JP5310847B2 - 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法 - Google Patents

無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法 Download PDF

Info

Publication number
JP5310847B2
JP5310847B2 JP2011518227A JP2011518227A JP5310847B2 JP 5310847 B2 JP5310847 B2 JP 5310847B2 JP 2011518227 A JP2011518227 A JP 2011518227A JP 2011518227 A JP2011518227 A JP 2011518227A JP 5310847 B2 JP5310847 B2 JP 5310847B2
Authority
JP
Japan
Prior art keywords
awv
signal
communication device
communication
antenna array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011518227A
Other languages
English (en)
Other versions
JPWO2010143353A1 (ja
Inventor
健一 細谷
建一 丸橋
直行 折橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011518227A priority Critical patent/JP5310847B2/ja
Publication of JPWO2010143353A1 publication Critical patent/JPWO2010143353A1/ja
Application granted granted Critical
Publication of JP5310847B2 publication Critical patent/JP5310847B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、無線ビームを適応制御して無線通信を行うシステム及びその制御方法に関する。
近年、広帯域なミリ波(30GHz〜300GHz)を用いた無線装置の利用が広がりつつある。ミリ波無線技術は、特に、高精細画像の無線伝送やギガビット級の高速データ無線通信への応用が期待されている(例えば、非特許文献1、2、3参照)。
しかしながら、周波数が高いミリ波には直進性が強い性質があり、室内での無線伝送を想定した場合には課題がある。直進性が強い上に、人体等により信号減衰が顕著なため、室内などで送信機と受信機の間に人が介在した場合、見通し外となって伝送が困難になってしまう(シャドウイングの問題)。この問題は、周波数が高くなって電波の直進性が強くなるのに応じて伝搬環境が変わってきた結果によるもので、ミリ波帯(30GHz以上)に限らない。電波の伝搬環境が変化する変り目の周波数を明示することはできないが、およそ10GHz前後といわれている。なお国際電気通信連合の勧告("Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz," ITU-R, P.1238-3, 2003年4月)によれば、伝搬時の距離に対する電波の減衰量を表す電力損失係数(power loss coefficients)は、オフィス内では0.9〜5.2GHzにおいて28〜32であるのに対し、60GHzにおいては22となっている。自由空間損失の場合は20であるから、60GHzというような高い周波数では散乱や回折などの影響が少ないものと考えられる。
上述したような課題を解決するために、例えば、受信装置に複数の受信部を設置することにより複数の伝送路を設け、送信装置と受信部との間の伝送路うち一方の伝送路が遮蔽された場合に、もう一方の伝送路で伝送を継続するシステムが特許文献2に記載されている。
また、別の解決方法として、反射体を壁や天井に設置し、いくつかの伝送路を確保することも考案され、特許文献3に記載されている。
特許文献2に記載された方法は、送信装置の近傍が遮蔽された場合や、複数設置された受信部を全て遮蔽された場合には、対応できない。また、特許文献3に記載された方法では、送信機と受信機の配置を考えて反射体を設置する必要があるなど、ユーザーに対して格別の配慮を要請しなければならなかった。
ところが、最近になって、ミリ波の伝搬特性が調べられ、意図的に反射体を設置しなくても反射波を利用できる可能性が見出された。図21は、広角アンテナを用いたシステムの構成を示す図であり、図22は、図21に示したような広角アンテナを用いたシステムの室内における遅延プロファイルの例を示す図である。図21に示したような広角アンテナを用いたシステムにおいては、図22に示すように、最初に到来する主波の受信電力が1番大きい。その後、第2波、第3波等の遅延波が到来するが、受信電力としては小さい。これら第2波や第3波は、天井や壁からの反射波である。この状況は、例えば無線LAN(Local Area Network)で使用される2.4GHz帯のような直進性が弱い電波の伝搬環境とは著しく異なる。2.4GHz帯では回折の効果と多重反射によって、電波の到来方向を明確に分離することが困難である。一方、直進性が強いミリ波では、電波の到来方向が比較的明確であるが、遅延波の数は限られ、その受信レベルは小さい。
したがって、直接波が遮蔽された場合に、反射波を利用して伝送を継続させるためには、図20A及びBに示すように、指向性利得が高い狭ビームを反射する方向へ向け、受信レベルを確保しなければならない。ただし、遮蔽の有無や、送信機と受信機の相対位置などについて、ユーザーの格別な配慮を不要とするためには、狭いビームを動的に制御するビームフォーミングの技術が必須となる。
ビームフォーミングにおいては、アンテナアレイを構成する必要がある。波長が短いミリ波では(例えば、周波数60GHzでは5mm)、アンテナアレイを小エリアで実現でき、これに供する移相器アレイや発振器アレイが開発されている(例えば、非特許文献3,4参照)。
また、アンテナアレイを用いたビームフォーミングとは別の目的の技術として到来方向推定技術が知られている。到来方向推定技術は、レーダーやソナー、伝搬環境測定、等で用いられる技術であり、アンテナアレイで受信する電波の到来方向と電力を高精度に推定するためのものである。そこで用いられるアルゴリズムとして、例えばビームフォーマー法が知られている。
この到来方向推定技術が、電波源を設置した上での伝搬環境測定に用いられる場合、その電波源にはしばしばオムニ(無指向性)アンテナが使用される。例えば非特許文献6にそのような例が示されている。
国際公開第2008/090836号パンフレット 特開2006−245986号公報 特開2000−165959号公報 米国特許出願公開第2007/0205943号明細書 特開2000−174536号公報 特開2008−160532号公報 特開2008−228013号公報
K. Maruhashi他 、「60-GHz-band LTCC Module Technology for Wireless Gigabit Transceiver Applications」、IEEE International Workshop on Radio-Frequency Integration Technology, Digest, pp.131-134, Dec, 2005. K. Ohata他、「1.25Gbps Wireless Gigabit Ethernet Link at 60 GHz-Band」、IEEE MTT-S International Microwave Symposium, Digest, pp. 373-376, June 2003. J. F. Buckwalter他、「An Injected Subharmonic Coupled-Oscillator Scheme for a 60- GHz Phased-Array Transmitter」、IEEE Transactions on Microwave Theory and Techniques, Vol.12, pp.4271-4280, Dec. 2006. S. Alausi他、「A 60 GHz Phased Array in CMOS」、IEEE 2006 Custom Integrated Circuits Conference, Digest, pp.393-396, San Jose, Sept. 2006. I. Lakkis他、「IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANS): TG3c Call for Proposals」、15-08-0355-00-003c、May, 2008. K. Sato他、「Channel model for millimeter-wave WPAN」、The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio communications (PIMRC'07)、2007.
室内でのミリ波システムにおいて、直接波が遮蔽された場合に反射波で無線伝送を継続する場合には、以下の問題が生じる。
使用する波(直接波、反射波)を切り替える際、伝送断の時間を短くすることが望ましく、例えば、リアルタイム性が要求される非圧縮画像伝送では、特に強い要求となる。一方、反射波を利用する場合には、受信強度を高めるためにアンテナビーム幅を狭くしてアンテナの指向性利得を高くする必要がある。
ところが、ビーム幅が狭ければ狭いほど探索する方向(ステップ)が増える。このため、ビーム方向を探索し、最適なビーム方向を設定するための時間がかかるので、伝送断の時間が長くなってしまう。そこで、このような場合にも伝送断の時間を短くできるビーム方向の設定方法が強く望まれている。なお、データをバッファリングできる装置であっても、伝送断の時間が長くなると、非常に大きなメモリが必要となり実用的ではない。
図4に、ビームフォーミングで用いる送受信機の構成の一例を示す(動作の説明に不要な回路を除く)。送信アンテナはM個、受信アンテナはN個である。送信機401には、送信回路403があり、外部からデータが入力される。送信回路403の出力はM分岐され、それぞれAWV(アレイ重みベクトル)制御回路404−1〜Mに入力される。ここで各々の信号は、その振幅および位相もしくは何れか一方が変えられ、最終的には各アンテナ素子405−1〜Mからなる送信アンテナアレイを通して出力される。AWV制御回路404−1〜Mは、例えばアナログ移相器と可変利得増幅器の直列接続により実現でき、この場合には信号の振幅及び位相の双方が連続的に制御される。またAWV制御回路404−1〜Mをデジタル移相器で実現した場合には、信号の位相のみが離散的に制御されることになる。AWV制御回路404−1〜Mにより制御されるAWVは一般的には、以下の式(1)のように表記できる。
Figure 0005310847

ここで、w1、w2、・・・wMは複素数であり、添え字Tは転置を表す。また信号の位相のみを制御する場合には、式(1)は、以下の式(2)のように表記することができる。
Figure 0005310847

ここで、θ、θ、・・・、θは位相制御量である。
また処理・演算回路406は、制御回路407を通して、AWV制御回路404−1〜MのAWV設定を指示する。各信号に与えられる振幅および位相もしくは何れか一方の変化によって、送信機から発射されるビームの方向、幅などを制御することが可能となる。
一方受信機402では送信機401と逆の構成がとられている。アンテナ素子411−1〜Nからなる受信アンテナアレイによって受信された信号は、AWV制御回路410−1〜Nで振幅および位相もしくは何れか一方が調整されてから合成され、受信回路409を経て、外部にデータが出力される。送信機401と同様に、処理・演算回路406によって、AWV制御回路410−1〜Nの振幅および位相もしくは何れか一方が制御される。
図5は、図4に示した構成の送受信機2つ(400及び500)で構成された無線通信システムの概念図である。送受信機500の送信アンテナはK個、受信アンテナはL個としてある。
通信機と通信機の間の伝搬路の特性は、チャネル応答行列で表現される。このチャネル応答行列が求まれば、特異値分解(SVD: Singular-Value Decomposition)を用いて、最もよい送受信機のアンテナアレイの位相組合せが求まることが知られている。しかし一方でSVDは複雑で処理時間が長いため、例えば、高速性が要求される非圧縮画像伝送装置に実装することは困難である。
このため、例えば特許文献4には、ユニタリ行列(例えばアダマール行列)をアンテナアレイの位相として加え、送信機のアンテナアレイのトレーニングと、受信機のアンテナアレイのトレーニングを繰り返し、最も信号強度が強くなる最適AWVを求める方法が開示されている。この方法では、SVDに比べ時間が短縮できるものの、送受信の切り替えを繰り返し行うために、最適なAWV組合せを求めるまでに所定の時間がかかっていた。
また非特許文献5には、ビーム解像度を徐々に上げながら送受のビーム方向を最適化する技術が開示されている。しかしこのような技術においても、送受信の切り替えを繰り返し行いながら多数の送受のビーム方向の組合せについて通信品質の測定を行う必要があり、最適なビーム組合せを求めるのに多大な時間が必要であった。
また同文献において、最も低い解像度のビームとして、擬似オムニ(擬似無指向性)パターンという概念が呈示されている。この擬似オムニパターンとは、完全なオムニ(無指向性)ではないものの、送受信機周辺の空間のうち非常に広い方向にわたりほぼ一定のアンテナ利得を有するパターンを指す。ミリ波アンテナアレイにおいては完全なオムニパターンを得ることが困難な場合が多いため、この擬似オムニパターンで代用される場合が多い。
一般的に、初期にリンクを確立する際には、最適なAWV組合せを求める時間が長くても許容される。しかし、既にリンクが確立された後に伝送断が発生した際に必要となる再リンク確立には、素早い別の最適AWVの組合せ探索が必要である。またマルチポイント通信の場合、複数のリンクの再確立が必要となり、より早い最適AWVの組合せ探索が必要である。
上述したような従来の技術が有する問題点に鑑みて本願の発明者等は、ビーム方向の探索や設定にかかる時間を短縮し、伝送断が生じる時間を短くすることができる無線制御方法を過去の出願にて提案している(日本特願2008-240156号:2008年9月19日出願)。さらに、本願の発明者等は、トレーニング信号の送受信結果に基づいて通信機間の通信に使用するAWVを決定するに際して、伝搬環境やアンテナアレイの特性によっては、アンテナアレイのサイドローブの存在が障害となるおそれがあることを見出し、この問題の解決手段を具備した無線制御方法についても過去の出願にて提案している(日本特願2008-282697号:2008年11月4日出願)。この方法はサイドローブにより誘起される可能性のある2つの問題(角度プロファイルの鈍り、サイドローブ起因ピークの出現)に対し有効であるが、状況によっては後者のみが問題となる場合がある。そのような場合には、後者の問題にのみ有効な、より簡易な方法を採ることが効率的となる。
本発明は、上述した問題点に鑑みてなされたものであって、ビームフォーミングを行って無線通信を行う通信機において、トレーニング信号の送受信結果に基づいて通信に使用するAWVを決定するに際して、アンテナアレイのサイドローブの悪影響の一つ(サイドローブ起因ピーク出現)を簡易な方法で回避することを目的とする。
本発明の第1の態様は、第1及び第2の通信機を備える無線通信システムの制御方法である。前記第2の通信機は、前記第2の通信機は、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(以下、AWV)制御回路とを有する。本態様にかかる制御方法は、前記アンテナアレイをなす複数のアンテナ素子のうち少なくとも2つ以上のアンテナ素子のAWVを独立に制御するに際して行われる以下の処理(a)〜(f)を含む。
(a):前記第2の通信機が有する前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながら、前記第1の通信機から固定ビームパターンを用いて送信される前記トレーニング信号を前記第2の通信機において受信すること;
(b):前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の到来方向を決定すること;
(c):前記複数または単数の信号の到来方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記第2の通信機が有する前記アンテナアレイのAWVを変化させながら、前記第1の通信機が送信するトレーニング信号を前記第2の通信機において受信すること;
(d):前記複数または単数の信号の到来方向の各々に関して、前記工程(a)で取得した受信信号特性と前記工程(c)で取得した受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい到来方向を特定すること;
(e):工程(b)で決定した前記第2の通信機における複数または単数の信号の到来方向から工程(d)で特定した到来方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求めること;及び
(f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用すること。
本発明の第2の態様もまた、第1及び第2の通信機を備える無線通信システムの制御方法である。前記第2の通信機は、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(AWV)制御回路とを有する。本態様にかかる制御方法は、前記アンテナアレイをなす複数のアンテナ素子のうち少なくとも2つ以上のアンテナ素子のAWVを独立に制御するに際して行われる以下の処理(a)〜(f)を含む。
(a):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記第2の通信機が前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながらトレーニング信号を放射すること;
(b):前記第1の通信機における前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の放射方向を決定すること;
(c):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記複数または単数の信号の放射方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながら前記第2の通信機からトレーニング信号を放射すること;
(d):前記複数または単数の信号の放射方向の各々に関して、工程(a)で得られる前記第1の通信機の受信信号特性と工程(c)で得られる前記第1の通信機の受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい放射方向を特定すること;
(e):前記工程(b)で決定した前記第2の通信機における複数または単数の信号の放射方向から前記工程(d)で特定した放射方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求めること;及び
(f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用すること。
本発明によれば、ビームフォーミングを行って無線通信を行う通信機において、トレーニング信号の送受信結果に基づいて通信に使用するAWVを決定するに際して、アンテナアレイのサイドローブの悪影響の一つであるサイドローブ起因ピーク出現の問題を簡易な方法で抑制することが可能になる。
本発明の第1の実施の形態に係る無線制御手順における遷移を示す図である。 本発明の第2の実施の形態に係る無線制御手順における遷移を示す図である。 本発明の第3の実施の形態に係る無線制御手順における遷移を示す図である。 本発明を適用可能な、ビームフォーミングで用いる装置構成を例示した図である。 2つの送受信機で構成された無線通信システムを説明するための概略図である。 本発明が適用される伝搬環境の一例を示す平面図である。 本発明の制御手順の過程において得られる角度プロファイルの一例を示す模式図である。 アンテナアレイにおける主ローブとサイドローブを説明するための模式図である。 本発明において、サイドローブの影響を説明するための模式図である。 サイドローブの効果が角度プロファイルへ与える第1の影響を説明するための模式図である。 サイドローブの効果が角度プロファイルへ与える第2の影響を説明するための模式図である。 トレーニング信号の到来方向にヌル点方向を向ける前後でのトレーニング信号の受信電力比を示す模式図である。 本発明が適用される伝搬環境の一例を示す平面図である。 本発明の制御手順の過程において得られる角度プロファイルの一例を示す模式図である。 本発明の第1の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第1の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第1の実施の形態に係る無線制御手順において、無線通信の遮蔽があった場合の送信機と受信機の動作を示したシーケンス図である。 本発明の第5の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第5の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第5の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第6の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第7の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第7の実施の形態に係る無線制御手順において無線通信を行うまでの送信機と受信機の動作を示したシーケンス図である。 本発明の第1実施の形態に係る無線制御手順において、遮蔽のない場合の無線信号の局所的な反射に起因して伝搬路ができた場合の電波伝搬の様子を説明する図である。 本発明の第1実施の形態に係る無線制御手順において、人体による遮蔽がおきた場合の無線信号の局所的な反射に起因して伝搬路ができた場合の電波伝搬の様子を説明する図である。 広角アンテナを用いたシステムの構成を示す図である。 広角アンテナを用いたシステムの室内における遅延プロファイルの例である。
以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施の形態>
本発明における第1の実施の形態を、図1に示した遷移図を用いて説明する。なお本実施の形態にかかる無線通信システムの装置構成は、例えば、図5に示した装置構成を採用することができる。
図1に示すS12において、送受信機400及び送受信機500は、これらに設けられたAWV制御回路404−1〜M、410−1〜N、504−1〜K、510−1〜Lを最適化するための初期トレーニングを行う。S13では、処理・演算回路406若しくは506又はこれら2つの回路が協同して、複数のAWV組合せ候補を計算する。S13における複数のAWV組合せ候補の計算方法については後述する。得られた複数のAWV組合せ候補は、記憶回路408及び508若しくは何れか一方にデータ列として記憶される。
S14では、S13で得られた複数のAWV組合せ候補の中から1つを選択して通信を行う。このときのAWV組合せの選択の仕方についても後述する。通信継続中においては、送受信機400及び500は、通信状態をモニタする。例えば送受信機500を受信動作させた場合には、受信回路509又は処理・演算回路506において通信品質を計測することにより行えばよい。通信品質としては、例えば、受信レベル、信号電力対雑音電力比(SNR:Signal to Noise ratio)、ビット誤り率(BER:Bit Error Rate)、パケット誤り率(PER:Packet Error Rate)、フレーム誤り率(FER:Frame Error Rate)などを測定すればよい。一方、このとき送信機として動作させた送受信機400における通信状態のモニタは、送受信機500からの通信品質劣化警報の受信状況、受信確認応答(ACK)の受信状況を計測することにより行えばよい。なお、通信状態のモニタの具体的手法には、公知の一般的な手法を採用すればよいため、本実施形態における詳細な説明は省略する。
通信継続中に、通信途絶などの通信品質の劣化が検出された場合、送受信機400及び500は、記憶回路408及び508若しくは何れか一方に記録されたデータ列の中から別のAWV組合せを選択する(S15)。
S16では、新たに選択されたAWV組合せを用いた通信の品質が良好であるか否かを判定する。通信品質の良否は、例えば送受信機500を受信動作させた場合には、受信回路509又は処理・演算回路506において、受信レベル、SNR等を計測することによって判定すればよい。S16にて通信品質が良好であると判定された場合、送受信機400及び500は通信状態(S14)に復帰する。一方、S16にて通信品質が不十分であると判定された場合、送受信機400及び500はS15に遷移してAWV組合せの再選択を行う。
記憶回路408及び508に記録されたAWV組合せの中から、通信状態が良好なものが見つからない場合には、初期トレーニングに戻ってやり直しを行う。
続いて以下では、図1のS12における初期トレーニングの手順、及びS13における複数のAWV組合せ候補を求める手順について説明する。
先ず、送受信機400を送信動作させ、そのAWVをオムニもしくは擬似オムニパターンを発生するよう設定する。その状態でトレーニング信号を送信する。前記トレーニング信号は複数の伝搬路を経て送受信機500へと到来する。
このとき送受信機500を受信動作させ、そのアンテナアレイ511−1〜L、受信回路509、制御回路513、処理・演算回路506を連動させて、そのアンテナアレイのAWVを変化させることにより主ビーム方向を走査し、受信動作させた送受信機500における信号の到来方向と受信電力の関係を記述したデータ列を取得する。以下では、信号の到来方向と受信電力の関係を記述したデータ列を角度プロファイルと呼ぶ。AWVの制御や角度プロファイルの取得は、到来方向推定アルゴリズムを用いて実行すればよい。到来方向推定アルゴリズムはレーダーやソナー、伝搬環境測定、等で用いられる技術であり多種のアルゴリズムが存在するが、例えばビームフォーマー法を適用すればよい。また、上記では到来方向と受信電力の関係を記述した角度プロファイルを取得するとしたが、受信電力以外の受信信号特性を信号の到来方向と対応付けてもよい。受信電力以外の受信信号特性とは例えば、信号電力対雑音電力比(SNR)などである。
一例として、図6に示すような伝搬環境を考える。図6の例では、送受信機400及び500は、壁61に囲まれた室内(2次元)に設置されている。送受信機400と500の間には、通信に使用可能な3つの伝搬路P1〜P3が存在するものとする。サイドローブレベルの十分小さいアンテナアレイを用いた理想的な状況下では、到来方向推定アルゴリズムを実行することにより、図7に例示した模式図のような受信電力と到来方向の関係を示す角度プロファイルを取得できる。このプロファイルのピーク(この例では3つ)を検出することにより、信号の到来方向、すなわち通信に使用可能な伝搬路の方向を検出できるはずである。このように検出した伝搬路もしくはその方向(実際には対応するAWV)に、例えば受信電力順に優先順位を付与し、順次通信に利用することを考える。ここで順次とは、例えば遮蔽などにより優先順位の高い伝搬路の通信特性が劣化した場合に、次の優先順位の伝搬路に切換えていくという意味である。このように予め通信に使用可能な複数のAWVを用意しておき、通信時にそれらを順次使用していくという概念は、例えば特許文献1、特許文献5等に記載されている。また、受信電力順にAWVに順位付けをすることについては、例えば特許文献6に記載されている。
なおここでは説明の簡単化のため、図6のような平面(2次元)の伝搬環境を考えており、従って図7横軸の到来方向も1次元の量となっている。アンテナアレイの次元も1次元を想定している。しかし、本発明は3次元の伝搬環境において、2次元のアンテナアレイを用いる場合にも適用できる。この場合、図7の横軸は2つの角度から成る2次元配列となる。
ここでアンテナアレイのサイドローブが角度プロファイルの計測精度に及ぼす影響について考える。上記の説明では、送受信機500を受信操作させて主ビーム方向、つまり主ローブを走査すると述べたが、現実のアンテナアレイには主ローブの他にサイドローブと呼ばれる電界放射成分が存在する。その様子を、図8に模式的に示した。
主ローブを走査しながらトレーニング信号を受信する際、図9に示すように主ローブ方向(到来信号の有無にかかわらず到来方向と呼んでいる方向)とは別の方向からの信号をサイドローブが受信することが起こる。このサイドローブによる受信信号は、主ローブによる受信信号と受信回路509内で合成され、測定している受信電力(あるいは他の受信信号特性)に影響を及ぼす。影響の仕方は、主ローブによる受信信号とサイドローブによる受信信号の位相差に依存するので、単純な加算とは限らない。以上においては受信の場合を例に説明したが、送信の場合にも同様の事が起こる。すなわち、送信機のサイドローブが伝搬路方向を向いた場合、サイドローブからの放射が受信機に達し、受信電力(あるいは他の受信信号特性)に影響を及ぼす。
このサイドローブの効果は、図7に示した角度プロファイルへ2つの様態で影響を与える可能性がある。図10中の実線は、第1の影響の様態を模式的に示したものである。このように図7のプロファイル(比較のため図10中に破線で示している)上にサイドローブにより受信された信号の効果が重畳されることにより、角度プロファイルに鈍りが生じる可能性がある。その結果、比較的受信電力の小さいピークの検出が困難となる可能性がある。
図11中の実線は、第2の影響の様態を模式的に示したものである。やはり比較のため、サイドローブの効果の無い場合のプロファイルを破線で示している。比較的大きな電界強度を有するサイドローブが電力の大きい信号(通常、前記の優先度の高い伝搬路を伝搬してきた信号)を受信した場合、この図に示すような主ローブによるものではないピークが出現する可能性がある。このピークに対応する到来方向は、サイドローブが大電力信号を受信しているときに主ローブが向いている方向であり、実際には信号が到来していない方向である。このときのAWV設定を使えば、主ローブではなくサイドローブを用いての通信が可能であるが、実際に使用している伝搬路は大電力信号を伝搬する伝搬路(より優先度の高い伝搬路)である。従って、より優先度の高い伝搬路の通信品質が遮蔽などにより劣化する場合、サイドローブ受信を行うAWV設定も同時に通信品質が劣化することになる。従って、サイドローブ受信を行うAWV設定は、予備として備蓄しておくAWV設定としての価値が非常に低い。
以上、サイドローブの効果により角度プロファイルへ現出する可能性のある2つの現象について述べた。これらの現象の現出の程度は、アンテナアレイの特性や、伝搬環境に依存するものと考えられる。ここでアンテナアレイの特性とは、主ローブとサイドローブのレベル差などを指す。伝搬環境とは、例えば見通し(LOS:Line of Sight)伝搬路成分が突出して強い(受信電力が大きい)場合に上記の現象が現れ易いことを指す。このとき、それ以外のNLOS(Non Line of Sight)伝搬路成分の検出がプロファイルの鈍りにより困難になったり、サイドローブに起因するピークが現れたりする可能性が高まることが予想される。
以下に続く手順は、上述の現象のうちサイドローブ起因ピークの出現が顕著な場合に、これに対処するためのものである。
上記のサイドローブ起因ピークの問題を考慮し、角度プロファイルの例として図11に実線で示したものを想定する。なお、図11の破線は、図7に示した理想的な角度プロファイルである。処理・演算回路506は、得られた角度プロファイルのデータ列を用いてピーク検出を行い(この例では4つ)、各ピークの到来方向と受信電力を求める。
再度もしくは引続き、送受信機400のAWVをオムニもしくは擬似オムニパターンを発生するよう設定した状態で、トレーニング信号を送信する。このトレーニング信号は複数の伝搬路を経て送受信機500へと到来する。
このとき再度もしくは引続き、送受信機500を受信動作させ、そのアンテナアレイ511−1〜L、受信回路509、制御回路513、処理・演算回路506を連動させて、そのアンテナアレイのAWVを変化させることにより、先程求めた4つの到来方向に順次ヌル点を向け、受信動作させた送受信機500における信号の受信電力を測定する。ヌル点とは、アンテナアレイの指向性特性において電界強度が非常に小さくなる方向を指す。
続いて処理・演算回路506は、4つの到来方向それぞれについて、角度プロファイルを取得した際の受信電力とヌル点を向けたときの受信電力の比を計算する。この際、各到来方向のピークが主ビームにより信号を受信したことにより形成されたものである場合には、ヌル点で受信することにより受信電力は大きく変化する。一方、ピークが主ビーム方向(角度プロファイルにおいて到来方向と認識されている方向)とは別方向の強い信号をサイドローブで受信することにより形成されたものである場合には、もともと信号経路の存在しない方向に向いていた主ビームがヌル点に変化することになるので、受信電力の変化は、前述の場合に比較し小さくなる確率が高い。従って、角度プロファイルを取得した際の受信電力とヌル点を向けたときの受信電力の比に適当な閾値を設定しておき、その閾値を下回った場合は、そのピークは主ビーム方向とは別方向の信号をサイドローブで受信することにより形成されたものと判別する。
上述の説明においては、各到来方向へヌル点を向ける際に、ヌル点以外の方向の放射パターンについては言及しなかった。各到来方向へヌル点を向ける際のAWV制御において、該方向へのヌル点形成のみを条件とし、ヌル点以外の方向の放射パターンに特別な制約を設けない場合、上述の角度プロファイルを取得した際の受信電力とヌル点を向けたときの受信電力の比は、例えば図12に示すような確率事象となる。すなわち、到来方向のピークが主ビームにより信号を受信したことにより形成されたものである場合には、角度プロファイル作成時の主ビーム強度とヌル点を向けた際のヌル深さの比を期待値とした比較的分散の小さな分布となる。一方、ピークが主ビーム方向とは別方向の強い信号をサイドローブで受信することにより形成されたものである場合には、例えば期待値は0dB付近、比較的分散の大きな分布となる。このように、各到来方向へヌル点を向ける際のAWV制御において、ヌル点以外の方向の放射パターンに特別な制約を設けない場合、受信電力比は図12に示すような確率事象となる。しかし、図中の鎖線で示すような値を予め閾値に定めておけば、高い確率でサイドローブ起因のピークを識別することが可能である。
なお、各到来方向へヌル点を向ける際に、ヌル点方向周辺以外にはオムニもしくは擬似オムニパターンとなるようAWV制御を行えば、図12に示す確率分布の分散は小さくなり、より高精度にサイドローブ起因のピークを識別することが可能となる。
上述の説明においては、閾値は予め定めておくとしていたが、角度プロファイルや受信電力比の測定を行った後に、これらのデータを考慮した上で決定してもよい。
続いて処理・演算回路506は、最初に求めた到来方向(この例では4つ)から、サイドローブ起因と判別した方向(この例では1つ)を除外する。そして残った到来方向(この例では3つ)に主ビームもしくはそれに準じるビームを向けるためのAWVをそれぞれ計算し、これらのAWVを角度プロファイル取得時の受信電力順に記憶回路508へ格納する。また、ここでAWVは、受信機502のAWV制御回路510−1〜Lに対するものと、送信機501のAWV制御回路504−1〜Kに対するものの双方を計算する。送受信機500が受信動作する場合には前者を、送信動作する場合には後者を使用すればよい。また、新たにAWVを計算するのではなく、ビーム走査を行った際に使用したAWVのうち対応する到来方向に主ビームもしくはそれに準じるビームが向いたものを使用してもよい。
続いて、送受信機400と500の役割を交替して同様の処理を実行する。即ち、送受信機500を送信動作させ、そのAWVをオムニもしくは擬似オムニパターンを発生するよう設定する。その状態で送受信機500がトレーニング信号を送信する。前記トレーニング信号は複数の伝搬路を経て送受信機400へと到来する。この際、通信に使用可能な伝搬路としては、図13に示すように、図6とは方向を逆にした第1〜第3伝搬路P1〜P3が存在する。
このとき送受信機400を受信動作させ、そのアンテナアレイ(アンテナ素子411−1〜L)、受信回路409、制御回路413、処理・演算回路406を連動させて、主ビーム走査を行う。その結果、図14に実線で示すような角度プロファイルが得られる。なお、図14の破線は、サイドローブ受信による影響がない場合の理想的な角度プロファイルである。処理・演算回路406は、角度プロファイルを用いてピークサーチを行い、信号の到来方向を特定する。続いて、特定した到来方向へ順次ヌル点を向け、受信電力の測定を行う。
処理・演算回路406は、角度プロファイルを取得した際の受信電力とヌル点を向けたときの受信電力の比を計算し、予め設定しておいた閾値を下回った場合は、そのピークは主ビーム方向とは別方向の信号をサイドローブで受信することにより形成されたものと判別する。続いて処理・演算回路406は、最初に求めた到来方向(この例では4つ)から、サイドローブ起因と判別した方向(この例では1つ)を除外する。そして残った到来方向(この例では3つ)に主ビームもしくはそれに準じるビームを向けるAWVを計算し、このAWVを角度プロファイル取得時の受信電力順に記憶回路408へ格納する。またここでAWVは、受信機402のAWV制御回路410−1〜Nに対するものと、送信機401のAWV制御回路404−1〜Mに対するものの双方を計算する。送受信機400が受信動作する場合には前者を、送信動作する場合には後者を使用すればよい。また、新たにAWVを計算するのではなく、ビーム走査を行った際に使用したAWVのうち対応する到来方向に主ビームもしくはそれに準じるビームが向いたものを使用してもよい。
ここで一般には、図11の横軸の到来方向と、図14の横軸の到来方向の間には明確な関係は存在しない。しかし、図6に示した3つの信号と図13に示した3つの信号とは、それぞれ同じ経路を逆向きに伝搬した信号であるから、それぞれの伝搬損失はほぼ等しく、従って電力の大きさの関係は多くの場合保持される。ここで、送受信機400の送信アンテナアレイ(アンテナ素子405−1〜M)と受信アンテナアレイ(アンテナ素子411−1〜N)の距離は、伝搬路の距離に比べ十分小さく無視できると仮定している。同様に、送受信機500の送信アンテナアレイ(アンテナ素子505−1〜K)と受信アンテナアレイ(アンテナ素子511−1〜L)の距離は、伝搬路の距離に比べ十分小さく無視できると仮定している。これらの仮定は通常の伝搬環境において十分に成立するものである。また送受信機でアンテナアレイを共有化した構成の送受信機を用いた場合でも本発明の適用が可能であるが、この場合には上記の仮定は不要である。
送受信機400及び500は、上述した方法により記憶回路408及び508に格納されたAWVの中から同じ順位のAWVを選択して通信を開始する(図1のS13及びS14)。この際、送受信機400を送信動作させる場合には、送信機401のAWV制御回路404−1〜Mに、記憶回路408に格納されたAWVのうちの所定の順位のAWVを設定すればよい。送受信機400を受信動作させる場合には、受信機402のAWV制御回路410−1〜Nに、記憶回路408に格納されたAWVのうちの所定の順位のAWVを設定すればよい。送受信機500についても同様である。ここでは、2つの送受信機間のAWVの組合せを、トレーニング時の受信電力順位を手掛かりに行っていることになる。
そして、初期に選択したAWV組合せでの通信が劣化した場合、送受信機400及び500は、記憶回路408及び508に格納されたAWVの中から同じ順位の別のAWV組合せを選択し(図1のS15)、通信品質を確認し(図1のS16)、良好であればその候補を採用する(S13からS14への遷移)。以上の処理においては、AWVの選択は、例えばAWVの格納順、すなわち初期トレーニングにおける受信電力の順に行うとよい。
なお、主ビーム走査におけるアンテナ利得の主ビーム方向(到来方向)依存性が大きく無視できない場合には、そのアンテナ利得の方向依存性を用いて上記の角度プロファイルに補正をかけた上で、以上の処理を実行してもよい。
上述の説明においては、「データ列」や「角度プロファイル」といった言葉を用いたが、信号の到来あるいは放射方向と受信信号特性の関係を表すものであれば、その様態は問わない。
続いて以下では、図1に示した状態遷移過程において行われる送受信機400及び500の動作について詳しく説明する。図15A及びBは、図1のS11〜S13までの遷移過程、つまり初期トレーニングの実行から通信開始までの過程における送受信機400及び500の動作を示すシーケンス図である。送受信機400が送信動作、500が受信動作する場合、送受信機400は、通常の通信時には外部からの入力データを送受信機500に送信する。一方、トレーニングの際には、処理・演算回路406が、トレーニング用の信号(以下、トレーニング信号と呼ぶ)を送信回路403に出力させる。この結果、トレーニングの際には、送受信機400から送受信機500に対してトレーニング信号が送信される。逆の場合、すなわち送受信機400が受信動作、500が送信動作する場合も同様である。なお簡単化のため、図15A及びB、図16〜19では送受信機400を"送受信機1"、送受信機500を"送受信機2"と表記した。
以下では、図15A及びBのシーケンス図の各ステップを順に説明する。先ず送受信機400(図15A及びBの送受信機1)は、AWVをトレーニング用の値、すなわちオムニもしくは擬似オムニパターン生成用の値に設定し(S602−1)、トレーニング信号を送出する(S604−1)。送受信機500(図15A及びBの送受信機2)は、AWVを変更しながら(S603−2)、予め定められた全てのAWV設定での信号受信が完了するまで(S605−2)、トレーニング信号の受信を繰り返す(S604−2)。
続いて送受信機500は、受信した信号の計測結果から、信号の受信電力と到来方向の関係を示すデータ列である角度プロファイルを作成する(S606−2)。次に送受信機500は、角度プロファイルのデータ列を用いてピークサーチを行い、信号を識別し、その到来方向の検出を行う(S607−2)。
引続き、もしくは改めて送受信機400(図15A及びBの送受信機1)は、トレーニング信号を送出する(S609−1)。送受信機500(図15A及びBの送受信機2)は、AWVを変更しながら(S608−2)、S607−2で検出した到来方向へ順次ヌル点を向け、全ての到来方向が終了するまで(S610−2)、トレーニング信号の受信を繰り返す(S609−2)。
続いて送受信機500は、各々の到来方向に関し、S604−2における受信特性とS609−2における受信特性の比(もしくは他の変化を表す量)を計算する(S611−2)。次に、計算した比と予め設定しておいた閾値を比較することにより、サイドローブに起因したピークを判別する(S612−2)。続いて、送受信機500は、サイドローブに起因したピークと判別されたものを除く到来方向へ主ビームもしくはそれに準じるビームを向けるAWVを計算し、このAWVを受信電力順に記憶する(S613−2)。
続いて、送受信機400と送受信機500の役割を交替して同様の手順を実行する。すなわち、送受信機500は、AWVをトレーニング用の値、すなわちオムニもしくは擬似オムニパターン生成用の値に設定し(S614−2)、トレーニング信号を送出する(S616−2)。送受信機400は、AWVを変更しながら(S615−1)、予め定められた全てのAWV設定での信号受信が完了するまで(S617−1)、トレーニング信号の受信を繰り返す(S616−1)。続いて送受信機400は、受信した信号の計測結果から、信号の受信電力と到来方向の関係を示すデータ列である角度プロファイルを作成する(S618−1)。次に送受信機400は、角度プロファイルのデータ列を用いてピークサーチを行い、最大受信電力の信号を識別し、その到来方向の検出を行う(S619−1)。
引続き、もしくは改めて送受信機500(図15A及びBの送受信機2)は、トレーニング信号を送出する(S621−2)。送受信機400(図15A及びBの送受信機1)は、AWVを変更しながら(S620−1)、S619−1で検出した到来方向へ順次ヌル点を向け、全ての到来方向が終了するまで(S622−1)、トレーニング信号の受信を繰り返す(S621−1)。
続いて送受信機400は、各々の到来方向に関し、S616−1における受信特性とS621−1における受信特性の比(もしくは他の変化を表す量)を計算する(S623−1)。次に、計算した比と予め設定しておいた閾値を比較することにより、サイドローブに起因したピークを判別する(S624−1)。続いて、送受信機400は、サイドローブに起因したピークと判別されたものを除く到来方向へ主ビームもしくはそれに準じるビームを向けるAWVを計算し、このAWVを受信電力順に記憶する(S625−1)。
通信に入る準備として、送受信機400から使用するAWV番号の送出を行い(S626−1)、送受信機500でこれを受信する(S626−2)。ここでAWV番号とは、トレーニング時に受信電力順に格納したAWVの順番のことである。送受信機400と送受信機500とで同じ順位のAWVを組み合わせることで、共通の伝搬路に向けたビーム形成が可能となる。このAWV番号の伝達は逆向き、すなわち送受信機500から送受信機400へ向けておこなってもよい。このAWV番号の選択は、例えば格納順、すなわち受信電力順におこなうとよい。続いて、送受信機400及び500は、AWV番号に対応したAWVにAWV制御回路を設定する(S627−1及び2)。以上により通信が可能な状態となる(S628−1及び2)。
次に、通信の遮断等の通信品質の劣化が発生した場合の動作について、図16を用いて説明する。図16は、図1のS14〜S16までの遷移過程における送受信機400及び500の動作を示すシーケンス図である。また以下では、送受信機400(図16の送受信機1)が送信動作、送受信機500(図16の送受信機2)が受信動作している場合について説明する。
通信の遮断等の障害が発生した場合、受信動作中の送受信機500は、通信品質の劣化があったことを検知し(S702−2)、送受信機400に通知する(S703−2)。送信動作中の送受信機400は、通信品質の劣化通知を送受信機500から受領するか、データ受信の成功時に送受信機500側から通常の通信で送られてくるACK信号が受信されないことによって、通信の遮断(もしくは通信状態の悪化)があったと認識する。このとき、送受信機400及び500は、それぞれが有する共通のデータベースから、それぞれ次候補のAWVを取得する(S704−1、2)。
ステップS705−1では、送受信機400が、次候補のAWVをAWV制御回路404−1〜Mに設定する。同様に、ステップS705−2では、送受信機500が、次候補のAWVをAWV制御回路510−1〜Lに設定する。この後、送受信機400及び500は、通信を再開する(S706−1、2)。通信再開後、送受信機500は通信品質を確認し(S707−2)、良好であれば通信を継続し、良好でなければAWVの変更通知を送出する(S708−2)。送受信機400は、AWVの変更通知を受領した場合又は送受信機500からACK信号が受信できない場合(S709−1)を除き、そのまま通信を継続する。もしそうでなければ、送受信機400及び500は、次のAWV組合せ候補がある限り、次候補での通信を試みる(S710−1、2)。もし、記憶回路408及び508に記録された何れの位相組合せ候補でも通信品質の改善が得られず、次候補が無くなった場合、送受信機400及び500は、初期トレーニングに戻る。
ところで、図15A及びBの具体例では、送受信機500側のトレーニングを先に行っているが、送受信機400側のトレーニングを先に行ってもよい。また、図15A及びBの例では、角度プロファイルの作成、受信特性比計算、サイドローブ起因ピーク判別、及びAWV計算・記憶を、それぞれの送受信機において行っているが、これらの処理を一方の送受信機でまとめて行ってもよい。例えば、送受信機500のトレーニングで取得したデータを送受信機400に送信し、送受信機400の処理・演算回路406において送受信機500の角度プロファイルの作成、受信特性比計算、サイドローブ起因ピーク判別、及びAWV計算・記憶を行ってもよい。この場合には、送受信機400から500へのAWV番号送出(S626−1)の替わりに、AWVを直接送受信機500へ送付すればよい。またデータベース作成にあたっては、本明細書にて具体的に記載した方法以外の方法で取得されたAWV組合せを加えても、本実施形態の範囲を逸脱するものではない。
本実施の形態によれば、無線通信の途絶などの通信品質の劣化が発生した場合には、予め生成されている他のAWV組合せ候補を選択することによって、速やかに通信を再開することができる。言い換えると、本実施の形態では、通信品質の劣化が発生するたびに、トレーニング、角度プロファイルの取得、及びAWV組合せの生成などの処理を改めて行う必要がないので、極めて短時間に新しいビームを決めることが可能になる。また本実施の形態によれば、上記のAWV組合せ候補の生成に際し、2つの通信機間の全てのAWVの組み合わせに対して通信品質の測定をする必要が無く、AWV組合せ候補の生成も短時間で行うことが可能である。さらに本実施の形態によれば、サイドローブの効果により角度プロファイルに、サイドローブに起因したピークが発生するような場合でも、高精度にAWV組合せ候補を生成することが可能である。
以下に、この方法が屋内のミリ波、あるいは直進性が高くなる概ね10GHz以上のマイクロ波で有効である理由について補足的に説明する。無線通信に供することのできる伝搬路は限られている。つまり、直接波と、壁、窓、什器などの特定の物体からの反射波である。したがって、各伝搬路の放射すべき角度、あるいは受信すべき角度は、それぞれの波(信号)によって大きく異なっている。一方、例えば2.4GHzのマイクロ波帯のような直進性の低い伝搬路を使用する場合は、多重散乱や回折による効果を考慮する必要があるため、通常は指向性のあるアンテナは用いられない。このため、概ね10GHz以上のマイクロ波通信及びミリ波通信と2.4GHz程度のマイクロ波通信とでは、状況が異なる。なお、2.4GHzのマイクロ波通信の分野でも、干渉を除去することを目的として、指向性のある適応アンテナの開発例がある。しかしながら、適応型の指向性アンテナを使用する場合でも、2.4GHz帯では回折の効果が期待できるため、直接波の角度又はそれに近い角度で良好な通信品質を確保しやすい。
ミリ波帯におけるビームフォーミングを用いた屋内通信においては、次の性質を考慮する必要がある。前述の通り、直接波以外の反射波の数は限られている。また、特定の直接波または反射波が障害物(例えば人体)によって遮られた場合でも、遮蔽された特定の波と他の波とは無相関である。従って、本実施の形態で述べたように、ミリ波通信システムでは、最も通信状態の良いビーム方向で通信を行いながら、予備のビーム方向を確保することができる。一方、概ね10GHz未満の周波数の場合は、多重反射や回折の通信品質に対する寄与が大きい。よって、仮に指向性のあるアンテナを用いたとしても、障害物の有無によって予備のビーム方向の伝搬状況も変化してしまう。つまり、障害物が存在しない場合には良好であった予備のビーム方向からの受信状態が、障害物の存在によって変動する可能性が高い。したがって、2.4GHzのマイクロ波通信などでは、本発明の効果を得ることが困難である。
また、ミリ波通信においては、局所的な反射による伝搬路ができることがある。その様子を図20A及びBに示す。図20Aには、送受信機81及び82があり、ビームフォーミングでの伝搬路として直接波A、局所的な反射波B、遠くの経路での反射波Cがあると仮定する。直接波A、局所的な反射波Bは、例えば人体による遮蔽によって同時に遮断される可能性がある。この問題に対して特許文献1は、既に優先順位が付与されたビーム方向近傍のビーム方向には優先順位を付与しない、もしくはその優先順位を下げる技術を開示している。ここまでの説明では、AWV組合せに対して受信電力順に優先順位を付与する例を示したが、この受信電力の基準に加えビーム候補間の角度の関係を優先順位の付与において加味してもよい。本実施の形態においては、それぞれの送受信機におけるビーム候補間の角度関係の情報が取得済みであるから、これが可能となる。
以上の説明においては、送受信機400と送受信機500に設定するAWVの組合せは、初期トレーニング時の受信電力の順序を手掛かりに組み合わせるとしていた。しかし、2つ以上の伝搬路の伝搬損失が近い値を有する場合、あるいは擬似オムニパターンの精度が悪い、すなわち放射方向によりアンテナ利得にばらつきがある場合などには、AWVの組合せにエラーが起こる可能性がある。ここでエラーとは、異なる伝搬路に対応するAWV同士が組み合わされてしまうことを意味する。しかしながら、万が一このようなエラーが起こったとしても、図1のS16において品質確認を行っており、上記の組合せエラーの場合にはS15に遷移してAWV組合せの再選択が行われることになるので、通信を長時間途絶させたり完全にストップさせたりといった致命的な影響を与えることはない。このAWV組合せエラーに対する別の対処法については、第5の実施の形態において述べる。
以上の説明においては、送信動作させる送受信機のAWVをオムニもしくは擬似オムニパターンに設定するとした。しかし、オムニもしくは擬似オムニパターンの発生が困難な場合には、他の固定パターンで替えてもよい。すなわち、固定パターンビームのアンテナ利得が方向依存性を持つビームパターンでもよい。ただし、十分広い角度範囲にわたりアンテナ利得を有するパターンである必要がある。この場合には、上記の方法で取得した角度プロファイルから固定パターンビームのアンテナ利得の方向依存性の影響を除去する処理を追加すればよい。その際、必要であれば、固定パターンビームのアンテナ利得の方向依存性を記述したデータ列を送受信機間で送受すればよい。
以上の説明においては、2つの送受信機の間におけるビームフォーミング動作を説明した。このような動作は、しばしば3つ以上の送受信機から構成される系において、そのうちの2つの送受信機間で行われる。この系には、ピコネットコーディネータやアクセスポイントなどと呼ばれる特別な権限を与えられた送受信機が通常存在する。3つ以上の送受信機のうち、どの2つの送受信機の間でビームフォ−ミング動作を行うかは、通常このピコネットコーディネータやアクセスポイントと呼ばれる送受信機からの命令により決定すればよい。ピコネットコーディネータやアクセスポイントは、一般の送受信機からの要求を受け、この命令を発すればよい。
また本実施の形態においては、2つの送受信機400及び500の間で同様の処理を役割を入替えて実行する。このとき、どちらの送受信機がどちらの役割を先に行うのかについても、例えば、ピコネットコーディネータやアクセスポイントと呼ばれる送受信機からの命令で決定すればよい。
また、上記の説明においては、"送受信機を受信動作させる"、"オムニ(無指向性)もしくは擬似オムニ(擬似無指向性)パターンを発生させる"といった表現を用いたが、これらの処理は、通常、各送受信機の処理・演算回路などに予め組み込まれたスケジュールに従い実行される。
<第2の実施の形態>
本発明における第2の実施の形態を、図2に示した遷移図を用いて説明する。なお本実施の形態に係る無線通信システムの構成は、図5に示したものと同様とすればよい。図2のS21〜S26の各状態とこれらの間での遷移条件は、第1の実施の形態で述べた図1のS11〜S16と同様である。このため、S21〜S26に関する詳細な説明は省略する。
図2のS27では、通信継続中の状態(S24)から遷移して付加的な第2のトレーニングを行う。第2のトレーニングは、周期的に実行してもよいし、送受信データが存在しないアイドル期間に適宜実行してもよい。
S28では、処理・演算回路406及び506が、複数のAWV組合せの候補を再計算する。処理・演算回路406及び506は、再計算によって得られた複数のAWV候補によって、記憶回路408及び508内のデータ列を更新する。
本実施の形態においては、予備のビーム方向に対する状況を第2のトレーニングによって周期的又は適宜調査し、複数のAWV組合せ候補を更新する。これにより、本実施の形態にかかる無線通信システムは、常に最新のAWV組合せ候補を確保することができる。なお第2のトレーニング(S27)は、通信の合間に分割して行ってもよい。これにより、長い時間通信を止める必要がなくなる。また、通信が途絶した場合、または通信品質が劣化した場合には、極めて短時間での復帰が求められるが、この第2のトレーニングにはそれほどの即時性は必要ないため、到来方向推定アルゴリズムを実行しても問題がない。
また、この第2のトレーニングにおいては初期トレーニングに比べても即時性の要求が弱い場合が多いので、アンテナアレイのAWVを変化させることによりビーム方向を走査する際の角度分解能を上げて走査を実施してもよい。これにより、より良好な通信品質を実現するAWV組合せの探索が可能となる。
また、第2のトレーニングにおけるビーム方向の走査は、初期トレーニングの際に求めた各AWV組合せに対応した到来方向の周囲のみに限定して行ってもよい。これにより良好な通信品質を実現するAWV組合せの探索が、より短時間で実現可能となる。
<第3の実施の形態>
本発明における第3の実施の形態を、図3に示した遷移図を用いて説明する。本実施の形態にかかる無線通信システムの構成は、図5に示したものと同様とすればよい。また、第3の実施の形態では、第2の実施の形態と同じ動作を行う。つまり、図3のS31〜S38の各状態とこれらの間での遷移条件は、第2の実施の形態で述べた図2のS21〜S28と同様である。このため、S31〜S38に関する詳細な説明は省略する。
本実施の形態では、通信の途絶などの通信品質の劣化が発生した場合、データベースに記録された次候補のAWV組合せを選択するとともに(S35)、その状態で微調整を行う(S39)。この微調整とは、時間をかけずに最適ビームを探索する方法を指す。具体的には、ビームまたは設定されたAWVを僅かに変化させ通信品質が良くなるように調整を行えばよい。また、特許文献4に記載された"Beam Tracking"など簡略化されたビーム探索手順を適用してもよい。また、初期トレーニングと同様の処理を、新たに選択したAWV組合せに対応する到来方向の周囲で、初期トレーニングよりも角度分解能を挙げて実施してもよい。
例えば、第1の実施の形態で詳細に述べたように、大きな受信電力に対応したAWV組合せから小さな受信電力に対応したAWV組合せに順に移っていく場合、徐々に受信電力が小さくなり、精度が悪くなっていく可能性がある。そこで、遮蔽があって受信電力が小さくなった状態で、例えば受信時の利得調整を行い、最適な状態で微調整を行うことにより、高精度で安定した伝送が可能なAWV組合せが見出せるという効果が得られる。
<第4の実施の形態>
第4の実施の形態では、トレーニング及びAWV組合せの取得・設定を低速(狭帯域)で行い、実際の通信は比較的高速(広帯域)で行うことを特徴とする。それ以外の動作は、第1〜第3の実施の形態の何れかに記載の方法を用いればよい。
ミリ波通信では、自由空間伝搬損失が大きいために、受信電力が小さいことが予想される。このため、トレーニング時に、送信側のAWVをオムニもしくは擬似オムニパターンを発生するよう設定した場合、十分なキャリア電力対雑音電力比(CNR;Carrier to Noise Ratio)が得られない場合がある。したがって、受信感度のよい低速(狭帯域)を用いることで、トレーニングが可能となったり、精度が向上するなどの効果が期待できる。なおここで低速(狭帯域)を用いるとは、雑音帯域幅が小さくなるように、トレーニング信号の送信のために使用する周波数帯を狭くすること、あるいは所要CNRが小さい変調方式を採用することを意味する。なお、"所要CNRが小さい変調方式を採用すること"は、言い換えると、コンスタレーション上における信号点間距離が大きい変調方式を採用すること(通常は伝送速度が小さいこと)を意味する。なお本実施の形態では、狭いビーム幅が用いられることが前提であり、相関帯域幅が広いために低速(狭帯域)でも高速(広帯域)でも最適なビーム(AWV)組合せに大きな変化はない。
<第5の実施の形態>
第1の実施の形態の末尾でも述べたように、送受信機400と送受信機500に設定するAWVの組合せを、初期トレーニング時の受信電力の順序を手掛かりに行うと、2つ以上の伝搬路の伝搬損失が近い値を有する場合、あるいは擬似オムニパターンの精度が悪い、すなわち放射方向によりアンテナ利得にばらつきがある場合などに、AWVの組合せにエラーが起こる可能性がある。ここでエラーとは、異なる伝搬路に対応するAWV同士が組み合わされてしまうことを意味する。このようなエラーが起こる確率は伝搬環境等に依存するものと考えられるが、エラーが高頻度で起こる場合には、本実施の形態で述べる手順を適用するとよい。
本実施の形態においては、初期トレーニング時の受信電力の順序を手掛かりに送受信機間のAWVを組み合わせるのではなく、記憶された送受信機400用のAWVと送受信機500用のAWVの全ての組合せについて、トレーニングを行い、通信品質の良いAWV組合せを確保することを特徴としている。シーケンス図の一例を図17A乃至Cに示す。
図17A乃至Cは、図15A及びBに示したシーケンス図の変形であり、図15BのS625とS626との間にS641〜S647が追加されている。S641−1、S643−1及びS645−1において、送受信機400は、記憶回路408に記憶された複数のAWVを順に設定してトレーニング信号を送出する。S642−2〜S644−2において、送受信機500は、記憶回路508に記憶された全てのAWVを順に設定しながら、送受信機400から送出されるトレーニング信号の受信処理を行う。AWVの全ての組み合わせについてトレーニング信号の送受信が完了した後、送受信機500は、送受信機400が送信に用いた送信用AWV毎に最も通信品質の良好な受信用AWVを決定する。そして、送受信機500は、通信品質の良好なAWVの組み合わせを示すデータ列(データベース)を作成し(S646−2)、AWVの組み合わせを示すデータ列(データベース)を送受信機400に送信する(S647−2)。送受信機400は、送受信機500から受信したデータベースを用いて記憶回路408に記憶されたAWV情報を更新する(S647−1)。
一般に、複数の送受信機の間でAWVの全ての組合せについて通信品質の測定を行うのは処理時間の観点で現実的ではない。しかし本実施の形態では、S625−1までの過程でAWVの候補は少数に絞られているため、全ての組合せについて伝送品質を測定するために要する処理時間を抑制できる。図6、図13に示した説明用の2次元の伝搬環境では3つの伝搬路を考えたが、実際の3次元のミリ波伝搬環境においても通信に適用可能な伝搬路の数は少数に限られることが想定される。例えば伝搬路が7つ存在した場合でも、全てのAWV組合せはたかだか49である。
また、処理時間を抑制するため、AWVの全ての組み合わせについて通信品質の測定を行う上記手順を以下に述べるように変更してもよい。はじめに、第1の実施の形態で述べた手順に従い送受信機400と送受信機500に設定するAWVの組合せを、初期トレーニング時の受信電力あるいはその他の通信品質の順序を手掛かりに決定する。次に、それらのAWV組合せについて通信品質のテストを行い、予め決めておいた通信品質基準を満たさないAWV組合せについてのみ、一旦組合せを解除する。そして、通信品質基準を満たさないために組合せを解除されたAWVに関して、全ての組合せについて通信品質のテストを行うことにより新たなAWV組合せの探索を行う。この後に、上記2回の通信品質テストの結果に基づきAWV組合せの優先順位を改めて決定するとよい。このような方法を採ることにより、初期トレーニングの結果に基づいて決定したAWV組合せのうち使用可能なものについては、改めて組合せ探索のための総当りによる通信品質測定に含める必要がなくなり、処理時間の短縮が実現できる。
<第6の実施の形態>
以上の説明においては、ビームフォーミングにより指向性ビームを形成する送受信機間での通信を想定していた。しかし本発明は、固定ビームを形成する送受信機とビームフォーミングにより指向性ビームを形成する送受信機の通信にも適用可能である。送受信機400を固定ビームの送受信機、送受信機500をビームフォーミングにより指向性ビームを形成する送受信機とすると、この場合には送受信機500についてのみトレーニングを行えばよいので、シーケンス図は例えば図18のようになる。
<第7の実施の形態>
以上の実施の形態においては、初期トレーニング時に、擬似オムニパターンを発生させた送受信機からトレーニング信号を送出し、他方の送受信機において、AWVを変化させながら受信信号を測定し、角度プロファイルの作成を行っていた。しかし、トレーニング信号を送出する送受信機のAWVを変化させながら、擬似オムニパターンを発生させた他方の送受信機で受信信号の測定を行い、測定データを前者の送受信機にフィードバックすることにより角度プロファイルの作成を行うことも可能である。その場合のシーケンス図の一例を図19A及びBに示す。
この場合の角度プロファイルは、信号の放射方向と受信電力の関係を示すデータ列となる。また、受信した測定データをトレーニングを行っている送受信機側へ送信する処理(S852−1、S852−2、S854−1、S854−2、S856−1、S856−2、S858−1、S858−2)が挿入される。
<第8の実施の形態>
第1の実施の形態において、送受信機400の送信アンテナアレイ(アンテナ素子405−1)〜Mと受信アンテナアレイ(アンテナ素子411−1〜N)の距離は、伝搬路の距離に比べ十分小さく無視できると仮定した。同様に、送受信機500の送信アンテナアレイ(アンテナ素子505−1〜K)と受信アンテナアレイ(アンテナ素子511−1〜L)の距離は、伝搬路の距離に比べ十分小さく無視できるとした。しかし、これらの送受アンテナ間距離に関する仮定は以下のような手順をとる場合には不要になる。
(a)一方の送受信機(例えば送受信機400)を送信動作させ、そのアンテナアレイにおいて擬似オムニパターンを設定してトレーニング信号を送信する。
(b)他方の送受信機(例えば送受信機500)を受信動作させ、そのアンテナアレイのAWVを変化させることによりビーム方向を走査する。
(c)受信動作させた送受信機500におけるトレーニング信号の受信結果に基づいて、送受信機500における信号の到来方向と受信信号特性の関係を記述したデータ列を取得し、複数の信号の到来方向を検出する。
(d)(b)で受信動作させた送受信機500のアンテナアレイのAWVを変化させることにより、(c)で検出した到来方向に順次ヌル点を向け、トレーニング信号を受信する。
(e)各到来方向に関し、(c)及び(d)における受信信号特性の比を計算し、予め設定しておいた閾値を下回るものについては到来方向から削除する。
(f)送受信機500を受信動作させ、そのアンテナアレイにおいて擬似オムニパターンを設定する。
(g)送受信機400を送信動作させ、そのアンテナアレイのAWVを変化させることによりビーム方向を走査する。
(h)受信動作させた送受信機500におけるトレーニング信号の受信結果を送信動作させた送受信機400にフィードバックし、送信動作させた送受信機400における信号の放射方向と対向する送受信機500における受信信号特性との関係を記述したデータ列を取得し、複数の信号の放射方向を検出する。
(i)(g)で送信動作させた送受信機400のアンテナアレイのAWVを変化させることにより、(h)で検出した放射方向に順次ヌル点を向け、トレーニング信号を放射する。受信動作させた送受信機500におけるトレーニング信号の受信結果を送信動作させた送受信機400にフィードバックする。
(j)各放射方向に関し、(h)及び(j)における受信信号特性の比を計算し、予め設定しておいた閾値を下回るものについては放射方向から削除する。
以上の結果を使えば、送受信機400の送信機と送受信機500の受信機のAWV組合せ候補を求めることができる。(a)〜(j)の処理を送受信機400の受信機と送受信機500の送信機について行えば、送受信機400の受信機と送受信機500の送信機のAWV組合せを求めることができる。
ところで、上述した8個の実施の形態の説明では、通信品質という語句を用いた。通信品質は、例えば、受信レベル、信号電力対雑音電力比(SNR:Signal to Noise Ratio)、ビット誤り率(BER:Bit Error Rate)、パケット誤り率(PER:Packet Error Rate)、フレーム誤り率(FER:Frame Error Rate)など、通信品質を代表するものであればよく、そのうちの1つ又は複数を用いてもよい。また、通信品質の評価には、送信機401もしくは501の送信データ列に含まれるプリアンブル中の特定のデータ列を用いてもよい。
また、上述した第1〜第8の実施の形態における送受信機400および500によって行われるAWV候補の生成・切替に関する制御及び演算処理は、マイクロプロセッサ等のコンピュータに送受信機制御のためのプログラムを実行させることによって実現可能である。
当該プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
例えば、第1の実施の形態の場合、送受信機制御プログラムを実行するコンピュータに、図15A及びBのステップS602−1〜S627−1、並びに図16のステップS703−1〜S705−1、S708−1〜S710−1の処理を実行させればよい。同様に、送受信機500によって行われるAWV候補の生成・切替に関する制御及び演算処理も、マイクロプロセッサ等のコンピュータに送受信機制御のためのプログラムを実行させることによって実現可能である。例えば、第1の実施の形態の場合、送受信機制御プログラムを実行するコンピュータに、図15A及びBのステップS603−2〜S627−2、並びに図16のステップS702−2〜S705−2、S707−2〜S710−2の処理を実行させればよい。
また、処理・演算回路406及び506だけでなく、送信回路403及び503の一部(変調処理等)、受信回路409及び509の一部(復調処理等)、制御回路407及び507等のデジタル信号処理又は機器制御に関する構成要素は、マイクロコンピュータ又はDSP(Digital Signal Processor)等のコンピュータによって実現してよい。また、送受信機400及び500には、いわゆるソフトウェア・アンテナ技術を適用してもよい。具体的には、AWV制御回路404−1〜M、410−1〜N、504−1〜K、510−1〜L、は、デジタルフィルタによって構成してもよく、DSP等のコンピュータによって構成してもよい。
以上の説明においては、2つの送受信機間で通信が行われている状況を例に説明を行った。しかし、3つ以上の送受信機が通信を行う状況においても本発明は適用可能である。
以上の説明においては、送信動作させた送受信機で擬似オムニパターンを発生させた状態で、受信動作させた送受信機で主ビーム方向の操作、角度プロファイル作成等を行うとしていた。しかし、送受信機で発生させる擬似オムニパターンが十分な方向範囲をカバーできない場合、上記の手順を複数回に分けて行ってもよい。すなわち、ある擬似オムニパターンを発生させ角度プロファイルを取得した後、別の方向範囲をカバーする擬似オムニパターンを発生させ、再度角度プロファイルを取得する。最後に、得られた複数の角度プロファイルを用いて信号を特定すればよい。ここで、"十分な方向範囲"とは通信に使用する全ての伝搬路を含む方向範囲を意味する。このように複数の擬似オムニパターンの組合せで必要な角度範囲をカバーする方法自体は、非特許文献5に開示されている。
なお、特願2008-240156号(2008年9月19日出願)に記載された発明は、上述したサイドローブの影響が問題とならない伝搬環境下、もしくはアンテナアレイ使用下において、簡易かつ短時間にAWVを決定する手段を提供するものである。これに対して、特願2008-282697号(2008年11月4日出願)に記載した発明は、特願2008-240156号に比較すると手順が複雑となり処理時間が増大するものの、サイドローブに起因する2つの現象(角度プロファイルの鈍り、及びサイドローブ起因ピークの出現)が問題となる条件下においても高精度にAWV決定を行える手段を提供するものである。これに対して、上述した各実施の形態にかかる発明は、サイドローブに起因する2つの現象のうちサイドローブ起因ピークのみが問題となる状況下において、特願2008-282697号よりも簡易かつ短時間にAWVを決定する手段を提供するものである。従って、3者は相反するものではなく、条件により使い分けられるべきものである。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。本発明は、上述した各実施の形態に限られず、例えば特許文献4及び非特許文献5に開示されているようなビームフォーミングを行う無線通信機において、トレーニング信号の送受信結果に基づいて通信に使用するAWVを決定する際に広く適用可能である。
この出願は、2009年6月8日に出願された日本出願特願2009−137132を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明は、無線ビームを適応制御して無線通信を行うシステム及びその制御方法に利用することができる。
400、500 送受信機
401、801、81、91 送信機
402、502、82、92 受信機
403、503 送信回路
404−1〜M、504−1〜K AWV(アレイ重みベクトル)制御回路
405−1〜M、505−1〜K アンテナ素子(送信アンテナアレイ)
406、506 処理・演算回路
407、507 制御回路
408、508 記憶回路
409、509 受信回路
410−1〜N、510−1〜L AWV(アレイ重みベクトル)制御回路
411−1〜N、511−1〜L アンテナ素子(受信アンテナアレイ)
413、513 制御回路
83 ビームパターン(イメージ)
84、85 反射体
86 人体
61 壁

Claims (24)

  1. 第1及び第2の通信機を備える無線通信システムの制御方法であって、
    前記第2の通信機は、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(以下、AWV)制御回路とを備え、
    前記方法は、
    前記アンテナアレイをなす複数のアンテナ素子のうち少なくとも2つ以上のアンテナ素子のAWVを独立に制御するに際して、
    (a):前記第2の通信機が有する前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながら、前記第1の通信機から固定ビームパターンを用いて送信されるトレーニング信号を前記第2の通信機において受信し、
    (b):前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の到来方向を決定し、
    (c):前記複数または単数の信号の到来方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記第2の通信機が有する前記アンテナアレイのAWVを変化させながら、前記第1の通信機が送信するトレーニング信号を前記第2の通信機において受信し、(d):前記複数または単数の信号の到来方向の各々に関して、前記工程(a)で取得した受信信号特性と前記工程(c)で取得した受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい到来方向を特定し、
    (e):工程(b)で決定した前記第2の通信機における複数または単数の信号の到来方向から工程(d)で特定した到来方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求め、
    (f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用する、無線通信システムの制御方法。
  2. 前記第1の通信機は、前記第2の通信機と同様に、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(AWV)制御回路とを備え、
    前記方法は、前記第1及び第2の通信機による前記トレーニング信号の送信動作と受信動作を入れ替えて前記工程(a)乃至(e)を実行することにより、前記第1の通信機における複数又は単数の信号到来方向に主ビームまたはそれに準ずるビーム方向を有するAWVを求める工程(g)をさらに備え、
    前記工程(f)では、前記工程(e)で求めたAWVと、前記工程(g)で求めたAWVの組み合わせを前記第1及び第2の通信機の間の通信に利用する、
    請求項1に記載の無線通信システムの制御方法。
  3. 前記工程(b)は、
    前記トレーニング信号の受信結果に基づいて、前記第2の通信機における信号の到来方向と受信信号特性の関係を表すデータ列を取得すること;および
    前記データ列を用いて前記第2の通信機における複数または単数の信号の到来方向を決定すること、
    を含む請求項1または2に記載の無線通信システムの制御方法。
  4. 前記アンテナアレイのAWVを変化させることによりビーム方向を走査し、受信動作させた前記第2の通信機における信号の到来方向と受信信号特性の関係を表すデータ列を取得する前記工程(a)及び(b)における処理が、到来方向推定アルゴリズムを用いて行われる、請求項3に記載の無線通信システムの制御方法。
  5. 前記固定ビームパターンがオムニ(無指向性)パターンもしくは擬似オムニ(擬似無指向性)パターンである、請求項1乃至4のいずれか1項に記載の無線通信システムの制御方法。
  6. 第1及び第2の通信機を備える無線通信システムの制御方法であって、
    前記第2の通信機は、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(AWV)制御回路とを備え、
    前記方法は、
    前記アンテナアレイをなす複数のアンテナ素子のうち少なくとも2つ以上のアンテナ素子のAWVを独立に制御するに際して、
    (a):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記第2の通信機が前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながらトレーニング信号を放射し、
    (b):前記第1の通信機における前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の放射方向を決定し、
    (c):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記複数または単数の信号の放射方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながら前記第2の通信機からトレーニング信号を放射し、
    (d):前記複数または単数の信号の放射方向の各々に関して、工程(a)で得られる前記第1の通信機の受信信号特性と工程(c)で得られる前記第1の通信機の受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい放射方向を特定し、(e):前記工程(b)で決定した前記第2の通信機における複数または単数の信号の放射方向から前記工程(d)で特定した放射方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求め、
    (f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用する、無線通信システムの制御方法。
  7. 前記第1の通信機は、前記第2の通信機と同様に、アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(AWV)制御回路とを備え、
    前記方法は、前記第1及び第2の通信機による前記トレーニング信号の送信動作と受信動作を入れ替えて前記(a)乃至(e)を実行することにより、前記第1の通信機における複数または単数の信号の放射方向に主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求める工程(g)をさらに備え、
    前記工程(f)では、前記工程(e)で求めたAWVと、前記工程(g)で求めたAWVの組み合わせを前記第1及び第2の通信機の間の通信に利用する、
    請求項6に記載の無線通信システムの制御方法。
  8. 前記工程(b)は、
    前記第1の通信機において測定された前記トレーニング信号の受信結果を示す受信信号データを前記第2の通信機へフィードバックすること;
    前記受信信号データに基づいて、前記第2の通信機における信号の放射方向と前記第1の通信機における受信信号特性の関係を表すデータ列を取得すること;および
    前記データ列を用いて前記第2の通信機における複数または単数の信号の放射方向を決定すること、
    を含む請求項6または7に記載の無線通信システムの制御方法。
  9. 前記固定ビームパターンがオムニ(無指向性)パターンもしくは擬似オムニ(擬似無指向性)パターンである、請求項6乃至8のいずれか1項に記載の無線通信システムの制御方法。
  10. 前記工程(e)で得られる複数のAWVに対して受信信号特性の良好なものから順に優先順位を付与し、この優先順位に従って順次選択したAWVを用いて無線通信を行うことを特徴とする請求項1乃至9の何れか1項に記載の無線通信システムの制御方法。
  11. 前記第1及び第2の通信機間のAWVの組合せは、各々の通信機のAWVをトレーニング時の受信信号特性順に並べたとき同順序となるAWVどうしを組合わせることにより決定される、請求項2又は7に記載の無線通信システムの制御方法。
  12. 請求項11に記載した手順により得られる複数のAWV組合せに対して受信信号特性の良好なものから順に優先順位を付与し、この優先順位に従って順次選択したAWV組合せを用いて無線通信を行う、請求項10に記載の無線通信システムの制御方法。
  13. 請求項2又は7に記載した手順により得られる複数のAWV組合せのうち少なくとも一部について通信品質を測定し、測定された通信品質に基づいて通信に使用するAWV組合せを選択する、請求項2又は7に記載の無線通信システムの制御方法。
  14. 請求項13に記載した手順により得られる複数のAWV組合せに対して通信品質の優れたものから順に優先順位を付与し、前記第1及び第2の通信機間の無線通信に使用するAWV組み合わせを前記優先順位に従って決定する、請求項12記載の無線通信システムの制御方法。
  15. 通信中に通信品質を観測し、前記通信品質の悪化に応じて、前記優先順位に従って次順位のAWV又はAWV組合せを選択し、選択したAWV又はAWV組合せを適用して無線通信を行う、請求項10、12又は14に記載の無線通信システムの制御方法。
  16. 前記受信信号特性が、受信電力、信号電力対雑音電力比(SNR)、ビット誤り率(BER)、パケット誤り率(PER)、フレーム誤り率(FER)のうちの少なくとも1つを含む、請求項1乃至15の何れか1項に記載の無線通信システムの制御方法。
  17. 主としてデータ通信に用いる信号を含む電波と、これに比してデータ伝送速度が低い又は伝送周波数帯域が小さい電波を用い、前記データ伝送速度が低い又は伝送周波数帯域が小さい電波を用いてトレーニングを行うことを特徴とする請求項1乃至16の何れか1項に記載の無線通信システムの制御方法。
  18. 前記到来方向推定アルゴリズムが、ビームフォーマー法であることを特徴とする請求項4に記載の無線通信システムの制御方法。
  19. 少なくとも固定ビームパターンによって信号放射可能に構成された第1の通信機と、
    アンテナアレイ、並びに前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(以下、AWV)制御回路を有する第2の通信機とを備え、
    前記第1及び第2の通信機は、AWV決定処理を行うよう構成され、
    前記AWV決定処理は、
    (a):前記第2の通信機が有する前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながら、前記第1の通信機から固定ビームパターンを用いて送信されるトレーニング信号を前記第2の通信機において受信すること;
    (b):前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の到来方向を決定すること;
    (c):前記複数または単数の信号の到来方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記第2の通信機が有する前記アンテナアレイのAWVを変化させながら、前記第1の通信機が送信するトレーニング信号を前記第2の通信機において受信すること;
    (d):前記複数または単数の信号の到来方向の各々に関して、前記工程(a)で取得した受信信号特性と前記工程(c)で取得した受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい到来方向を特定すること;
    (e):前記工程(b)で決定した前記第2の通信機における複数または単数の信号の到来方向から前記工程(d)で特定した到来方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求めること;及び(f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用すること、を含む無線通信システム。
  20. 少なくとも固定ビームパターンによって信号受信可能に構成された第1の通信機と、
    アンテナアレイ、並びに前記アンテナアレイを構成する複数のアンテナ素子から送信される信号または前記アンテナ素子で受信される信号の振幅および位相の少なくとも一方を変化させるアレイ重みベクトル(以下、AWV)制御回路を有する第2の通信機とを備え、
    前記第1及び第2の通信機は、AWV決定処理を行うよう構成され、
    前記AWV決定処理は、
    (a):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記第2の通信機が前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながらトレーニング信号を放射すること、
    (b):前記第1の通信機における前記トレーニング信号の受信信号特性に基づいて、前記第2の通信機における複数または単数の信号の放射方向を決定すること、
    (c):前記第1の通信機が固定ビームパターンを用いて受信動作をしている状態で、前記複数または単数の信号の放射方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながら前記第2の通信機からトレーニング信号を放射すること、
    (d):前記複数または単数の信号の放射方向の各々に関して、工程(a)で得られる前記第1の通信機の受信信号特性と前記工程(c)で得られる前記第1の通信機の受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい放射方向を特定すること、
    (e):前記工程(b)で決定した前記第2の通信機における複数または単数の信号の放射方向から前記工程(d)で特定した放射方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求めること、
    (f):前記工程(e)で求めたAWVを前記第1及び第2の通信機の間の通信に利用すること、
    を含む無線通信システム。
  21. アンテナアレイと、
    前記アンテナアレイを構成する複数のアンテナ素子によって受信される信号の振幅および位相を変化させるアレイ重みベクトル(AWV)制御部と、
    前記アンテナアレイによって受信される信号に対する処理を行う受信部と、
    相手装置との無線通信に利用するAWVを決定して前記制御部に供給する処理部とを備え、
    前記処理部は、
    (a):前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながら、前記相手装置から送信されるトレーニング信号を前記受信部が受信することにより得られる受信信号特性に基づいて、複数または単数の信号の到来方向を決定し、
    (b):前記複数または単数の信号の到来方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながら前記トレーニング信号を前記受信部が受信することにより得られる受信信号特性と、前記工程(a)で得られる前記受信信号特性とを比較し、それらの比もしくは差が予め設定した閾値よりも小さい到来方向を特定し、
    (c):前記工程(a)で決定した前記複数または単数の信号の到来方向から工程(b)で特定した到来方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求める、
    無線通信装置。
  22. アンテナアレイと、
    前記アンテナアレイを構成する複数のアンテナ素子によって送信される信号の振幅および位相を変化させるアレイ重みベクトル(AWV)制御部と、
    相手装置との無線通信に利用するAWVを決定して前記制御部に供給する処理部とを備え、
    前記処理部は、
    (a):前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながらトレーニング信号を放射した場合における相手装置での前記トレーニング信号の受信信号特性に基づいて、複数または単数の信号の放射方向を決定し、
    (b)前記複数または単数の信号の放射方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながらトレーニング信号を放射すること得られる前記相手装置における前記トレーニング信号の受信信号特性と、前記工程(a)で得られる前記受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい放射方向を特定し、
    (c):前記工程(a)で決定した前記複数または単数の信号の放射方向から前記工程(b)で特定した放射方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求める、
    無線通信装置。
  23. アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子によって受信される信号の振幅および位相を変化させるアレイ重みベクトル(以下、AWV)制御回路とを備える無線通信装置のAWV調整方法であって、
    (a):前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながら、相手装置から送信されるトレーニング信号を受信し、
    (b):前記トレーニング信号の受信信号特性に基づいて、複数または単数の信号の到来方向を決定し、
    (c):前記複数または単数の信号の到来方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながら前記トレーニング信号を受信することにより得られる受信信号特性と、前記工程(a)で得られる前記受信信号特性とを比較し、それらの比もしくは差が予め設定した閾値よりも小さい到来方向を特定し、(d):前記工程(b)で決定した前記複数または単数の信号の到来方向から工程(c)で特定した到来方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求め、
    (e):前記工程(d)で求めたAWVを前記相手装置との間の無線通信に利用する、
    AWV調整方法。
  24. アンテナアレイと、前記アンテナアレイを構成する複数のアンテナ素子によって送信される信号の振幅および位相を変化させるアレイ重みベクトル(以下、AWV)制御回路とを備える無線通信装置のAWV調整方法であって、
    (a):前記アンテナアレイのAWVを変化させることによりビーム方向を走査しながらトレーニング信号を放射し、
    (b):相手装置での前記トレーニング信号の受信信号特性に基づいて、複数または単数の信号の放射方向を決定し、
    (c)前記複数または単数の信号の放射方向に順次ヌル方向もしくはそれに準ずる方向が向くように前記アンテナアレイのAWVを変化させながらトレーニング信号を放射すること得られる前記相手装置における前記トレーニング信号の受信信号特性と、前記工程(a)で得られる前記受信信号特性を比較し、それらの比もしくは差が予め設定した閾値よりも小さい放射方向を特定し、
    (d):前記工程(b)で決定した前記複数または単数の信号の放射方向から前記工程(c)で特定した放射方向を除外したものに関し、主ビームまたはそれに準ずるビーム方向を有するAWVをそれぞれの信号に対して求め
    (e):前記工程(d)で求めたAWVを前記相手装置との間の無線通信に利用する、
    AWV調整方法。
JP2011518227A 2009-06-08 2010-04-28 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法 Active JP5310847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518227A JP5310847B2 (ja) 2009-06-08 2010-04-28 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009137132 2009-06-08
JP2009137132 2009-06-08
JP2011518227A JP5310847B2 (ja) 2009-06-08 2010-04-28 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法
PCT/JP2010/003054 WO2010143353A1 (ja) 2009-06-08 2010-04-28 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法

Publications (2)

Publication Number Publication Date
JPWO2010143353A1 JPWO2010143353A1 (ja) 2012-11-22
JP5310847B2 true JP5310847B2 (ja) 2013-10-09

Family

ID=43308616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011518227A Active JP5310847B2 (ja) 2009-06-08 2010-04-28 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法

Country Status (3)

Country Link
US (1) US8933840B2 (ja)
JP (1) JP5310847B2 (ja)
WO (1) WO2010143353A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8619927B2 (en) 2012-05-29 2013-12-31 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO/RF beamforming
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US9154204B2 (en) 2012-06-11 2015-10-06 Magnolia Broadband Inc. Implementing transmit RDN architectures in uplink MIMO systems
CN104509148A (zh) * 2012-08-29 2015-04-08 英特尔公司 利用一个或多个天线阵列进行无线通信的设备、系统和方法
US10470095B2 (en) * 2013-01-13 2019-11-05 Qualcomm Incorporated Method for air-to-ground data link antenna self calibration
US9343808B2 (en) 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US8989103B2 (en) 2013-02-13 2015-03-24 Magnolia Broadband Inc. Method and system for selective attenuation of preamble reception in co-located WI FI access points
US9155110B2 (en) 2013-03-27 2015-10-06 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
US9277480B2 (en) 2013-03-15 2016-03-01 Facebook, Inc. Cloud controller for next generation data network
US9100968B2 (en) 2013-05-09 2015-08-04 Magnolia Broadband Inc. Method and system for digital cancellation scheme with multi-beam
US9425882B2 (en) 2013-06-28 2016-08-23 Magnolia Broadband Inc. Wi-Fi radio distribution network stations and method of operating Wi-Fi RDN stations
US8995416B2 (en) 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US9497781B2 (en) 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US9060362B2 (en) 2013-09-12 2015-06-16 Magnolia Broadband Inc. Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
US9088898B2 (en) 2013-09-12 2015-07-21 Magnolia Broadband Inc. System and method for cooperative scheduling for co-located access points
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
US8929322B1 (en) 2013-11-20 2015-01-06 Magnolia Broadband Inc. System and method for side lobe suppression using controlled signal cancellation
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9014066B1 (en) 2013-11-26 2015-04-21 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9042276B1 (en) 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
US9172446B2 (en) * 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
US9100154B1 (en) * 2014-03-19 2015-08-04 Magnolia Broadband Inc. Method and system for explicit AP-to-AP sounding in an 802.11 network
US9271176B2 (en) 2014-03-28 2016-02-23 Magnolia Broadband Inc. System and method for backhaul based sounding feedback
US9686695B2 (en) * 2014-07-15 2017-06-20 Qualcomm Incorporated Methods and apparatus for beam search and tracking in mm-wave access systems
US9363683B2 (en) * 2014-07-15 2016-06-07 Qualcomm Incorporated Asymmetric capability-driven methods for beam tracking in mm-wave access systems
WO2016095688A1 (zh) 2014-12-18 2016-06-23 华为技术有限公司 网络侧设备、用户设备及盲区管理方法
US20180052227A1 (en) * 2016-08-16 2018-02-22 GM Global Technology Operations LLC Beam pattern diversity-based target location estimation
US10505607B2 (en) * 2017-04-21 2019-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Beam training for a wireless device
US10707575B1 (en) * 2017-05-25 2020-07-07 L3 Technologies, Inc. Navigation aware power limiting
US10690769B2 (en) * 2017-08-17 2020-06-23 GM Global Technology Operations LLC Target angle determination using vehicle radar elements with local reference signals
KR102039046B1 (ko) * 2017-12-29 2019-10-31 국방과학연구소 빔 형성 기반 무인기 측위방법
KR20190118792A (ko) * 2018-04-11 2019-10-21 삼성전자주식회사 무선 통신 시스템에서 렌즈를 이용하여 빔을 제어하기 위한 장치 및 방법
KR20210044548A (ko) * 2019-10-15 2021-04-23 삼성전자주식회사 통신 장치 및 통신 장치의 데이터 수신 방법
US11223140B2 (en) * 2020-04-21 2022-01-11 The Boeing Company Electronically-reconfigurable interdigital capacitor slot holographic antenna
IL274890B2 (en) * 2020-05-24 2024-02-01 Elta Systems Ltd System and method for transmitting radio wave radiation
WO2023042936A1 (ko) * 2021-09-16 2023-03-23 엘지전자 주식회사 무선 통신 시스템에서 도달 방향에 따라 잡음을 감소시키기 위한 수신기 구조 및 이를 위한 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195448A (ja) * 2004-01-07 2005-07-21 Alpine Electronics Inc Gps受信装置におけるマルチパス検出方法およびこれを用いたナビゲーションシステム
WO2008090836A1 (ja) * 2007-01-23 2008-07-31 Nec Corporation 無線制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087023B2 (ja) 1998-09-22 2008-05-14 シャープ株式会社 ミリ波帯信号送受信システムおよびミリ波帯信号送受信システムを具備した家屋
JP3455448B2 (ja) 1998-12-01 2003-10-14 株式会社東芝 ビーム制御アンテナ装置及びアンテナ制御方法
JP4600091B2 (ja) 2005-03-03 2010-12-15 日本電気株式会社 映像および音声を伝送するデジタル信号通信システム、信号送信装置、及び信号受信装置
US7710319B2 (en) 2006-02-14 2010-05-04 Sibeam, Inc. Adaptive beam-steering methods to maximize wireless link budget and reduce delay-spread using multiple transmit and receive antennas
JP2008160532A (ja) 2006-12-25 2008-07-10 Samsung Electronics Co Ltd 無線通信装置及び無線通信方法
JP2008228013A (ja) 2007-03-14 2008-09-25 Kddi Corp アンテナ制御装置、アンテナ装置および無線装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195448A (ja) * 2004-01-07 2005-07-21 Alpine Electronics Inc Gps受信装置におけるマルチパス検出方法およびこれを用いたナビゲーションシステム
WO2008090836A1 (ja) * 2007-01-23 2008-07-31 Nec Corporation 無線制御方法

Also Published As

Publication number Publication date
WO2010143353A1 (ja) 2010-12-16
JPWO2010143353A1 (ja) 2012-11-22
US8933840B2 (en) 2015-01-13
US20120092217A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5310847B2 (ja) 無線通信システムの制御方法、無線通信システム、無線通信装置、及びアレイ重みベクトルの調整方法
JP5645238B2 (ja) 無線通信システムの制御方法、及び無線通信システム
JP5267567B2 (ja) 無線通信システムの制御方法、無線通信システム、アレイ重みベクトルの調整方法、及び無線通信装置
US9270355B2 (en) Control method of radio communication system, radio communication system, and radio communication apparatus
JP5633559B2 (ja) 無線通信システムの制御方法、無線通信システム、及び無線通信装置
JP5975162B2 (ja) 通信制御方法
JP5429167B2 (ja) 無線通信システムの制御方法、無線通信システム、送信装置、及び受信装置
JP2013511931A (ja) 空間ダイバーシチを使用して無線リンクのロバスト性を改善する方法及びシステム
JP5598588B2 (ja) 無線通信システムの制御方法
KR20200059650A (ko) 밀리미터파 빔포밍 방법 및 장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5310847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150