JP5315195B2 - Scanning transmission electron microscope and scanning transmission image observation method - Google Patents

Scanning transmission electron microscope and scanning transmission image observation method Download PDF

Info

Publication number
JP5315195B2
JP5315195B2 JP2009225878A JP2009225878A JP5315195B2 JP 5315195 B2 JP5315195 B2 JP 5315195B2 JP 2009225878 A JP2009225878 A JP 2009225878A JP 2009225878 A JP2009225878 A JP 2009225878A JP 5315195 B2 JP5315195 B2 JP 5315195B2
Authority
JP
Japan
Prior art keywords
sample
electron beam
scanning transmission
camera
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009225878A
Other languages
Japanese (ja)
Other versions
JP2011076813A (en
Inventor
賢 小沢
邦康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009225878A priority Critical patent/JP5315195B2/en
Publication of JP2011076813A publication Critical patent/JP2011076813A/en
Application granted granted Critical
Publication of JP5315195B2 publication Critical patent/JP5315195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、走査透過電子顕微鏡に関する。   The present invention relates to a scanning transmission electron microscope.

シリコン単基板上に組み上げられている半導体デバイスでは、絶縁膜の厚さを正確に測定するために、単結晶基板の方位を観察するべき方位の基準として用いている。観察方位を定めない場合には、絶縁膜を斜めから観察することになり、正確な膜厚測定が不可能となるためである。また、多結晶の試料においては、結晶界面の構造を正確に把握するために方位合せを行う。方位合せを行わない場合には、結晶界面が重なって観察されてしまうことがあり、誤った結果を導く可能性があるからである。このため、走査透過電子顕微鏡(STEM Scanning Transmission Electron Microscope)によって結晶性試料の走査透過像を観察する場合、STEMの光軸に対して結晶方位を合わせる必要がある。 In a semiconductor device assembled on a silicon single substrate, the orientation of the single crystal substrate is used as a reference for observing the orientation in order to accurately measure the thickness of the insulating film. This is because when the observation direction is not determined, the insulating film is observed obliquely, and accurate film thickness measurement becomes impossible. In the case of a polycrystalline sample, orientation is adjusted in order to accurately grasp the structure of the crystal interface. This is because if the orientation is not performed, the crystal interfaces may be observed to overlap each other, which may lead to erroneous results. For this reason, when a scanning transmission image of a crystalline sample is observed with a scanning transmission electron microscope (STEM Scanning Transmission Electron Microscope), it is necessary to align the crystal orientation with the optical axis of the STEM.

尚、結晶性試料とは、試料の一部あるいは全てが規則正しい配列を持っている試料である。例えば、単結晶,複数の微結晶の複合体である多結晶,準結晶である。また、元素単体あるいは複数の元素からなる化合物も結晶性試料に含まれる。   A crystalline sample is a sample in which part or all of the sample has a regular arrangement. For example, a single crystal, a polycrystal that is a composite of a plurality of microcrystals, and a quasicrystal. A crystalline sample also includes a simple element or a compound composed of a plurality of elements.

STEM像を用いて結晶方位を合わせる場合には、格子縞が観察できるだけの高倍率の画像を使用しなければならないが、結晶方位が合っていないときや、顕微鏡の調整に不備があるときには格子縞が得られないことがあり、最終的な結晶方位の良否判定が難しい。一方、電子線回折像は、走査透過像の倍率に依存せず、回折斑点の明るさのバランスや菊池線の位置などから結晶方位を容易に得ることができる。このため、STEMによる結晶性試料の観察においては、電子線回折像を用いて結晶方位を合わせている。この方法には、試料を複数の方向に傾斜して行う方法と、電子線を光軸に対して傾ける方法があるが、後者は、基準となる電子光学軸からの電子線傾斜による収差の導入と、傾斜可能な角度に制限があるため、一般には用いられていない。   When aligning the crystal orientation using the STEM image, it is necessary to use a high-magnification image capable of observing the lattice fringes. In some cases, it is difficult to determine the final crystal orientation. On the other hand, an electron beam diffraction image does not depend on the magnification of a scanning transmission image, and the crystal orientation can be easily obtained from the brightness balance of diffraction spots, the position of the Kikuchi line, and the like. For this reason, in the observation of the crystalline sample by STEM, the crystal orientation is aligned using an electron beam diffraction image. This method includes a method in which the sample is tilted in a plurality of directions and a method in which the electron beam is tilted with respect to the optical axis. The latter introduces aberration due to the electron beam tilt from the reference electron optical axis. Since there is a limit to the angle at which tilting is possible, it is not generally used.

具体的には、STEMによる結晶性試料の観察においては、走査透過像を表示装置上で見ながら結晶性試料の観察領域を探し、結晶性試料の下部に形成される回折像を記録している。記録には、写真フィルムやTVカメラが用いられる。そして、観察領域の電子線回折像を観察しながら、結晶性試料を搭載したホルダを物理的に傾斜させ、STEMの光軸に対して結晶方位を合わせている。   Specifically, in the observation of the crystalline sample by the STEM, the observation region of the crystalline sample is searched while viewing the scanning transmission image on the display device, and the diffraction image formed below the crystalline sample is recorded. . A photographic film or a TV camera is used for recording. Then, while observing the electron diffraction pattern in the observation region, the holder on which the crystalline sample is mounted is physically tilted so that the crystal orientation is aligned with the optical axis of the STEM.

J.C.H. Spence and J.M. Zuo著「Electron microdiffraction」Springer."Electron microdiffraction" Springer by J.C.H. Spence and J.M. Zuo.

本願発明者が結晶性試料の走査透過像観察について鋭意検討した結果、次のような知見を得るに至った。   As a result of intensive studies on the scanning transmission image observation of the crystalline sample by the present inventor, the following knowledge has been obtained.

走査透過像と電子線回折像の観察や記録は全く別個の手段によって行われるため、走査透過像で観察している実際の試料の結晶配列方向と、電子線回折像の方向は必ずしも一致しない。結晶方位を合わせるために試料をどの方向へ傾斜させれば良いかを電子線回折像から直接的に判断することができない。そこで、走査透過像におけるX軸またはY軸を中心に試料を傾斜させた場合に電子線回折像において結晶方位が変化する方向を、電子線回折像の周囲等にマーカーを用いて表示するなどしている。尚、マーカーの位置、すなわち、試料を傾斜した際における電子線回折像の変化方向は、予め試料をX軸またはY軸を中心に傾斜させながら電子線回折像を観察することで決められる。   Since observation and recording of the scanning transmission image and the electron diffraction image are performed by completely different means, the crystal alignment direction of the actual sample observed in the scanning transmission image does not necessarily match the direction of the electron diffraction image. The direction in which the sample should be tilted in order to match the crystal orientation cannot be determined directly from the electron diffraction pattern. Therefore, the direction in which the crystal orientation changes in the electron diffraction image when the sample is tilted around the X or Y axis in the scanning transmission image is displayed using a marker around the electron diffraction image. ing. Note that the position of the marker, that is, the changing direction of the electron beam diffraction image when the sample is tilted, is determined by observing the electron beam diffraction image while tilting the sample around the X axis or the Y axis in advance.

しかしながら、結晶方位合せでは、試料を傾斜した際、往々にして観察視野が移動する。このため、電子線回折像が試料の所望領域のものであるかを走査透過像で確認しては、電子線回折像にて結晶方位合せを行うといった操作を何度も繰り返す必要がある。電子線回折像の形状だけでなく、マーカーの位置を常に意識しながら試料を傾斜させるべき方向を判断して操作する必要があるため、結晶方位合せに時間を要すると共に、操作を誤ることも多かった。   However, in the crystal orientation adjustment, the observation visual field often moves when the sample is tilted. For this reason, it is necessary to repeat the operation of confirming whether or not the electron beam diffraction image is in the desired region of the sample with the scanning transmission image, and performing crystal orientation alignment with the electron beam diffraction image many times. Since it is necessary to determine the direction in which the sample should be tilted while always conscious of the position of the marker as well as the shape of the electron diffraction pattern, it takes time to align the crystal orientation and is often erroneous. It was.

本発明の目的は、正確かつ迅速に結晶性試料の方位合せを行うことに関する。   The object of the present invention relates to the orientation of crystalline samples accurately and quickly.

本発明は、走査透過像と電子線回折像を用いた結晶方位合せにおいて、走査透過像における試料の結晶配列方向と、電子線回折像の方向を一致させることに関する。例えば、走査透過像の試料の結晶配列方向に連動して、電子線回折像を撮影するTVカメラの受光面を直接あるいは間接的に回転させる。また、例えば、複数の投射レンズに通電する電流を変化させ、電磁レンズの作用によって電子線回折像の方向を変化させる。   The present invention relates to aligning a crystal arrangement direction of a sample in a scanning transmission image and a direction of an electron diffraction image in crystal orientation alignment using a scanning transmission image and an electron beam diffraction image. For example, the light receiving surface of a TV camera that captures an electron diffraction image is directly or indirectly rotated in conjunction with the crystal arrangement direction of the sample of the scanned transmission image. Further, for example, the current applied to the plurality of projection lenses is changed, and the direction of the electron beam diffraction image is changed by the action of the electromagnetic lens.

本発明によれば、STEMの光軸に対して試料の結晶方位を合わせる際、試料を傾斜させるべき方向を電子線回折像の形状から直接判断することができるため、正確かつ迅速な結晶方位合せが可能となる。   According to the present invention, when aligning the crystal orientation of the sample with respect to the optical axis of the STEM, the direction in which the sample should be tilted can be directly determined from the shape of the electron diffraction image, so accurate and rapid crystal orientation alignment. Is possible.

実施例1における走査透過電子顕微鏡の概略機能ブロック図。1 is a schematic functional block diagram of a scanning transmission electron microscope in Embodiment 1. FIG. 実施例2における走査透過電子顕微鏡の概略機能ブロック図。FIG. 3 is a schematic functional block diagram of a scanning transmission electron microscope in Example 2. 走査透過電子顕微鏡の走査機構の原理図。The principle figure of the scanning mechanism of a scanning transmission electron microscope. 結晶方位合わせのフローチャート。The flowchart of crystal orientation alignment. シリコンデバイスの走査透過像を示す図。The figure which shows the scanning transmission image of a silicon device. 試料の結晶配列方向と方向が異なる、方位のずれが大きい電子線回折像を示す図。The figure which shows the electron beam diffraction image from which the direction shift | offset | difference differs with the crystal arrangement direction of a sample, and a big misalignment. 試料の結晶配列方向と方向が異なる、方位のずれが小さい電子線回折像を示す図。The figure which shows the electron beam diffraction image from which the direction shift | offset | difference differs with the crystal arrangement direction of a sample small. 試料の結晶配列方向と方向が異なる、方位の合った電子線回折像を示す図。The figure which shows the electron beam diffraction image in which the direction differs from the crystal arrangement direction of a sample. 試料の結晶配列方向と方向が一致した、方位のずれが大きい電子線回折像を示す図。The figure which shows the electron-diffraction image with a big shift | offset | difference of an azimuth | direction where the direction and the crystal arrangement direction of the sample corresponded. 試料の結晶配列方向と方向が一致した、方位のずれが小さい電子線回折像を示す図。The figure which shows the electron-diffraction image with a small orientation shift | offset | difference with which the direction and the crystal arrangement direction of the sample corresponded. 試料の結晶配列方向と方向が一致した、方位の合った電子線回折像を示す図。The figure which shows the electron beam diffraction image in which the direction corresponded with the crystal arrangement direction of the sample, and the direction was in agreement. 実施例1における回転データテーブルを示す図。FIG. 4 is a diagram illustrating a rotation data table in the first embodiment. 実施例2における回転データテーブルを示す図。FIG. 10 is a diagram illustrating a rotation data table in the second embodiment.

実施例では、電子線を発生させる電子源と、試料を保持する試料台と、電子線を試料上に走査する走査器と、試料を透過した電子線を検出する検出器と、試料から回折された電子線を検出するTVカメラと、走査透過像および電子線回折像を表示する表示部と、を備え、TVカメラに入射する電子線の方向を制御し、電子線回折像の方向を、走査透過像における試料の結晶配列方向と一致させる走査透過電子顕微鏡を開示する。   In the embodiment, an electron source that generates an electron beam, a sample stage that holds the sample, a scanner that scans the electron beam on the sample, a detector that detects the electron beam that has passed through the sample, and a diffraction that is diffracted from the sample. A TV camera that detects an electron beam and a display unit that displays a scanning transmission image and an electron beam diffraction image, controls the direction of the electron beam incident on the TV camera, and scans the direction of the electron beam diffraction image. Disclosed is a scanning transmission electron microscope that matches the crystal alignment direction of a sample in a transmission image.

また、実施例では、TVカメラの受光面を直接あるいは間接的に回転させるTVカメラ回転機構を備える走査透過電子顕微鏡を開示する。   In addition, the embodiment discloses a scanning transmission electron microscope including a TV camera rotation mechanism that directly or indirectly rotates a light receiving surface of a TV camera.

また、実施例では、試料を透過した電子線をTVカメラへ集束させる1以上の投射レンズと、観察条件とTVカメラの回転角度情報を記録した回転データテーブルと、備える走査透過電子顕微鏡を開示する。   In addition, the embodiment discloses a scanning transmission electron microscope including one or more projection lenses that focus an electron beam transmitted through a sample onto a TV camera, a rotation data table in which observation conditions and rotation angle information of the TV camera are recorded. .

また、実施例では、試料を透過した電子線をTVカメラへ集束させる複数の投射レンズを複数備え、投射レンズに通電する電流を変化させ、TVカメラに入射する電子線の方向を制御する走査透過電子顕微鏡を開示する。   In the embodiment, a plurality of projection lenses for focusing the electron beam transmitted through the sample to the TV camera are provided, and a scanning transmission for controlling the direction of the electron beam incident on the TV camera by changing the current applied to the projection lens. An electron microscope is disclosed.

また、実施例では、観察条件毎に投射レンズの電流情報を記録した回転データテーブルを有する走査透過電子顕微鏡を開示する。   In the embodiment, a scanning transmission electron microscope having a rotation data table in which current information of the projection lens is recorded for each observation condition is disclosed.

また、実施例では、試料台に保持した試料上に電子線を走査し、試料を透過した電子線を検出器により検出し、試料から回折された電子線をTVカメラにより検出し、TVカメラに入射する電子線の方向を制御し、電子線回折像の方向を、走査透過像における試料の結晶配列方向と一致させ、走査透過像および電子線回折像を表示部に表示する、走査透過像観察方法を開示する。   In the embodiment, an electron beam is scanned on the sample held on the sample stage, the electron beam transmitted through the sample is detected by the detector, the electron beam diffracted from the sample is detected by the TV camera, Controlling the direction of the incident electron beam, aligning the direction of the electron diffraction pattern with the crystal arrangement direction of the sample in the scanning transmission image, and displaying the scanning transmission image and electron beam diffraction image on the display unit A method is disclosed.

また、実施例では、TVカメラ回転機構によりTVカメラの受光面を直接あるいは間接的に回転させる走査透過像観察方法を開示する。   Also, the embodiment discloses a scanning transmission image observation method in which the light receiving surface of the TV camera is directly or indirectly rotated by the TV camera rotating mechanism.

また、実施例では、1以上の投射レンズにより試料を透過した電子線をTVカメラへ集束させ、観察条件とTVカメラの回転角度情報を記録した回転データテーブルに基づいてTVカメラ回転機構を制御する走査透過像観察方法を開示する。   Further, in the embodiment, the electron beam transmitted through the sample by one or more projection lenses is focused on the TV camera, and the TV camera rotation mechanism is controlled based on a rotation data table in which observation conditions and rotation angle information of the TV camera are recorded. A scanning transmission image observation method is disclosed.

また、実施例では、複数の投射レンズにより試料を透過した電子線をTVカメラへ集束させ、投射レンズに通電する電流を変化させ、TVカメラに入射する前記電子線の方向を制御する走査透過像観察方法を開示する。   In the embodiment, an electron beam transmitted through a sample by a plurality of projection lenses is focused on a TV camera, a current supplied to the projection lens is changed, and a scanning transmission image for controlling the direction of the electron beam incident on the TV camera. An observation method is disclosed.

また、実施例では、観察条件毎に投射レンズの電流情報を記録した回転データテーブルに基づいて、投射レンズに通電する電流を変化させる走査透過像観察方法を開示する。   Further, in the embodiment, a scanning transmission image observation method is disclosed in which the current supplied to the projection lens is changed based on a rotation data table in which current information of the projection lens is recorded for each observation condition.

以下、上記及びその他の新規な特徴及び効果について、図面を参酌して説明する。尚、各実施例は適宜組み合わせることが可能であり、当該組み合わせ形態も明細書は開示している。   Hereinafter, the above and other novel features and effects will be described with reference to the drawings. It should be noted that the embodiments can be appropriately combined, and the specification discloses the combined form.

図1は、本実施例における走査透過電子顕微鏡の概略機能ブロック図である。電子線源(荷電粒子線源)1から放出されて加速電極2で加速された電子線(荷電粒子線)3は、第一集束電磁レンズ4と第二集束電磁レンズ5及び対物電磁レンズ9の前磁場を経由して試料台10に保持された試料11に照射される。電子線3が試料11に照射されると、試料11と電子線3との相互作用によって、試料の情報を有する二次電子8,前方散乱電子12,透過電子13が発生する。試料に照射される電子線3は、電子線光軸に対し対称に配置された走査コイル6により試料上を走査する。電子線の走査と画面における走査の同期を取ることにより、表示装置62上に試料拡大像が形成される。試料から発生した二次電子8は、蛍光体18を発光させる。この発光は光電子増倍管19により検出され、微小電流増幅器32により増幅されて、ADC46によりデータバスに取り込まれる。尚、二次電子の検出器として蛍光体と光電子増倍管を用いたが、マルチチャネルプレートなどの半導体検出器を用いてもよい。前方散乱電子12は、投射レンズ68を経由して前方散乱電子検出器14にて検出される。透過電子13は、投射レンズ68を経由して透過電子検出器15にて検出される。尚、前方散乱電子検出器14及び透過電子検出器15は、蛍光体と光電子増倍管の組み合わせで構成しても、半導体検出器で構成してもよい。電子線回折像は、TVカメラヘッド16を介してTVカメラ17にて撮影され、表示装置62上に表示される。この時、透過電子検出器15は、電子線(荷電粒子線)3光軸中心から十分離れた位置まで移動される。尚、TVカメラには、CCDやハーピコンカメラなどの高感度,高S/N、及び高直線性の特徴を持った検出器を用い、電子線回折像強度の定量的な記録を行うことが望ましい。   FIG. 1 is a schematic functional block diagram of a scanning transmission electron microscope in the present embodiment. An electron beam (charged particle beam) 3 emitted from an electron beam source (charged particle beam source) 1 and accelerated by an accelerating electrode 2 includes a first focusing electromagnetic lens 4, a second focusing electromagnetic lens 5, and an objective electromagnetic lens 9. The sample 11 held on the sample stage 10 is irradiated via the previous magnetic field. When the sample 11 is irradiated with the electron beam 3, secondary electrons 8, forward scattered electrons 12, and transmitted electrons 13 having sample information are generated by the interaction between the sample 11 and the electron beam 3. The electron beam 3 irradiated to the sample is scanned on the sample by a scanning coil 6 arranged symmetrically with respect to the electron beam optical axis. An enlarged sample image is formed on the display device 62 by synchronizing the scanning of the electron beam and the scanning on the screen. The secondary electrons 8 generated from the sample cause the phosphor 18 to emit light. This light emission is detected by the photomultiplier tube 19, amplified by the minute current amplifier 32, and taken into the data bus by the ADC 46. Although a phosphor and a photomultiplier tube are used as the secondary electron detector, a semiconductor detector such as a multi-channel plate may be used. The forward scattered electrons 12 are detected by the forward scattered electron detector 14 via the projection lens 68. The transmitted electrons 13 are detected by the transmitted electron detector 15 via the projection lens 68. Note that the forward scattered electron detector 14 and the transmission electron detector 15 may be configured by a combination of a phosphor and a photomultiplier tube or a semiconductor detector. The electron diffraction image is taken by the TV camera 17 via the TV camera head 16 and displayed on the display device 62. At this time, the transmission electron detector 15 is moved to a position sufficiently away from the center of the electron beam (charged particle beam) 3 optical axis. For the TV camera, a detector having characteristics of high sensitivity, high S / N, and high linearity, such as a CCD or a harpicon camera, can be used to quantitatively record the electron beam diffraction image intensity. desirable.

電子線源1や加速電極2は、加速電圧や電子線の引き出し電圧、並びにフィラメント電流などの指令を、マイクロプロセッサ50からデータバスを経由してDAC36,37に送信し、それをアナログ信号に変換して荷電粒子線源電源20および加速用高圧電源21を設定することによって駆動される。第一集束電磁レンズ4,第二集束電磁レンズ5、及び対物電磁レンズ9は、マイクロプロセッサ50がレンズ電流の条件を設定し、それを受けたDAC38,39,43が各レンズの励磁電源を設定することにより、電磁レンズに対して電流が与えられる。試料11の位置は、オペレータがロータリーエンコーダ59を用いて試料台10を操作するか、データ保存装置51に予め記録された試料位置駆動パターンに従い試料台10を駆動することにより設定される。   The electron beam source 1 and the acceleration electrode 2 transmit commands such as an acceleration voltage, an electron beam extraction voltage, and a filament current from the microprocessor 50 to the DACs 36 and 37 via the data bus, and convert them into analog signals. Then, the charged particle beam source power supply 20 and the acceleration high-voltage power supply 21 are set to drive. In the first focusing electromagnetic lens 4, the second focusing electromagnetic lens 5, and the objective electromagnetic lens 9, the microprocessor 50 sets the lens current condition, and the DACs 38, 39, and 43 that receive it set the excitation power supply for each lens. By doing so, a current is applied to the electromagnetic lens. The position of the sample 11 is set by the operator operating the sample stage 10 using the rotary encoder 59 or by driving the sample stage 10 according to the sample position driving pattern recorded in advance in the data storage device 51.

電子線の試料上における走査量は、電子線に作用させる電場あるいは磁場の大きさを走査機構にて制御することによって、任意に変化させることが可能である。例えば、二次電子による試料拡大像(二次電子像)は、走査コイル6に印加する電流の大きさを変化させ、試料上における電子線3の走査範囲を変えることにより、拡大倍率を変えることが可能である。試料上における電子線の走査領域を狭くすれば二次電子像の拡大倍率は大きくなり、電子線の走査領域を広くすれば拡大倍率は小さくなる。   The scanning amount of the electron beam on the sample can be arbitrarily changed by controlling the magnitude of the electric field or magnetic field applied to the electron beam by the scanning mechanism. For example, in the specimen magnified image (secondary electron image) by secondary electrons, the magnification is changed by changing the magnitude of the current applied to the scanning coil 6 and changing the scanning range of the electron beam 3 on the specimen. Is possible. If the scanning region of the electron beam on the sample is narrowed, the magnification of the secondary electron image is increased, and if the scanning region of the electron beam is widened, the magnification is reduced.

図3は、電子線の走査機構を示した原理図である。電子線3は、電子線光軸63上に沿って移動する。電子線光軸上にX,Y対称に上方走査コイル64及び下方走査コイル65が配置される。試料に対して垂直に電子線を印加するため走査コイルは、上下2段に配置される。上方走査コイル64と下方走査コイル65に鋸波形の印加をし、対物電磁レンズ9の光軸上の前焦点位置に電子線が到達することにより、試料に垂直に電子線が入射される。電子線が試料と相互作用することにより、二次電子8や前方散乱電子12、並びに透過電子13が得られる。これら二次電子8,前方散乱電子12、及び透過電子13と、走査波形とを同期させることにより、試料拡大像が形成される。試料拡大像の倍率は、X及びY走査コイルに印加する走査波形の電圧に依存する。   FIG. 3 is a principle diagram showing an electron beam scanning mechanism. The electron beam 3 moves along the electron beam optical axis 63. An upper scanning coil 64 and a lower scanning coil 65 are arranged symmetrically in the X and Y directions on the electron beam optical axis. In order to apply an electron beam perpendicular to the sample, the scanning coils are arranged in two upper and lower stages. When a sawtooth waveform is applied to the upper scanning coil 64 and the lower scanning coil 65 and the electron beam reaches the front focal position on the optical axis of the objective electromagnetic lens 9, the electron beam enters the sample vertically. When the electron beam interacts with the sample, secondary electrons 8, forward scattered electrons 12, and transmitted electrons 13 are obtained. By synchronizing these secondary electrons 8, forward scattered electrons 12, and transmitted electrons 13 with the scanning waveform, a magnified sample image is formed. The magnification of the magnified sample image depends on the voltage of the scanning waveform applied to the X and Y scanning coils.

図4のフローチャートを用いて、結晶性試料の方位を、走査透過像と電子線回折像により正確かつ迅速に合わせる方法について説明する。   A method for aligning the orientation of a crystalline sample accurately and quickly using a scanning transmission image and an electron beam diffraction image will be described with reference to the flowchart of FIG.

ステップS102にて、任意の結晶性試料を試料台に搭載し、電子線装置に挿入する。本実施例では、試料としてシリコンデバイスを用いることとする。図5にシリコンデバイスを撮影した走査透過像を示す。α,βは、試料の結晶配列方向を示す。   In step S102, an arbitrary crystalline sample is mounted on the sample stage and inserted into the electron beam apparatus. In this embodiment, a silicon device is used as a sample. FIG. 5 shows a scanning transmission image obtained by photographing the silicon device. α and β indicate the crystal arrangement direction of the sample.

ステップS103にて、走査透過電子顕微鏡の倍率を、電子線回折像が観察可能な倍率M0に設定し、走査コイルに印加する電圧を決定する。 In step S103, the magnification of the scanning transmission electron microscope, electron beam diffraction image is set to the magnification M 0 observable to determine the voltage applied to scan coils.

ステップS104にて、電子線の加速電圧,試料への電子線照射量,照射範囲,照射位置および照射角度等、ステップS102にて挿入した試料の拡大像、および、電子線回折像を得るために必要な測定条件を設定する。   In step S104, to obtain an enlarged image and an electron beam diffraction image of the sample inserted in step S102, such as the acceleration voltage of the electron beam, the electron beam irradiation amount, the irradiation range, the irradiation position, and the irradiation angle. Set the necessary measurement conditions.

ステップS105において、ステップS102にて挿入した試料の走査透過像と電子線回折像の観察を開始すると共に、実際の試料の結晶配列方向と、電子線回折像の方向を一致させる。つまり、図5と図6のα,βの関係を、図5と図9のα,βの関係になるようにする。   In step S105, observation of the scanning transmission image and electron beam diffraction image of the sample inserted in step S102 is started, and the actual crystal alignment direction of the sample is matched with the direction of the electron beam diffraction image. That is, the relationship between α and β in FIGS. 5 and 6 is made to be the relationship between α and β in FIGS.

結晶方位合せは、まず、上方走査コイル64及び下方走査コイル65により電子線(荷電粒子線)3にて試料上を走査し、走査透過像を観察しながら大体の結晶方位を合わせる。その後、試料上の微小なスポット領域に電子線(荷電粒子線)3を照射し、電子線回折像を観察しながら正確な結晶方位合せ行う。   In crystal orientation alignment, first, the upper scanning coil 64 and the lower scanning coil 65 scan the sample with the electron beam (charged particle beam) 3 and align the approximate crystal orientation while observing the scanning transmission image. Thereafter, an electron beam (charged particle beam) 3 is irradiated onto a minute spot region on the sample, and an accurate crystal orientation is aligned while observing an electron beam diffraction image.

ステップS106にて、走査透過像を見ながらロータリーエンコーダ59を用いて試料台10を駆動するなどして、試料11の観察領域を決める。   In step S106, the observation area of the sample 11 is determined by driving the sample stage 10 using the rotary encoder 59 while viewing the scanning transmission image.

ステップS107にて、電子線回折像から結晶方位を合わせる。図9,図10,図11を例に、結晶方位の合わせ方を説明する。結晶方位があっていない場合、図9,図10に示すような状態となる。この状態から、回折図形が等方的になるように試料を傾斜させて結晶方位を合わせる。図9,図10では、α方向へ試料を傾斜させることにより、結晶方位を合わせることができる。図11に結晶方位が合った状態を示す。   In step S107, the crystal orientation is adjusted from the electron diffraction image. The method for adjusting the crystal orientation will be described with reference to FIGS. When there is no crystal orientation, the state is as shown in FIGS. From this state, the sample is tilted so that the diffraction pattern is isotropic, and the crystal orientation is adjusted. 9 and 10, the crystal orientation can be adjusted by inclining the sample in the α direction. FIG. 11 shows a state in which the crystal orientation is matched.

ステップS108にて、電子線回折像が試料の所望領域のものかを確認する。試料を傾斜させると、往々にして観察視野が移動するため、結晶方位を合わせた後、再度、走査透過像を確認し、電子線回折像が試料の所望領域のものかを確認する。電子線回折像が試料の所望領域のものでない場合は、ステップS106に戻り、再度、走査透過像にて観察領域の調整を行う。電子線回折像が試料の所望領域のものである場合は、結晶方位合せ完了となる。   In step S108, it is confirmed whether the electron diffraction pattern is in a desired region of the sample. When the sample is tilted, the observation field of view often moves. Therefore, after adjusting the crystal orientation, the scanning transmission image is confirmed again to confirm whether the electron diffraction pattern is in the desired region of the sample. If the electron diffraction pattern is not in the desired region of the sample, the process returns to step S106, and the observation region is adjusted again with the scanning transmission image. When the electron diffraction pattern is in the desired region of the sample, the crystal orientation is completed.

本実施例では、単一の投射レンズ68で構成された走査透過電子顕微鏡において、電子線回折像を撮影するTVカメラの受光面を直接あるいは間接的に回転させることにより、実際の試料の結晶配列方向と、電子線回折像の方向を一致させる。より具体的には、TVカメラヘッド16をモータ駆動により回転させる。TVカメラヘッド16の回転角度は、試料をX軸またはY軸を中心に傾斜させながら、電子線回折像において結晶方位が変化する方向を観察することにより決められる。ここでは、試料の方位合せを行う度に、電子線回折像の方向を観察して、TVカメラヘッド16の回転角度を決めたが、事前に電子線回折像の方向を観察しておき、TVカメラヘッド16の回転角度を予め決めておく方法もある。その場合は、TVカメラヘッド16の回転角度情報を回転データテーブル54に保管するなどして、試料の方位合せを行う際に、回転データテーブル54の情報を基に、TVカメラヘッド16を回転させれば良い。   In this embodiment, in the scanning transmission electron microscope composed of a single projection lens 68, the crystal arrangement of the actual sample is obtained by directly or indirectly rotating the light-receiving surface of a TV camera that takes an electron diffraction image. The direction and the direction of the electron diffraction image are matched. More specifically, the TV camera head 16 is rotated by motor driving. The rotation angle of the TV camera head 16 is determined by observing the direction in which the crystal orientation changes in the electron diffraction image while tilting the sample about the X axis or the Y axis. Here, every time the orientation of the sample is performed, the direction of the electron beam diffraction image is observed to determine the rotation angle of the TV camera head 16, but the direction of the electron beam diffraction image is observed in advance, and the TV camera head 16 is rotated. There is also a method in which the rotation angle of the camera head 16 is determined in advance. In that case, the rotation angle information of the TV camera head 16 is stored in the rotation data table 54, and the TV camera head 16 is rotated based on the information in the rotation data table 54 when aligning the sample. Just do it.

電子線回折像の方向は、投射レンズ68の作用によっても変化するため、回転データテーブル54に保管するカメラヘッドの回転角度情報は、観察条件毎にすると良い。図12に、本実施例における回転データテーブル54の例を示す。   Since the direction of the electron diffraction image also changes due to the action of the projection lens 68, the rotation angle information of the camera head stored in the rotation data table 54 is preferably set for each observation condition. FIG. 12 shows an example of the rotation data table 54 in the present embodiment.

本実施例によれば、実際の試料の結晶配列方向と、電子線回折像の方向が一致しているため、結晶方位を合わせるには試料をどの方向へ傾斜させれば良いかを、電子線回折像の形状から直接判断でき、正確かつ迅速に結晶方位を合わせることができる。また、電子光学条件の組み合わせが限定されないため、カメラ長、すなわち電子線回折像の拡大倍率を自由に選択できる。   According to the present example, since the crystal arrangement direction of the actual sample and the direction of the electron beam diffraction image coincide with each other, the direction in which the sample should be inclined to match the crystal orientation is determined by the electron beam. The crystal orientation can be determined directly from the shape of the diffraction image, and the crystal orientation can be adjusted accurately and quickly. In addition, since the combination of the electron optical conditions is not limited, the camera length, that is, the magnification of the electron diffraction image can be freely selected.

本実施例は、複数の投射レンズを備えた走査透過電子顕微鏡において、各投射レンズに通電する電流を変化させることにより、実際の試料の結晶配列方向と電子線回折像の方向を一致させている。以下、実施例1との相違点を中心に説明する。   In this embodiment, in a scanning transmission electron microscope provided with a plurality of projection lenses, the actual crystal alignment direction of the sample and the direction of the electron beam diffraction image are matched by changing the current applied to each projection lens. . Hereinafter, the difference from the first embodiment will be mainly described.

図2は、本実施例における走査透過電子顕微鏡の概略機能ブロック図である。本実施例では、複数の投射レンズ、ここでは第一投射レンズ69と第二投射レンズ70で構成された走査透過電子顕微鏡において、第一投射レンズ69および第二投射レンズ70の条件、すなわち各投射レンズに通電する電流を変化させ、電磁レンズの作用によって電子線回折像の方向を変化させている。第一投射レンズ69および第二投射レンズ70の条件は、実施例1と同様に、試料をX軸またはY軸を中心に傾斜させながら、電子線回折像において結晶方位が変化する方向を観察することにより決められる。試料の方位合せを行う際は、観察条件毎に各投射レンズ条件を記録した回転データテーブル54の情報を基に、第一投射レンズ69および第二投射レンズ70の条件を変更すれば良い。図13に、本実施例における回転データテーブル54を示す。   FIG. 2 is a schematic functional block diagram of the scanning transmission electron microscope in the present embodiment. In this embodiment, in the scanning transmission electron microscope composed of a plurality of projection lenses, here, the first projection lens 69 and the second projection lens 70, the conditions of the first projection lens 69 and the second projection lens 70, that is, each projection. The current applied to the lens is changed, and the direction of the electron diffraction image is changed by the action of the electromagnetic lens. The conditions of the first projection lens 69 and the second projection lens 70 are to observe the direction in which the crystal orientation changes in the electron diffraction image while tilting the sample about the X axis or the Y axis as in the first embodiment. It is decided by. When the orientation of the sample is performed, the conditions of the first projection lens 69 and the second projection lens 70 may be changed based on the information in the rotation data table 54 in which each projection lens condition is recorded for each observation condition. FIG. 13 shows the rotation data table 54 in this embodiment.

2段のレンズを用いた場合の回転補正としては、第一投影レンズ69と第二投影レンズ70のレンズ極性を反対にしておき、第一投影レンズ69による電子線回折像の回転と、第二投影レンズ70による電子線回折像の回転を、ちょうど同じ角度で逆回転となるように組み合わせる。また、第一投影レンズ69と第二投影レンズ70のレンズ極性が同極性の場合でも、片方を励磁増加、もう一方を励磁減少とすれば、回転補正は可能となる。   As rotation correction when using two-stage lenses, the polarities of the first projection lens 69 and the second projection lens 70 are reversed, the rotation of the electron diffraction image by the first projection lens 69, and the second The rotation of the electron beam diffraction image by the projection lens 70 is combined so as to be reversed at exactly the same angle. Further, even when the first projection lens 69 and the second projection lens 70 have the same polarity, rotation correction is possible if one is increased in excitation and the other is decreased in excitation.

本実施例によれば、カメラの回転機構やその制御が不要となるため、装置構成を簡略化できる。   According to this embodiment, since the camera rotation mechanism and its control are not required, the apparatus configuration can be simplified.

1 荷電粒子線源
2 加速電極
3 荷電粒子線
4 第一集束電磁レンズ
5 第二集束電磁レンズ
6 走査コイル
7 偏向コイル
8 二次電子
9 対物電磁レンズ
10 試料台
11 試料
12 前方散乱電子
13 透過電子
14 前方散乱電子検出器
15 透過電子検出器
16 TVカメラヘッド
17 TVカメラ
18 蛍光体
19 光電子増倍管
20 荷電粒子線源電源
21 加速用高圧電源
22 試料駆動装置
23 TVカメラヘッド駆動装置
24,25 電圧安定装置
26〜28,71〜73 電磁レンズ電源
29〜31 コイル電源
32〜35 微小電流増幅器
36〜45,74〜76 デジタル−アナログ変換器(DAC)
46〜49 アナログ−デジタル変換器(ADC)
50 マイクロプロセッサ
51 データ保存装置
53 偏向系制御部
54 回転データテーブル
55 倍率コンパレータ
56,57 インターフェース
58,59 ロータリーエンコーダ
60 キーボード
61 表示装置ドライバー
62 表示装置
63 電子線光軸
64 上方走査コイル
65 下方走査コイル
66 X走査コイル
67 Y走査コイル
68 投射レンズ
69 第一投射レンズ
70 第二投射レンズ
DESCRIPTION OF SYMBOLS 1 Charged particle beam source 2 Acceleration electrode 3 Charged particle beam 4 1st focusing electromagnetic lens 5 2nd focusing electromagnetic lens 6 Scan coil 7 Deflection coil 8 Secondary electron 9 Objective electromagnetic lens 10 Sample stage 11 Sample 12 Forward scattered electron 13 Transmission electron 14 Forward scattered electron detector 15 Transmitted electron detector 16 TV camera head 17 TV camera 18 Phosphor 19 Photomultiplier tube 20 Charged particle beam source power source 21 High-voltage power source 22 for acceleration 22 Sample drive device 23 TV camera head drive devices 24 and 25 Voltage stabilizers 26-28, 71-73 Electromagnetic lens power supply 29-31 Coil power supply 32-35 Micro current amplifiers 36-45, 74-76 Digital-analog converter (DAC)
46-49 Analog-to-digital converter (ADC)
50 Microprocessor 51 Data Storage Device 53 Deflection System Control Unit 54 Rotation Data Table 55 Magnification Comparator 56, 57 Interface 58, 59 Rotary Encoder 60 Keyboard 61 Display Device Driver 62 Display Device 63 Electron Beam Optical Axis 64 Upper Scanning Coil 65 Downward Scanning Coil 66 X scanning coil 67 Y scanning coil 68 Projection lens 69 First projection lens 70 Second projection lens

Claims (4)

電子線を発生させる電子源と、
試料を保持する試料台と、
前記電子線を試料上に走査する走査器と、
試料を透過した電子線を検出する検出器と、
試料から回折された電子線を検出するTVカメラと、
走査透過像および電子線回折像を表示する表示部と、を備えた走査透過電子顕微鏡において、
前記試料を透過した電子線を前記TVカメラへ集束させる1以上の投射レンズと、
前記TVカメラの受光面を回転させるTVカメラ回転機構と、
前記投射レンズの条件と前記TVカメラの回転角度情報の関係を記録したデータテーブルと、を備え、
前記データテーブルに基づいて前記投射レンズの条件に対応する前記TVカメラの回転角度分だけ前記TVカメラを回転し、前記電子線回折像における試料の結晶配列方向を、前記走査透過像における試料の結晶配列方向と一致させること
を特徴とする走査透過電子顕微鏡。
An electron source that generates an electron beam;
A sample stage for holding the sample;
A scanner that scans the sample with the electron beam;
A detector for detecting an electron beam transmitted through the sample;
A TV camera that detects an electron beam diffracted from the sample;
In a scanning transmission electron microscope provided with a display unit that displays a scanning transmission image and an electron beam diffraction image,
One or more projection lenses for focusing the electron beam transmitted through the sample onto the TV camera;
A TV camera rotation mechanism for rotating the light receiving surface of the TV camera;
A data table that records the relationship between the conditions of the projection lens and the rotation angle information of the TV camera;
The TV camera is rotated by the rotation angle of the TV camera corresponding to the condition of the projection lens based on the data table, the crystal arrangement direction of the sample in the electron beam diffraction image, and the crystal of the sample in the scanning transmission image A scanning transmission electron microscope characterized by matching with the arrangement direction.
請求項1記載の走査透過電子顕微鏡において、
試料を透過した電子線を前記TVカメラへ集束させる複数の投射レンズを複数備え
ることを特徴とする走査透過電子顕微鏡。
The scanning transmission electron microscope according to claim 1, wherein
Multiple projection lenses that focus the electron beam that has passed through the sample onto the TV camera
Scanning transmission electron microscope according to claim Rukoto.
試料台に保持した試料上に電子線を走査し、Scan the electron beam on the sample held on the sample table,
試料を透過した電子線を検出器により検出し、The detector detects the electron beam that has passed through the sample,
試料から回折された電子線をTVカメラにより検出し、The electron beam diffracted from the sample is detected by a TV camera,
走査透過像および電子線回折像を表示部に表示する、走査透過像観察方法において、In a scanning transmission image observation method of displaying a scanning transmission image and an electron beam diffraction image on a display unit,
前記投射レンズの条件と前記TVカメラの回転角度情報の関係を記録したデータテーブルに基づき、前記データテーブルに基づいて前記投射レンズの条件に対応する前記TVカメラの回転角度分だけ前記TVカメラを回転し、前記電子線回折像における試料の結晶配列方向を、前記走査透過像における試料の結晶配列方向と一致させることBased on the data table that records the relationship between the conditions of the projection lens and the rotation angle information of the TV camera, the TV camera is rotated by the rotation angle of the TV camera corresponding to the conditions of the projection lens based on the data table. And aligning the crystal arrangement direction of the sample in the electron diffraction image with the crystal arrangement direction of the sample in the scanning transmission image.
を特徴とする走査透過像観察方法。A scanning transmission image observation method characterized by the above.
請求項3記載の走査透過像観察方法において、In the scanning transmission image observation method according to claim 3,
複数の投射レンズにより試料を透過した電子線を前記TVカメラへ集束させることを特徴とする走査透過像観察方法。A scanning transmission image observation method, wherein an electron beam transmitted through a sample by a plurality of projection lenses is focused on the TV camera.
JP2009225878A 2009-09-30 2009-09-30 Scanning transmission electron microscope and scanning transmission image observation method Expired - Fee Related JP5315195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009225878A JP5315195B2 (en) 2009-09-30 2009-09-30 Scanning transmission electron microscope and scanning transmission image observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009225878A JP5315195B2 (en) 2009-09-30 2009-09-30 Scanning transmission electron microscope and scanning transmission image observation method

Publications (2)

Publication Number Publication Date
JP2011076813A JP2011076813A (en) 2011-04-14
JP5315195B2 true JP5315195B2 (en) 2013-10-16

Family

ID=44020610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009225878A Expired - Fee Related JP5315195B2 (en) 2009-09-30 2009-09-30 Scanning transmission electron microscope and scanning transmission image observation method

Country Status (1)

Country Link
JP (1) JP5315195B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096900A (en) * 2011-11-02 2013-05-20 Jeol Ltd Transmission electron microscope and observation method of transmission electron micrographic image
WO2016181508A1 (en) * 2015-05-12 2016-11-17 株式会社日立製作所 Method and device for electron beam analysis, and electron microscope
CN113155877B (en) * 2021-04-25 2023-08-18 中国科学院广州地球化学研究所 Layered mineral or two-dimensional material mixed polytype scanning transmission electron microscope analysis method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152154A (en) * 1988-12-02 1990-06-12 Jeol Ltd Transmission type electron microscope
JP4129088B2 (en) * 1998-10-15 2008-07-30 株式会社日立製作所 Scanning transmission electron microscope
JP2000149848A (en) * 1998-11-16 2000-05-30 Jeol Ltd Transmission electron microscope image observation device
JP3692806B2 (en) * 1998-12-22 2005-09-07 株式会社日立製作所 Scanning electron microscope
JP3888980B2 (en) * 2003-03-18 2007-03-07 株式会社日立ハイテクノロジーズ Material identification system
JP4337832B2 (en) * 2006-03-06 2009-09-30 株式会社日立製作所 Observation apparatus and observation method using electron beam

Also Published As

Publication number Publication date
JP2011076813A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5499282B2 (en) Aberration correction method and aberration correction apparatus in scanning transmission electron microscope
JP4988662B2 (en) Charged particle beam equipment
JP4504946B2 (en) Charged particle beam equipment
US6548811B1 (en) Transmission electron microscope apparatus with equipment for inspecting defects in specimen and method of inspecting defects in specimen using transmission electron microscope
JP2008270056A (en) Scanning transmission electron microscope
US20170038321A1 (en) Analyzing an object using a particle beam apparatus
JP7105647B2 (en) Diffraction pattern detection in transmission charged particle microscope
CN111354614B (en) Charged particle beam device and optical axis adjustment method therefor
US8086022B2 (en) Electron beam inspection system and an image generation method for an electron beam inspection system
JP2014026834A (en) Charged particle beam application apparatus
JP5315195B2 (en) Scanning transmission electron microscope and scanning transmission image observation method
JP5546290B2 (en) Charged particle beam apparatus and length measuring method using charged particle beam
JP2009206001A (en) Charged particle beam apparatus
JP5809935B2 (en) Scanning transmission electron microscope and sample observation method
JP5248759B2 (en) Particle beam analyzer
JP2000251823A (en) Sample inclination observing method in scanning charged particle beam system
WO2016024704A1 (en) Particle beam control apparatus and method for charged particle microscope
JP4011455B2 (en) Sample observation method using transmission electron microscope
JP4221817B2 (en) Projection type ion beam processing equipment
JP3870141B2 (en) electronic microscope
JP5237836B2 (en) Electron beam apparatus and method of operating electron beam apparatus
JP2009277619A (en) Sample analysis method using scanning transmission electron microscope
JP2015023010A (en) Electron microscope
JP4223734B2 (en) electronic microscope
JP2004047340A (en) Electron beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5315195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees