JP2015023010A - Electron microscope - Google Patents

Electron microscope Download PDF

Info

Publication number
JP2015023010A
JP2015023010A JP2013153167A JP2013153167A JP2015023010A JP 2015023010 A JP2015023010 A JP 2015023010A JP 2013153167 A JP2013153167 A JP 2013153167A JP 2013153167 A JP2013153167 A JP 2013153167A JP 2015023010 A JP2015023010 A JP 2015023010A
Authority
JP
Japan
Prior art keywords
electron beam
sample
transmission electron
electron microscope
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013153167A
Other languages
Japanese (ja)
Other versions
JP6214952B2 (en
Inventor
矢口 紀恵
Toshie Yaguchi
紀恵 矢口
小林 弘幸
Hiroyuki Kobayashi
弘幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013153167A priority Critical patent/JP6214952B2/en
Publication of JP2015023010A publication Critical patent/JP2015023010A/en
Application granted granted Critical
Publication of JP6214952B2 publication Critical patent/JP6214952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a transmission electron microscope capable of accurately and easily obtaining a diffraction pattern in a nano region without electron beam damage.SOLUTION: A transmission electron microscope includes: an object lens that irradiates a sample with an electron beam emitted from an electron source and converges transmission electrons transmitted through the sample; a detector that detects the transmission electrons transmitted through the sample; a limit aperture that is provided below the object lens and limits the transmission electrons; an electron beam deflector that is provided above the sample and deflects the electron beam; an image shift deflector that is provided below the object lens and deflects the transmission electrons; and a control device that deflects the electron beam using the electron beam deflector so that an arbitrary measurement region of the sample is irradiated with the electron beam, and adjusts a deflection amount of the image shift deflector so that the electron beam transmitted through the sample passes through a hole of the limit aperture.

Description

本発明は、電子顕微鏡に関し、特に透過電子線像と電子線回折パターンの形成、観察記録が可能な透過電子顕微鏡に関する。   The present invention relates to an electron microscope, and more particularly to a transmission electron microscope capable of forming and observing and recording a transmission electron beam image and an electron diffraction pattern.

透過電子顕微鏡による試料の結晶構造解析手段の一つに電子線回折パターンを用いる方法がある。電子線回折パターンの取得には大きく2つの方法がある。一つは、制限視野電子線回折法であり、対象領域を絞りで制限し、その領域からの電子線回折パターンを結像レンズ系で拡大し観察する方法であり、もう一つはナノプローブ電子線回折法であり、照射レンズにより電子線を試料の対象領域の大きさに収束させ、その領域の電子線回折パターンを結像レンズ系で拡大し観察するナノプローブ電子線回折法である。   One of the means for analyzing the crystal structure of a sample using a transmission electron microscope is a method using an electron beam diffraction pattern. There are two main methods for obtaining an electron diffraction pattern. One is a limited-field electron diffraction method, in which the target region is limited by a diaphragm, and the electron diffraction pattern from that region is magnified and observed with an imaging lens system, and the other is a nanoprobe electron. This is a line diffraction method, which is a nanoprobe electron beam diffraction method in which an electron beam is converged to the size of a target region of a sample by an irradiation lens, and an electron beam diffraction pattern in that region is enlarged and observed by an imaging lens system.

一般にナノ材料の結晶構造解析では対象とする領域がナノメートルオーダであるため、ナノプローブ電子線回折法が用いられる。ナノプローブ電子線回折法では電子線を広げた状態で分析視野を確認し、その対象に向けて電子線を収束し電子回折パターンを得る。電子線を収束するため、対象領域に照射する電子線量が大きい。また、収束した電子線を用いるため、得られる回折パターンの回折斑点が、スポット状ではなく、ディスク状になる。このため解析精度は回折斑点がスポット状で得られる制限視野電子線回折法と比較して低い。   In general, in the crystal structure analysis of nanomaterials, since the target region is on the order of nanometers, nanoprobe electron diffraction is used. In the nanoprobe electron beam diffraction method, the field of analysis is confirmed with the electron beam expanded, and the electron beam is converged toward the target to obtain an electron diffraction pattern. In order to converge the electron beam, the electron dose applied to the target region is large. Moreover, since the converged electron beam is used, the diffraction spots of the obtained diffraction pattern are not spot-like but disc-like. For this reason, the analysis accuracy is low as compared with the limited-field electron diffraction method in which diffraction spots are obtained in a spot shape.

一方制限視野回折法では、ビームを広げ所望の視野を絞りで選択するので、照射電子線密度を低減でき、しかも高分解能の回折パターンを得ることができる。しかしながら従来ナノメートルオーダを制限できる微小絞りの作製が困難であり、一般にナノ材料の結晶構造解析にはナノプローブ電子線回折法が用いられてきた。   On the other hand, in the limited field diffraction method, the beam is expanded and a desired field of view is selected with a diaphragm, so that the irradiation electron beam density can be reduced and a high-resolution diffraction pattern can be obtained. However, it has been difficult to produce a fine aperture capable of limiting the nanometer order, and the nanoprobe electron diffraction method has generally been used for crystal structure analysis of nanomaterials.

近年、加工技術の進歩により、ナノメートルオーダの領域を制限できる微小絞りが集束イオンビーム(FIB)や電解研磨等を使用して作製可能となった。特許文献1では、FIBを用いて、微小絞りを作製する方法が記載されている。また、特許文献2においても微小絞りの作製方法が述べられている。この微小絞りを用いることで、電子線照射条件を変更することなく、制限されるナノ領域の電子線回折パターンを取り込むことができるようになった。   In recent years, with the progress of processing technology, it has become possible to produce a fine aperture that can limit a nanometer-order region using a focused ion beam (FIB), electrolytic polishing, or the like. Patent Document 1 describes a method of manufacturing a fine aperture using FIB. Patent Document 2 also describes a method for manufacturing a fine aperture. By using this micro-aperture, it has become possible to capture an electron beam diffraction pattern in a limited nano region without changing the electron beam irradiation conditions.

制限視野回折法の場合、選択できる試料面上の領域の大きさは、 基本的には用いる制限視野絞りの大きさとその絞り上に投影される透過像の倍率によってきまる。   In the limited field diffraction method, the size of the region on the sample surface that can be selected basically depends on the size of the limited field stop used and the magnification of the transmitted image projected on the stop.

特開2011-243540号公報JP 2011-243540 A 特開2006-331901号公報JP 2006-331901 A

上記従来技術において、ナノプローブ電子線回折法を用い、触媒材料解析を行う場合、5nmから10nmの粒径の触媒粒子の結晶方位と触媒粒子が担持された担体の結晶方位関係を調べ特性との関係づけを行う。この場合、触媒粒子に収束した電子線を照射すると高密度の電子線を照射するため触媒粒子の動き方位が変化してしまうという問題があった。   In the above prior art, when the catalyst material analysis is performed using the nanoprobe electron diffraction method, the relationship between the crystal orientation of the catalyst particle having a particle diameter of 5 nm to 10 nm and the crystal orientation of the support on which the catalyst particle is supported is examined. Make a relationship. In this case, there is a problem that when the electron beam converged on the catalyst particles is irradiated, the movement direction of the catalyst particles is changed because a high-density electron beam is irradiated.

また、担体粒子は、一般的に酸化物などの電子線照射損傷を受け易い材料のため、回折パターンを取得する際に収束した電子線により、ダメージを受けてしまうという問題があった。   Further, since the carrier particles are generally easily damaged by electron beam irradiation such as oxide, there is a problem that the carrier particles are damaged by the converged electron beam when acquiring the diffraction pattern.

さらに、例えば、種々の粒子が混合された試料を評価する際、統計的な評価が必要となり、粒子の透過電子像と対応した電子線回折パターンを出来るだけ多く記録する必要があり、この場合、多数の個々の触媒粒子に対し、電子線回折パターンを取得する必要がある。しかし、位置を確認する必要があるため、照射レンズ電流を変えて電子線を広げ、粒子位置を確認した後、その粒子に対し電子線を絞りこむ必要があり、操作が煩雑であるという問題があった。   Furthermore, for example, when evaluating a sample in which various particles are mixed, statistical evaluation is necessary, and it is necessary to record as many electron diffraction patterns as possible corresponding to the transmission electron images of the particles. It is necessary to acquire electron diffraction patterns for a large number of individual catalyst particles. However, since it is necessary to confirm the position, it is necessary to change the irradiation lens current to widen the electron beam, and after confirming the particle position, it is necessary to narrow down the electron beam with respect to the particle. there were.

一方、制限視野回折法においては、特許文献1で記載されたFIBで作製された微小制限視野絞りを用いたとしても、対象がナノメートルサイズのため試料移動による試料ドリフトを回避するのは困難であった。すなわち、観察したい試料領域の透過電子が制限視野絞りを通過するように試料ステージを移動させたとしても、試料ステージがドリフトのため目標の位置で止まらないという問題がある。制限視野絞りの穴が小さい程、この問題が起こりやすくなる。   On the other hand, in the limited field diffraction method, even if the minute limited field stop manufactured by FIB described in Patent Document 1 is used, it is difficult to avoid sample drift due to sample movement because the object is nanometer size. there were. That is, even if the sample stage is moved so that transmitted electrons in the sample region to be observed pass through the limited field stop, there is a problem that the sample stage does not stop at the target position due to drift. The smaller the hole in the limited field stop, the more likely this problem occurs.

本発明の目的は、上記問題点を解決し、ナノ領域の回折パターンを電子線損傷なく、正確かつ容易に取得することが可能な透過電子顕微鏡を提供することにある。   An object of the present invention is to provide a transmission electron microscope capable of solving the above-described problems and accurately and easily acquiring a diffraction pattern in a nano region without damaging an electron beam.

上記の課題を解決するため、本発明は、以下の構成を備える。電子源から放出された電子線を試料に照射し、試料を透過した透過電子を集束する対物レンズと、前記試料を透過した透過電子を検出する検出器を備えた透過電子顕微鏡において、前記対物レンズの下に前記透過電子を制限する制限絞りと、前記試料の上部に電子線を偏向する電子ビーム偏向器と、対物レンズの下部に透過電子を偏向するイメージシフト偏向器とを備え、前記試料の任意の測定領域に前記電子線が照射されるように前記電子ビーム偏向器で前記電子線を偏向し、前記試料を透過した電子線が、前記制限絞りの穴を通過するように前記イメージシフト偏向器の偏向量を調整する制御装置を備えたことを特徴とする透過電子顕微鏡。   In order to solve the above problems, the present invention has the following configuration. An objective lens that includes an objective lens that irradiates a sample with an electron beam emitted from an electron source and focuses the transmitted electrons that have passed through the sample, and a detector that detects the transmitted electrons that have passed through the sample. A limiting aperture for limiting the transmitted electrons below, an electron beam deflector for deflecting an electron beam above the sample, and an image shift deflector for deflecting the transmitted electrons below the objective lens, The electron beam deflector deflects the electron beam so that an arbitrary measurement region is irradiated with the electron beam, and the image shift deflection causes the electron beam transmitted through the sample to pass through the hole of the limiting aperture. A transmission electron microscope comprising a control device for adjusting the deflection amount of the instrument.

本発明によれば、制限視野電子線回折法を用いて、低電子線照射量により試料ダメージを低減した状態で、目的試料領域の電子線回折パターンが得られる。   According to the present invention, an electron beam diffraction pattern of a target sample region can be obtained using a limited-field electron beam diffraction method in a state where sample damage is reduced by a low electron beam dose.

本発明の一実施例である透過電子顕微鏡1の基本構成図1 is a basic configuration diagram of a transmission electron microscope 1 according to an embodiment of the present invention. 説明図である透過電子顕微鏡における透過電子像観察モード(a)および制限視野電子線回折モード(b)の光路図Optical path diagrams of transmission electron image observation mode (a) and limited-field electron beam diffraction mode (b) in a transmission electron microscope as an explanatory diagram 説明図である透過電子顕微鏡における制限視野電子線回折モード(a)およびナノプローブ電子線回折モード(b)の光路図Optical path diagrams of limited-field electron diffraction mode (a) and nanoprobe electron diffraction mode (b) in the transmission electron microscope, which is an explanatory diagram 本発明の一実施例である対物レンズ近傍の構成図FIG. 1 is a configuration diagram in the vicinity of an objective lens according to an embodiment of the present invention. 一実施例である微小領域制限視野像(a)およびその電子線回折パターン(b)A micro-region limited field-of-view image (a) and an electron diffraction pattern (b) according to an embodiment 一実施例である複数の制限視野回折パターンの取得時の制限視野の表示例Display example of limited field of view when acquiring a plurality of limited field diffraction patterns according to one embodiment 本実施例の一つである複数の微小制限視野回折パターンを得るための手順Procedure for obtaining a plurality of minute limited field diffraction patterns which is one of the embodiments

図1に本発明の一実施例である透過電子顕微鏡1の基本構成図を示す。透過電子顕微鏡1の鏡体は、電子銃2、コンデンサーレンズ3、対物レンズ4、中間レンズ5a、bおよび投射レンズ6a、bにより構成されている。各レンズはでそれぞれレンズ励磁電源7を介し、レンズ電源制御部8に接続されている。   FIG. 1 shows a basic configuration diagram of a transmission electron microscope 1 according to an embodiment of the present invention. The mirror body of the transmission electron microscope 1 includes an electron gun 2, a condenser lens 3, an objective lens 4, intermediate lenses 5a and 5b, and projection lenses 6a and 6b. Each lens is connected to a lens power source controller 8 via a lens excitation power source 7.

対物レンズ4の間には、電子顕微鏡用の試料ホルダ9が挿入される。試料ホルダ9には試料10が搭載され、試料10の位置制御は試料微動制御部11によって制御される。投射レンズ6bの下方には、蛍光板12が、蛍光板12の下には、TVカメラ13が装着されている。TVカメラ13は、画像記録制御部14を介し、画像表示部15および画像記憶装置16に接続される。   A sample holder 9 for an electron microscope is inserted between the objective lenses 4. A sample 10 is mounted on the sample holder 9, and the position control of the sample 10 is controlled by a sample fine movement control unit 11. A fluorescent screen 12 is mounted below the projection lens 6b, and a TV camera 13 is mounted below the fluorescent screen 12. The TV camera 13 is connected to the image display unit 15 and the image storage device 16 via the image recording control unit 14.

電子銃2から発生した電子線17はコンデンサーレンズ3により収束され試料10に照射される。試料10を透過した電子線2は対物レンズ4により結像され、中間レンズ5a、5bおよび投射レンズ6a、bにより拡大、蛍光板12上に投影される。蛍光板12を持ち上げると、TVカメラ13に投影し、画像表示部15に透過像が表示され、画像記憶装置16に記録される。   The electron beam 17 generated from the electron gun 2 is converged by the condenser lens 3 and irradiated onto the sample 10. The electron beam 2 transmitted through the sample 10 is imaged by the objective lens 4, magnified by the intermediate lenses 5 a and 5 b and the projection lenses 6 a and b, and projected onto the fluorescent screen 12. When the fluorescent screen 12 is lifted, it is projected onto the TV camera 13, and a transmission image is displayed on the image display unit 15 and recorded in the image storage device 16.

対物レンズの像面には穴径が1ミクロンあるいはそれ以下の絞り孔を有する制限視野絞り18が備えられている。制限視野絞り18は水平方向に移動が可能で、観察対象に合わせて、光軸上に出し入れが可能である。制限視野絞り18の位置制御は、モータ駆動であり、制限視野絞り制御部19で制御される。試料10の上方には1段以上のビームシフト用偏向コイル20を備えており、対物レンズ4下方、制限視野絞り18上方にも1段以上のイメージシフト用偏向コイル21が備えられている。両偏向コイルとも偏向コイル制御部22 a、bに接続されている。レンズ電源制御部8、試料微動制御部11、画像記録制御部14、制限視野絞り制御部19、偏向コイル制御部22a、22bはマイクロプロセッサ23に接続され、マイクロプロセッサ23は装置全体の制御を行う。   The image plane of the objective lens is provided with a limited field stop 18 having a stop hole with a hole diameter of 1 micron or less. The limited field stop 18 can be moved in the horizontal direction, and can be taken in and out on the optical axis in accordance with the observation target. The position control of the limited field stop 18 is motor driven and is controlled by the limited field stop control unit 19. One or more stages of beam shift deflection coils 20 are provided above the sample 10, and one or more stages of image shift deflection coils 21 are also provided below the objective lens 4 and above the limited field stop 18. Both deflection coils are connected to deflection coil controllers 22a and 22b. The lens power supply control unit 8, the sample fine movement control unit 11, the image recording control unit 14, the limited field stop control unit 19, and the deflection coil control units 22a and 22b are connected to the microprocessor 23. The microprocessor 23 controls the entire apparatus. .

図2(a)および(b)に本発明の説明図である透過電子像観察時および電子線回折パターン観察時の透過電子顕微鏡の光路図を示す。   FIGS. 2A and 2B are optical path diagrams of a transmission electron microscope during transmission electron image observation and electron beam diffraction pattern observation, which are explanatory diagrams of the present invention.

透過電子像観察時には、電子銃2から発生した電子線17は、コンデンサーレンズ3によって試料10に平行照射される。試料10が結晶性試料の場合、結晶によって回折を受けずに直進する電子線と、回折を受ける電子線があり、同じ角度で回折された電子線は対物レンズ4の後焦点面で同じ点に集まり、後焦点面上に電子線回折パターン24aを形成する。これらの電子線回折パターン24 aを形成した電子線17はさらに対物レンズ4の像面、制限視野絞り18位置で透過電子像25aを結像する。この像をさらに中間レンズ5と投射レンズ6で拡大し、蛍光板12または、TVカメラ13上に透過電子線像25bを投影する。   During transmission electron image observation, the electron beam 17 generated from the electron gun 2 is irradiated onto the sample 10 in parallel by the condenser lens 3. When the sample 10 is a crystalline sample, there are an electron beam that goes straight without being diffracted by the crystal and an electron beam that is diffracted, and the electron beam diffracted at the same angle is at the same point on the back focal plane of the objective lens 4. Collectively, an electron diffraction pattern 24a is formed on the back focal plane. The electron beam 17 on which these electron beam diffraction patterns 24 a are formed further forms a transmission electron image 25 a on the image plane of the objective lens 4 and the position of the limited field stop 18. This image is further magnified by the intermediate lens 5 and the projection lens 6, and a transmission electron beam image 25b is projected onto the fluorescent screen 12 or the TV camera 13.

一方、電子線回折パターン24aを観察する際は、対物レンズ4後焦点に形成されている電子線回折パターン24aに中間レンズ5の焦点を合わせ、中間レンズ5および投射レンズ6で拡大し、電子線回折パターン24bを蛍光板13あるいはTVカメラ13に投影している。   On the other hand, when observing the electron beam diffraction pattern 24a, the intermediate lens 5 is focused on the electron beam diffraction pattern 24a formed at the back focal point of the objective lens 4 and magnified by the intermediate lens 5 and the projection lens 6, and the electron beam The diffraction pattern 24 b is projected onto the fluorescent screen 13 or the TV camera 13.

図3(a)および(b)に本発明の説明図である制限視野回折法およびナノプローブ回折法の光路図を示す。制限視野回折法では試料10に平行な電子線17を照射し、制限視野絞り18で回折像を得る領域を決定する。一方、ナノプローブ回折法では収束させた電子線17を用いるため、 試料10への照射電子量が大きい。ナノプローブ回折法では、得られる電子線回折パターン24bのスポットがディスク状になり、高精度での解析が困難になるという問題がある。   FIGS. 3A and 3B show optical path diagrams of a limited field diffraction method and a nanoprobe diffraction method, which are explanatory diagrams of the present invention. In the limited field diffraction method, the electron beam 17 parallel to the sample 10 is irradiated, and a region where a diffraction image is obtained by the limited field stop 18 is determined. On the other hand, since the focused electron beam 17 is used in the nanoprobe diffraction method, the amount of electrons irradiated onto the sample 10 is large. The nanoprobe diffraction method has a problem that the spot of the obtained electron beam diffraction pattern 24b has a disk shape, which makes analysis with high accuracy difficult.

図4に本発明の一実施例である対物レンズ4近傍の構成図を示す。ビームシフト用偏向コイル20(x方向を20a、y方向を20bとする)は増幅器26aを介して加算器27からデジタルアナログコンバータ(以降DACと呼ぶ)DAC28aに接続されている。イメージシフト用偏向コイル21(x方向を21a、y方向を21bとする)は増幅器26bを介し、DAC28bに接続されている。このDAC28bの出力は加算器27にも接続されている。DAC28a、DAC28bは共にBUS29に接続され、コンピュータで制御されている。このような構成で、視野シフト(移動)するためにDAC28bに或るデータが書き込まれると、イメージシフト用偏向コイル21に電流が出力されると同時に、書き込まれたデータに比例した或る量が加算器27を経由してビームシフト用偏向コイルにも出力される。この比例した或る量とは、イメージ(視野)のシフト量と試料を照射しているビームのシフト量が同じになるように加算器の重付けを設定してある。つまり、イメージシフトとビームシフトが連動され同一視野領域になっている。   FIG. 4 shows a configuration diagram in the vicinity of the objective lens 4 according to an embodiment of the present invention. A beam shift deflection coil 20 (x direction is 20a and y direction is 20b) is connected from an adder 27 to a digital-analog converter (hereinafter referred to as DAC) DAC 28a through an amplifier 26a. The image shift deflection coil 21 (21a in the x direction and 21b in the y direction) is connected to the DAC 28b via the amplifier 26b. The output of the DAC 28b is also connected to the adder 27. Both the DAC 28a and the DAC 28b are connected to the BUS 29 and controlled by a computer. With such a configuration, when certain data is written to the DAC 28b for visual field shift (movement), a current is output to the image shift deflection coil 21, and at the same time, a certain amount proportional to the written data is present. The signal is also output to the beam shift deflection coil via the adder 27. With this proportional amount, the weight of the adder is set so that the shift amount of the image (field of view) and the shift amount of the beam irradiating the sample are the same. That is, the image shift and the beam shift are linked to form the same field of view.

通常制限視野電子線回折法で電子線回折パターンを観察する場合、試料10に平行に電子17線を照射した場合、対物レンズ4で制限視野絞り18面に形成される像25aの制限された部分(点線矢印部30b)に対応する試料面上の領域(点線矢印部30a)の情報のみを選択し、それらの選択された電子線で形成される電子線回折パターン24aを観察している。別の視野領域(白矢印31a)の回折パターンを得る場合は、イメージシフト用偏向コイル21を用いて視野(イメージ)を移動させる。そのままではその視野領域にビームが照射しないようになるので、ビームシフト用偏向コイル20を用いて移動させる必要があるが、上述の説明のように加算器27によって両シフト量が連動しているので、常に同じ視野領域となる。つまり、対物レンズ4による透過拡大像(白矢印31b)は制限視野絞り18上に形成されるが制限視野絞り18穴位置からずれている。制限視野絞り18に入るように外れた分をイメージシフト用偏向コイル21a、bを動作させると、それに連動してビームシフト用偏向コイル20が照射される視野領域の位置を補正(白矢印31a)し、その補正された透過拡大像(白矢印31c)が制限視野絞り18穴位置に移動することになる。その結果、白矢印31aの視野領域に対応した電子線回折パターン24aが対物レンズ4後焦点面に結像されることになる。   When observing an electron beam diffraction pattern by a normally limited field electron diffraction method, when the electron beam 17 is irradiated in parallel to the sample 10, a limited portion of an image 25a formed on the surface of the limited field stop 18 by the objective lens 4 Only the information of the region (dotted arrow part 30a) on the sample surface corresponding to (dotted arrow part 30b) is selected, and the electron beam diffraction pattern 24a formed by those selected electron beams is observed. When obtaining a diffraction pattern of another visual field region (white arrow 31a), the visual field (image) is moved using the image shift deflection coil 21. Since the beam is not irradiated to the field of view as it is, it is necessary to move the beam using the beam shift deflection coil 20, but both shift amounts are interlocked by the adder 27 as described above. , Always the same field of view. That is, a transmission enlarged image (white arrow 31b) by the objective lens 4 is formed on the limited field stop 18, but is shifted from the position of the limited field stop 18 hole. When the image shift deflection coils 21a and 21b are operated so as to deviate so as to enter the limited field stop 18, the position of the field area irradiated with the beam shift deflection coil 20 is corrected (white arrow 31a). Then, the corrected transmission enlarged image (white arrow 31c) is moved to the position of the limited field stop 18 hole. As a result, an electron beam diffraction pattern 24a corresponding to the visual field area of the white arrow 31a is imaged on the back focal plane of the objective lens 4.

この方法によれば、制限視野絞り18および試料10を機械的に移動させないため、機械的な振動によるドリフト無く、微小領域の電子線回折パターン24bを得ることが可能である。なお、大きく位置を変える場合は、試料10の移動および制限視野絞り18の移動とビームシフト用偏向コイル20、イメージシフト用偏向コイル21による視野移動を組み合わせることによって、ビーム偏向可能領域より大きく位置を移動させることが可能である。   According to this method, since the limited field stop 18 and the sample 10 are not mechanically moved, it is possible to obtain the electron diffraction pattern 24b in a minute region without drift due to mechanical vibration. When the position is largely changed, the position larger than the beam deflectable region can be obtained by combining the movement of the sample 10 and the limited field stop 18 and the field movement by the beam shift deflection coil 20 and the image shift deflection coil 21. It is possible to move.

図5に一実施例である微小領域の制限視野像(a)およびその電子線回折パターン(b)を示す。1ミクロン径の微小な穴を有する制限視野絞り18を挿入した状態の約12nmの領域の酸化スズ(SnO2)の透過像25bとその電子線回折パターン24bを示す。制限視野絞り18を入れない場合でも、観察時に目的の領域を選択すると、画像上に制限視野可動絞り18の大きさが表示されるようにし、表示された領域に実際に制限視野絞り18が挿入されると、電子線回折パターン24bが得られるようにする。その際、制限した領域の位置情報と、電子線回折パターン24bが対で記憶されるようにする。得られた電子線回折パターン24bの回折スポット間距離(R)から対象の試料10の結晶格子面間隔(d)はdR=Lλから求められる。ここで、Lはカメラ長、λは電子線の波長であり、Lλは定数である。もとめられた値はリスト化され、制限視野像および電子線回折パターンとともに分別される。 FIG. 5 shows a limited field image (a) of a minute region and an electron diffraction pattern (b) thereof as an example. A transmission image 25b of tin oxide (SnO 2 ) in a region of about 12 nm in a state where a limited field stop 18 having a minute hole having a 1 micron diameter is inserted, and an electron beam diffraction pattern 24b thereof are shown. Even when the limited field stop 18 is not inserted, if a target area is selected during observation, the size of the limited field movable diaphragm 18 is displayed on the image, and the limited field stop 18 is actually inserted in the displayed area. Then, an electron beam diffraction pattern 24b is obtained. At this time, the positional information of the restricted area and the electron beam diffraction pattern 24b are stored in pairs. From the distance (R) between the diffraction spots of the obtained electron beam diffraction pattern 24b, the crystal lattice spacing (d) of the target sample 10 is obtained from dR = Lλ. Here, L is the camera length, λ is the wavelength of the electron beam, and Lλ is a constant. The determined values are listed and sorted together with the limited field image and the electron diffraction pattern.

従来の技術では、制限視野絞りで制限された領域を絞りの像と一緒に記録することが可能であるが、全体像に絞り位置を表示、記録し、絞り位置に対応した回折パターンを同時に取得、記録する点については配慮されていなかった。さらに得られた回折パターンから得られた格子間隔を仕分けして、各制限視野のうち、同じ格子間隔を持つ領域を分別、表示する点については配慮されていなかった。また、上記従来技術において制限視野像の対物レンズの球面収差の影響については、配慮されていなかった。   In the conventional technology, it is possible to record the area limited by the limited field stop together with the image of the stop, but display and record the stop position on the whole image, and simultaneously acquire the diffraction pattern corresponding to the stop position. The points to be recorded were not considered. Further, the grid intervals obtained from the obtained diffraction patterns are sorted, and the region having the same grid interval in each limited field of view is separated and displayed. In the above prior art, the influence of the spherical aberration of the objective lens of the limited field image is not taken into consideration.

本実施例は、制限された視野をTEM像上に正確に表示記録し、同じ結晶構造間隔を持つ領域を分別表示および記録することが可能な透過電子顕微鏡を提供することにある。   The present embodiment is to provide a transmission electron microscope capable of accurately displaying and recording a limited visual field on a TEM image and separately displaying and recording regions having the same crystal structure interval.

図6に本発明を用いた複数の電子線回折パターン24bの取得時の制限視野の表示例を示す。図6(a)は画像表示部15上の透過像の模式図である。ここで、図の黒丸および白三角は結晶面間隔の異なる粒子の透過電子像とする。   FIG. 6 shows a display example of a limited visual field when acquiring a plurality of electron beam diffraction patterns 24b using the present invention. FIG. 6A is a schematic diagram of a transmission image on the image display unit 15. Here, black circles and white triangles in the figure are transmission electron images of particles having different crystal plane intervals.

電子線回折パターン24bを得たい所望の領域をまず画面表示部15中央に試料微動制御部で移動し、画像を記録する。画面表示部15中央を原点とし、カーソル32で原点を選択する。画面表示部15上にカーソルを中心として制限視野絞り18径を反映した円33を表示、ラベル付けする(ここでは、ラベル1を設定)。図6(b)において、さらに回折パターンを得たい別の領域をカーソルで選択しラベル付していく(ここでは、ラベル2を設定)。図6(c)において、ラベル12まで設定された。選択された位置情報をラベルとマイクロプロセッサに転送する。マイクロプロセッサでは位置情報に対応するように制限視野絞り18穴位置の透過像31cに制限視野絞り18板上の透過像31bが移動するようにビームシフト用偏向コイル20、イメージシフト用偏向コイル21を動作させる。得られた電子線回折パターン24bをラベルと共に画像記憶装置に記憶させる。電子線回折パターン24bに対し、格子面間隔を求め、ラベルに対する格子面間隔を求める。ラベルに対する格子面間隔のリストを作成する(d)。得られた格子面間隔から同じもの(例えば物質AおよびB等の結晶構造解析)を分類し、表示画面で、制限視野を色分け(実施例では点線と実線で分類)表示する(d)。ここでは、先にラベル付けを行いその順に電子回折パターンを取得しているが、ラベル付けと制限視野表示ごとに電子回折パターンを取得、格子面間隔リストを作成するようにしてもよい。   First, a desired region in which the electron beam diffraction pattern 24b is desired is moved to the center of the screen display unit 15 by the sample fine movement control unit, and an image is recorded. The center of the screen display unit 15 is set as the origin, and the origin is selected with the cursor 32. A circle 33 reflecting the diameter of the limited field stop 18 is displayed and labeled on the screen display unit 15 (here, label 1 is set). In FIG. 6B, another region for which a diffraction pattern is desired to be obtained is selected with a cursor and labeled (here, label 2 is set). In FIG. 6C, up to label 12 is set. The selected position information is transferred to the label and the microprocessor. In the microprocessor, the beam shift deflection coil 20 and the image shift deflection coil 21 are arranged so that the transmission image 31b on the restriction field stop 18 plate moves to the transmission image 31c at the position of the restriction field stop 18 so as to correspond to the position information. Make it work. The obtained electron diffraction pattern 24b is stored in the image storage device together with the label. For the electron diffraction pattern 24b, the lattice plane spacing is obtained, and the lattice spacing for the label is obtained. Create a list of grid spacings for the labels (d). The same ones (for example, crystal structure analysis of substances A and B) are classified from the obtained lattice spacing, and the limited visual field is classified by color (classified by dotted lines and solid lines in the embodiment) on the display screen (d). Here, labeling is performed first, and electron diffraction patterns are acquired in that order, but an electron diffraction pattern may be acquired for each labeling and limited field display, and a lattice spacing list may be created.

上記表示する制限視野は、絞り径に前記視野選択における誤差Yを加えた領域としてもよく、誤差Y分の取り込み可否を選択できるようにする。なお、対物レンズの球面収差係数をCs、観察する結晶面のブラッグ角をθB、焦点合わせにおけるエラーをDとすると、視野選択におけるエラーYは、 The limited visual field to be displayed may be a region obtained by adding an error Y in the visual field selection to the aperture diameter so that whether or not the error Y can be captured can be selected. When the spherical aberration coefficient of the objective lens is Cs, the Bragg angle of the crystal plane to be observed is θ B , and the error in focusing is D, the error Y in the field selection is

で与えられる。すなわち、制限視野にはY分の誤差が見込まれる。 Given in. That is, an error of Y is expected in the limited visual field.

図7に本実施例の一つである複数測定対象の電子線回折パターン24bを得るための手順を示す。透過像がTVカメラ13に投影されるように中間レンズ5および投射レンズ6を設定したのち、以下のステップを実行する。   FIG. 7 shows a procedure for obtaining an electron beam diffraction pattern 24b of a plurality of measurement objects, which is one of the present embodiments. After setting the intermediate lens 5 and the projection lens 6 so that the transmission image is projected onto the TV camera 13, the following steps are executed.

(1)まず試料10の透過像25bをTVカメラ13で取得し画像表示部15に表示および記録する。このとき、選択視野の中央(原点)に一番目の電子線回折パターン24bを得たい領域を試料微動制御部により、画面中央になるように設定して透過像を記録する。   (1) First, the transmission image 25b of the sample 10 is acquired by the TV camera 13, and displayed and recorded on the image display unit 15. At this time, a transmission image is recorded by setting the region where the first electron beam diffraction pattern 24b is desired to be obtained at the center (origin) of the selected visual field by the sample fine movement control unit to be the center of the screen.

(2)電子線回折パターン24bを得たい視野をカーソル32で選択する。   (2) Select the field of view to obtain the electron diffraction pattern 24b with the cursor 32.

(3)選択した視野ごとにカーソル32の位置情報をラベル付けしマイクロプロセッサ23に記億させ、表示部に、選択したカーソル32位置を中心に倍率に応じた制限視野をラベルと共に円33で表示する。   (3) The position information of the cursor 32 is labeled for each selected field of view and stored in the microprocessor 23, and the limited field of view corresponding to the magnification is displayed on the display unit as a circle 33 with the label at the center of the selected cursor 32 position. To do.

(4)透過像中の視野選択を実行する。   (4) The field of view in the transmission image is selected.

(5)制限視野絞り18を画面中央に挿入する。   (5) Insert the limited field stop 18 in the center of the screen.

(6)ラベル1の電子線回折パターン24bがTVカメラ13に投影されるように中間レンズ5および投射レンズ6を設定し、ラベル1の電子線回折パターン24bを表示、記録する。他の視野については、ラベル1に対した位置情報をもとに、ビームシフト用偏向コイル20およびイメージシフト用偏向コイル21を移動させるようマイクロプロセッサ23から偏向コイル制御部22に指示する。同様にラベリングした個々の制限した電子線回折パターンを記録、表示する。   (6) The intermediate lens 5 and the projection lens 6 are set so that the electron beam diffraction pattern 24b of the label 1 is projected onto the TV camera 13, and the electron beam diffraction pattern 24b of the label 1 is displayed and recorded. For the other field of view, the microprocessor 23 instructs the deflection coil controller 22 to move the beam shift deflection coil 20 and the image shift deflection coil 21 based on the position information with respect to the label 1. Similarly, the individual limited electron diffraction patterns labeled are recorded and displayed.

(7)次にマイクロプロセッサ23において、各電子線回折パターンについて回折スポット間隔を測長し、格子面間隔を算出、記録する。   (7) Next, in the microprocessor 23, the diffraction spot interval is measured for each electron beam diffraction pattern, and the lattice plane interval is calculated and recorded.

(8)マイクロプロセッサにおいて、ラベルごとに算出した格子面間隔をリストアップし、画像表示部15に表示する。   (8) In the microprocessor, the lattice plane spacing calculated for each label is listed and displayed on the image display unit 15.

(9)リストアップした格子面間隔をマイクロプロセッサ23において分類する。   (9) The listed lattice spacings are classified by the microprocessor 23.

(10)分類した格子面間隔ごとに画像表示部15で制限視野を色分け表示する。これにより、電子線の影響を抑えた微小領域の制限視野電子線回折パターンの取得、記録が可能で、正確な格子面間隔の分布が取得可能となる。   (10) The restricted visual field is displayed in different colors on the image display unit 15 for each classified lattice plane interval. As a result, it is possible to acquire and record a limited field electron beam diffraction pattern of a minute region with suppressed influence of the electron beam, and to acquire an accurate distribution of lattice plane spacing.

なお、図4では複数個の制限視野の取得を電子ビーム偏向コイル20、イメージシフト偏向コイル21を使って電子線17を偏向し行っているが、偏向可能領域よりを超えた領域の電子線回折パターンを得たい場合は、試料微動を併用し、偏向可能領域分、試料10を移動したのち、ビームシフト用偏向コイル20、イメージシフト用偏向コイル21を使って新たな領域の電子線回折パターンを取得するようにしてもよい。また、試料微動を併用する代わりに、制限視野絞り18をモータ駆動で移動させるようにしてもよい。この場合、制限視野位置が光軸から外れるため、中間レンズ5に入射する電子線17も光軸から外れてしまうので、中間レンズ5上方制限視野絞り18下方にビームシフト用偏向コイル20、イメージシフト用偏向コイル21を設け、中間レンズ5に入射する透過電子線17が中間レンズ5に対し中心かつ垂直に入射するようにしてもよい。   In FIG. 4, the electron beam 17 is deflected by using the electron beam deflection coil 20 and the image shift deflection coil 21 to obtain a plurality of limited visual fields, but electron beam diffraction in a region beyond the deflectable region. In order to obtain a pattern, the sample fine movement is used together, the sample 10 is moved by the deflectable region, and then a beam shift deflection coil 20 and an image shift deflection coil 21 are used to obtain an electron diffraction pattern of a new region. You may make it acquire. Further, instead of using the sample fine movement together, the limited field stop 18 may be moved by a motor drive. In this case, since the limited visual field position deviates from the optical axis, the electron beam 17 incident on the intermediate lens 5 also deviates from the optical axis. Therefore, the beam shift deflection coil 20 and the image shift are located below the intermediate lens 5 upper limited visual field stop 18. A deflection coil 21 may be provided so that the transmission electron beam 17 incident on the intermediate lens 5 is incident on the intermediate lens 5 at the center and perpendicularly.

上記の各実施例によれば、制限視野と対応する回折パターンを対で記憶させることが可能で、さらに制限視野に関しては視覚的に認識できる。さらに、回折パターンから得られる結晶格子面間隔が同一のものに関し、対応する制限視野を分別し、TEM画像上で色の違いで識別できるため、多数の微小領域についての結晶構造解析効率が向上する。   According to each of the above embodiments, the diffraction pattern corresponding to the limited visual field can be stored in pairs, and the limited visual field can be visually recognized. Furthermore, for the same crystal lattice spacing obtained from the diffraction pattern, the corresponding limited field of view can be separated and identified by the color difference on the TEM image, improving the efficiency of crystal structure analysis for a large number of minute regions. .

1 透過電子顕微鏡
2 電子銃
3 コンデンサーレンズ
4 対物レンズ
5 中間レンズ
6 投射レンズ
7 レンズ励磁電源
8 レンズ電源制御部
9 試料ホルダ
10 試料
11 試料微動制御部
12 蛍光板
13 TVカメラ
14 画像記録制御部
15 画像表示部
16 画像記憶装置
17 電子線
18 制限視野絞り
19 制限視野絞り制御部
20 ビームシフト用偏向コイル
21 イメージシフト用偏向コイル
22a、22b 偏向コイル制御部
23 マイクロプロセッサ
24a 対物レンズ4後焦点面に形成される電子線回折パターン
24b 蛍光板12およびTVカメラ13に投影される電子線回折パターン
25 透過電子像
26a、26b 増幅器
27 加算器
28a、28b デジタルアナログコンバータ(DAC)
29 BUS
30a 試料面上の領域(点線矢印部)
30b 制限視野絞り18面に形成される像25bの制限された部分(点線矢印部)
31a 試料面上の別の領域(白矢印部)
31b 制限視野絞り18板上の透過像(白矢印部)
31c 制限視野絞り18穴位置に補正された透過像(点線矢印部)
32 カーソル
33 カーソルを中心として制限視野絞り18径を反映した円
DESCRIPTION OF SYMBOLS 1 Transmission electron microscope 2 Electron gun 3 Condenser lens 4 Objective lens 5 Intermediate lens 6 Projection lens 7 Lens excitation power supply 8 Lens power supply control part 9 Sample holder 10 Sample
11 Sample fine movement control unit 12 Fluorescent screen 13 TV camera 14 Image recording control unit 15 Image display unit 16 Image storage device 17 Electron beam 18 Restricted field stop 19 Restricted field stop control unit 20 Beam shift deflection coil 21 Image shift deflection coil 22a, 22b Deflection coil controller 23 Microprocessor 24a Electron diffraction pattern 24b formed on the back focal plane of the objective lens 4 Electron diffraction pattern 25 projected on the fluorescent screen 12 and the TV camera 13 Transmission electron images 26a and 26b Amplifier 27 Adder 28a , 28b Digital-to-analog converter (DAC)
29 BUS
30a Area on sample surface (dotted line arrow)
30b Restricted portion of the image 25b formed on the surface of the restricted field stop 18 (dotted line arrow portion)
31a Another area on the sample surface (white arrow)
31b Transmission image on white plate with limited field stop 18 (white arrow)
31c Transmission image (dotted line arrow) corrected to the position of the limited field stop 18 holes
32 Cursor 33 A circle reflecting the 18-diameter limited field stop centered on the cursor

Claims (7)

電子源から放出された電子線を試料に照射し、試料を透過した透過電子を集束する対物レンズと、前記試料を透過した透過電子を検出する検出器を備えた透過電子顕微鏡において、
前記対物レンズの下に前記透過電子を制限する制限絞りと、
前記試料の上部に電子線を偏向する電子ビーム偏向器と、
対物レンズの下部に透過電子を偏向するイメージシフト偏向器と、を備え、
前記試料の任意の測定領域に前記電子線が照射されるように前記電子ビーム偏向器で前記電子線を偏向し、前記試料を透過した電子線が、前記制限絞りの穴を通過するように前記イメージシフト偏向器の偏向量を調整する制御装置を備えたこと
を特徴とする透過電子顕微鏡。
In a transmission electron microscope provided with an objective lens that irradiates a sample with an electron beam emitted from an electron source and focuses the transmitted electrons that have passed through the sample, and a detector that detects the transmitted electrons that have passed through the sample.
A limiting aperture for limiting the transmitted electrons under the objective lens;
An electron beam deflector that deflects an electron beam on top of the sample;
An image shift deflector for deflecting transmitted electrons at the bottom of the objective lens;
The electron beam deflector deflects the electron beam so that an arbitrary measurement region of the sample is irradiated with the electron beam, and the electron beam transmitted through the sample passes through the hole of the restriction aperture. A transmission electron microscope comprising a control device for adjusting a deflection amount of an image shift deflector.
請求項1の透過電子顕微鏡において、
前記試料の電子線照射領域の回折像を取得し、前記回折像から前記試料の分析を行うこと
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 1,
A transmission electron microscope characterized in that a diffraction image of an electron beam irradiation region of the sample is acquired and the sample is analyzed from the diffraction image.
請求項1の透過電子顕微鏡において、
前記試料の透過電子像の測定したい領域を指定する指定手段を備え、
前記透過電子像を表示する表示画面上に前記指定手段を表示すること
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 1,
Comprising designation means for designating a region to be measured of the transmission electron image of the sample;
A transmission electron microscope characterized by displaying the designation means on a display screen for displaying the transmission electron image.
請求項3の透過電子顕微鏡において、
前記電子ビーム偏向器は、前記指定手段で指定された試料部分に前記電子線を照射するように電子線を偏向すること
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 3,
The transmission electron microscope characterized in that the electron beam deflector deflects an electron beam so as to irradiate the electron beam onto a sample portion designated by the designation means.
請求項3の透過電子顕微鏡において、
前記指定手段は、試料上の複数の測定箇所を指定可能であり、
前記電子ビーム偏向器は、前記指定手段で指定された試料部分に前記電子線を照射するように電子線を偏向すること
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 3,
The designation means can designate a plurality of measurement locations on the sample,
The transmission electron microscope characterized in that the electron beam deflector deflects an electron beam so as to irradiate the electron beam onto a sample portion designated by the designation means.
請求項5の透過電子顕微鏡において、
前記複数の測定箇所の電子線回折パターンに基づく物質の分析を行い、
前記複数の測定箇所を前記表示画面上で分類して表示すること
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 5,
Analyzing the substance based on the electron diffraction pattern of the plurality of measurement locations,
A transmission electron microscope characterized in that the plurality of measurement locations are classified and displayed on the display screen.
請求項1の透過電子顕微鏡において、
前記試料又は前記制限絞りを駆動する駆動機構を備えたこと
を特徴とする透過電子顕微鏡。
The transmission electron microscope of claim 1,
A transmission electron microscope comprising a driving mechanism for driving the sample or the limiting diaphragm.
JP2013153167A 2013-07-24 2013-07-24 electronic microscope Active JP6214952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153167A JP6214952B2 (en) 2013-07-24 2013-07-24 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153167A JP6214952B2 (en) 2013-07-24 2013-07-24 electronic microscope

Publications (2)

Publication Number Publication Date
JP2015023010A true JP2015023010A (en) 2015-02-02
JP6214952B2 JP6214952B2 (en) 2017-10-18

Family

ID=52487266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153167A Active JP6214952B2 (en) 2013-07-24 2013-07-24 electronic microscope

Country Status (1)

Country Link
JP (1) JP6214952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133151B2 (en) 2019-11-15 2021-09-28 Jeol Ltd. Transmission electron microscope and method of controlling same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243338A (en) * 1999-02-22 2000-09-08 Hitachi Ltd Transmission electron microscope device and transmitted electron examination device and examination method
JP2005235665A (en) * 2004-02-23 2005-09-02 Hitachi High-Technologies Corp Dark field scanning transmission electron microscope and observation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243338A (en) * 1999-02-22 2000-09-08 Hitachi Ltd Transmission electron microscope device and transmitted electron examination device and examination method
JP2005235665A (en) * 2004-02-23 2005-09-02 Hitachi High-Technologies Corp Dark field scanning transmission electron microscope and observation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133151B2 (en) 2019-11-15 2021-09-28 Jeol Ltd. Transmission electron microscope and method of controlling same

Also Published As

Publication number Publication date
JP6214952B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
CN105280464B (en) Operate the particle beam system and method for particle optics unit
CN111477530B (en) Method for imaging 3D samples using a multi-beam particle microscope
WO2014188882A1 (en) Charged particle beam application device
JP5497980B2 (en) Charged particle beam application apparatus and sample inspection method
JP5498488B2 (en) Charged particle beam application apparatus and sample observation method
JP4679978B2 (en) Charged particle beam application equipment
US10811218B2 (en) Tilting parameters calculating device, sample stage, charged particle beam device, and program
US9799483B2 (en) Charged particle beam device and detection method using said device
CN109298001B (en) Electron beam imaging module, electron beam detection equipment and image acquisition method thereof
JP2007207688A (en) Mirror electron microscope, and inspection device using mirror electron microscope
JP6666627B2 (en) Charged particle beam device and method of adjusting charged particle beam device
US10811217B2 (en) Crystal orientation figure creating device, charged particle beam device, crystal orientation figure creating method, and program
JP2012013703A (en) Method for electron diffraction tomography
JP2019145511A (en) Electron beam apparatus
JP2006032107A (en) Reflection image forming electron microscope and pattern defect inspection device using it
JP2014026834A (en) Charged particle beam application apparatus
US9396907B2 (en) Method of calibrating a scanning transmission charged-particle microscope
JP2005181246A (en) Pattern defect inspecting method and inspecting apparatus
JP5380366B2 (en) Transmission interference microscope
JP6214952B2 (en) electronic microscope
JP5588944B2 (en) Scanning electron microscope
US11756764B2 (en) Charged particle beam apparatus and method of controlling charged particle beam apparatus
US20150255247A1 (en) Analysis apparatus and analysis method
JP5489295B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
JP4895525B2 (en) Scanning transmission electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6214952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350