JP2006118940A - Method and device for detecting obliquely emitted x-ray - Google Patents

Method and device for detecting obliquely emitted x-ray Download PDF

Info

Publication number
JP2006118940A
JP2006118940A JP2004305948A JP2004305948A JP2006118940A JP 2006118940 A JP2006118940 A JP 2006118940A JP 2004305948 A JP2004305948 A JP 2004305948A JP 2004305948 A JP2004305948 A JP 2004305948A JP 2006118940 A JP2006118940 A JP 2006118940A
Authority
JP
Japan
Prior art keywords
angle
ray
sample
analysis
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305948A
Other languages
Japanese (ja)
Inventor
Hideyuki Takahashi
橋 秀 之 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004305948A priority Critical patent/JP2006118940A/en
Publication of JP2006118940A publication Critical patent/JP2006118940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily set an X-ray extraction angle with respect to dispersion type X-ray spectrometer of a plurality of wavelengths, in oblique emission electron probe microanalyzer (EPMA) analysis. <P>SOLUTION: An analytical sample is mounted on a sample stage, having structure mounted with an inclined angle regulation mechanism on a rotary mechanism. The inclined angle of the analytical sample is set to be brought into the total reflection angle of characteristic X-rays used in the analysis or the extraction angle near thereto, using an energy dispersion type X-ray spectrometer set to the X-ray extraction angle same to those of the wavelength dispersion type X-ray spectrometers. The sample is rotated along the X-ray extraction direction for each wavelength dispersion type X-ray spectrometer to conduct measurements, while keeping the inclined angle of the analysis sample. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料に電子線を照射して検出された特性X線を用いて元素分析を行う、電子プローブマイクロアナライザ(EPMA)やX線分析機能を搭載した走査電子顕微鏡(分析SEM)などの電子プローブX線分析装置に係わり、特に試料表面から射出されるX線を全反射角またはその近傍の取出し角度で検出することにより極表面分析を行う方法と装置に関する。 The present invention relates to an electron probe microanalyzer (EPMA) or a scanning electron microscope (analysis SEM) equipped with an X-ray analysis function, which performs elemental analysis using characteristic X-rays detected by irradiating a sample with an electron beam. The present invention relates to an electron probe X-ray analyzer, and more particularly to a method and apparatus for performing an extreme surface analysis by detecting X-rays emitted from a sample surface at a total reflection angle or a take-out angle in the vicinity thereof.

従来からEPMAや分析SEMは、試料に電子線を照射してミクロンオーダー領域から発生する特性X線を検出して試料表面の分析を行う装置として広く使われている。図5に波長分散形X線分光器(WDS)とエネルギー分散形X線分光器(EDS)を同時に装着した従来のEPMAの構成例を示す。電子銃1から発生した電子を集束レンズ2、対物レンズ3で細く絞り試料6に照射する。試料ステージ7及び電子線偏向器4により試料上の分析位置に電子線を照射できる。試料から発生する特性X線はWDS分光素子9で分光、WDSX線検出器10で検出されたり、EDS検出器5で検出される。WDSやEDSのX線信号は制御演算処理装置16に送られデータ処理が行われる。 Conventionally, EPMA and analysis SEM are widely used as apparatuses for analyzing a sample surface by irradiating a sample with an electron beam and detecting characteristic X-rays generated from a micron order region. FIG. 5 shows a configuration example of a conventional EPMA equipped with a wavelength dispersive X-ray spectrometer (WDS) and an energy dispersive X-ray spectrometer (EDS) at the same time. Electrons generated from the electron gun 1 are thinly irradiated to the apertured sample 6 by the focusing lens 2 and the objective lens 3. The sample stage 7 and the electron beam deflector 4 can irradiate the analysis position on the sample with an electron beam. Characteristic X-rays generated from the sample are spectrally detected by the WDS spectroscopic element 9 and detected by the WDSX ray detector 10 or detected by the EDS detector 5. X-ray signals of WDS and EDS are sent to the control arithmetic processing unit 16 for data processing.

通常のEPMA分析において、数kV〜数十kVに加速された電子線により励起された特性X線のうち、試料面と成す角度が概ね30〜50度で試料外に射出された特性X線が、概ね5〜10度の立体角でX線分光器に取り込まれる。この場合の分析深さは、電子線の加速電圧や試料組成に依存するが、0.数μm〜数μm程度に及ぶ。通常のEPMA分析では、加速された電子線が試料内に拡散する領域から発生する特性X線を検出するため、試料の極表面ナノメートルオーダーの分析は原理的に困難である。この問題を解決するために、試料表面から射出される特性X線を全反射角またはその近傍の取出し角度で検出することにより極表面のみの分析を行う方法が、特公平4-61304号において開示されている。 In normal EPMA analysis, among characteristic X-rays excited by an electron beam accelerated to several kV to several tens kV, characteristic X-rays emitted outside the sample at an angle of approximately 30 to 50 degrees with the sample surface are The solid angle of about 5 to 10 degrees is taken into the X-ray spectrometer. The analysis depth in this case depends on the acceleration voltage of the electron beam and the sample composition, but ranges from about several μm to several μm. In normal EPMA analysis, characteristic X-rays generated from a region where an accelerated electron beam diffuses into the sample are detected, and therefore, analysis of the sample on the extreme surface nanometer order is difficult in principle. In order to solve this problem, Japanese Patent Publication No. 4-61304 discloses a method of analyzing only the extreme surface by detecting characteristic X-rays emitted from the sample surface at the total reflection angle or the extraction angle in the vicinity thereof. Has been.

EPMAを用いて行う上記の方法は、斜出射EPMA法(GE-EPMA法:Grazing-exit EPMA)と呼ばれる。斜出射EPMA法を用いると、基板から発生するバックグランドX線強度が減少することにより、通常のEPMA分析では不可能であったナノメートルオーダーの表面組成、基板上の極薄い汚れ、微粒子の分析等が可能となる。ただし斜出射EPMA法は、試料面と射出X線との成す角(X線取出し角)の厳密な調整が必要であるため、EPMAにエネルギー分散形X線分光器(EDS)を備えた装置で測定を行う場合のX線取出し角設定条件や調整方法が、特開2001-208708号や特開2002-286661号において開示されている。
特公平4-61304号 特開2001-208708号 特開2002-286661号 特開昭63-76251号
The above method performed using EPMA is called oblique emission EPMA method (GE-EPMA method: Grazing-exit EPMA). When the oblique emission EPMA method is used, the background X-ray intensity generated from the substrate decreases, so that the surface composition on the nanometer order, ultrathin dirt on the substrate, and analysis of fine particles, which was impossible with normal EPMA analysis Etc. are possible. However, the oblique emission EPMA method requires precise adjustment of the angle (X-ray extraction angle) formed between the sample surface and the emitted X-ray, and is therefore an apparatus provided with an energy dispersive X-ray spectrometer (EDS) in EPMA. An X-ray extraction angle setting condition and an adjustment method when performing measurement are disclosed in Japanese Patent Laid-Open Nos. 2001-208708 and 2002-286661.
Japanese Patent Publication No. 4-61304 JP 2001-208708 A JP 2002-286661 A JP-A-63-76251

通常のEPMA分析においてより精度の高い分析を行う場合は、EDSよりもWDSが用いられる。斜出射EPMA法においても本来はWDSの方がより高いP/B比で分析が行えるはずである。しかしこれまでの斜出射EPMA法においては、X線検出器としてEDSが用いられてきた。その理由は、上述したように、斜出射EPMA法では試料面と射出X線との成す角(X線取出し角)の厳密な調整が必要なことにあるが、EDSはその調整が比較的行い易いためである When performing analysis with higher accuracy in normal EPMA analysis, WDS is used rather than EDS. Even in the oblique emission EPMA method, the WDS should be able to perform analysis with a higher P / B ratio. However, in the oblique emission EPMA method so far, EDS has been used as an X-ray detector. The reason is that, as described above, in the oblique emission EPMA method, it is necessary to strictly adjust the angle (X-ray extraction angle) formed between the sample surface and the emitted X-ray, but EDS relatively performs the adjustment. Because it is easy

すなわち、EDS検出器は大量のX線量子が入射するとパイルアップ現象により検出効率が低下してしまう。そのため、照射電流が多いときにもパイルアップ現象を防いでEDS検出器が作動できるように、EDS検出器の前面に複数の穴径切換が可能なX線入射絞り穴径を備えた装置が実用化されている。X線入射量を制限するための絞りを入射X線の角度制限に使用すると、検出器へ入射するX線の広がりを容易に1度以下に設定することができる。従って、試料の角度を微調整して、斜出射EPMA法による分析が可能な試料傾斜角度を比較的容易に見出すことができる。しかしWDSは分光素子への入射角度が5〜10度程度あるので、試料表面から射出したX線が斜出射EPMA法に適した角度になるように試料の傾斜角度を決めることは困難であった。本発明はEDSを活用することにより、WDSにおいても斜出射EPMA法に適した角度を簡単に設定できるようにした装置の提供を目的とする。 That is, when a large amount of X-ray quanta is incident on the EDS detector, the detection efficiency decreases due to a pile-up phenomenon. Therefore, a device equipped with an X-ray entrance aperture diameter that allows switching of multiple hole diameters on the front surface of the EDS detector so that the EDS detector can be operated while preventing the pile-up phenomenon even when the irradiation current is large. It has become. If a diaphragm for limiting the amount of incident X-rays is used to limit the angle of incident X-rays, the spread of X-rays incident on the detector can be easily set to 1 degree or less. Therefore, it is possible to relatively easily find the sample tilt angle that can be analyzed by the oblique emission EPMA method by finely adjusting the sample angle. However, since the WDS has an incident angle on the spectroscopic element of about 5 to 10 degrees, it is difficult to determine the tilt angle of the sample so that the X-ray emitted from the sample surface has an angle suitable for the oblique emission EPMA method. . An object of the present invention is to provide an apparatus that can easily set an angle suitable for the oblique emission EPMA method even in WDS by utilizing EDS.

上記問題を解決するため本発明は、少なくとも1基のエネルギー分散形X線分光器と少なくとも1基の波長分散形X線分光器を備え、前記エネルギー分散形X線分光器と前記波長分散形X線分光器のX線取出し角が電子線の照射軸と直角な面に対して同一であるように配設されている電子プローブX線分析装置であって、
試料傾斜機構が試料回転機構の上方に配置されている機構と試料のX,Y,Z軸移動機構とを有する試料ステージを備え、
前記エネルギー分散形X線分光器または前記波長分散形X線分光器のうちのいずれか選択されたX線分光器を使ってX線を検出する時に、分析試料表面と前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角に設定されるように、前記試料ステージの傾斜角度及び回転角度を設定する機能を備えることを特徴とする。
In order to solve the above problem, the present invention includes at least one energy dispersive X-ray spectrometer and at least one wavelength dispersive X-ray spectrometer, and the energy dispersive X-ray spectrometer and the wavelength dispersive X-ray spectrometer. An electron probe X-ray analyzer arranged so that an X-ray extraction angle of a line spectrometer is the same as a plane perpendicular to an irradiation axis of an electron beam,
A sample stage having a mechanism in which the sample tilting mechanism is disposed above the sample rotating mechanism and the X, Y, Z axis moving mechanism of the sample;
When detecting X-rays using an X-ray spectrometer selected from either the energy dispersive X-ray spectrometer or the wavelength dispersive X-ray spectrometer, the X-ray is emitted from the analysis sample surface and the analysis sample surface. And a function of setting an inclination angle and a rotation angle of the sample stage so that an angle formed with the X-ray is set to a total reflection angle or an extraction angle in the vicinity thereof.

また本発明は、前記エネルギー分散形X線分光器を選択して、前記分析試料表面から射出されたX線と成す角が全反射角またはその近傍の取出し角になるように前記試料ステージの傾斜角度及び回転角度を調整した後、選択されたいずれかの前記波長分散形X線分光器に対しても、前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角に設定されるように前記傾斜角度を保持したまま、試料ステージの回転角度を自動的に設定する機能を備えたことを特徴とする。 In the present invention, the energy dispersive X-ray spectrometer is selected, and the sample stage is tilted so that an angle formed with the X-rays emitted from the analysis sample surface is a total reflection angle or a take-out angle in the vicinity thereof. After adjusting the angle and the rotation angle, the angle formed by the X-rays emitted from the analysis sample surface of any of the selected wavelength dispersion X-ray spectrometers is the total reflection angle or the vicinity thereof. It has a function of automatically setting the rotation angle of the sample stage while maintaining the tilt angle so as to set the take-out angle.

また本発明は、前記試料回転機構の初期方向に対して、分析位置を中心とした前記エネルギー分散形X線分光器と前記波長分散形X線分光器の配置方向が成す角度のデータを格納するデータベースを備え、前記データベースから必要なデータを読み出して試料ステージの回転角度を自動的に設定する機能を備えたことを特徴とする。 Further, the present invention stores data of an angle formed by an arrangement direction of the energy dispersive X-ray spectrometer and the wavelength dispersive X-ray spectrometer with an analysis position as a center with respect to an initial direction of the sample rotating mechanism. A database is provided, and a function of reading necessary data from the database and automatically setting the rotation angle of the sample stage is provided.

また本発明は、前記エネルギー分散形X線分光器が、検出器前面に少なくともひとつの絞り穴または前記試料表面と平行になるように形成された少なくともひとつのX線入射スリットを有し、前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角となる条件を満たすX線のみが、前記エネルギー分散形X線分光器に入射するように設定できる機能を備えたことを特徴とする。 In the invention, the energy dispersive X-ray spectrometer has at least one X-ray entrance slit formed on the front surface of the detector so as to be parallel to at least one aperture hole or the sample surface. A function can be set so that only the X-rays satisfying the condition that the angle formed by the X-rays emitted from the sample surface is the total reflection angle or the extraction angle in the vicinity thereof are incident on the energy dispersive X-ray spectrometer. It is characterized by that.

本発明によれば、異なるX線取出し方向に配設されたEDSやWDSに対しても、分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角である条件を満たすX線のみを検出できるように、試料の傾斜角度と回転角度を設定して、斜出射EPMA法による分析が行える。 According to the present invention, even for EDS and WDS disposed in different X-ray extraction directions, the angle formed by the X-rays emitted from the analysis sample surface is the total reflection angle or the extraction angle in the vicinity thereof. The sample can be analyzed by oblique emission EPMA method by setting the tilt angle and rotation angle of the sample so that only X-rays satisfying the above condition can be detected.

また本発明によれば、検出器前面にX線入射絞り穴若しくはスリットを有するEDSを用いて斜出射EPMA法に適したX線取出し角度になるように試料を傾斜させた後、その角度を保持したまま、異なるX線取出し方向に配設されているWDS方向に自動的に試料を回転させることができるので、従来は困難であったWDSに対しても斜出射EPMA法に適したX線取出し角度を簡易に設定できる。 In addition, according to the present invention, the sample is tilted so as to have an X-ray extraction angle suitable for the oblique emission EPMA method using an EDS having an X-ray incident aperture hole or slit on the front surface of the detector, and the angle is maintained. In this way, the specimen can be automatically rotated in the WDS direction arranged in different X-ray extraction directions, so that X-ray extraction suitable for oblique emission EPMA method can be used even for WDS, which was difficult in the past. The angle can be set easily.

次に本発明を実施する形態について説明する。
図1は本発明をEPMAで実施する場合の構成例を示している。図5の従来EPMAの構成例にデータベース19が付加されている。前記データベース19には、試料回転機構の初期方向とEDSとWDSのX線取出し方向に関する位置関係のデータが格納されている。
Next, embodiments for carrying out the present invention will be described.
FIG. 1 shows a configuration example when the present invention is implemented by EPMA. A database 19 is added to the configuration example of the conventional EPMA shown in FIG. The database 19 stores data on the positional relationship between the initial direction of the sample rotation mechanism and the X-ray extraction direction of EDS and WDS.

図2は、本発明に係わる試料ステージの機能及びX線検出器との関係を説明するための概念図で、図1の試料ステージ7に相当する部分がさらに詳しく示されている。図2では、試料のX,Y,Z軸移動機構の上に試料回転機構204が配置され、さらにその上に試料傾斜機構203が配置されている例が示されているが、例えばX,Y軸移動機構205,206が試料回転機構204の上にあり、さらにその上に試料傾斜機構203が配置されていても良い。 FIG. 2 is a conceptual diagram for explaining the function of the sample stage and the relationship with the X-ray detector according to the present invention, and shows a part corresponding to the sample stage 7 of FIG. 1 in more detail. FIG. 2 shows an example in which the sample rotation mechanism 204 is arranged on the X, Y, and Z axis moving mechanisms of the sample, and the sample tilting mechanism 203 is further arranged thereon. The axis moving mechanisms 205 and 206 may be provided on the sample rotating mechanism 204, and the sample tilting mechanism 203 may be further disposed thereon.

また図2では、試料回転機構204を使って試料傾斜機構203の傾斜方向がEDS検出器208の方向に一致するように設定され、さらに試料傾斜機構203とX線入射絞り209によって、分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角である条件を満たすX線のみがEDS検出器208に入射するように設定されている状態を示している。図2のX線入射絞り209は円形の絞り穴の場合を示しているが、試料面と平行なスリットでも良い。また、サイズの異なる絞り穴やスリットの個数は図2の例に示す4個に限られるわけでは無く、複数の絞り穴の配置方法も、図2に示す円盤の周辺に配置される機構に限られるものではない。
小さい穴径またはスリット幅を選択すれば、斜出射EPMA分析の条件をより厳密に設定できるが、信号強度は減少するので、複数のサイズが準備されている場合は分析者が適当なサイズのものを選択することになる。
In FIG. 2, the sample rotation mechanism 204 is used to set the tilt direction of the sample tilt mechanism 203 so as to coincide with the direction of the EDS detector 208, and the sample tilt mechanism 203 and the X-ray entrance stop 209 further 2 shows a state in which only the X-ray satisfying the condition that the angle formed by the X-ray emitted from the X-ray is the total reflection angle or the extraction angle in the vicinity thereof is incident on the EDS detector 208. The X-ray entrance stop 209 in FIG. 2 shows a circular stop hole, but it may be a slit parallel to the sample surface. Further, the number of aperture holes and slits having different sizes is not limited to the four shown in the example of FIG. 2, and the arrangement method of the plurality of aperture holes is limited to the mechanism arranged around the disk shown in FIG. It is not something that can be done.
If a small hole diameter or slit width is selected, the conditions for oblique emission EPMA analysis can be set more strictly, but the signal intensity is reduced, so if multiple sizes are prepared, the analyst should use the appropriate size. Will be selected.

次に図3について具体的に説明する。図3は1基のEDSと4基のWDSが装着されている場合の角度配置を装置の上方から見た平面図である。 本発明の要点の理解を助けるため、試料上の分析位置(電子線照射軸212に同じ)が試料回転機構204の回転中心に一致している場合を示している。もし分析位置と試料回転中心位置が異なっている場合は試料の回転を行うと、試料の傾斜角と分析位置の高さは変わらないが、分析位置が電子線照射軸と異なる位置に移動してしまう。この場合は分析点試料の回転を行った後、操作者が二次電子像、反射電子像、光学顕微鏡像などで分析位置を確認し、X,Y軸移動機構205,206により、分析位置を電子線照射軸212に一致させればよい。あるいは、特開昭63-76251号において開示されている如く、回転に伴って分析点が移動する量を演算によって求め、その移動量をX,Y移動制御系にフィードバックすることにより、操作者の作業によらず自動的に分析位置を電子線照射軸212に移動させることも可能である。
また、電子線照射軸と試料回転中心が常に一致している構造の試料ステージを使用すれば、試料を回転させても分析位置の補正は不要だが、本発明においては必ずしも電子線照射軸と試料回転中心が一致している構造の試料ステージを使用する必要はない。
Next, FIG. 3 will be specifically described. FIG. 3 is a plan view of the angular arrangement when one EDS and four WDS are mounted as viewed from above the apparatus. In order to facilitate understanding of the essential points of the present invention, the case where the analysis position on the sample (same as the electron beam irradiation axis 212) coincides with the rotation center of the sample rotation mechanism 204 is shown. If the analysis position and the sample rotation center position are different, rotating the sample does not change the sample tilt angle and the analysis position height, but the analysis position moves to a position different from the electron beam irradiation axis. End up. In this case, after rotating the sample at the analysis point, the operator confirms the analysis position with a secondary electron image, a backscattered electron image, an optical microscope image, etc., and the X, Y axis moving mechanism 205, 206 is used to determine the analysis position. What is necessary is just to make it correspond to the irradiation axis 212. Alternatively, as disclosed in Japanese Patent Laid-Open No. 63-76251, the amount of movement of the analysis point with rotation is obtained by calculation, and the amount of movement is fed back to the X, Y movement control system, so that the operator It is also possible to automatically move the analysis position to the electron beam irradiation axis 212 regardless of the work.
If a sample stage having a structure in which the electron beam irradiation axis and the sample rotation center always coincide is used, correction of the analysis position is not required even if the sample is rotated. However, in the present invention, the electron beam irradiation axis and the sample are not necessarily corrected. It is not necessary to use a sample stage having a structure in which the rotation centers coincide.

試料回転初期方向308は、装置の仕様や構造により設計的に決められた位置である。従って、試料回転初期方向308とEDS303、WDS304〜307との成す角度θ0〜θ4も装置によって設計的に決まった値である。図3に示した配置は単なる一例であり、試料回転初期方向、EDSとWDSの位置関係、WDSの基数、各分光器間の角度などは装置によって様々であることは言うまでもない。 The sample rotation initial direction 308 is a position determined by design according to the specifications and structure of the apparatus. Accordingly, the angles θ0 to θ4 formed by the sample rotation initial direction 308 and the EDS 303 and WDS 304 to 307 are also determined by design by the apparatus. The arrangement shown in FIG. 3 is merely an example, and it goes without saying that the sample rotation initial direction, the positional relationship between EDS and WDS, the WDS radix, the angle between the spectroscopes, and the like vary depending on the apparatus.

さて、上述したようにある波長(またはエネルギーに同じ)の特性X線がEDS検出器208で斜出射EPMA分析の条件となるように試料傾斜機構203で角度を設定した後、前記ある波長の特性X線を検出するように選択したいずれかのWDS分光器方向にX線取出し方向が一致するように、試料の傾斜角度を保ったまま試料を回転させる。このとき制御演算処理装置16はデータベース19に格納されている分光器の角度配置を読み出して、試料回転機構204により必要な回転位置に試料を設定する。 As described above, after setting the angle by the sample tilt mechanism 203 so that the characteristic X-ray of a certain wavelength (or the same as the energy) becomes the condition of the oblique emission EPMA analysis by the EDS detector 208, the characteristic of the certain wavelength is set. The sample is rotated while maintaining the tilt angle of the sample so that the X-ray extraction direction coincides with any WDS spectrometer direction selected to detect X-rays. At this time, the control arithmetic processing unit 16 reads the angular arrangement of the spectroscope stored in the database 19 and sets the sample at a necessary rotation position by the sample rotation mechanism 204.

上述した本発明の実施形態をまとめた分析のフローを図4に示す。
ステップ1:分析試料を試料ステージに装着する。この時、試料表面からのX線の取出し方向が試料傾斜方向と一致するように装着する。
ステップ2:斜出射EPMA分析を行う元素の特性X線種を指定する。
ステップ3:データベース19からθ0を読み出し、EDS検出器208の設置されている方向に試料傾斜機構203の傾斜方向が一致するように、試料回転機構204により試料を回転させる。
ステップ4:EDS検出器208で検出する特性X線が斜出射EPMA分析の条件となるように、試料傾斜機構203により試料を傾斜させて傾斜角を設定する。
ステップ5:斜出射EPMA分析を行う元素の特性X線種を分光・検出するためのWDS分光器を指定する。指定されたWDS分光器はこのステップで分光条件に設定されても良いし、ステップ2で特性X線種が指定された時点で、既に前記特性X線種を分光・検出可能な分光器が設定されていても良い。
ステップ6:指定されたWDS分光器に対応して、データベース19からθ1〜θ4の中から必要なデータを読み出し、傾斜角を保ったまま試料回転機構204により試料を回転させる。もし回転によって分析位置が電子線照射軸からずれた場合はX,Y軸移動機構により補正する。
ステップ7:指定されたWDS分光器で斜出射EPMA分析を行う。
ステップ8:分析元素/特性X線種を変更して分析する場合はYesを選択しステップ2以下を繰り返す。分析を終了する場合はNoを選択する。
FIG. 4 shows an analysis flow in which the above-described embodiment of the present invention is summarized.
Step 1: Mount the analysis sample on the sample stage. At this time, it is mounted so that the X-ray extraction direction from the sample surface coincides with the sample inclination direction.
Step 2: Specify the characteristic X-ray type of the element for which oblique emission EPMA analysis is performed.
Step 3: Read θ 0 from the database 19 and rotate the sample by the sample rotation mechanism 204 so that the tilt direction of the sample tilt mechanism 203 matches the direction in which the EDS detector 208 is installed.
Step 4: The tilt angle is set by tilting the sample by the sample tilt mechanism 203 so that the characteristic X-rays detected by the EDS detector 208 are the conditions for the oblique emission EPMA analysis.
Step 5: Designate a WDS spectrometer for spectroscopic detection of the characteristic X-ray species of the element for which oblique emission EPMA analysis is performed. The designated WDS spectrometer may be set to the spectral condition in this step, or when the characteristic X-ray type is designated in step 2, a spectroscope capable of spectroscopic / detecting the characteristic X-ray type is already set. May be.
Step 6: Corresponding to the designated WDS spectrometer, necessary data is read from the database 19 from θ1 to θ4, and the sample is rotated by the sample rotating mechanism 204 while maintaining the tilt angle. If the analysis position deviates from the electron beam irradiation axis due to rotation, it is corrected by the X and Y axis moving mechanism.
Step 7: Oblique emission EPMA analysis is performed with the designated WDS spectrometer.
Step 8: When analyzing by changing the analysis element / characteristic X-ray type, select Yes and repeat Step 2 and subsequent steps. Select No to end the analysis.

本発明に係わる電子プローブマイクロアナライザの構成例。1 is a configuration example of an electronic probe microanalyzer according to the present invention. 本発明に係わる試料ステージの機能及びX線検出器との関係を説明するための概念図。The conceptual diagram for demonstrating the function of the sample stage concerning this invention, and the relationship with an X-ray detector. 本発明に係わる試料ステージ及びX線検出器の位置と動作関係を説明するための平面図。The top view for demonstrating the position and operation | movement relationship of the sample stage and X-ray detector concerning this invention. 本発明の実施の形態を説明するフロー図。The flowchart explaining embodiment of this invention. 従来の電子プローブマイクロアナライザの構成例。The structural example of the conventional electronic probe microanalyzer.

符号の説明Explanation of symbols

(下記1〜18は図1と図5とも共通で、19は図5のみに付している。)
1:電子銃 11:WDS分光素子制御装置
2:集束レンズ 12:WDSX線信号処理装置
3:対物レンズ 13:試料ステージ制御装置
4:電子線偏向器 14:インタフェース
5:EDS検出器 15:EDS制御装置
6:試料 16:制御演算処理装置
7:試料ステージ 17:表示装置
8:電子光学系制御装置 18:入力装置
9:WDS分光素子 19:データベース
10:WDSX線検出器
(The following items 1 to 18 are common to FIGS. 1 and 5, and 19 is attached only to FIG. 5.)
1: Electron gun 11: WDS spectroscopic element control device
2: Focusing lens 12: WDSX ray signal processor
3: Objective lens 13: Sample stage controller
4: Electron beam deflector 14: Interface
5: EDS detector 15: EDS controller
6: Sample 16: Control processing unit
7: Sample stage 17: Display device
8: Electro-optical system controller 18: Input device
9: WDS spectrometer 19: Database
10: WDSX ray detector

Claims (3)

少なくとも1基のエネルギー分散形X線分光器と少なくとも1基の波長分散形X線分光器を備え、前記エネルギー分散形X線分光器と前記波長分散形X線分光器のX線取出し角が電子線の照射軸と直角な面に対して同一であるように配設されている電子プローブX線分析装置であって、試料傾斜機構が試料回転機構の上に配置されている構造を有する試料ステージを備え、
前記エネルギー分散形X線分光器を選択して、前記分析試料表面から射出されたX線と成す角が全反射角またはその近傍の取出し角になるように前記試料ステージの傾斜角度及び回転角度を調整した後、選択されたいずれかの前記波長分散形X線分光器に対しても、前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角に設定される条件を満たすように、前記傾斜角度を保持したまま試料ステージの回転角度を設定してX線分析を行う表面分析方法。
At least one energy dispersive X-ray spectrometer and at least one wavelength dispersive X-ray spectrometer are provided, and an X-ray extraction angle of the energy dispersive X-ray spectrometer and the wavelength dispersive X-ray spectrometer is an electron. An electron probe X-ray analyzer disposed so as to be the same with respect to a plane perpendicular to the irradiation axis of a line, and a sample stage having a structure in which a sample tilting mechanism is disposed on a sample rotating mechanism With
By selecting the energy dispersive X-ray spectrometer, the tilt angle and rotation angle of the sample stage are set so that the angle formed with the X-rays emitted from the surface of the analysis sample becomes the total reflection angle or the extraction angle in the vicinity thereof. After the adjustment, the angle formed by the X-rays emitted from the analysis sample surface is set to the total reflection angle or the extraction angle in the vicinity thereof for any of the selected wavelength dispersion X-ray spectrometers. A surface analysis method for performing X-ray analysis by setting the rotation angle of the sample stage while maintaining the tilt angle so as to satisfy the following conditions.
前記エネルギー分散形X線分光器を選択して、前記分析試料表面から射出されたX線と成す角が全反射角またはその近傍の取出し角になるように前記試料ステージの傾斜角度及び回転角度を調整した後、選択されたいずれかの前記波長分散形X線分光器に対しても、前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角に設定される条件を満たすように、前記傾斜角度を保持したまま試料ステージの回転角度を設定するために、前記試料回転機構の初期方向に対して、分析位置を中心とした前記エネルギー分散形X線分光器と前記波長分散形X線分光器の配置方向が成す角度のデータを格納するデータベースを備え、前記データベースから必要なデータを読み出して試料ステージの回転角度を自動的に設定する機能を備えた、請求項1に記載の電子プローブX線分析装置。 By selecting the energy dispersive X-ray spectrometer, the tilt angle and rotation angle of the sample stage are set so that the angle formed with the X-rays emitted from the surface of the analysis sample becomes the total reflection angle or the extraction angle in the vicinity thereof. After the adjustment, the angle formed by the X-rays emitted from the analysis sample surface is set to the total reflection angle or the extraction angle in the vicinity thereof for any of the selected wavelength dispersion X-ray spectrometers. In order to set the rotation angle of the sample stage while maintaining the tilt angle so as to satisfy the following conditions, the energy dispersive X-ray spectrometer centered on the analysis position with respect to the initial direction of the sample rotation mechanism And a database for storing data of angles formed by the arrangement directions of the wavelength dispersive X-ray spectrometers, and reading the necessary data from the database to automatically set the rotation angle of the sample stage. With features, electron probe X-ray analysis apparatus according to claim 1. 前記エネルギー分散形X線分光器が、検出器前面に前記試料表面と平行になるように形成された、少なくともひとつのX線入射スリットまたは絞り穴を有し、前記分析試料表面から射出されるX線との成す角が全反射角またはその近傍の取出し角となる条件を満たすX線のみが、前記エネルギー分散形X線分光器に入射するように設定できる機能を備えた、請求項1または2に記載の電子プローブX線分析装置。
The energy dispersive X-ray spectrometer has at least one X-ray entrance slit or aperture hole formed in front of the detector so as to be parallel to the sample surface, and is emitted from the analysis sample surface. 3. A function capable of setting so that only X-rays satisfying a condition that an angle formed with a line is a total reflection angle or an extraction angle in the vicinity thereof is incident on the energy dispersive X-ray spectrometer. The electron probe X-ray analyzer described in 1.
JP2004305948A 2004-10-20 2004-10-20 Method and device for detecting obliquely emitted x-ray Pending JP2006118940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305948A JP2006118940A (en) 2004-10-20 2004-10-20 Method and device for detecting obliquely emitted x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305948A JP2006118940A (en) 2004-10-20 2004-10-20 Method and device for detecting obliquely emitted x-ray

Publications (1)

Publication Number Publication Date
JP2006118940A true JP2006118940A (en) 2006-05-11

Family

ID=36536964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305948A Pending JP2006118940A (en) 2004-10-20 2004-10-20 Method and device for detecting obliquely emitted x-ray

Country Status (1)

Country Link
JP (1) JP2006118940A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer
JP2009110745A (en) * 2007-10-29 2009-05-21 Sii Nanotechnology Inc Specimen creating device and specimen posture switching method
JP2010107334A (en) * 2008-10-30 2010-05-13 Jeol Ltd X-ray analyzer using electron beam
WO2019232779A1 (en) * 2018-06-08 2019-12-12 立盟系统科技股份有限公司 Device for controlling adjustment of sample
CN110993475A (en) * 2019-12-05 2020-04-10 山东省分析测试中心 Scanning electron microscope universal rotating sample table for fracture analysis and scanning electron microscope
CN110998780A (en) * 2017-05-31 2020-04-10 日本制铁株式会社 Tilt angle amount calculation device, sample stage, charged particle beam device, and program
JP7457607B2 (en) 2020-02-26 2024-03-28 日本電子株式会社 Soft X-ray spectrometer and analysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304712A (en) * 1999-04-22 2000-11-02 Canon Inc Electron beam analyzing and observing apparatus and electron beam microanalyzer
JP2001183316A (en) * 1999-12-27 2001-07-06 Jeol Ltd Spectrum display device for surface analyzing equipment
JP2001208708A (en) * 2000-01-31 2001-08-03 Japan Science & Technology Corp Method and apparatus for analyzing foreign matter by oblique emission electron beam probe micro-x-ray analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304712A (en) * 1999-04-22 2000-11-02 Canon Inc Electron beam analyzing and observing apparatus and electron beam microanalyzer
JP2001183316A (en) * 1999-12-27 2001-07-06 Jeol Ltd Spectrum display device for surface analyzing equipment
JP2001208708A (en) * 2000-01-31 2001-08-03 Japan Science & Technology Corp Method and apparatus for analyzing foreign matter by oblique emission electron beam probe micro-x-ray analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042174A (en) * 2007-08-10 2009-02-26 Sharp Corp Oblique ejection electron beam probe micro x-ray analysis method, program used therein, and oblique ejection electron beam probe micro x-ray analyzer
JP2009110745A (en) * 2007-10-29 2009-05-21 Sii Nanotechnology Inc Specimen creating device and specimen posture switching method
JP2010107334A (en) * 2008-10-30 2010-05-13 Jeol Ltd X-ray analyzer using electron beam
CN110998780A (en) * 2017-05-31 2020-04-10 日本制铁株式会社 Tilt angle amount calculation device, sample stage, charged particle beam device, and program
CN110998780B (en) * 2017-05-31 2022-07-01 日本制铁株式会社 Tilt angle amount calculation device, sample stage, charged particle beam device, and program
WO2019232779A1 (en) * 2018-06-08 2019-12-12 立盟系统科技股份有限公司 Device for controlling adjustment of sample
CN110993475A (en) * 2019-12-05 2020-04-10 山东省分析测试中心 Scanning electron microscope universal rotating sample table for fracture analysis and scanning electron microscope
JP7457607B2 (en) 2020-02-26 2024-03-28 日本電子株式会社 Soft X-ray spectrometer and analysis method

Similar Documents

Publication Publication Date Title
US10777383B2 (en) Method for alignment of a light beam to a charged particle beam
US6996492B1 (en) Spectrum simulation for semiconductor feature inspection
JP2006118940A (en) Method and device for detecting obliquely emitted x-ray
JP2006236601A (en) Orbital position detecting device, composition analyzer, orbit adjusting method for charged particle beam and position coordinate detecting device
EP3203493B1 (en) Charged-particle microscope with astigmatism compensation and energy-selection
US10937626B2 (en) Holder and charged particle beam apparatus
JP2002189004A (en) X-ray analyzer
JP4469572B2 (en) Undercut measurement method using SEM
JPH05113418A (en) Surface analyzing apparatus
JP2588833B2 (en) Analytical electron microscope
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP5373368B2 (en) X-ray analyzer using electron beam
JP4349146B2 (en) X-ray analyzer
JP2008159294A (en) Specimen mount for auger spectral analysis
JP3360115B2 (en) Angle-resolved electron spectrometer with diffraction plane aperture transmission energy control system and analysis method using this spectrometer
JP4365687B2 (en) Analysis method and analyzer
JP7457607B2 (en) Soft X-ray spectrometer and analysis method
JP2000346816A (en) X-ray analysis device
JP2006177752A (en) X-ray analyzer
JP2006337301A (en) X-ray analyzer
JP2008026129A (en) Method of obliquely emitted electron beam probe micro-x-ray, program used therein and obliquely emitted electron beam probe micro-x-ray analyzer
JP2007192741A (en) Element analysis method and element analyzer
JP2006132975A (en) Method and device of thin layer analysis
JP2007225407A (en) Electronic spectroscopic device
CN114846574A (en) System and method for profiling charged particle beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110405