸収分光用の光検出器61はフォトダイオードを用いた。フォトダイオード61の信号はロックイン増幅器62で増幅し、この出力によりレーザーダイオード用電源(SDL,Inc社製、SDL−803)にフィードバック制御を行った。ポンピング光波長調整部50を用いることにより第1及び第2のポンピング光34,35の波長制御に要する時間が約1/10以下に短縮された。
図8から図13で説明したスピン偏極イオン散乱分光装置70により試料73の分析を行った。スピン偏極イオンビーム発生部71は、実施例1のスピン偏極イオンビーム発生装置30と同じ構成である。試料73は、上記(イ)〜(ホ)の手順で測定した。平行及び反平行の測定は各100回行った。
図16は、酸素が吸着した鉄(100)表面において、(A)がイオン散乱分光(ISS)スペクトルを示し、(B)がスピン偏極イオン散乱分光(SP−ISS)スペクトルとスピン非対称率を示す図である。試料73には、酸化マグネシウムMgOの(100)単結晶基板にFe(100)単結晶薄膜を成長させ、これを酸素に曝したものを用いた。
試料73の製作は、先ず、MgO(001)単結晶基板に体心立方構造Fe単結晶薄膜50nm程度を室温で成長させ、次に、これを真空中において約600℃で10分間加熱するという工程により製作した。また、測定の前に、この試料73をFe[100]容易磁化方向へパルス磁化し、測定は残留磁化のもとで行った。入射ヘリウムイオンの運動エネルギーは、1.7keV、入射角(表面法線方向とビームのなす角)を0度(垂直入射)、散乱角を145度とした。
図16(A)の横軸は運動エネルギー(eV)であり、縦軸はイオン散乱強度(×10カウント)である。図16(A)は、試料73の表面が鉄と酸素の2元素から構成されていることを示している。これらのピーク位置は、上記の入射イオンと標的原子の古典的な2体衝突から計算されたエネルギー(図16(A)に破線で表示)に合致した。
磁化の方向に平行にスピン偏極したヘリウムイオンの散乱強度をNHe+↑、反平行のそれをNHe+↓とした場合に、スピン偏極イオン散乱分光スペクトル(ロ)を(NHe+↑−NHe+↓)と定義した。各点は実験値、実線は5点隣接平均である。図16(B)のスペクトルの鉄と酸素のそれぞれのピーク位置に於いて、有意な信号強度が得られ、鉄と酸素が偏極していることが示される。
さらに、入射ビームの偏極率をPHe+として、
(NHe+↑−NHe+↓)/{PHe++(NHe+↑+NHe+↓)}
と定義されるスピン非対称率が、鉄(1272から1290eV)と酸素(630〜690eV)に対して求められ、元素を選別したスピン解析が示された。
図17は、鉄(100)表面におけるスピン偏極イオン散乱分光の入射角依存性を測調したグラフ及び特定の入射角度に対するスピン非対称率を示す図である。図17の横軸は入射角度α(度)、左縦軸はイオン散乱強度(×10カウント)、右縦軸はスピン非対称率(×10−2)である。図17のスペクトルは、表面法線方向の速度成分に依存する入射イオン中性化の角度依存成分を除去して示してある。入射角の走査はFe[100]方向に行い、散乱角は145度とした。
入射角度分解スペクトル(図17中のbackground subtracted)は、測定から得られた生データ(図17中のAR SP-ISS raw data)から、中性化の角度依存から計算されたバックグラウンド曲線(図17中のbackground)を除去することで得た(この中性化における角度依存性については、非特許文献13を参照されたい。)。
図17に示すように、鉄の清浄表面における鉄からの散乱強度を、入射角の関数として調べた結果、角度分解スペクトル中のピーク(1)、(2)、(3)、(4)は、それぞれ、試料73の表面側から内部に向う第1層(表面最外層)、第2層、第3層、第3層に位置する鉄原子へのフォーカシング効果による。
図18は、図17のピーク(1)〜(4)に対応するフオーカシング効果におけるシャドーコーンと原子位置との幾何学的関係を示す構成図である。図18に示すように、鉄の清浄表面における鉄からの散乱強度を、入射角の関数として調べた結果によると、角度分解スペクトル中のピーク(1)、(2)、(3)、(4)は、それぞれ、第1層(表面最外層)、第2層、第3層、第3層に位置する鉄原子へのフォーカシング効果による。ピーク(1),(4)の入射角度に対応するスピン非対称率は、それぞれ、第1層と第1層〜第3層の鉄原子に対応しており、かつ、同じスピン配列を有していることが分かる。
上記で説明したスピン偏極イオン散乱分光法で検出したスピンの向きは、試料73の表面のフェルミレベル付近の占有順位のスピン極性を主として反映したものである。
上記実施例から、本発明のSP−ISSによれば、表1に示すように、スピン偏極ヘリウムイオンにより試料73の表面における数原子層内の磁気構造が解析できることが判明した。
Figure 0005322157
本発明は、上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。例えば、上記実施の形態において、スピン偏極イオンビーム発生装置30やスピン偏極イオンビームライン72の構成や使用する各構成部品は、偏極ヘリウムイオンの加速電圧や電流に合わせて適宜変更できる。
電子産業などの分野で広く用いられている電子スピンを利用した巨大磁気抵抗効果素子やトンネル磁気抵抗効果素子などの磁気抵抗効果素子では、しばしば磁性体と非磁性体との界面の磁気的構造の解明が求められている。本発明による高偏極イオンビームを発生できるスピン偏極イオンビーム発生装置30をプローブとして用いることによって、その詳細な解明が可能になると期待される。
他方、イオン注入技術に代表されるように、イオンビームを用いた材料の改質や整形は広く行われている。本発明により可能となった高偏極したスピン偏極イオンビームを用いた試料加工装置100によれば、試料101の改質やスピン伝導を利用した素子の製造装置工程におけるスピンの制御等に利用することができる。従って、より高度な機能材料の創成が可能になると期待される。
本技術では、準安定ヘリウム原子の高偏極化が可能となったので、偏極ヘリウム原子による磁気共鳴画像や原子線リソグラフィ等の偏極準安定ヘリウム原子利用分野における応用も期待される。

Claims (30)

  1. スピン偏極イオンビーム発生装置であって、
    イオン発生用の高周波放電管と、レーザー発振器と、当該レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって上記高周波放電管に照射するポンピング光発生部と、を備え、
    上記スピン偏極イオンを引き出すための引き出し電極を、上記高周波放電管の端部に設けている、スピン偏極イオンビーム発生装置。
  2. 前記スピン偏極イオンビームの引き出し方向は、前記円偏光及び前記直線偏光の何れにも直交する方向である、請求項1に記載のスピン偏極イオンビーム発生装置。
  3. 前記高周波放電管は、引き出し電極に対向するリペラー電極を備えている、請求項1に記載のスピン偏極イオンビーム発生装置。
  4. 前記引き出し電極は細孔を備えている、請求項3に記載のスピン偏極イオンビーム発生装置。
  5. 前記ポンピング光発生部は、前記第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている、請求項1に記載のスピン偏極イオンビーム発生装置。
  6. 前記レーザー発振器は、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する、請求項1に記載のスピン偏極イオンビーム発生装置。
  7. 前記イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線であり、プローブ光は左回り又は右回りの円偏光であるD0線の波長を持つ、請求項1又は6に記載のスピン偏極イオンビーム発生装置。
  8. 前記高周波放電管内のヘリウム圧力を15Pa以上50Pa以下とする、請求項1又は3に記載のスピン偏極イオンビーム発生装置。
  9. スピン偏極イオンビーム発生部と、
    該スピン偏極イオンビーム発生部から発生させたスピン偏極イオンビームを試料に照射するスピン偏極イオンビームラインと、
    上記試料とスピン偏極イオンビームとの相互作用により散乱するイオンのエネルギーを計測する計測部と、を備え、
    上記スピン偏極イオンビーム発生部は、イオン発生用の高周波放電管と、レーザー発振器と、当該レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって上記高周波放電管に照射するポンピング光発生部と、を有し、
    上記スピン偏極イオンを引き出すための引き出し電極を、上記高周波放電管の端部に設けている、スピン偏極イオン散乱分光装置。
  10. 前記スピン偏極イオンビームの引き出し方向は、前記円偏光及び前記直線偏光の何れにも直交する方向である、請求項9に記載のスピン偏極イオン散乱分光装置。
  11. 前記高周波放電管は、引き出し電極に対向するリペラー電極を備えている、請求項9に記載のスピン偏極イオン散乱分光装置。
  12. 前記引き出し電極は細孔を備えている、請求項11に記載のスピン偏極イオン散乱分光装置。
  13. 前記ポンピング光発生部は、前記第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている、請求項9に記載のスピン偏極イオン散乱分光装置。
  14. 前記レーザー発振器は、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する、請求項9に記載のスピン偏極イオン散乱分光装置。
  15. 前記試料に入射するスピン偏極イオンに対する入射角が制御可能な試料台を備えている、請求項9に記載のスピン偏極イオン散乱分光装置。
  16. 前記スピン偏極イオンビームラインは、排気孔となる細孔部を設けたレンズを備え、該レンズが非磁性体からなる、請求項9に記載のスピン偏極イオン散乱分光装置。
  17. 前記イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線である、請求項9又は14に記載のスピン偏極イオン散乱分光装置。
  18. 請求項9〜17の何れかに記載のスピン偏極イオン散乱分光装置を用いたスピン偏極イオン散乱分光法であって、
    スピン偏極イオンを試料に入射し、
    上記試料からの散乱イオンを計測し、
    入射イオン種のスピン別に散乱イオン強度を計測し、試料に入射するスピン偏極イオンの中性化確率のスピン依存性から試料表面の磁気構造を解析する、スピン偏極イオン散乱分光法。
  19. 前記散乱イオン強度を、静電アナライザで検出し、前記スピン偏極イオンのスピンの向きによる散乱イオン強度の違いから試料表面の磁気構造を解明する、請求項18に記載のスピン偏極イオン散乱分光法。
  20. 前記散乱イオン強度の前記試料へのスピン偏極イオンの入射角度依存性を測定し、
    上記散乱イオン強度の測定から試料表面からの深さ方向の原子層と元素とを選別してスピンを解析する、請求項18に記載のスピン偏極イオン散乱分光法。
  21. 前記スピン偏極イオンのスピンの向きを変える前後で、上記静電アナライザによる検出量から試料表面の磁気構造を解明する、請求項18に記載のスピン偏極イオン散乱分光法。
  22. スピン偏極イオンビーム発生部と、
    該スピン偏極イオンビーム発生部から発生させたスピン偏極イオンビームを試料に照射するスピン偏極イオンビームラインと、
    上記スピン偏極イオンビームラインから整形されたスピン偏極イオンビームを試料に照射する超高真空槽と、を備え、
    上記スピン偏極イオンビーム発生部は、イオン発生用の高周波放電管と、レーザー発振器と、当該レーザー発振器からのレーザーを二つに分岐し、一方を円偏光の第1のポンピング光とし、他方を直線偏光の第2のポンピング光として、相互に90°の照射角度差をもって上記高周波放電管に照射するポンピング光発生部と、を有し、
    上記スピン偏極イオンを引き出すための引き出し電極を、上記高周波放電管の端部に設けている、スピン偏極イオンビームを用いた試料加工装置。
  23. 前記スピン偏極イオンビームの引き出し方向は、前記円偏光及び前記直線偏光の何れにも直交する方向である、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  24. 前記高周波放電管は、引き出し電極に対向するリペラー電極を備えている、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  25. 前記引き出し電極は細孔を備えている、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  26. 前記ポンピング光発生部は、前記第1のポンピング光の円偏光を右回り又は左回りに制御する円偏光制御部を備えている、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  27. 前記レーザー発振器は、プローブレーザーの吸収計測から求められるイオンの基となる準安定原子の偏極率が最大となるように波長が調整されてレーザー光を出力する、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  28. 前記試料に入射するスピン偏極イオンに対する入射角が制御可能な試料台を備えている、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  29. 前記スピン偏極イオンビームラインは、排気孔となる細孔部を設けたレンズを備え、該レンズが非磁性体からなる、請求項22に記載のスピン偏極イオンビームを用いた試料加工装置。
  30. 前記イオンはヘリウムイオンであり、第1及び第2のポンピング光の波長はD0線である、請求項22又は26に記載のスピン偏極イオンビームを用いた試料加工装置。
JP2008548251A 2006-11-29 2007-11-29 スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置及び方法並びに試料加工装置 Expired - Fee Related JP5322157B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006321044A JP5212962B2 (ja) 2006-11-29 2006-11-29 偏極イオンビーム発生方法とその実施に使用する偏極イオンビーム発生装置
JP2007190277A JP5196362B2 (ja) 2007-07-23 2007-07-23 磁気構造解析方法とそれに使用するスピン偏極イオン散乱分光装置
PCT/JP2007/073121 WO2008069110A1 (ja) 2006-11-29 2007-11-29 スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置並びに試料加工装置

Publications (2)

Publication Number Publication Date
JPWO2008069110A1 JPWO2008069110A1 (ja) 2010-03-18
JP5322157B2 true JP5322157B2 (ja) 2013-10-23

Family

ID=39492008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008548251A Expired - Fee Related JP5322157B2 (ja) 2006-11-29 2007-11-29 スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置及び方法並びに試料加工装置

Country Status (4)

Country Link
US (1) US8017920B2 (ja)
EP (1) EP2091306A4 (ja)
JP (1) JP5322157B2 (ja)
WO (1) WO2008069110A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128513A2 (en) * 2009-05-08 2010-11-11 Ben-Gurion University Of The Negev Research And Development Authority A method and apparatus for high precision spectroscopy
GB201302689D0 (en) * 2013-02-15 2013-04-03 Visuwall Ltd An improved evacuation assistance system
JP6332942B2 (ja) * 2013-10-18 2018-05-30 小林 博 部品同士ないしは基材同士からなる被接合体の接合方法
WO2015083242A1 (ja) * 2013-12-03 2015-06-11 株式会社日立製作所 光源装置及び磁場計測装置
CN112485732B (zh) * 2020-11-13 2021-07-02 山西大学 一种基于铷原子磁共振谱的磁强计校准方法与装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259476A (ja) * 2004-03-10 2005-09-22 Institute Of Physical & Chemical Research スピン偏極電子およびスピン偏極イオンの同時発生方法およびその装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523572A (en) * 1991-05-02 1996-06-04 Daido Tokushuko Kabushiki Kaisha Process of emitting highly spin-polarized electron beam and semiconductor device therefor
US5723871A (en) * 1991-05-02 1998-03-03 Daido Tokushuko Kabushiki Kaisha Process of emitting highly spin-polarized electron beam and semiconductor device therefor
US6331994B1 (en) * 1996-07-19 2001-12-18 Canon Kabushiki Kaisha Excimer laser oscillation apparatus and method, excimer laser exposure apparatus, and laser tube
US5838607A (en) * 1996-09-25 1998-11-17 Motorola, Inc. Spin polarized apparatus
WO2000077504A1 (en) * 1999-06-16 2000-12-21 Shimadzu Research Laboratory (Europe) Ltd. Electrically-charged particle energy analysers
JP2001308003A (ja) * 2000-02-15 2001-11-02 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
US20080273185A1 (en) * 2004-06-16 2008-11-06 Nikon Corporation Optical System, Exposing Apparatus and Exposing Method
US20070139771A1 (en) * 2005-12-15 2007-06-21 Jian Wang Optical retarders and methods of making the same
US20070165308A1 (en) * 2005-12-15 2007-07-19 Jian Wang Optical retarders and methods of making the same
JP4705869B2 (ja) * 2006-03-29 2011-06-22 株式会社日立ハイテクノロジーズ 荷電粒子線システム、およびパターン計測方法
US7755069B2 (en) * 2006-05-16 2010-07-13 The Regents Of The University Of California Ultra-bright pulsed electron beam with low longitudinal emittance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259476A (ja) * 2004-03-10 2005-09-22 Institute Of Physical & Chemical Research スピン偏極電子およびスピン偏極イオンの同時発生方法およびその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013000155; D. L. Bixer et al.: 'Improved low-energy, electron-spin-polarized 4He+ ion source' Review of Scientific Instruments Vol. 70, No. 1, 199901, page 240-241, American Institute of Physics *

Also Published As

Publication number Publication date
JPWO2008069110A1 (ja) 2010-03-18
EP2091306A4 (en) 2016-06-29
US20100044564A1 (en) 2010-02-25
WO2008069110A1 (ja) 2008-06-12
EP2091306A1 (en) 2009-08-19
US8017920B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
JP5322157B2 (ja) スピン偏極イオンビーム発生装置及びそのスピン偏極イオンビームを用いた散乱分光装置及び方法並びに試料加工装置
JP2018088402A (ja) 時間分解された荷電粒子顕微鏡法
US7635842B2 (en) Method and instrument for chemical defect characterization in high vacuum
JP2017152366A (ja) 荷電粒子顕微鏡における動的試料挙動の調査
JP2018088393A (ja) 飛行時間型荷電粒子分光学
Tandecki et al. Commissioning of the francium trapping facility at TRIUMF
US10705036B2 (en) Method and system for analysis of objects
JP6914438B2 (ja) スピン分析装置
JPH10223168A (ja) 試料分析装置
Tapper et al. High-brightness proton beams at the NAC nuclear microprobe by acceleration of H2 ions
Hussey et al. Low energy super-elastic scattering studies of calcium over the complete angular range using a magnetic angle changing device
Schönhense et al. PEEM with high time resolution—imaging of transient processes and novel concepts of chromatic and spherical aberration correction
Burger et al. Experimental Characterization of Gas Sheet Transverse Profile Diagnostic
Taborelli Secondary electron yield of surfaces: what we know and what we still need to know
JP5212962B2 (ja) 偏極イオンビーム発生方法とその実施に使用する偏極イオンビーム発生装置
Hahn et al. Cesium Rydberg-state ionization study by three-dimensional ion-electron correlation: Toward a monochromatic electron source
Duncumb Recent advances in electron probe microanalysis
Bonnie et al. Resonance‐enhanced multiphoton ionization for diagnosis of a weakly ionized plasma
JP5051634B2 (ja) イオンビーム発生方法とそれを実施する為のイオンビーム発生装置
JP2019102464A (ja) 改善されたeels/eftemモジュールを有する透過型荷電粒子顕微鏡
Łukomski et al. New measurements of absolute total cross sections for electron impact on caesium using a magneto-optical trap
US10763079B1 (en) Focused ion beam impurity identification
Takazawa Experimental setup for laser spectroscopy of molecules in a high magnetic field
Kidwai Electron impact excitation studies of laser-excited and ground-state barium and ytterbium
Heßler et al. Comissioning of the Offline-Teststand for the S-DALINAC Polarized Injector SPIN

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5322157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees