WO2016181508A1 - Method and device for electron beam analysis, and electron microscope - Google Patents

Method and device for electron beam analysis, and electron microscope Download PDF

Info

Publication number
WO2016181508A1
WO2016181508A1 PCT/JP2015/063667 JP2015063667W WO2016181508A1 WO 2016181508 A1 WO2016181508 A1 WO 2016181508A1 JP 2015063667 W JP2015063667 W JP 2015063667W WO 2016181508 A1 WO2016181508 A1 WO 2016181508A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electron beam
diffraction
image
electron
Prior art date
Application number
PCT/JP2015/063667
Other languages
French (fr)
Japanese (ja)
Inventor
阿南 義弘
雅成 高口
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/063667 priority Critical patent/WO2016181508A1/en
Publication of WO2016181508A1 publication Critical patent/WO2016181508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to a method for analyzing a structure in a minute region using radiation, and in particular, by using a transmission electron microscope using an electron beam to incline a sample to eliminate or reduce the influence of visual field deviation,
  • the present invention relates to a technique for analyzing the crystal structure of
  • Patent Document 1 discloses a technique related to a sample holder having a eucentric function using a spherical seat.
  • the amount of visual field deviation is measured from an image registered in advance and two images after visual field deviation, the electron beam is shifted by the amount of visual field deviation by the electron beam deflecting means, and the irradiation location is set as a target irradiation region. A mechanism for returning to the position is provided.
  • the diffraction pattern image obtained by tilting the sample has a higher analysis accuracy as the angle information is larger. For this reason, the tilt axis of the sample tilt is not sufficient with one axis, and a two-axis tilt is necessary.
  • a method using an electron beam shift using a visual field deviation amount measuring means and an electron beam deflecting means from an image as in Patent Document 2 enables high-precision visual field deviation correction.
  • the afterglow of the diffraction pattern image is superimposed on the projected image of the sample used for field deviation correction.
  • the projected image of the sample and the projected image of the sample on which the transmitted light afterglow is overlapped the image is recognized as another image, and the visual field deviation amount measuring unit does not work effectively.
  • One aspect of the present invention includes an electron optical system that irradiates a sample with an electron beam, a first detector that detects a projection image from the electron beam irradiated on the sample, and a diffraction from the electron beam that irradiates the sample.
  • An electron beam analyzer having a second detector for detecting an image, a sample holder for holding a sample so that the irradiation angle of the electron beam can be changed, and a control system for controlling the electron optical system and the sample holder.
  • control system measures the amount of field deviation from the projected images before and after the change of the irradiation angle by the sample holder, and controls and controls the irradiation position of the electron beam on the sample based on the amount of field deviation. Control is performed so as to acquire a diffraction image at the irradiation position.
  • control can be performed by software in a general computer.
  • an imaging optical system that forms an image from an electron beam irradiated on the sample.
  • the imaging optical system includes an intermediate lens that forms an image of electrons irradiated on the sample, and the first detector can be positioned on an image plane on the opposite side of the sample with respect to the intermediate lens.
  • the second detector can be positioned on the diffractive surface on the opposite side of the sample with respect to the intermediate lens, and has a drive mechanism for installing the first and second detectors outside the electron beam path. It is a thing.
  • control system changes the irradiation angle by the sample holder a plurality of times, and measures the amount of visual field deviation from the projection image before and after each change of the irradiation angle by the sample holder. And based on the visual field deviation
  • An example of the configuration of the sample holder is a configuration that can rotate about at least two axes.
  • Another aspect of the present invention is an electron beam analysis method for obtaining a plurality of diffraction pattern images by irradiating a desired portion of a sample with an electron beam at different angles.
  • the desired location is the same location.
  • “irradiation position is the same” means that the position where the electron beam is irradiated allows a deviation that does not cause a problem from the viewpoint of desired analysis accuracy, and the irradiation range is completely the same. I don't need to be.
  • a first step of acquiring a first projection image of a sample a second step of acquiring a first diffraction image of the sample, a third step of changing the angle of the sample with respect to the electron beam, A fourth step of acquiring a second projection image, a fifth step of calculating a field deviation amount based on the first and second projection images, and an irradiation position of the electron beam on the sample based on the field deviation amount
  • the projected image and the diffracted image are detected by separate detectors.
  • the above-described second to seventh steps are repeated a plurality of times to obtain a plurality of diffraction images, and when repeating, the seventh step is circulated so that it becomes the second step. To do. Then, an electron beam diffraction spectrum is calculated by integrating a plurality of diffraction images, and the electron beam diffraction spectrum and the diffraction pattern of the model structure are subjected to pattern fitting to analyze the structure of the sample.
  • the crystal structure analysis apparatus or electron microscope using an electron beam is provided with two detectors below the objective lens of a transmission electron microscope (TEM: Transmission Electron Microscope), and the first detector is an image.
  • TEM Transmission Electron Microscope
  • the second detector Installed at the surface position, the second detector is installed on the diffraction surface, the first detector detects the projected image of the sample, the second detector acquires the diffraction pattern image, the projected image and the diffraction pattern image Is detected by a separate detector.
  • the electron beam is off the electron channel so that it is not blocked by the second detector, and when the diffraction pattern image is detected with the second detector.
  • a drive mechanism is provided in the second detector so as to be installed on the electron beam route.
  • the sample is irradiated with an electron beam, and a projected image of the sample is detected by a first detector.
  • the detected projection image is stored in a storage unit for registering.
  • the second detector is moved to a position removed from the electronic channel by the detector driving unit so as not to block the electron beam.
  • an electron beam is irradiated to the target location of a sample, a 2nd detector is installed on an electronic channel by a detector drive part, and a diffraction image is acquired with a 2nd detector.
  • the second detector is moved to a position off the electron channel by the detector driving unit so as not to interrupt the electron beam, and the sample is rotated by the sample tilting mechanism.
  • a field shift occurs due to this sample rotation, a sample projection image is detected by the first detector, and using the detected projection image and the stored registered image, a field shift analysis / control device From this, the field deviation vector amount is measured.
  • the field deviation vector measured by the field deviation analysis / control apparatus is ( ⁇ X, ⁇ Y)
  • a signal is sent to the electron beam deflector using the control mechanism, and the electron beam is ( ⁇ X, ⁇ Y).
  • notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order.
  • a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
  • FIG. 1 is a schematic block diagram showing an example of the overall configuration of an electron beam crystal structure analysis apparatus according to the first embodiment.
  • An electron beam crystal structure analyzing apparatus 1 shown in FIG. 1 includes a transmission electron microscope 2, a control system 3, and an operation unit 4.
  • the transmission electron microscope 2 includes an electron gun 5, a condenser lens 7, a condenser diaphragm 8, an electron beam deflector 9, a sample 10, a sample holder 11, an objective lens 12, an objective diaphragm 13, a limited field diaphragm 41, an intermediate lens 14, and a first lens.
  • the first detector 19 and the second detector 16 can be constituted by, for example, a charge-coupled device (CCD / charge coupled device) detector which is a solid-state imaging device.
  • the objective lens 12 is simply illustrated as a single lens, it is actually composed of an upper magnetic pole lens and a lower magnetic pole lens, and the objective aperture 13 located downstream of the sample 10 and the sample 10 is an objective lens 12.
  • the upper magnetic pole lens is installed between the lower magnetic pole lens and the lower magnetic pole lens.
  • the intermediate lens 14 between the objective lens 12 and the second detector 16 downstream of the objective lens is simply one of the intermediate lenses 14, but it is a multi-stage that performs focus adjustment and enlargement / reduction projection. It has a lens configuration.
  • the second detector 16 is installed at the diffraction plane position 15, the first detector 19 is installed at the image plane position 18, and the second detector 16 is positioned on the electronic channel by the detector driving unit 17. Or it can move to a position off the electronic route.
  • the diffractive surface is the diffractive surface position 15 and the image surface is the image surface position 18.
  • the lens conditions for example, the excitation condition of the intermediate lens 14, a diffraction pattern image can be displayed at the image surface position 18. Is also possible.
  • the projection image and the diffraction pattern image of the sample 10 are detected separately.
  • the control system 3 includes an electron gun control unit 20, a condenser lens control unit 21, a deflector control unit 22, a stage control unit 23 for the sample holder 11, an objective lens control unit 24, an intermediate lens control unit 25, and a detector drive control unit 26. Composed.
  • the control system also includes a processing device (CPU), a storage device, an input / output device, and the like (not shown), and calculates a visual field shift amount, which will be described later.
  • the operation unit 4 includes a sample projection image display unit 27, a diffraction pattern image display unit 28, an electron beam diffraction spectrum display unit 29, a crystal structure model display unit 30, and a visual field deviation analysis / control unit 31.
  • the electron beam 6 generated from the electron gun 5 is collimated by the condenser lens 7 and irradiated on the sample 10.
  • the beam size of the electron beam applied to the sample 10 can be changed by the condenser diaphragm 8 or the limited field diaphragm 41.
  • Electrons irradiated and transmitted through the sample 10 pass through the objective lens 12 and the intermediate lens 14 and are detected by the detector.
  • the intermediate lens conditions are such that a projected image of the sample 10 is formed on the image plane 18 and a diffraction pattern image appears on the diffraction plane 15.
  • the projection image 32 of the sample 10 is detected by the first detector 19, and the diffraction pattern image of the sample 10 is detected by the second detector 16.
  • the detector 16 is installed at a position off the electron beam route by the detector driving unit 17 so that the second detector 16 does not block the electron beam.
  • the detector 16 is installed at a position on the electron beam route by the detector driving unit 17.
  • FIGS. 4 and 5 are simplified as compared with FIG. 1 and only the portions necessary for the description are shown, but the basic configuration is the same as FIG.
  • FIG. 2 is an image diagram of an image acquired in order to analyze the structure of a crystal as a sample using the apparatus of FIG. Results of structural analysis by electron beam diffraction of the A phase of the evaluation site 10a-A and the 2 B phase of the evaluation site 10a-B included in the in-plane image of the evaluation sample 10a shown in FIG. Will be described. Images of the 32a-A region and the 32a-B region detected by the second detector 16 and displayed by the diffraction pattern image display unit 28 are 33a-A0-n and 33a- B0-n, respectively. (FIG. 2B). The reason for having n images is to acquire a plurality of diffraction pattern images while tilting the sample with respect to the electron beam incident direction, as will be described later.
  • the diffraction image may include a strong spot image.
  • the spot of the diffraction image remains as an afterimage in the projection image of FIG. 2A, and the reliability of the projection image is lowered.
  • the diffraction image and the projection image are detected by separate detectors.
  • FIG. 3 is a processing flow
  • FIGS. 4 and 5 are diagrams for explaining the state of the apparatus being processed.
  • the electron beam 6 is irradiated to the evaluation portion 10a-A in the sample 10a (step 101).
  • the excitation of the condenser lens 7 is adjusted so that the irradiation region irradiates only the A phase, or the condenser diaphragm 8 or the limited field diaphragm 41 having a different hole diameter is used.
  • the projection image 32a-A0 of the electron beam irradiation area is detected by the first detector 19 and stored in the visual field deviation analysis / control unit 31 (step 102).
  • FIG. 4 shows the state of the apparatus in the state of step 102.
  • the second detector 16 is positioned away from the electron beam route by the detector driving device 17 so as not to block the electron route. It is installed in.
  • the detector drive device 17 moves the second detector 16 on the electron beam route to detect the diffraction pattern image, and obtains the diffraction pattern image 33a-A0 (step 103).
  • FIG. 5 shows the state of the apparatus when a diffraction pattern image is acquired in step 103. After acquiring the diffraction pattern image, the detector returns to the state shown in FIG. 4 by installing the second detector 16 at a position off the electron beam route by the detector driving device 17.
  • the evaluation sample is tilted while the projection image 32a-A of the evaluation portion of the evaluation sample 10a is detected by the first detector 19 (step 104).
  • FIG. 6 is a diagram showing a structure of a sample holder that holds an evaluation sample so as to be tiltable with respect to an electron beam.
  • the evaluation sample 10 a is fixed to a mesh 37 in a circular hole, for example, and is installed at the tip of the sample holder 11.
  • the sample can be tilted by rotating the sample holder 11 in the ⁇ a direction. Further, the direction of ⁇ b can also be tilted in the direction of ⁇ b by the tilting means incorporated in the sample holder 11.
  • the sample moves with respect to the electron beam when the sample is tilted and deviates from the field of view of the electron microscope. .
  • the field shift analysis / control unit 31 uses the field shift amount ( ⁇ X, ⁇ Y) is measured (step 105). That is, as shown in FIG. 4, the projected image 32a-A1 and the projected image 32a-A0 have a visual field shift (shifted in the horizontal direction in the example of FIG. 4) due to the tilt of the sample. The amount of visual field deviation can be derived from the acquired image.
  • a signal is sent from the visual field deviation analysis / control unit 31 to the electron beam deflector 9 through the deflector control unit 22, and the electron beam ( ( ⁇ X, ⁇ Y) is shifted so that the evaluation location 10a-A is irradiated with an electron beam (step 106).
  • an electron beam deflector is used as means for irradiating the electron beam to the target location, the sample itself may be moved by the stage mechanism of the sample holder 14 without shifting the electron beam.
  • the evaluation sample 10a is irradiated with an electron beam at a different angle at the same location as when the diffraction pattern image was acquired in step 103.
  • the detector drive unit 17 installs the second detector 16 on the electron beam route, and obtains the electron diffraction pattern image 33a-A1 after tilting the sample in the state shown in FIG. Step 103).
  • a plurality of diffraction pattern images (33a-A0 to 33a-An) of the evaluation region 10a-A are obtained as shown in FIG. can do.
  • the electron diffraction analysis means 35 integrates the plurality of diffraction pattern images 33a-An obtained above to obtain an electron beam diffraction spectrum pattern.
  • 34a-A is displayed on the electron diffraction spectrum display unit 29 (step 107).
  • step 107 fitting of the plurality of crystal structure diffraction pattern spectra assumed to be the electron beam diffraction spectrum pattern obtained in step 107 is performed by the electron beam diffraction analysis means 35.
  • the matched crystal structure model 35a-A among the plurality of structure model patterns is displayed on the crystal structure model display unit 30 as shown in FIG. 2C (step 108).
  • the diffraction spectrum of the crystal structure model can be displayed in an overlapping manner on the electron beam diffraction spectrum display section.
  • Step 101 to Step 106 are performed at the B phase location to obtain a plurality of electron beam diffraction pattern images 33a-B0 to 33a-Bn having different electron beam incident angles.
  • a plurality of electron diffraction pattern images are integrated and the electron beam diffraction spectrum pattern 34a-B is displayed on the electron beam diffraction spectrum display unit 29 (step 107).
  • the electron diffraction analysis means 35 performs pattern fitting between the obtained spectrum and the diffraction spectrum of the structural model, and displays the crystal structure model 35a-B having the matched pattern on the structural model display unit.
  • control functions described above can be realized by a single computer that constitutes a part of the control system.
  • information processing by software implements the function using computer hardware resources.
  • any part of the computer input device, output device, processing device, and storage device may be configured by another computer connected via a network.
  • Functions equivalent to those configured by software can also be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
  • a projection image serving as a reference for the position is acquired and stored in step 102, and the projection image stored every time the sample is tilted and acquired in step 105.
  • the projected images are compared.
  • the return destination from step 106 is set to step 102 and a projection image serving as a position reference is acquired every time the sample is tilted.
  • the image since the irradiation condition of the electron beam is different between the first projected image and the projected image after being tilted a plurality of times, the image may not be the same at points other than the visual field shift.
  • the projection images are compared before and after the inclination, the comparison is easy. However, there is a possibility that the throughput is lowered and a visual field shift is accumulated little by little at each tilt.
  • FIG. 7 shows a schematic view of nanometer order size single crystal particles targeted by this example.
  • FIG. 7A shows a projection image 32b-A0 of the electron beam irradiation area detected by the first detector 19.
  • FIG. The region to be observed is a single crystal particle 36 of nanometer order size.
  • the apparatus configuration is basically the same as that in FIG. 1, but a diaphragm is applied so that only the nanometer-sized particles 36 can be irradiated with the electron beam 6 as shown in FIG.
  • FIG. 8 shows an example of a capacitor diaphragm 800 having holes 8a to 8d.
  • a small hole 8d is used for the projection image 32b-A0 (FIG. 7 (a)) obtained by irradiating an electron beam using the large diameter hole 8a shown in FIG.
  • the projection image 32c-A0 obtained by the first detector 19 is an image of the bright electron spot 6a only at the transmitted portion (FIG. 7B).
  • FIG. 9 shows an example of a device configuration including the capacitor diaphragm 800.
  • the basic configuration is the same as the configuration of FIG. 1, but a capacitor aperture 800 (FIG. 8) including apertures having a plurality of diameters is provided instead of the capacitor aperture 8.
  • the diaphragm system is controlled by the capacitor diaphragm drive unit 39.
  • the electron beam 6 is irradiated to the vicinity of the single particle 36 to be evaluated using the hole 8a of the condenser aperture 800 (step 201). At this time, it is desirable that the particle 36 to be evaluated is positioned at the center of the electron beam irradiation region by the stage mechanism of the sample holder 11.
  • the projection image 32b-A0 of the electron beam irradiation region in the vicinity of the evaluation target particle 36 is detected by the first detector 19 and stored in the visual field deviation analysis / control unit 31. Further, the position coordinates (X1, y1) of the center position of the particle are also stored (step 202). At this time, in order to detect the projection image of the sample with the first detector 19 as in step 102, the second detector 16 is connected to the electron beam route by the detector driving device 17 so as not to block the electron route. It is installed at a position deviated from (Fig. 9).
  • the condenser aperture driving unit 39 changes the hole 8a having the large hole diameter to the hole 8d having the small hole diameter, and sets the electron beam irradiation region to the nanometer size (step 203).
  • the electron beam deflector 9 shifts the nanometer-sized electron beam 6a to the position coordinates (X1, y1) of the center position of the particle stored in step 202 (step 204).
  • the detector driving device 17 moves the second detector 16 on the electron beam route to detect the diffraction pattern image, and obtains the diffraction pattern image 33c-A0.
  • FIG. 11 shows an example of the diffraction pattern image 33c-A0. As described later, n diffraction pattern images are finally acquired. After acquiring the diffraction pattern image, the second detector 16 is installed at a position off the electron beam route by the detector driving device 17. As a result, the apparatus is in the state shown in FIG. At the same time, the condenser aperture drive unit 39 is installed in the hole 8a having a large diameter (step 205).
  • the evaluation sample is tilted while the projection image 32b-A in the vicinity of the evaluation single particle 36 is detected by the first detector 19 (step 206).
  • the projection image 32b-A1 in the vicinity of the evaluation location is detected by the first detector 19.
  • the field-of-view displacement amount ( ⁇ X1, ⁇ Y2) is measured by both the detected image 32b-A1 after tilting and the image of the projected image 32b-A0 before tilting stored in step 1 and the field-shift analysis / control unit 31. (Step 207).
  • the specimen position is ( ⁇ X 1, ⁇ Y 1) by the stage mechanism of the specimen holder 11 through the control system 3 from the visual field deviation analysis / control unit 31. ) Move it. (Step 208) By repeatedly performing the above steps 202 to 208, as shown in FIG. 11, a plurality of diffraction pattern images 33c-A0 to 33c-An at the single particle portion 36 in the nanometer order can be acquired while the sample is inclined.
  • the electron diffraction analysis means 35 integrates the obtained plurality of diffraction pattern images (33c-A0 to 33c-An) to obtain an electron diffraction pattern.
  • 34c-A is displayed on the electron diffraction spectrum display unit 29 (step 209).
  • FIG. 12 shows an example of an electron diffraction spectrum pattern.
  • the electron beam diffraction analysis means 35 performs pattern fitting between the electron beam diffraction spectrum 34c-A obtained in step 209 and the diffraction spectra of a plurality of crystal structures assumed.
  • the crystal structure model 35c coinciding with the obtained pattern is displayed on the crystal structure model display unit 30 (step 210).
  • FIG. 13 shows a display example of the crystal structure model display section.
  • Example 2 An example in which structural analysis is performed in consideration of double diffraction caused by electron beam diffraction using the apparatus described in Example 2 will be described.
  • FIG. 14 shows a diffraction pattern obtained by inclining a sample from a single particle portion, as in Example 2.
  • FIG. 14A shows a diffraction pattern of [001] incidence.
  • FIGS. 14 (b) and 14 (c) show diffraction patterns obtained by tilting in the ⁇ b1 and ⁇ a1 directions from the angle condition of the diffraction pattern of FIG.
  • FIG. 15 is a diffraction pattern of the crystal structure C.
  • FIG. 16 is a diffraction pattern of the crystal structure D.
  • the correlation between the diffraction pattern of FIG. 14 (a) and the diffraction pattern of FIG. 15 is high, and it is erroneously determined as the crystal structure C.
  • the diffraction pattern is double diffraction, and the correlation between the diffraction pattern of FIG. 14A excluding the double diffraction reflection and the diffraction pattern of FIG. 16 is high. The conclusion that the crystal structure is D was obtained.
  • control system 3 can identify and remove double diffraction reflections by matching a plurality of diffraction patterns obtained by tilting the sample using a known image processing technique.
  • This example makes it possible to obtain a diffraction pattern of a single particle in a shorter time than before by changing the sample inclination as compared with the conventional case. As a result, the presence / absence of double diffraction can be determined relatively easily, and a correct measurement result can be obtained.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Electron crystal structure analyzer 2 Transmission electron microscope 3 Control system 4 Operation unit 5 electron gun 6 electron beam 6a Nanometer-sized electron beam 7 Condenser lens 8 condenser aperture 9 Electron beam deflector 10 samples 10a Evaluation sample 10a-A Phase A location in the sample 10a 10a-B B phase location in the sample 10a 11 Sample holder 12 Objective lens 13 Objective aperture 14 Intermediate lens 15 Diffractive surface position 16 Second detector 17 Detector drive 18 Image plane position 19 First detector 20 Electron gun control unit 21 Condenser lens control unit 22 Deflector control unit 23 Sample stage 11 stage control unit 24 Objective lens control unit 25 Intermediate lens control unit 26 Detector drive control unit 27 Sample projection image display 2 8 Diffraction image display 2 9 Electron diffraction spectrum display 30 Crystal structure model display 31 Visual and deviation analysis / control unit 32, 32a-A0, 32a-An, 32a-B0, 32a-Bn, sample projection image 33, 33a-A0, 33a-An, 33a-B0, 33a-Bn, diffraction

Abstract

The present invention has an electron optical system for radiating an electron beam to a sample, a first detector for detecting a projection image from the electron beam radiated to the sample, a second detector for detecting a diffraction image from the electron beam radiated to the sample, a sample holder for retaining the sample so that the irradiation angle of the electron beam can be changed, and a control system for controlling the electron optical system and the sample holder, the control system measuring the amount of visual field deviation from the projection image before and after a change in the irradiation angle by the sample holder, controlling the irradiation position of the electron beam on the sample on the basis of the amount of visual field deviation, and performing control so that a diffraction image is acquired at the controlled irradiation position.

Description

電子線解析方法、装置、および電子顕微鏡Electron beam analysis method, apparatus, and electron microscope
 本発明は、放射線を用いた微小領域における構造解析法方法に関し、特に、電子線を用いた透過電子顕微鏡による、試料を傾斜して視野ずれの影響を無くしまたは低減して、試料中の目的箇所の結晶構造を解析する技術に関する。 The present invention relates to a method for analyzing a structure in a minute region using radiation, and in particular, by using a transmission electron microscope using an electron beam to incline a sample to eliminate or reduce the influence of visual field deviation, The present invention relates to a technique for analyzing the crystal structure of
 機能性材料の特異な物性を示す原因を把握するためには、材料の結晶構造を解析する必要がある。試料の構造解析にはX線、中性子腺、電子線などの放射線を用いて得られる回折パターンにより、構造を解析する方法が行われている。 In order to understand the cause of the specific physical properties of functional materials, it is necessary to analyze the crystal structure of the materials. In the structural analysis of a sample, a method of analyzing the structure using a diffraction pattern obtained by using radiation such as X-rays, neutron glands, and electron beams is performed.
 一般に、X線を用いた構造解析が主流となっているが、X線や中性子腺では試料へ照射する領域が広くなるため平均的な構造解析となる。マイクロメートルオーダーからナノメートルオーダー領域での結晶構造解析には、試料に照射する電子線をマイクロメートルからナノメートルまで絞ることが可能な電子線を用いた構造解析が有効である。 In general, structural analysis using X-rays has become the mainstream, but the X-ray and neutron glands have an average structure analysis because the area irradiated onto the sample is widened. For crystal structure analysis in the micrometer order to nanometer order region, structural analysis using an electron beam that can narrow the electron beam irradiated to the sample from micrometer to nanometer is effective.
 X線、放射線、電子線を用いた構造解析では、(1)式のブラック条件式を利用して、試料へ入射するX線、中性子腺、または電子線の入射角度θを変える必要がある。放射線の試料への入射角度θを変える手段として、試料を傾斜する方法が行われている。 In structural analysis using X-rays, radiation, and electron beams, it is necessary to change the incident angle θ of the X-rays, neutron glands, or electron beams incident on the sample using the black conditional expression (1). As a means for changing the incident angle θ of radiation to the sample, a method of tilting the sample is performed.
 2dsinθ=nλ・・・(1)
 電子線では試料への電子線入射角度を変える手段として、試料を傾斜する手段以外に、試料は固定した状態で電子線の照射角度を変える方法がある。しかしながら、電子線照射角の変化は数度であり構造解析には不十分であるため、X線回折と同様に電子線回折においても、試料を傾斜する方法が主に用いられている。
2dsinθ = nλ (1)
In the electron beam, as a means for changing the electron beam incident angle on the sample, there is a method for changing the irradiation angle of the electron beam while the sample is fixed, in addition to the means for tilting the sample. However, since the change of the electron beam irradiation angle is several degrees and is insufficient for structural analysis, the method of tilting the sample is mainly used in electron beam diffraction as well as X-ray diffraction.
 試料を傾斜する手段として、1軸または2軸の回転機構を有する電子顕微鏡用試料ホルダーがある。試料を傾斜した場合、試料が電子線照射領域から外れ(以下、視野ずれと呼ぶ)、試料の電子線照射領域が変わる。視野ずれを低減するために、例えば特許文献1では、球面座を用いたユーセントリック機能を有する試料ホルダーに関する技術が開示されている。特許文献2では、事前に登録しておいた画像と視野ずれ後の2画像から視野ずれ量を計測し、電子線偏向手段により電子線を視野ずれ量分シフトさせ、照射箇所を目的の照射領域に戻す機構を設けている。 As a means for tilting the sample, there is a sample holder for an electron microscope having a uniaxial or biaxial rotation mechanism. When the sample is tilted, the sample deviates from the electron beam irradiation region (hereinafter referred to as a visual field shift), and the electron beam irradiation region of the sample changes. In order to reduce the visual field shift, for example, Patent Document 1 discloses a technique related to a sample holder having a eucentric function using a spherical seat. In Patent Document 2, the amount of visual field deviation is measured from an image registered in advance and two images after visual field deviation, the electron beam is shifted by the amount of visual field deviation by the electron beam deflecting means, and the irradiation location is set as a target irradiation region. A mechanism for returning to the position is provided.
特開2009-110734号公報JP 2009-110734 A 特開2007-141866号公報JP 2007-141866 A
 電子線を用いた結晶構造解析において、試料を傾斜して得られる回折パターン像は角度情報が多いほど、解析精度は向上する。そのため、試料傾斜の傾斜軸は1軸では不十分であり、2軸傾斜が必要である。 In the crystal structure analysis using an electron beam, the diffraction pattern image obtained by tilting the sample has a higher analysis accuracy as the angle information is larger. For this reason, the tilt axis of the sample tilt is not sufficient with one axis, and a two-axis tilt is necessary.
 試料傾斜に伴う視野ずれを低減する手段として、特許文献1の球面座を用いたユーセントリックホルダーがあるが、ユーセントリック回転軸は1軸であるため、2軸で回転させた時の視野ずれを低減することが出来ない。また、球面座で回転体を固定しており、ユーセントリック精度は球面座と回転体の接触ばらつき、即ち球面座と回転体の機械加工精度となり(マイクロメートル程度)、ナノメートルオーダーでの視やずれ補正は現状困難であった。 As a means for reducing the visual field shift due to the sample tilt, there is a eucentric holder using the spherical seat of Patent Document 1. However, since the eucentric rotation axis is one axis, the visual field shift when rotated by two axes is reduced. It cannot be reduced. In addition, the rotating body is fixed by a spherical seat, and the eucentric accuracy is the contact variation between the spherical seat and the rotating body, that is, the machining accuracy of the spherical seat and the rotating body (about micrometer). Deviation correction was difficult at present.
 視野ずれ補正として、特許文献2のように、画像から視野ずれ量計手段と電子線偏向手段を用いた電子線シフトを利用した方法では、高精度な視野ずれ補正が可能である。回折パターンを得る場合においては、回折パターンの透過光強度が強く検出器に残光として残るために、視野ずれ補正に利用する試料の投影像に回折パターン像の残光が重畳される。結果として、試料の投影像と透過光残光の重畳した試料の投影像では、画像が別の画像と認識され、視野ずれ量計測手段が有効に働かなくなると言った課題があった。 As a visual field deviation correction, a method using an electron beam shift using a visual field deviation amount measuring means and an electron beam deflecting means from an image as in Patent Document 2 enables high-precision visual field deviation correction. In the case of obtaining a diffraction pattern, since the transmitted light intensity of the diffraction pattern is strong and remains as afterglow in the detector, the afterglow of the diffraction pattern image is superimposed on the projected image of the sample used for field deviation correction. As a result, there is a problem that the projected image of the sample and the projected image of the sample on which the transmitted light afterglow is overlapped, the image is recognized as another image, and the visual field deviation amount measuring unit does not work effectively.
 そのため現状では、試料に入射する角度の異なる複数の回折パターン像を取得するには、下記1から5の操作を繰返し行う必要があった。1から5の一連の操作を試料傾斜毎に行うため、角度情報の多い回折パターンを取得するには、多大な時間を要するといった課題があった。 Therefore, at present, in order to obtain a plurality of diffraction pattern images having different angles of incidence on the sample, it is necessary to repeat the operations 1 to 5 below. Since a series of operations 1 to 5 are performed for each sample inclination, there is a problem that it takes a lot of time to acquire a diffraction pattern with a lot of angle information.
 1. 試料の投影像で電子線照射箇所を確認し、目的箇所に電子線を照射
 2. 中間レンズの励磁条件を変えて像モードから回折モードに切替え、電子線照射箇所の回折パターン像を取得
 3. 試料を傾斜
 4. 中間レンズの励磁条件を変えて回折モードから像モードに切替
 5. 傾斜時の視やずれのため、投影像で場所を確認し、目的箇所へ移動
 本発明の目的は、透過電子顕微鏡を用いたマイクロメートルからナノメートルオーダー領域での結晶構造解析において、角度情報の多い回折パターンを効率よく取得し、高精度な構造解析方法を提供する事にある。
1. Confirm the electron beam irradiation location in the projected image of the sample and irradiate the target location with the electron beam 2. Change the excitation condition of the intermediate lens to switch from image mode to diffraction mode, and acquire the diffraction pattern image of the electron beam irradiation location 3. Tilt the sample 4. Change the excitation condition of the intermediate lens to switch from the diffraction mode to the image mode 5. Check the location on the projected image and move to the target location for viewing and displacement during tilting In crystal structure analysis in the micrometer to nanometer order region using a transmission electron microscope, a diffraction pattern with a lot of angle information is efficiently obtained, and a highly accurate structure analysis method is provided.
 本発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明の一側面は、電子線を試料に照射する電子光学系と、試料に照射された電子線から、投影像を検出する第一の検出器と、試料に照射された電子線から、回折像を検出する第二の検出器と、電子線の照射角度が変化可能になるよう試料を保持する試料ホルダーと、電子光学系および試料ホルダーを制御する制御系を有する電子線解析装置である。 One aspect of the present invention includes an electron optical system that irradiates a sample with an electron beam, a first detector that detects a projection image from the electron beam irradiated on the sample, and a diffraction from the electron beam that irradiates the sample. An electron beam analyzer having a second detector for detecting an image, a sample holder for holding a sample so that the irradiation angle of the electron beam can be changed, and a control system for controlling the electron optical system and the sample holder.
 この装置において、制御系は、試料ホルダーによる照射角度の変化の前後における投影像から視野ずれ量を測定し、視野ずれ量に基づいて、電子線の試料への照射位置を制御し、制御された照射位置において、回折像を取得するように制御を行う。このような制御は、一例として、一般的なコンピュータにおいて、ソフトウェアにより行うことができる。 In this apparatus, the control system measures the amount of field deviation from the projected images before and after the change of the irradiation angle by the sample holder, and controls and controls the irradiation position of the electron beam on the sample based on the amount of field deviation. Control is performed so as to acquire a diffraction image at the irradiation position. For example, such control can be performed by software in a general computer.
 より好ましい具体的な構成例では、試料に照射された電子線から像を形成する結像光学系を有する。この結像光学系は、試料に照射された電子を結像する中間レンズを有し、第一の検出器は、中間レンズに対して試料の反対側にある像面に位置可能であり、第二の検出器は、中間レンズに対して試料の反対側にある回折面に位置可能であり、第一および第二の検出器を、電子線の航路外に設置するための、駆動機構を備えたものである。 In a more preferred specific configuration example, an imaging optical system that forms an image from an electron beam irradiated on the sample is provided. The imaging optical system includes an intermediate lens that forms an image of electrons irradiated on the sample, and the first detector can be positioned on an image plane on the opposite side of the sample with respect to the intermediate lens. The second detector can be positioned on the diffractive surface on the opposite side of the sample with respect to the intermediate lens, and has a drive mechanism for installing the first and second detectors outside the electron beam path. It is a thing.
 別の好ましい具体的な構成例では、制御系は、試料ホルダーにより、照射角度を複数回変化させ、試料ホルダーによる照射角度の変化毎に、その前後における、投影像から視野ずれ量を測定する。そして、照射角度の変化毎の視野ずれ量に基づいて、照射角度の変化毎に、電子線の試料への照射位置を制御する。そして、照射角度の変化毎に制御された照射位置において、照射角度の変化毎に回折像を取得するように制御する。 In another preferred specific configuration example, the control system changes the irradiation angle by the sample holder a plurality of times, and measures the amount of visual field deviation from the projection image before and after each change of the irradiation angle by the sample holder. And based on the visual field deviation | shift amount for every change of an irradiation angle, the irradiation position to the sample of an electron beam is controlled for every change of an irradiation angle. And it controls to acquire a diffraction image for every change of irradiation angle in the irradiation position controlled for every change of irradiation angle.
 試料ホルダーの構成の一例としては、少なくとも2つの軸に対して回転可能な構成がある。 An example of the configuration of the sample holder is a configuration that can rotate about at least two axes.
 本発明の他の一側面は、試料の所望の箇所に異なる角度で電子線を照射し、複数の回折パターン像を取得する電子線解析方法である。所望の個所としては、理想的には同一個所である。ただし本明細書で、「照射位置が同一」とは、電子線の照射される位置が、所望される解析精度の観点から問題にならない程度のずれを許容するものとし、照射範囲が完全同一であることを要しない。 Another aspect of the present invention is an electron beam analysis method for obtaining a plurality of diffraction pattern images by irradiating a desired portion of a sample with an electron beam at different angles. Ideally, the desired location is the same location. However, in this specification, “irradiation position is the same” means that the position where the electron beam is irradiated allows a deviation that does not cause a problem from the viewpoint of desired analysis accuracy, and the irradiation range is completely the same. I don't need to be.
 この方法では、試料の第1の投影像を取得する第1のステップ、試料の第1の回折像を取得する第2のステップ、試料の電子線に対する角度を変更する第3のステップ、試料の第2の投影像を取得する第4のステップ、第1及び第2の投影像に基づいて視野ずれ量を算出する第5のステップ、視野ずれ量に基づいて、試料に対する前記電子線の照射位置を調整する第6のステップ、調整された照射位置における、試料の第2の回折像を取得する第7のステップを備える。そして、投影像と回折像は、別々の検出器にて検出することを特徴とする。 In this method, a first step of acquiring a first projection image of a sample, a second step of acquiring a first diffraction image of the sample, a third step of changing the angle of the sample with respect to the electron beam, A fourth step of acquiring a second projection image, a fifth step of calculating a field deviation amount based on the first and second projection images, and an irradiation position of the electron beam on the sample based on the field deviation amount And a seventh step of acquiring a second diffraction image of the sample at the adjusted irradiation position. The projected image and the diffracted image are detected by separate detectors.
 具体的な構成例では、上述の第2~第7のステップを複数回繰り返して複数の回折像を取得し、繰り返しの際には、第7のステップが即ち第2のステップとなるように循環する。そして、複数の回折像を積算して電子線回折スペクトルを算出し、電子線回折スペクトルとモデル構造の回折パターンとをパターンフィッティングし、試料の構造を解析する。 In a specific configuration example, the above-described second to seventh steps are repeated a plurality of times to obtain a plurality of diffraction images, and when repeating, the seventh step is circulated so that it becomes the second step. To do. Then, an electron beam diffraction spectrum is calculated by integrating a plurality of diffraction images, and the electron beam diffraction spectrum and the diffraction pattern of the model structure are subjected to pattern fitting to analyze the structure of the sample.
 本発明の他の側面による電子線を用いた結晶構造解析装置もしくは電子顕微鏡は、透過電子顕微鏡(TEM:Transmission Electron Microscope)の対物レンズ下方に検出器を2つ設け、第一の検出器は像面位置に設置、第二の検出器は回折面に設置し、第一の検出器で試料の投影像を検出し、第二の検出器で回折パターン像を取得し、投影像および回折パターン像を別々の検出器で検出することを特徴としている。また、投影像を第一の検出器で検出する際には電子線が第二の検出器でさえぎらない様に電子航路上から外れ、回折パターン像を第二の検出器で検出する際には電子線航路上に設置されるよう第二の検出器に駆動機構を設けている。 The crystal structure analysis apparatus or electron microscope using an electron beam according to another aspect of the present invention is provided with two detectors below the objective lens of a transmission electron microscope (TEM: Transmission Electron Microscope), and the first detector is an image. Installed at the surface position, the second detector is installed on the diffraction surface, the first detector detects the projected image of the sample, the second detector acquires the diffraction pattern image, the projected image and the diffraction pattern image Is detected by a separate detector. Also, when detecting the projected image with the first detector, the electron beam is off the electron channel so that it is not blocked by the second detector, and when the diffraction pattern image is detected with the second detector. A drive mechanism is provided in the second detector so as to be installed on the electron beam route.
 上記結晶構造解析装置もしくは電子顕微鏡の具体的な動作例を以下に説明する。電子線を試料に照射し、試料の投影像を第一の検出器で検出する。検出した投影像を登録するための記憶部で記憶しておく。このとき、第二の検出器は電子線をさえぎらないように検出器駆動部で電子航路上から外した位置に移動させる。次に試料の目的箇所に電子線を照射し、検出器駆動部で第二の検出器を電子航路上に設置し、回折像を第二の検出器で取得する。 Specific examples of operation of the crystal structure analysis apparatus or electron microscope will be described below. The sample is irradiated with an electron beam, and a projected image of the sample is detected by a first detector. The detected projection image is stored in a storage unit for registering. At this time, the second detector is moved to a position removed from the electronic channel by the detector driving unit so as not to block the electron beam. Next, an electron beam is irradiated to the target location of a sample, a 2nd detector is installed on an electronic channel by a detector drive part, and a diffraction image is acquired with a 2nd detector.
 次に、再度、第二の検出器は電子線をさえぎらないように検出器駆動部で電子航路上から外れた位置に移動させ、試料傾斜機構により試料を回転させる。この試料回転に伴う視野ずれが生じた場合、第一の検出器で試料投影像を検出し、検出された投影像と上記の記憶しておいた登録画像を用いて、視野ずれ解析/制御装置から視野ずれベクトル量を計測する。例えば、視野ずれ解析/制御装置にて計測された視野ずれのベクトルが(ΔX,ΔY)である場合、制御機構を用いて電子線偏向器に信号を送り、電子線を(-ΔX,-ΔY)偏向させる。 Next, again, the second detector is moved to a position off the electron channel by the detector driving unit so as not to interrupt the electron beam, and the sample is rotated by the sample tilting mechanism. When a field shift occurs due to this sample rotation, a sample projection image is detected by the first detector, and using the detected projection image and the stored registered image, a field shift analysis / control device From this, the field deviation vector amount is measured. For example, when the field deviation vector measured by the field deviation analysis / control apparatus is (ΔX, ΔY), a signal is sent to the electron beam deflector using the control mechanism, and the electron beam is (−ΔX, −ΔY). ) Deflection.
 これにより、目的箇所に電子線を照射でき、検出器駆動機構により第二の検出器を電子線航路上に移動させ、回折パターンを取得する。これにより試料傾斜に伴う視野ずれをなくし、または低減して、試料へ入射する電子線の角度を変えて回折パターン像を取得することが出来る。上記、目的箇所への電子線シフトは偏向器を用いて実施しているが、偏向器を用いずに試料駆動機構により試料を移動させて目的の箇所に電子線を照射することも可能である。上記一連の動作をすることで試料に入射する電子線の角度を変えた複数の回折パターンを得ることが可能となり、マイクロメートルからナノメートルオーダー領域の結晶構造の解析精度が向上した。 This makes it possible to irradiate the target location with the electron beam, and moves the second detector onto the electron beam route by the detector driving mechanism to acquire the diffraction pattern. As a result, it is possible to eliminate or reduce the visual field shift due to the sample tilt and change the angle of the electron beam incident on the sample to obtain a diffraction pattern image. Although the above-described electron beam shift to the target location is performed using a deflector, it is also possible to irradiate the target location with the electron beam by moving the sample by the sample driving mechanism without using the deflector. . By performing the above-described series of operations, it becomes possible to obtain a plurality of diffraction patterns in which the angle of the electron beam incident on the sample is changed, and the analysis accuracy of the crystal structure in the micrometer to nanometer order region is improved.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、ナノメートルオーダーでの目的箇所の結晶構造を高精度に評価することが実現可能とる。 Briefly explaining the effects obtained by typical ones of the inventions disclosed in the present application, it is feasible to evaluate the crystal structure of the target portion in the nanometer order with high accuracy.
本発明の一実施例である電子線結晶構造解析装置構成部を説明するブロック図である。It is a block diagram explaining the electron beam crystal structure analysis apparatus structure part which is one Example of this invention. 本実施例の装置を用いた結晶構造解析を説明する画像イメージ図である。It is an image image figure explaining the crystal structure analysis using the apparatus of a present Example. 本装置を用いた結晶構造解析を説明するフロー図である。It is a flowchart explaining the crystal structure analysis using this apparatus. 本発明の一実施例である電子線結晶構造解析装置の動作を説明するブロック図である。It is a block diagram explaining operation | movement of the electron beam crystal structure analyzer which is one Example of this invention. 本発明の一実施例である電子線結晶構造解析装置の動作を説明するブロック図である。It is a block diagram explaining operation | movement of the electron beam crystal structure analyzer which is one Example of this invention. 試料位置と回転軸の位置関係を説明する模式図である。It is a schematic diagram explaining the positional relationship of a sample position and a rotating shaft. 評価した試料を説明する平面図である。It is a top view explaining the sample evaluated. コンデンサ絞りを説明する平面図である。It is a top view explaining a capacitor diaphragm. 本発明の一実施例である電子線結晶構造解析装置構成部を説明するブロック図である。It is a block diagram explaining the electron beam crystal structure analysis apparatus structure part which is one Example of this invention. 本装置を用いた結晶構造解析を説明するフロー図である。It is a flowchart explaining the crystal structure analysis using this apparatus. 本評価で得られる複数の回折パターン像のイメージ図である。It is an image figure of the several diffraction pattern image obtained by this evaluation. 本評価で得られる回折パターンのイメージ図である。It is an image figure of the diffraction pattern obtained by this evaluation. 本評価で得られる結晶構造モデルのイメージ図である。It is an image figure of the crystal structure model obtained by this evaluation. 本装置を用いて得られた[0 0 l]電子線入射の電子回折パターンのイメージ図である。It is an image figure of the electron diffraction pattern of [0 0 l] electron beam incidence obtained using this device. 本装置を用いて得られた一軸励起の電子回折パターンのイメージ図である。It is an image figure of the electron diffraction pattern of the uniaxial excitation obtained using this apparatus. 本装置を用いて得られた一軸励起の電子回折パターンのイメージ図である。It is an image figure of the electron diffraction pattern of the uniaxial excitation obtained using this apparatus. 結晶構造Cの電子線回折パターンのイメージ図である。2 is an image diagram of an electron beam diffraction pattern of a crystal structure C. FIG. 結晶構造Dの電子線回折パターンのイメージ図である。2 is an image diagram of an electron diffraction pattern of crystal structure D. FIG.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 The present invention is not construed as being limited to the description of the embodiments described below. Those skilled in the art will readily understand that the specific configuration can be changed without departing from the spirit or the spirit of the present invention.
 本明細書等における「第1」、「第2」、「第3」などの表記は、構成要素を識別するために付するものであり、必ずしも、数または順序を限定するものではない。また、構成要素の識別のための番号は文脈毎に用いられ、一つの文脈で用いた番号が、他の文脈で必ずしも同一の構成を示すとは限らない。また、ある番号で識別された構成要素が、他の番号で識別された構成要素の機能を兼ねることを妨げるものではない。 In this specification and the like, notations such as “first”, “second”, and “third” are attached to identify the constituent elements, and do not necessarily limit the number or order. In addition, a number for identifying a component is used for each context, and a number used in one context does not necessarily indicate the same configuration in another context. Further, it does not preclude that a component identified by a certain number also functions as a component identified by another number.
 図面等において示す各構成の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面等に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings and the like may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For this reason, the present invention is not necessarily limited to the position, size, shape, range, and the like disclosed in the drawings and the like.
 第1の実施例では、電子顕微鏡を用いて、試料の2つの相に分離している箇所について、それぞれ結晶構造解析を実施した例を説明する。もっとも、本発明の解析対象は結晶構造に限られるものではない。 In the first embodiment, an example will be described in which a crystal structure analysis is performed on a portion separated into two phases of a sample using an electron microscope. However, the object of analysis of the present invention is not limited to the crystal structure.
 図1は、実施例1における電子線結晶構造解析装置の全体構成例を示す概略ブロック図である。図1に示す電子線結晶構造解析装置1は、透過電子顕微鏡2、制御系3、操作部4より構成される。 FIG. 1 is a schematic block diagram showing an example of the overall configuration of an electron beam crystal structure analysis apparatus according to the first embodiment. An electron beam crystal structure analyzing apparatus 1 shown in FIG. 1 includes a transmission electron microscope 2, a control system 3, and an operation unit 4.
 透過電子顕微鏡2は、電子銃5、コンデンサレンズ7、コンデンサ絞り8、電子線偏向器9、試料10、試料ホルダー11、対物レンズ12、対物絞り13、制限視野絞り41、中間レンズ14、第一の検出器19、第二の検出器16、検出器駆動機構17により構成される。第一の検出器19、第二の検出器16、は、例えば固体撮像素子であるCharge-Coupled Device(CCD・電荷結合素子)検出器で構成することができる。 The transmission electron microscope 2 includes an electron gun 5, a condenser lens 7, a condenser diaphragm 8, an electron beam deflector 9, a sample 10, a sample holder 11, an objective lens 12, an objective diaphragm 13, a limited field diaphragm 41, an intermediate lens 14, and a first lens. Detector 19, second detector 16, and detector drive mechanism 17. The first detector 19 and the second detector 16 can be constituted by, for example, a charge-coupled device (CCD / charge coupled device) detector which is a solid-state imaging device.
 対物レンズ12は、簡易的に1枚のレンズとして図示しているが、実際には上磁極レンズと下磁極レンズから成り、試料10と該試料10の下流にある対物絞り13は、対物レンズ12の上磁極レンズと下磁極レンズの間に設置された構成となっている。対物レンズ12と該対物レンズ下流にある第二の検出器16との間にある中間レンズ14は、簡易的に中間レンズ14の1枚としているが、フォーカス調整、ならびに拡大/縮小投影する多段のレンズ構成となっている。 Although the objective lens 12 is simply illustrated as a single lens, it is actually composed of an upper magnetic pole lens and a lower magnetic pole lens, and the objective aperture 13 located downstream of the sample 10 and the sample 10 is an objective lens 12. The upper magnetic pole lens is installed between the lower magnetic pole lens and the lower magnetic pole lens. The intermediate lens 14 between the objective lens 12 and the second detector 16 downstream of the objective lens is simply one of the intermediate lenses 14, but it is a multi-stage that performs focus adjustment and enlargement / reduction projection. It has a lens configuration.
 第二の検出器16は回折面位置15に設置され、第一の検出器19は像面位置18に設置しており、第二の検出器16は検出器駆動部17により電子航路上位置、または電子航路上から外れた位置に移動できるようになっている。図1では、回折面を回折面位置15と像面を像面位置18としているが、レンズの条件、例えば中間レンズ14の励磁条件を変える事で、像面位置18に回折パターン像を出すことも可能である。本実施例では、後述するように、試料10の投影像と回折パターン像を別々に検出する。 The second detector 16 is installed at the diffraction plane position 15, the first detector 19 is installed at the image plane position 18, and the second detector 16 is positioned on the electronic channel by the detector driving unit 17. Or it can move to a position off the electronic route. In FIG. 1, the diffractive surface is the diffractive surface position 15 and the image surface is the image surface position 18. However, by changing the lens conditions, for example, the excitation condition of the intermediate lens 14, a diffraction pattern image can be displayed at the image surface position 18. Is also possible. In the present embodiment, as will be described later, the projection image and the diffraction pattern image of the sample 10 are detected separately.
 制御系3は電子銃制御部20、コンデンサレンズ制御部21、偏向器制御部22、試料ホルダー11のステージ制御部23、対物レンズ制御部24、中間レンズ制御部25、検出器駆動制御部26により構成される。制御系はまた、図示しない処理装置(CPU)、記憶装置、入出力装置等を備え、後述する視野ずれ量の計算などを行う。 The control system 3 includes an electron gun control unit 20, a condenser lens control unit 21, a deflector control unit 22, a stage control unit 23 for the sample holder 11, an objective lens control unit 24, an intermediate lens control unit 25, and a detector drive control unit 26. Composed. The control system also includes a processing device (CPU), a storage device, an input / output device, and the like (not shown), and calculates a visual field shift amount, which will be described later.
 操作部4は、試料投影像表示部27、回折パターン像表示部28、電子線回折スペクトル表示部29、結晶構造モデル表示部30、視野ずれ解析/制御部31から構成される。 The operation unit 4 includes a sample projection image display unit 27, a diffraction pattern image display unit 28, an electron beam diffraction spectrum display unit 29, a crystal structure model display unit 30, and a visual field deviation analysis / control unit 31.
 電子銃5から発生した電子線6は、コンデンサレンズ7により平行にされ、試料10に照射される。試料10に照射する電子線のビームサイズはコンデンサ絞り8や制限視野絞り41で変える事が可能である。 The electron beam 6 generated from the electron gun 5 is collimated by the condenser lens 7 and irradiated on the sample 10. The beam size of the electron beam applied to the sample 10 can be changed by the condenser diaphragm 8 or the limited field diaphragm 41.
 試料10に照射して透過した電子は対物レンズ12、中間レンズ14を通り、検出器により検出される。図1では試料10の投影像が像面18で結像されるよう、また回折面15に回折パターン像が出るような中間レンズ条件となっている。第一の検出器19で試料10の投影像32を検出器し、第二の検出器16で試料10の回折パターン像を検出する。試料の投影像32を検出する際には、第二の検出器16は電子線をさえぎらない様、検出器駆動部17により電子線航路上から外れた位置に検出器16は設置される。回折パターン像33を検出する際には、図5に示すように、検出器駆動部17により電子線航路上位置に検出器16を設置するようになっている。 Electrons irradiated and transmitted through the sample 10 pass through the objective lens 12 and the intermediate lens 14 and are detected by the detector. In FIG. 1, the intermediate lens conditions are such that a projected image of the sample 10 is formed on the image plane 18 and a diffraction pattern image appears on the diffraction plane 15. The projection image 32 of the sample 10 is detected by the first detector 19, and the diffraction pattern image of the sample 10 is detected by the second detector 16. When the projection image 32 of the sample is detected, the detector 16 is installed at a position off the electron beam route by the detector driving unit 17 so that the second detector 16 does not block the electron beam. When detecting the diffraction pattern image 33, as shown in FIG. 5, the detector 16 is installed at a position on the electron beam route by the detector driving unit 17.
 次に、図2から図6を用いて、本実施例の動作を説明する。図4、図5は図1と比較し簡略化しており、説明に必要な部分だけを記載しているが、基本的な構成は図1と同様である。 Next, the operation of this embodiment will be described with reference to FIGS. 4 and 5 are simplified as compared with FIG. 1 and only the portions necessary for the description are shown, but the basic configuration is the same as FIG.
 図2は、図1の装置を用いて、試料である結晶の構造を解析するために取得する画像のイメージ図である。図2(a)に示した評価試料10aの面内像中に含まれる評価箇所10a-AのA相と、評価箇所10a-BのB相2箇所を電子線回折により構造解析を行った結果について説明する。32a-Aの領域、32a-Bの領域を、第二の検出器16で検出した像を、回折パターン像表示部28で表示した画像が、其々33a-A0-n、33a- B0-nである(図2(b))。画像がnずつあるのは、後述するように、試料を電子線入射方向に対して傾斜させながら、回折パターン像を複数取得するためである。 FIG. 2 is an image diagram of an image acquired in order to analyze the structure of a crystal as a sample using the apparatus of FIG. Results of structural analysis by electron beam diffraction of the A phase of the evaluation site 10a-A and the 2 B phase of the evaluation site 10a-B included in the in-plane image of the evaluation sample 10a shown in FIG. Will be described. Images of the 32a-A region and the 32a-B region detected by the second detector 16 and displayed by the diffraction pattern image display unit 28 are 33a-A0-n and 33a- B0-n, respectively. (FIG. 2B). The reason for having n images is to acquire a plurality of diffraction pattern images while tilting the sample with respect to the electron beam incident direction, as will be described later.
 取得した複数の回折パターン像を処理すると、電子線回折スペクトルパターン34a-A、34a-Bが得られる(図2(c))。この電子線回折スペクトルパターンと想定される複数の結晶構造回折パターンスペクトルをフィッテングし、一致した結晶構造のモデル35a-Aを結晶構造モデルとして表示する(図2(d))。後に図3の処理動作の説明と合わせて詳細を説明する。 When the plurality of acquired diffraction pattern images are processed, electron beam diffraction spectrum patterns 34a-A and 34a-B are obtained (FIG. 2 (c)). A plurality of crystal structure diffraction pattern spectra assumed to be the electron beam diffraction spectrum pattern are fitted, and the matched crystal structure model 35a-A is displayed as a crystal structure model (FIG. 2 (d)). Details will be described later together with the description of the processing operation of FIG.
 ここで、図2(b)に見られるように、回折像には強いスポット像が含まれることがある。回折像と投影像を同じ検出器で検出すると、回折像のスポットが図2(a)の投影像に残像として残り、投影像の信頼性が下がることになる。本実施例では、後に述べるように、回折像と投影像を別の検出器で検出している。 Here, as shown in FIG. 2B, the diffraction image may include a strong spot image. When the diffraction image and the projection image are detected by the same detector, the spot of the diffraction image remains as an afterimage in the projection image of FIG. 2A, and the reliability of the projection image is lowered. In this embodiment, as described later, the diffraction image and the projection image are detected by separate detectors.
 図3~図5を用いて、図1の装置を用いて、図2に示した試料の構造を解析するための画像を取得する処理の流れを説明する。図3は処理フローであり、図4と図5は、処理中の装置の状態を説明する図である。 The flow of processing for acquiring an image for analyzing the structure of the sample shown in FIG. 2 using the apparatus shown in FIG. 1 will be described with reference to FIGS. FIG. 3 is a processing flow, and FIGS. 4 and 5 are diagrams for explaining the state of the apparatus being processed.
 図3のフローにおいて、始めに、試料10a中の評価箇所10a-A に電子線6を照射する(ステップ101)。照射領域がA相のみに照射するように、コンデンサレンズ7の励磁を調整、または、孔径の異なるコンデンサ絞り8、もしくは制限視野絞り41を用いる。 In the flow of FIG. 3, first, the electron beam 6 is irradiated to the evaluation portion 10a-A in the sample 10a (step 101). The excitation of the condenser lens 7 is adjusted so that the irradiation region irradiates only the A phase, or the condenser diaphragm 8 or the limited field diaphragm 41 having a different hole diameter is used.
 次に、電子線照射領域の投影像32a-A0を第一の検出器19で検出し、視野ずれ解析/制御部31にて記憶する(ステップ102)。 Next, the projection image 32a-A0 of the electron beam irradiation area is detected by the first detector 19 and stored in the visual field deviation analysis / control unit 31 (step 102).
 図4に、ステップ102の状態における、装置の状態を示す。このとき、試料の投影像を第一の検出器19で検出するために、電子航路上を遮らないよう第二の検出器16は、検出器駆動装置17により、電子線航路上から外れた位置に設置している。 FIG. 4 shows the state of the apparatus in the state of step 102. At this time, in order to detect the projection image of the sample with the first detector 19, the second detector 16 is positioned away from the electron beam route by the detector driving device 17 so as not to block the electron route. It is installed in.
 次に、検出器駆動装置17により、電子線航路上に第二の検出器16を移動させて回折パターン像を検出し、回折パターン像33a-A0を取得する(ステップ103)。 Next, the detector drive device 17 moves the second detector 16 on the electron beam route to detect the diffraction pattern image, and obtains the diffraction pattern image 33a-A0 (step 103).
 図5に、ステップ103で回折パターン像を取得する際の、装置の状態を示す。回折パターン像を取得後、検出器駆動装置17により、電子線航路上から外れた位置に第二の検出器16を設置することにより、装置は図4に示す状態に戻る。 FIG. 5 shows the state of the apparatus when a diffraction pattern image is acquired in step 103. After acquiring the diffraction pattern image, the detector returns to the state shown in FIG. 4 by installing the second detector 16 at a position off the electron beam route by the detector driving device 17.
 次に、第一の検出器19で評価試料10aの評価箇所の投影像32a-Aを検出しながら、評価試料を傾斜させる(ステップ104)。 Next, the evaluation sample is tilted while the projection image 32a-A of the evaluation portion of the evaluation sample 10a is detected by the first detector 19 (step 104).
 図6は評価試料を、電子線に対して傾斜可能に保持する試料ホルダーの構造を示す図である。図6に示すように、評価試料10aは、例えば円形孔の中のメッシュ37に固定し、試料ホルダー11の先端に設置されている。試料の傾斜は試料ホルダー11をθa方向に回転することで、傾斜出来るようになっている。また、θbの方向も、試料ホルダー11に組み込まれた傾斜手段により、θbの方向に傾斜できるようになっている。試料中の複数の箇所を評価するに当たり、試料傾斜の軸中心38a、38b上に評価箇所は位置しないために、試料傾斜時に電子線に対して試料が移動し、電子顕微鏡視野からずれることとなる。 FIG. 6 is a diagram showing a structure of a sample holder that holds an evaluation sample so as to be tiltable with respect to an electron beam. As shown in FIG. 6, the evaluation sample 10 a is fixed to a mesh 37 in a circular hole, for example, and is installed at the tip of the sample holder 11. The sample can be tilted by rotating the sample holder 11 in the θa direction. Further, the direction of θb can also be tilted in the direction of θb by the tilting means incorporated in the sample holder 11. In evaluating a plurality of locations in the sample, since the evaluation location is not located on the axis centers 38a and 38b of the sample tilt, the sample moves with respect to the electron beam when the sample is tilted and deviates from the field of view of the electron microscope. .
 次に、図4の状態で、評価箇所10a-Aの投影像を第一の検出器19で検出する。検出した傾斜後の投影像32a-A1とステップ102で記憶しておいた傾斜前の投影像32a-A0の両画像を用いて、視野ずれ解析/制御部31にて、視野ずれ量(ΔX,ΔY)を計測する(ステップ105)。すなわち、図4に示すように、投影像32a-A1と投影像32a-A0には、試料の傾きに伴う視野ずれ(図4の例では横方向にずれている)が発生しているので、取得した画像から視野ずれ量を導き出すことができる。 次に、ステップ105において計測された視野ずれ量(ΔX,ΔY)を元に、視野ずれ解析/制御部31から偏向器制御部22を通して、電子線偏向器9に信号を送り、電子線を(-ΔX,-ΔY)シフトさせて、評価箇所10a-Aに電子線を照射するようにする(ステップ106)。ここで、電子線を目的の箇所に照射する手段には電子線偏向器を用いているが、電子線をシフトさせずに、試料ホルダー14のステージ機構により試料自体を移動させても良い。 Next, in the state of FIG. 4, the projection image of the evaluation location 10 a -A is detected by the first detector 19. Using both the detected projection image 32a-A1 after tilt and the pre-tilt projection image 32a-A0 stored in step 102, the field shift analysis / control unit 31 uses the field shift amount (ΔX, ΔY) is measured (step 105). That is, as shown in FIG. 4, the projected image 32a-A1 and the projected image 32a-A0 have a visual field shift (shifted in the horizontal direction in the example of FIG. 4) due to the tilt of the sample. The amount of visual field deviation can be derived from the acquired image. Next, based on the visual field deviation amount (ΔX, ΔY) measured in step 105, a signal is sent from the visual field deviation analysis / control unit 31 to the electron beam deflector 9 through the deflector control unit 22, and the electron beam ( (−ΔX, −ΔY) is shifted so that the evaluation location 10a-A is irradiated with an electron beam (step 106). Here, although an electron beam deflector is used as means for irradiating the electron beam to the target location, the sample itself may be moved by the stage mechanism of the sample holder 14 without shifting the electron beam.
 以上の処理により、評価試料10aには、ステップ103で回折パターン像を取得したときと同じ個所に、異なった角度で電子線が照射されることになる。 Through the above processing, the evaluation sample 10a is irradiated with an electron beam at a different angle at the same location as when the diffraction pattern image was acquired in step 103.
 そして、ステップ103に戻り検出器駆動部17により第二の検出器16を電子線航路上に設置し、図5の状態にして、試料傾斜後の電子線回折パターン像33a-A1を取得する(ステップ103)。 Then, returning to step 103, the detector drive unit 17 installs the second detector 16 on the electron beam route, and obtains the electron diffraction pattern image 33a-A1 after tilting the sample in the state shown in FIG. Step 103).
 上記ステップ103から106を繰り返し実施することで、試料を傾斜させながら、図2(b)に示したように、評価領域10a-Aの回折パターン像を複数(33a-A0~33a-An)取得することができる。必要な数だけ像を取得した後に、図2(c)に示したように、電子線回折解析手段35により、前記得られた複数の回折パターン像33a-Anを積算し、電子線回折スペクトルパターン34a-Aを電子線回折スペクトル表示部29に表示する(ステップ107)。 By repeatedly performing the above steps 103 to 106, a plurality of diffraction pattern images (33a-A0 to 33a-An) of the evaluation region 10a-A are obtained as shown in FIG. can do. After obtaining the required number of images, as shown in FIG. 2 (c), the electron diffraction analysis means 35 integrates the plurality of diffraction pattern images 33a-An obtained above to obtain an electron beam diffraction spectrum pattern. 34a-A is displayed on the electron diffraction spectrum display unit 29 (step 107).
 次に、ステップ107で得られた電子線回折スペクトルパターンと想定される複数の結晶構造回折パターンスペクトルのフィッテングを、電子線回折解析手段35により実施する。複数の構造モデルのパターンの中から一致した結晶構造のモデル35a-Aを、図2(c)に示すように結晶構造モデル表示部30に表示する(ステップ108)。ここで、電子線回折スペクトル表示部に実験で得られた電子線回折スペクトル34a-Aに加え、結晶構造モデルの回折スペクトルを重ねて表示することも出来るようになっている。 Next, fitting of the plurality of crystal structure diffraction pattern spectra assumed to be the electron beam diffraction spectrum pattern obtained in step 107 is performed by the electron beam diffraction analysis means 35. The matched crystal structure model 35a-A among the plurality of structure model patterns is displayed on the crystal structure model display unit 30 as shown in FIG. 2C (step 108). Here, in addition to the electron beam diffraction spectrum 34a-A obtained in the experiment, the diffraction spectrum of the crystal structure model can be displayed in an overlapping manner on the electron beam diffraction spectrum display section.
 上記A相の構造解析と同様、B相箇所でもステップ101からステップ106を実施し、電子線入射角度の異なる複数の電子線回折パターン像33a-B0~33a-Bnを取得する。次に、複数の電子回折パターン像を積算し、電子線回折スペクトルパターン34a-Bを電子線回折スペクトル表示部29に表示する(ステップ107)。そして、電子線回折解析手段35により、得られたスペクトルと構造モデルの回折スペクトルとのパターンフィッティングを行い、パターンが一致した結晶構造モデル35a-Bを構造モデル表示部に表示する。 As in the structural analysis of the A phase, Step 101 to Step 106 are performed at the B phase location to obtain a plurality of electron beam diffraction pattern images 33a-B0 to 33a-Bn having different electron beam incident angles. Next, a plurality of electron diffraction pattern images are integrated and the electron beam diffraction spectrum pattern 34a-B is displayed on the electron beam diffraction spectrum display unit 29 (step 107). Then, the electron diffraction analysis means 35 performs pattern fitting between the obtained spectrum and the diffraction spectrum of the structural model, and displays the crystal structure model 35a-B having the matched pattern on the structural model display unit.
 以上の結果から、A相は結晶構造モデル35a-A、B相は結晶構造モデル35a-Bである結果を得ることが出来た。 From the above results, it was possible to obtain the results that the A phase was the crystal structure model 35a-A and the B phase was the crystal structure model 35a-B.
 本実施例により、傾斜に伴う視野ずれを見かけ上無くし、同一箇所での電子線入射角度の異なる複数の電子線回折パターン像が取得することが出来、高精度な構造解析が出来るようになった。 According to the present embodiment, it is possible to obtain a plurality of electron diffraction pattern images having different electron beam incident angles at the same location, and to perform high-accuracy structural analysis. .
 以上で説明した制御の機能は、制御系の一部を構成する単体のコンピュータで実現することができる。一例としては、ソフトウェアによる情報処理が、コンピュータのハードウエア資源を用いて当該機能を実現する。また、コンピュータの入力装置、出力装置、処理装置、記憶装置の任意の部分が、ネットワークで接続された他のコンピュータで構成されてもよい。また、ソフトウエアで構成した機能と同等の機能は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウエアでも実現できる。 The control functions described above can be realized by a single computer that constitutes a part of the control system. As an example, information processing by software implements the function using computer hardware resources. In addition, any part of the computer input device, output device, processing device, and storage device may be configured by another computer connected via a network. Functions equivalent to those configured by software can also be realized by hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit).
 なお、図3に示した処理フローでは、ステップ102で位置の基準となる投影像を取得して記憶しておき、試料を傾斜させる毎に記憶しておいた投影像と、ステップ105で取得した投影像を比較している。別の方式としては、ステップ106からの帰還先をステップ102とし、試料を傾斜させる毎に位置の基準となる投影像を取得する方式がある。図3の方式では、最初の投影像と複数回傾斜を行った後の投影像では、電子線の照射条件が異なってくるので、視野ずれ以外の点でも画像が同一にならない場合がある。一方、別の方式では、傾斜の前後で毎回投影像を比較するので、比較が容易である。ただし、スループットが下がる欠点と、傾斜のたびに少しずつ視野ずれが蓄積する可能性がある。 In the processing flow shown in FIG. 3, a projection image serving as a reference for the position is acquired and stored in step 102, and the projection image stored every time the sample is tilted and acquired in step 105. The projected images are compared. As another method, there is a method in which the return destination from step 106 is set to step 102 and a projection image serving as a position reference is acquired every time the sample is tilted. In the method of FIG. 3, since the irradiation condition of the electron beam is different between the first projected image and the projected image after being tilted a plurality of times, the image may not be the same at points other than the visual field shift. On the other hand, in another method, since the projection images are compared before and after the inclination, the comparison is easy. However, there is a possibility that the throughput is lowered and a visual field shift is accumulated little by little at each tilt.
 本実施例では、図6から図10を用いて、本電子線回折装置1を用いて、ナノメートルオーダーサイズの単結晶粒子の構造解析に適用した例について説明する。 In this embodiment, an example applied to the structural analysis of single-crystal particles having a nanometer order size using the electron diffraction apparatus 1 will be described with reference to FIGS.
 図7に、本実施例が対象とするナノメートルオーダーサイズの単結晶粒子の模式図を示す。図7(a)に、第一の検出器19で検出した、電子線照射領域の投影像32b-A0を示す。観察しようとする領域はナノメートルオーダーサイズの単結晶粒子36である。 FIG. 7 shows a schematic view of nanometer order size single crystal particles targeted by this example. FIG. 7A shows a projection image 32b-A0 of the electron beam irradiation area detected by the first detector 19. FIG. The region to be observed is a single crystal particle 36 of nanometer order size.
 本実施例では、装置構成は基本的に図1と同じであるが、図7に示すような、ナノメートルサイズの粒子36のみに電子線6を照射できるように、絞りを適用している。 In this embodiment, the apparatus configuration is basically the same as that in FIG. 1, but a diaphragm is applied so that only the nanometer-sized particles 36 can be irradiated with the electron beam 6 as shown in FIG.
 図8に孔8a~8dを備えるコンデンサ絞り800の例を示す。例えば、図8に示す径の大きな孔8aを用いて電子線を照射して第一の検出器19で得られる投影像32b-A0(図7(a))に対し、小さな孔8dを用いて、第一の検出器19で得られる投影像32c-A0は、透過した箇所のみが明るい電子スポット6aの像となる(図7(b))。小さな径のコンデンサ絞り800を用いることで、ナノメートルオーダーの単粒子のみに電子線を当てることが可能となっている。 FIG. 8 shows an example of a capacitor diaphragm 800 having holes 8a to 8d. For example, a small hole 8d is used for the projection image 32b-A0 (FIG. 7 (a)) obtained by irradiating an electron beam using the large diameter hole 8a shown in FIG. The projection image 32c-A0 obtained by the first detector 19 is an image of the bright electron spot 6a only at the transmitted portion (FIG. 7B). By using a small-diameter condenser diaphragm 800, it is possible to irradiate only an electron beam to nanometer-order single particles.
 図9に、コンデンサ絞り800を備える装置構成の例を示す。基本的な構成は、図1の構成と同様であるが、コンデンサ絞り8の代わりに、複数の径の絞りを備えるコンデンサ絞り800(図8)を備える。絞り系の制御は、コンデンサ絞り駆動部39で行う。 FIG. 9 shows an example of a device configuration including the capacitor diaphragm 800. The basic configuration is the same as the configuration of FIG. 1, but a capacitor aperture 800 (FIG. 8) including apertures having a plurality of diameters is provided instead of the capacitor aperture 8. The diaphragm system is controlled by the capacitor diaphragm drive unit 39.
 図10のフローを用いて、図7中の評価試料に含まれるナノメートルオーダーの単一粒子36の結晶構造解析について説明する。 10 will be used to explain the crystal structure analysis of the single nanometer-order particle 36 contained in the evaluation sample in FIG.
 始めに、コンデンサ絞り800の孔8aを用い、評価対象の単粒子36の近傍箇所に電子線6を照射する(ステップ201)。このとき、試料ホルダー11のステージ機構により、評価対象の粒子36が電子線照射領域の中心に位置するようにした方が望ましい。 First, the electron beam 6 is irradiated to the vicinity of the single particle 36 to be evaluated using the hole 8a of the condenser aperture 800 (step 201). At this time, it is desirable that the particle 36 to be evaluated is positioned at the center of the electron beam irradiation region by the stage mechanism of the sample holder 11.
 次に、評価対象粒子36近傍の電子線照射領域の投影像32b-A0を第一の検出器19で検出し、視野ずれ解析/制御部31にて記憶する。また、粒子の中心箇所の位置座標(X1,y1)も記憶しておく(ステップ202)。このとき、ステップ102同様、試料の投影像を第一の検出器19で検出するために、電子航路上を遮らないよう第二の検出器16は、検出器駆動装置17により、電子線航路上から外れた位置に設置している(図9)。 Next, the projection image 32b-A0 of the electron beam irradiation region in the vicinity of the evaluation target particle 36 is detected by the first detector 19 and stored in the visual field deviation analysis / control unit 31. Further, the position coordinates (X1, y1) of the center position of the particle are also stored (step 202). At this time, in order to detect the projection image of the sample with the first detector 19 as in step 102, the second detector 16 is connected to the electron beam route by the detector driving device 17 so as not to block the electron route. It is installed at a position deviated from (Fig. 9).
 次に、コンデンサ絞り駆動部39により、孔径の大きい孔8aから孔径の小さい孔8dに変え、電子線照射領域をナノメートルサイズに設定する(ステップ203)。 Next, the condenser aperture driving unit 39 changes the hole 8a having the large hole diameter to the hole 8d having the small hole diameter, and sets the electron beam irradiation region to the nanometer size (step 203).
 次に、電子線偏向器9により、ナノメートルサイズの電子線6aを、ステップ202で記憶した粒子の中心箇所の位置座標(X1,y1)へシフトさせる(ステップ204)。 Next, the electron beam deflector 9 shifts the nanometer-sized electron beam 6a to the position coordinates (X1, y1) of the center position of the particle stored in step 202 (step 204).
 次に、検出器駆動装置17により、電子線航路上に第二の検出器16を移動させて回折パターン像を検出し、回折パターン像33c-A0を取得する。 Next, the detector driving device 17 moves the second detector 16 on the electron beam route to detect the diffraction pattern image, and obtains the diffraction pattern image 33c-A0.
 図11に回折パターン像33c-A0の例を示す。後述するように、回折パターン像は、最終的にn枚取得される。回折パターン像を取得後、検出器駆動装置17により、電子線航路上から外れた位置に第二の検出器16を設置する。この結果装置は図9に示す状態になる。また同時に、コンデンサ絞り駆動部39により径の大きな孔8aに設置する(ステップ205)。 FIG. 11 shows an example of the diffraction pattern image 33c-A0. As described later, n diffraction pattern images are finally acquired. After acquiring the diffraction pattern image, the second detector 16 is installed at a position off the electron beam route by the detector driving device 17. As a result, the apparatus is in the state shown in FIG. At the same time, the condenser aperture drive unit 39 is installed in the hole 8a having a large diameter (step 205).
 次に、第一の検出器19で評価単一粒子36近傍の投影像32b-Aを検出しながら、評価試料を傾斜させる(ステップ206)。 Next, the evaluation sample is tilted while the projection image 32b-A in the vicinity of the evaluation single particle 36 is detected by the first detector 19 (step 206).
 次に、図9に示す状態で、評価箇所近傍の投影像32b-A1を第一の検出器19で検出する。検出した傾斜後の投影像32b-A1とステップ1で記憶しておいた傾斜前の投影像32b-A0の両画像と視野ずれ解析/制御部31により、視野ずれ量(ΔX1,ΔY2)を計測する(ステップ207)。 Next, in the state shown in FIG. 9, the projection image 32b-A1 in the vicinity of the evaluation location is detected by the first detector 19. The field-of-view displacement amount (ΔX1, ΔY2) is measured by both the detected image 32b-A1 after tilting and the image of the projected image 32b-A0 before tilting stored in step 1 and the field-shift analysis / control unit 31. (Step 207).
 次に、ステップ207において計測された視野ずれ量(ΔX1,ΔY1)を元に、視野ずれ解析/制御部31から制御系3を通して、試料ホルダー11のステージ機構により試料位置を(-ΔX1,-ΔY1)移動させる。(ステップ208)
 上記ステップ202から208を繰り返し実施することで、図11に示すように、試料を傾斜させながら、ナノメートルオーダーの単一粒子箇所36における回折パターン像33c-A0~33c-Anを複数取得できる。
Next, based on the visual field deviation amounts (ΔX 1, ΔY 1) measured in step 207, the specimen position is (−ΔX 1, −ΔY 1) by the stage mechanism of the specimen holder 11 through the control system 3 from the visual field deviation analysis / control unit 31. ) Move it. (Step 208)
By repeatedly performing the above steps 202 to 208, as shown in FIG. 11, a plurality of diffraction pattern images 33c-A0 to 33c-An at the single particle portion 36 in the nanometer order can be acquired while the sample is inclined.
 次に、実施例1のステップ107、108と同様に、電子線回折解析手段35により、前記得られた複数の回折パターン像(33c-A0~33c-An)を積算し、電子線回折スペクトルパターン34c-Aを電子線回折スペクトル表示部29に表示する(ステップ209)。 Next, as in Steps 107 and 108 of Example 1, the electron diffraction analysis means 35 integrates the obtained plurality of diffraction pattern images (33c-A0 to 33c-An) to obtain an electron diffraction pattern. 34c-A is displayed on the electron diffraction spectrum display unit 29 (step 209).
 図12に電子線回折スペクトルパターンの例を示す。 FIG. 12 shows an example of an electron diffraction spectrum pattern.
 次に、電子線回折解析手段35により、ステップ209で得られた電子線回折スペクトル34c-Aと想定される複数の結晶構造の回折スペクトルとのパターンフィッテングを実施する。得られたパターンと一致した結晶構造のモデル35cを結晶構造モデル表示部30に表示する(ステップ210)。 Next, the electron beam diffraction analysis means 35 performs pattern fitting between the electron beam diffraction spectrum 34c-A obtained in step 209 and the diffraction spectra of a plurality of crystal structures assumed. The crystal structure model 35c coinciding with the obtained pattern is displayed on the crystal structure model display unit 30 (step 210).
 図13に結晶構造モデル表示部の表示例を示す。 FIG. 13 shows a display example of the crystal structure model display section.
 本実施例により、ナノメートルオーダーの単一粒子箇所での電子線入射角度の異なる複数の電子線回折パターン像が取得することが出来、ナノメートルオーダー領域でも高精度な構造解析が出来るようになった。 According to this embodiment, it is possible to acquire a plurality of electron beam diffraction pattern images having different electron beam incident angles at a single particle position in the nanometer order, and to perform a highly accurate structural analysis in the nanometer order region. It was.
 本実施例では、実施例2で説明した装置を用いて、電子線回折で生じる二重回折を考慮して、構造解析を行った例について説明する。 In this example, an example in which structural analysis is performed in consideration of double diffraction caused by electron beam diffraction using the apparatus described in Example 2 will be described.
 図14に、実施例2と同様に、単一粒子箇所から試料を傾斜して得られた回折パターンを示す。図14(a)は[001]入射の回折パターンである。図14(a)の回折パターンの角度条件からθb1およびθa1方向に各々傾斜して、一軸励起条件にして得られた回折パターンを図14(b)と図14(c)に示す。 FIG. 14 shows a diffraction pattern obtained by inclining a sample from a single particle portion, as in Example 2. FIG. 14A shows a diffraction pattern of [001] incidence. FIGS. 14 (b) and 14 (c) show diffraction patterns obtained by tilting in the θb1 and θa1 directions from the angle condition of the diffraction pattern of FIG.
 図14(a)で観察されていた(h 0 0)、(0 k 0)のスポットが一部消えていることが分かり、白い○で囲った反射は二重回折によるものであった。 It can be seen that the spots (h 0 0) and (0 k 0) observed in Fig. 14 (a) have disappeared, and the reflections surrounded by white circles are due to double diffraction.
 想定した相は結晶構造Cと結晶構造Dの二種類であり、それぞれの回折パターンを図15および図16に示す。 Suppose that there are two types of phases, crystal structure C and crystal structure D, and their diffraction patterns are shown in FIGS.
 図15は結晶構造Cの回折パターンである。 FIG. 15 is a diffraction pattern of the crystal structure C.
 図16は結晶構造Dの回折パターンである。 FIG. 16 is a diffraction pattern of the crystal structure D.
 二重回折を考慮しなかった場合には、図14(a)の回折パターンと図15の回折パターンの相関は高く、誤って結晶構造Cと判断することになる。しかし、傾斜に伴う一軸励起回折パターンの実験結果より、二重回折であることがわかり、二重回折反射を取り除いた図14(a)の回折パターンと図16の回折パターンの相関が高く、結晶構造はDであるとの結論を得ることが出来た。 When the double diffraction is not taken into account, the correlation between the diffraction pattern of FIG. 14 (a) and the diffraction pattern of FIG. 15 is high, and it is erroneously determined as the crystal structure C. However, from the experimental results of the uniaxial excitation diffraction pattern accompanying the tilt, it can be seen that the diffraction pattern is double diffraction, and the correlation between the diffraction pattern of FIG. 14A excluding the double diffraction reflection and the diffraction pattern of FIG. 16 is high. The conclusion that the crystal structure is D was obtained.
 このように制御系3により、公知の画像処理技術を用いて、試料を傾斜して得られた複数の回折パターンをマッチングすることにより、二重回折反射を特定して除去することができる。 In this way, the control system 3 can identify and remove double diffraction reflections by matching a plurality of diffraction patterns obtained by tilting the sample using a known image processing technique.
 本実施例により、従来と比較し、試料傾斜を変えて単一粒子の回折パターンを従来より簡単に短時間で取得することが出来るようになった。これにより、二重回折の有無も比較的間便に判断できるようになり、正しい測定結果を得ることが出来るようになった。 This example makes it possible to obtain a diffraction pattern of a single particle in a shorter time than before by changing the sample inclination as compared with the conventional case. As a result, the presence / absence of double diffraction can be determined relatively easily, and a correct measurement result can be obtained.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 種々の電子線回析装置の分野に適用することができる。 It can be applied to the field of various electron diffraction devices.
1 電子線結晶構造解析装置
2 透過電子顕微鏡装置
3 制御系
4 操作部
5 電子銃
6 電子線
6a  ナノメートルサイズの電子線
7 コンデンサレンズ
8 コンデンサ絞り
9 電子線偏向器
10 試料
10a  評価試料
10a-A 評価試料10a中のA相箇所
10a-B 評価試料10a中のB相箇所
11 試料ホルダー
12 対物レンズ
13 対物絞り
14 中間レンズ
15 回折面位置
16 第二の検出器
17 検出器駆動部
18 像面位置
19 第一の検出器
20 電子銃制御部
21 コンデンサレンズ制御部
22 偏向器制御部
23 試料ホルダー11のステージ制御部
24 対物レンズ制御部
25 中間レンズ制御部
26 検出器駆動制御部
27 試料投影像表示部
28 回折イパターン像表示部
29 電子線回折スペクトル表示部
30 結晶構造モデル表示部
31 視やずれ解析/制御部
32,32a-A0,32a-An,32a-B0,32a-Bn, 試料投影像
33,33a-A0,33a-An,33a-B0,33a-Bn, 回折パターン像
34,34a,34a-A,34a-B,34a-Bn,34c-A, 回折パターン
35 電子線回折解析手段
36 ナノメートルオーダーサイズの単結晶粒子
37 メッシュ
38a,38b, 回転軸中心
39 コンデンサ絞り駆動部
40 コンデンサ絞り駆動制御部
41 制限視野絞り
42a 電子回折パターン
42b a*軸方向の一軸励起回折パターン
42c b*軸方向の一軸励起回折パターン
43 結晶構造Cの電子線回折パターン
44 結晶構造Dの電子線回折パターン
1 Electron crystal structure analyzer 2 Transmission electron microscope
3 Control system
4 Operation unit
5 electron gun
6 electron beam
6a Nanometer-sized electron beam
7 Condenser lens
8 condenser aperture
9 Electron beam deflector
10 samples
10a Evaluation sample
10a-A Phase A location in the sample 10a
10a-B B phase location in the sample 10a
11 Sample holder
12 Objective lens
13 Objective aperture
14 Intermediate lens
15 Diffractive surface position
16 Second detector
17 Detector drive
18 Image plane position
19 First detector 20 Electron gun control unit 21 Condenser lens control unit 22 Deflector control unit 23 Sample stage 11 stage control unit 24 Objective lens control unit 25 Intermediate lens control unit 26 Detector drive control unit 27 Sample projection image display 2 8 Diffraction image display 2 9 Electron diffraction spectrum display
30 Crystal structure model display
31 Visual and deviation analysis / control unit
32, 32a-A0, 32a-An, 32a-B0, 32a-Bn, sample projection image
33, 33a-A0, 33a-An, 33a-B0, 33a-Bn, diffraction pattern image
34, 34a, 34a-A, 34a-B, 34a-Bn, 34c-A, diffraction pattern
35 Electron diffraction analysis means
36 Nanometer order single crystal particles
37 mesh
38a, 38b, rotation axis center
39 Capacitor diaphragm drive
40 Capacitor aperture drive controller
41 Restricted field stop
42a Electron diffraction pattern
42b a * axis direction uniaxial excitation diffraction pattern
42c Uniaxial excitation diffraction pattern in the b * axis direction
43 Electron diffraction pattern of crystal structure C
44 Electron diffraction pattern of crystal structure D

Claims (15)

  1.  電子線を試料に照射する電子光学系と、
     前記試料に照射された前記電子線から、投影像を検出する第一の検出器と、
     前記試料に照射された前記電子線から、回折像を検出する第二の検出器と、
     前記電子線の照射角度を変化可能に、前記試料を保持する試料ホルダーと、
     前記電子光学系および前記試料ホルダーを制御する制御系を有し、
     前記制御系は、
     前記試料ホルダーによる前記照射角度の変化の前後における前記投影像から視野ずれ量を測定し、
     前記視野ずれ量に基づいて、前記電子線の前記試料への照射位置を制御し、
     前記制御された照射位置において、前記回折像を取得するように制御を行う、
     電子線解析装置。
    An electron optical system for irradiating the sample with an electron beam;
    A first detector for detecting a projected image from the electron beam irradiated on the sample;
    A second detector for detecting a diffraction image from the electron beam irradiated on the sample;
    A sample holder for holding the sample so that the irradiation angle of the electron beam can be changed;
    A control system for controlling the electron optical system and the sample holder;
    The control system is
    Measure the amount of visual field deviation from the projected image before and after the change of the irradiation angle by the sample holder,
    Based on the amount of visual field deviation, control the irradiation position of the electron beam to the sample,
    At the controlled irradiation position, control is performed so as to acquire the diffraction image.
    Electron beam analyzer.
  2.  前記試料に照射された前記電子線から像を形成する結像光学系を有し、
     前記結像光学系は、
     前記試料に照射された電子を結像する中間レンズを有し、
     前記第一の検出器は、
     前記中間レンズに対して前記試料の反対側にある像面に位置可能であり、
     前記第二の検出器は、
     前記中間レンズに対して前記試料の反対側にある回折面に位置可能であり、
     前記第一および第二の検出器を、前記電子線の航路外に設置するための、駆動機構を備えた、
     請求項1記載の電子線解析装置。
    An imaging optical system that forms an image from the electron beam irradiated on the sample;
    The imaging optical system is
    An intermediate lens for imaging the electrons irradiated on the sample;
    The first detector is
    Located on the image plane opposite the sample relative to the intermediate lens;
    The second detector is
    Can be located on a diffractive surface opposite the sample relative to the intermediate lens
    A drive mechanism for installing the first and second detectors outside the electron beam passage,
    The electron beam analyzer according to claim 1.
  3.  前記制御系は、
     前記試料ホルダーにより、前記照射角度を複数回変化させ、
     前記試料ホルダーによる前記照射角度の変化毎に、その前後における、前記投影像から視野ずれ量を測定し、
     前記視野ずれ量に基づいて、前記照射角度の変化毎に、前記電子線の前記試料への照射位置を制御し、
     前記制御された照射位置において、前記照射角度の変化毎に、前記回折像を取得するように制御を行う、
     請求項1記載の電子線解析装置。
    The control system is
    With the sample holder, the irradiation angle is changed a plurality of times,
    For each change of the irradiation angle by the sample holder, measure the amount of visual field deviation from the projected image before and after that,
    Based on the amount of visual field deviation, control the irradiation position of the electron beam to the sample for each change of the irradiation angle,
    At the controlled irradiation position, control is performed so as to acquire the diffraction image for each change in the irradiation angle.
    The electron beam analyzer according to claim 1.
  4.  前記試料ホルダーは、少なくとも2つの軸に対して回転可能な構成である、
     請求項1記載の電子線解析装置。
    The sample holder is configured to be rotatable with respect to at least two axes.
    The electron beam analyzer according to claim 1.
  5.  電子線を試料に照射し、試料を透過・回折した電子線を検出する電子顕微鏡において、
     前記試料の投影像を検出する第一の検出器と、
     前記試料の回折パターン像を検出する第二の検出器と、を備え、
     前記第一および第二検出器は中間レンズより下流に設置し、
     前記第一と第二の検出器は各々異なる検出器である事を特徴とする、
     電子顕微鏡。
    In an electron microscope that irradiates a sample with an electron beam and detects the electron beam transmitted and diffracted through the sample,
    A first detector for detecting a projected image of the sample;
    A second detector for detecting a diffraction pattern image of the sample,
    The first and second detectors are installed downstream from the intermediate lens,
    The first and second detectors are different from each other,
    electronic microscope.
  6.  請求項5記載の電子顕微鏡において、
     前記第一および第二の検出器は、前記電子線の航路上に設置または航路上以外に設置できるよう、駆動機構を備えたことを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 5,
    The first and second detectors are provided with a drive mechanism so that they can be installed on a route of the electron beam or other than on the route.
    electronic microscope.
  7.  請求項5記載の電子顕微鏡において、
     前記試料の傾斜に伴う視野ずれ補正手段を有することを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 5,
    It has a visual field deviation correction means accompanying the inclination of the sample,
    electronic microscope.
  8.  請求項7記載の電子顕微鏡において、
     前記視野ずれ補正手段は、前記第一の検出器で検出される投影像を用いて、視野ずれ量を測定することを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 7,
    The visual field deviation correction means measures a visual field deviation amount using a projection image detected by the first detector,
    electronic microscope.
  9.  請求項7記載の電子顕微鏡において、
     前記試料の同一箇所における、前記電子線の入射角度の異なる複数の回折パターン像を取得する際に、
     前記試料を傾斜させた後に、前記視野ずれ補正手段により視野ずれを補正した後に、前記第二検出手段で回折パターンを取得することを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 7,
    When acquiring a plurality of diffraction pattern images having different incident angles of the electron beam at the same location of the sample,
    After correcting the visual field deviation by the visual field deviation correction unit after tilting the sample, the diffraction pattern is obtained by the second detection unit,
    electronic microscope.
  10.  請求項9記載の電子顕微鏡において、
     前記電子線の照射領域をナノメートルオーダーに絞る手段を併用し、
     前記試料のナノメートルオーダー領域における、前記電子線の入射角度の異なる複数の回折パターン像を取得することを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 9, wherein
    In combination with means for narrowing the irradiation area of the electron beam to the nanometer order,
    A plurality of diffraction pattern images having different incident angles of the electron beam in a nanometer order region of the sample are obtained,
    electronic microscope.
  11.  請求項9記載の電子顕微鏡において、
     前記電子線の入射角度の異なる複数の回折パターン像を積算し、前記積算パターン像から電子線回折スペクトルを算出し、前記電子線回折スペクトルとモデル構造の回折パターンとをパターンフィッティングして、前記試料の結晶構造を解析する手段を有することを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 9, wherein
    A plurality of diffraction pattern images having different incident angles of the electron beam are integrated, an electron beam diffraction spectrum is calculated from the integrated pattern image, and the electron beam diffraction spectrum and a model structure diffraction pattern are pattern-fitted, and the sample It has a means for analyzing the crystal structure of
    electronic microscope.
  12.  請求項11記載の電子顕微鏡において、
     前記電子線回折スペクトルを算出する際に、前記複数の回折パターン像相互を比較することにより、二重回折の回折を取り除く手段を有していることを特徴とする、
     電子顕微鏡。
    The electron microscope according to claim 11,
    When the electron beam diffraction spectrum is calculated, the plurality of diffraction pattern images are compared with each other to have a means for removing double diffraction diffraction,
    electronic microscope.
  13.  試料の所望の箇所に異なる角度で電子線を照射し、複数の回折パターン像を取得する電子線解析方法であって、
     前記試料の第1の投影像を取得する第1のステップ、
     前記試料の第1の回折像を取得する第2のステップ、
     前記試料の前記電子線に対する角度を変更する第3のステップ、
     前記試料の第2の投影像を取得する第4のステップ、
     前記第1及び第2の投影像に基づいて視野ずれ量を算出する第5のステップ、
     前記視野ずれ量に基づいて、前記試料に対する前記電子線の照射位置を調整する第6のステップ、
     前記調整された照射位置における、前記試料の第2の回折像を取得する第7のステップを備え、
     前記投影像と回折像は、別々の検出器にて検出することを特徴とする、
     電子線解析方法。
    An electron beam analysis method for obtaining a plurality of diffraction pattern images by irradiating a desired portion of a sample with an electron beam at different angles,
    A first step of obtaining a first projected image of the sample;
    A second step of acquiring a first diffraction image of the sample;
    A third step of changing an angle of the sample with respect to the electron beam;
    A fourth step of obtaining a second projected image of the sample;
    A fifth step of calculating a visual field shift amount based on the first and second projection images;
    A sixth step of adjusting an irradiation position of the electron beam on the sample based on the visual field shift amount;
    A seventh step of acquiring a second diffraction image of the sample at the adjusted irradiation position;
    The projection image and the diffraction image are detected by separate detectors,
    Electron beam analysis method.
  14.  前記第2~第7のステップを複数回繰り返して複数の回折像を取得し、
     前記繰り返しの際には、前記第7のステップが即ち前記第2のステップとなり、
     前記複数の回折像を積算して電子線回折スペクトルを算出し、
     前記電子線回折スペクトルとモデル構造の回折パターンとをパターンフィッティングし、前記試料の構造を解析することを特徴とする、
     請求項13記載の電子線解析方法。
    Repeating the second to seventh steps a plurality of times to obtain a plurality of diffraction images,
    During the repetition, the seventh step becomes the second step,
    An electron diffraction spectrum is calculated by integrating the plurality of diffraction images,
    Pattern fitting the electron beam diffraction spectrum and the diffraction pattern of the model structure, and analyzing the structure of the sample,
    The electron beam analysis method according to claim 13.
  15.  複数の回折像を比較することにより、二重回折による像を特定し、除去した後に前記電子線回折スペクトルを算出することを特徴とする、
     請求項14記載の電子線解析方法。
    By comparing a plurality of diffraction images, to identify the image by double diffraction, and after removing the electron diffraction spectrum is calculated,
    The electron beam analysis method according to claim 14.
PCT/JP2015/063667 2015-05-12 2015-05-12 Method and device for electron beam analysis, and electron microscope WO2016181508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063667 WO2016181508A1 (en) 2015-05-12 2015-05-12 Method and device for electron beam analysis, and electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/063667 WO2016181508A1 (en) 2015-05-12 2015-05-12 Method and device for electron beam analysis, and electron microscope

Publications (1)

Publication Number Publication Date
WO2016181508A1 true WO2016181508A1 (en) 2016-11-17

Family

ID=57247838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063667 WO2016181508A1 (en) 2015-05-12 2015-05-12 Method and device for electron beam analysis, and electron microscope

Country Status (1)

Country Link
WO (1) WO2016181508A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198242A1 (en) * 2017-04-26 2018-11-01 株式会社ニコン Inspection device, inspection method, and method for producing object to be inspected
WO2023095682A1 (en) * 2021-11-25 2023-06-01 株式会社リガク Crystal structure analysis method, crystal structure analysis device, and crystal structure analysis program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014667A (en) * 2001-07-05 2003-01-15 Hitachi Ltd Apparatus and method for observing using electron beam
JP2004264260A (en) * 2003-03-04 2004-09-24 Kyocera Corp Analytical method and analytical device of electron diffraction pattern
JP2011076813A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Scanning transmission electron microscope, and scanning transmission image observation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014667A (en) * 2001-07-05 2003-01-15 Hitachi Ltd Apparatus and method for observing using electron beam
JP2004264260A (en) * 2003-03-04 2004-09-24 Kyocera Corp Analytical method and analytical device of electron diffraction pattern
JP2011076813A (en) * 2009-09-30 2011-04-14 Hitachi High-Technologies Corp Scanning transmission electron microscope, and scanning transmission image observation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUMASA KOYAMA ET AL.: "Fundamentals of Electron Diffraction from Crystals", JOURNAL OF THE CRYSTALLOGRAPHIC SOCIETY OF JAPAN, vol. 39, no. 4, 28 August 1997 (1997-08-28), pages 271 - 278 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198242A1 (en) * 2017-04-26 2018-11-01 株式会社ニコン Inspection device, inspection method, and method for producing object to be inspected
KR20190132660A (en) * 2017-04-26 2019-11-28 가부시키가이샤 니콘 Inspection device, inspection method and manufacturing method of inspection object
JPWO2018198242A1 (en) * 2017-04-26 2020-03-05 株式会社ニコン Inspection apparatus, inspection method, and method of manufacturing inspection object
KR102267658B1 (en) 2017-04-26 2021-06-21 가부시키가이샤 니콘 Inspection apparatus, inspection method and manufacturing method of inspection object
US11639904B2 (en) 2017-04-26 2023-05-02 Nikon Corporation Inspection device, inspection method, and method for producing object to be inspected
WO2023095682A1 (en) * 2021-11-25 2023-06-01 株式会社リガク Crystal structure analysis method, crystal structure analysis device, and crystal structure analysis program

Similar Documents

Publication Publication Date Title
US8461527B2 (en) Scanning electron microscope and method for processing an image obtained by the scanning electron microscope
US10777383B2 (en) Method for alignment of a light beam to a charged particle beam
US7863564B2 (en) Electric charged particle beam microscope and microscopy
US9202671B2 (en) Charged particle beam apparatus and sample processing method using charged particle beam apparatus
JP6253618B2 (en) EBSP pattern acquisition method
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP6346036B2 (en) X-ray fluorescence analyzer and method for adjusting measurement position thereof
US8080790B2 (en) Scanning electron microscope
JP2010048727A (en) X-ray analyzer and x-ray analysis method
JP5464535B1 (en) Charged particle beam apparatus capable of easily analyzing desired location with EBSD detector and control method thereof
WO2016181508A1 (en) Method and device for electron beam analysis, and electron microscope
JP6783124B2 (en) Scanning transmission electron microscope and image generation method
US9784700B2 (en) X-ray analyzer
JP2013178246A (en) Microdiffraction method and apparatus
CN110364406B (en) Charged particle beam axis alignment device and method, charged particle beam irradiation device
EP4067887A1 (en) Methods and systems for acquiring three dimensional electron diffraction data
US20080164410A1 (en) Emission detecting analysis system and method of detecting emission on object
JP5851218B2 (en) Sample analyzer
US11164720B2 (en) Scanning electron microscope and calculation method for three-dimensional structure depth
US11791131B2 (en) Charged particle beam apparatus and method for controlling charged particle beam apparatus
JP2006118940A (en) Method and device for detecting obliquely emitted x-ray
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2012026757A (en) Surface analyzer and sample holder used for the same
JP7394535B2 (en) Particle beam analyzer
JP2007220317A (en) Electron beam inspection method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP