JP5305209B1 - 次世代電力貯蔵システム及び次世代電力貯蔵方法 - Google Patents
次世代電力貯蔵システム及び次世代電力貯蔵方法 Download PDFInfo
- Publication number
- JP5305209B1 JP5305209B1 JP2012234176A JP2012234176A JP5305209B1 JP 5305209 B1 JP5305209 B1 JP 5305209B1 JP 2012234176 A JP2012234176 A JP 2012234176A JP 2012234176 A JP2012234176 A JP 2012234176A JP 5305209 B1 JP5305209 B1 JP 5305209B1
- Authority
- JP
- Japan
- Prior art keywords
- power
- power storage
- fluid
- supercritical fluid
- generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/50—Energy storage in industry with an added climate change mitigation effect
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
【課題】 大容量のバックアップ蓄電装置を用いることなく、長時間において安定した電力を供給することが可能な次世代電力貯蔵システム及び次世代電力貯蔵方法を提供するものである。
【解決手段】 電力貯蔵時に外部電源11、20、22から供給された電力を蓄電装置14に蓄電し、蓄電装置の出力電力を利用してパルス電源16でパルス電流を発生させ、該パルス電流を超臨界流体発生器33に供給しながら高圧作動流体供給源31から高圧作動流体を超臨界流体発生器33に供給して超臨界流体を発生させ、該超臨界流体を回転式流体機械32で膨張させて得た機械エネルギーにより発電機36を駆動することで安定した電力を供給することが可能な次世代電力貯蔵システム及び次世代電力貯蔵方法を提供する。
【選択図】図1
【解決手段】 電力貯蔵時に外部電源11、20、22から供給された電力を蓄電装置14に蓄電し、蓄電装置の出力電力を利用してパルス電源16でパルス電流を発生させ、該パルス電流を超臨界流体発生器33に供給しながら高圧作動流体供給源31から高圧作動流体を超臨界流体発生器33に供給して超臨界流体を発生させ、該超臨界流体を回転式流体機械32で膨張させて得た機械エネルギーにより発電機36を駆動することで安定した電力を供給することが可能な次世代電力貯蔵システム及び次世代電力貯蔵方法を提供する。
【選択図】図1
Description
本発明は次世代電力貯蔵システムに関し、特に、蓄電装置を備えた次世代電力貯蔵システム及び次世代電力貯蔵方法に関する。
近年、電力不足の有効な解決策として、再生可能エネルギーや夜間の余剰電力を活用して電力を貯蔵して、ピーク電力時に貯蔵電力を供給する電力貯蔵システムが注目され、圧縮空気や液圧等の圧力エネルギーを利用した電力貯蔵システムが提案されている。
特許文献1には、地上に通常圧液体用貯蔵アキュムレータを配置するとともに地下に高圧液体アキュムレータを設け、圧縮機を介して圧縮空気を地下の高圧液体アキュムレータに供給して高圧液体アキュムレータ内の空気を圧縮し、その空圧エネルギーを利用して地下の高圧液体アキュムレータから液体を地上の通常圧液体用貯蔵アキュムレータに移動させ、この時発生する液圧でポンプ兼タービンを駆動してモータ兼発電機により発電するようにした電力貯蔵システムが提案されている。
特許文献2には、揚水発電のように、地層に近い場所に上部帯水層を設けると共に地下の深い場所に下部帯水層を設け、モニター中の電力系統の使用電力量が所定値以下の場合にポンプ兼モータを駆動して下部帯水層の水を上部帯水層に揚水し、モニター中の電力系統の使用電力量が所定値を下回った場合に、上部帯水層から下部帯水層に落下させる水の運動エネルギーを利用してタービン発電機を駆動することで発電するようにした揚水発電型電力貯蔵装置が提案されている。
特許文献3には、電気ユニット(モーター兼発電機)とともに流体回路を水中に設置して、第1位相において、電源から供給した電力で電気ユニットをモータとして駆動し、水圧モータ兼ポンプユニットをポンプとして作動させることで貯蔵アキュムレータの作動流体をブラダーからなる流体容器に供給して該流体容器中の作動流体を水圧により加圧するようにしたシステムにおいて、第2位相において、該流体容器中の作動流体を貯蔵アキュムレータに移送させることで水圧モータ兼ポンプユニットをモータとして作動させることにより、電気ユニットを発電機として作動させて発電させるようにした水圧エネルギーアキュムレータが提案されている。
ところで、特許文献1で開示された電力貯蔵システムでは、地上のみならず地下にも大規模な高圧液体アキュムレータを工事しなければならず、システム全体の構造とスペースが大きくなり、システム全体の製造コストが著しく高いものとなっていた。しかも、作動媒体として利用される空気は密度が低い上に、貯蔵容器から圧縮空気を取り出すと、圧縮空気の圧力エネルギーは急峻に低下するため、長期に亘って安定した電力を供給可能な電力貯蔵システムを構築することが困難であった。
特許文献2で開示された揚水発電機では、所望の安定した電力をピーク電力需要時間帯において長時間に亘って安定して得るためには、地上近辺の地中と深い地下の両方の場所において極めて大規模な帯水槽を工事しなければならず、工事費用面並びに環境面から実用的ではなかった。
特許文献3で開示された水圧エネルギー貯蔵アキュムレータでは、電気ユニット(モーター兼発電機)、流体回路及び流体容器からなる発電設備一式を深海や湖の深い水中に設置しているが、ブラダーから作動流体を放出すると、作動流体の圧力が急速に低下するため、継続的に長期に亘って必要な量のエネルギーを取り出すことはできなかった。ピーク電力需要時間帯に必要な電力量を得るためには、巨大な貯蔵アキュムレータと流体貯蔵容器を準備しなければならず、実用的ではなかった。
本発明は、かかる従来の問題点に鑑みてなされたもので、低コストで長寿命であり、しかも、安全で信頼性が高い次世代電力貯蔵システム及び次世代電力貯蔵方法を提供することを目的とする。
上記目的を達成するために、請求項1に記載された第1発明によれば、次世代電力貯蔵システムが、電力貯蔵時に外部電源から供給された電力を蓄電する蓄電装置と、電力供給時に前記蓄電装置から供給された出力電力を利用して周期的なパルス電流を供給するパルス電源と、前記パルス電流によりアーク放電を発生させて高圧作動流体から超臨界流体を発生させる超臨界流体発生器と、前記高圧作動流体を前記超臨界流体発生器に連続的に供給する高圧作動流体供給源と、前記電力供給時に前記超臨界流体を膨張させて機械エネルギーに変換する回転式流体機械と、前記電力供給時に前記回転式流体機械により駆動されて発電電力を供給する発電機とを備えることを要旨とする。
請求項2に記載された発明によれば、請求項1記載の構成に加えて、前記前記高圧作動流体供給源が作動流体を貯蔵する低圧貯蔵容器と、前記回転式流体機械により駆動されて前記低圧貯蔵容器から前記作動流体を吸引・加圧して前記高圧作動流体を生成するロータリ加圧ポンプと、前記高圧作動流体を貯蔵するアキュムレータと、前記アキュムレータの前記高圧作動流体と前記ロータリ加圧ポンプの前記高圧作動流体とを選択的に前記超臨界流体発生器に供給する切替制御弁とを備え、前記回転式流体機械が前記超臨界流体を膨張させて前記機械エネルギーに変換する第1回転機械部と、前記ロータリ加圧ポンプから独立して前記作動流体を吸引・加圧して高圧作動流体を生成して前記超臨界流体発生器に供給する第2回転機械部とを備えることを要旨とする。
請求項3に記載された発明によれば、請求項1又は2記載の構成に加えて、前記超臨界流体発生器が、リアクタケーシングと、前記リアクタケーシングに形成されていて飽和蒸気発生ゾーンと、過熱蒸気発生ゾーンと、超臨界流体発生ゾーンとを有するアーク放電発生室と、前記パルス電流に応答して前記アーク放電発生室でアーク放電を発生させる複数のアーク電極と、前記アーク電極の間に介在していて前記飽和蒸気発生ゾーン、前記過熱蒸気発生ゾーン及び前記超臨界流体発生ゾーンの広域にて前記アーク放電を発生させる複数のアーク放電球体とを備えることを要旨とする。
請求項4に記載された発明によれば、請求項1〜3のいずれかに記載の構成に加えて、前記発電電力の一部を直流出力に変換して前記蓄電装置に蓄電させるAC/DC変換器をさらに備えることを要旨とする。
請求項5に記載された発明によれば、次世代電力貯蔵方法が、電力貯蔵時に外部電源から供給された電力を蓄電装置に蓄電し、電力供給時に該蓄電装置の出力電力をパルス電源に供給して周期的なパルス電流を超臨界流体発生器に供給し、、前記電力供給時に高圧作動流体を前記超臨界流体発生器に連続的に供給し、、前記パルス電流に応答して前記超臨界流体発生器でアーク放電を発生させることにより前記作動流体から超臨界流体を発生させ、前記超臨界流体を回転式流体機械で膨張させて機械エネルギーに変換し、前記電力供給時に前記機械エネルギーにより発電機を駆動して発電電力を発生させることを要旨とする。
請求項6に記載された第2発明によれば、請求項5記載の構成に加えて、前記発電電力の一部を直流出力に変換して前記蓄電装置に充電することを要旨とする。
請求項1記載の第1発明では、次世代電力貯蔵システムにおいて、電力貯蔵時に外部電源から供給された電力を蓄電装置に蓄電し、作動流体を超臨界流体発生器に連続的に供給し、該蓄電装置の出力電力をパルス電源に供給して周期的なパルス電流を超臨界流体発生器に供給し、該パルス電流に応答して超臨界流体発生器でアーク放電を発生させることにより作動流体から超臨界流体を発生させ、該超臨界流体を回転式流体機械で膨張させて機械エネルギーに変換し、該機械エネルギーにより発電機を駆動して発電電力を発生させる構成としている。このように、外部電源から供給された電気エネルギーを蓄電装置に蓄電して、この電気エネルギーをパルス電流に変換して超臨界流体からなる圧力エネルギーに変換し、次いで、この圧力エネルギーを回転式流体機械を介して機械エネルギーに変換して発電機を連続的に駆動できるようにしている。この結果、大容量蓄電装置を用いることなく、電力需要ピーク時に安定した電力を供給することが可能となる。作動流体としては、1例として、純水に微量の硝酸リチウムを添加して所定の電気抵抗を有するように調整した導電水を使用する。導電水を超臨界流体発生器に導入して超臨界水を発生させると、超臨界水は、少なくとも、380℃〜800℃の温度で、350bar前後の超臨界圧となる。超臨界水の爆発圧力は、回転式流体機械のロータリピストン本体の回転方向に10平方cm当り1000Kgの圧力を発生させる。したがって、極めて高いエネルギー効率の次世代電力貯蔵システムを提供することができる。
請求項2記載の構成では、ロータリ加圧ポンプにより作動流体から高圧作動流体を生成してアキュムレータに高圧作動流体を貯蔵しておき、切替制御弁によりロータリ加圧ポンプの高圧作動流体とアキュムレータの高圧作動流体とを選択的に超臨界流体発生器に供給するようにしている。また、回転式流体機械が超臨界流体を膨張させて機械エネルギーに変換する第1回転機械部と、ロータリ加圧ポンプから独立して作動流体を吸引・加圧して高圧作動流体を生成して超臨界流体発生器に供給する第2回転機械部とを備える。この構成により、超臨界流体発生器にはロータリ加圧ポンプと第2回転機械部との一方又は双方から高圧作動流体が連続的に供給され、超臨界流体を連続的に発生可能としている。この結果、電力需要ピーク時に必要な電力を安定的に供給可能な次世代電力貯蔵システムを提供することができる。
請求項3記載の構成では、超臨界流体発生器はリアクタケーシングを備えていてアーク放電を広域にて発生させるアーク放電球体を備えている。アーク放電球体は互いに球面体の突起部で点接触しているため、球面体の突起部周辺のアーク放電空間に蒸気が存在すると、広域にてアーク放電が起きやすくなって、超臨界水が瞬時に効率的に発生する。そのため、アーク放電球体の存在下で、導電水は飽和蒸気発生ゾーンにおいて通電によるジュール熱で瞬時に飽和蒸気が発生し、過熱蒸気発生ゾーンにおいて過熱蒸気が生成される。この過熱蒸気はアーク放電球体の隙間を通過する際に超臨界流体発生ゾーンにおいて広域にて発生するアーク放電と接触して瞬時に高温高圧の超臨界水となる。したがって、極めて簡単な構造で、生産コストも安く、信頼性も高い次世代電力貯蔵システムを提供することが可能となる。
請求項4記載の構成では、発電機から得た発電電力の一部をAC/DC変換器により直流出力に変換して蓄電装置に蓄電させている。このことは、発電機の消費電力が低いときに蓄電装置に発電電力の一部を蓄電させることで蓄電装置への電気エネルギーの蓄電を可能にしている。したがって、蓄電装置の蓄電状態の不安定化を克服している。
請求項5に記載された第2発明によれば、次世代電力貯蔵方法において、外部電源から供給された電力を蓄電装置に蓄電してパルス電流の発生用に利用し、作動流体を超臨界流体発生器に連続的に供給しながらパルス電流に応答してアーク放電を発生させることにより作動流体から超臨界流体を発生させている。このように、電気エネルギーを圧力エネルギーに変換してこれをさらに機械エネルギーに変換して発電機を駆動する。したがって、次世代電力貯蔵方法では、電力需要ピーク時に必要な電力を安定的に供給することが可能となる。
請求項6に記載された発明によれば、発電機から得た発電電力の一部をAC/DC変換器により直流出力に変換して蓄電装置に蓄電させている。このことは、発電機の消費電力が低いときに蓄電装置に発電電力の一部を蓄電させることで蓄電装置への電気エネルギーの蓄電を可能にしている。したがって、蓄電装置の蓄電状態の不安定化を克服している。
以下、本発明の実施例による次世代電力貯蔵システム及び次世代電力貯蔵方法について図面に基づき詳細に説明する。図1に示した実施例において、次世代電力貯蔵システム(以下、単に「電力貯蔵システム」と略称する)10は、太陽光、太陽熱、風力、地熱、波力等の再生可能エネルギーの電力の安定化や、商用電源における夜間電力を貯蔵して昼間の電力需要ピーク時に電力を供給ために用いられる。さらに、電力貯蔵システム10は、夜間電力貯蔵装置として、一般家庭用からコンビニ、スーパー、百貨店、中小〜大型ビル、ホテル、病院等の業務用から工場用や鉄道施設、浄水場等広範囲の用途に用いることができる。
図1に示した電力貯蔵システム10において、系統電源11に遮断器B1が接続され、遮断器B2を介して負荷Loに電力が供給される。系統電源11には、さらに、遮断器B3を介して主電力供給ラインPSLが接続される。主電力供給ラインPSLには、遮断器B4を介して再生可能エネルギーで発電した余剰電力供給ラインRSLが接続される。主電力供給ラインPSLは、遮断機B5、B6及び変圧器Tr1を介して交直変換装置12に接続され、その直流出力はバッテリ等の蓄電装置14に蓄電される。蓄電装置14は、リチウムイオンバッテリ、Ni−MH電池(ニッケルー水素電池)、又はコンデンサバンク等の二次電池から構成される。蓄電装置14の直流出力はパルス電源16に供給される。パルス電源16は、50〜2000ヘルツ程度のパルス電流を生成し、後述の運転パラメータに応答して、所定の周期のパルス電圧を発生するように制御される。電力貯蔵システム10において、オフピーク電力時間帯(余剰電力供給時)には、遮断器B1、B3、B5、B6が閉状態とされ、系統電源11の夜間電力が下記に述べるような方法で電力貯蔵システム10に貯蔵される。ピーク電力時間帯(電力供給時)には、遮断器B5、B6が閉状態とされ、電力貯蔵システム10の発電電力は遮断器B2、B3、B5、B6を経由して構内配電網18に供給される。
一方、余剰電力供給ラインRSLは、風力発電機20又は太陽光発電器22等の再生可能エネルギー発電設備の余剰電力をDC/DC変換器24で出力電圧を調整した後、DC/AC変換器26で交流電力に変換する。再生可能エネルギー発電設備の発生電力は遮断器B1、B5を解放状態にする一方、遮断器B2、B3、B4を閉状態として構内配電網18に供給される。再生可能エネルギー由来の余剰電力貯蔵時には、遮断器B3を解放状態にする一方、遮断器B4、B5、B6を閉状態とすることにより電力貯蔵システム10に接続される。
パルス電源16は蓄電装置14から供給された出力電力から所定周期(例えば、50〜2000ヘルツ)の周期的なパルス電流を超臨界流体発生器33に供給する。超臨界流体発生器33は周期的なパルス電流に応答してアーク放電を派生させ、高圧作動流体から超臨界流体を発生する。回転式流体機械32は、この超臨界流体を爆発的に膨張させて出力軸に機械エネルギーを発生させる第1回転機械部(図示せず)と、第1回転機械部と同期して作動しながらモータモード(及び/又はポンプモード)で機能する第2回転機械部(図示せず)とを備える。
超臨界流体発生器33には高圧作動流体供給源31から高圧作動流体が連続的に供給される。高圧作動流体供給源31は、低圧作動流体を貯蔵する低圧貯蔵容器28と、回転式流体機械32により駆動されて低圧作動流体を吸引・加圧して高圧作動流体を生成するロータリ加圧ポンプ30と、高圧作動流体を圧力エネルギーとして貯蔵するアキュムレータ34と、ロータリ加圧ポンプ30の高圧作動流体とアキュムレータ34の高圧作動流体とを選択的に超臨界流体発生器33に供給する三方切替制御弁V1とを備える。図2に示すように、回転式流体機械32の両側にはそれぞれ超臨界流体発生器33とロータリ加圧ポンプ30が同心的にボルトその他の連結手段で連結される。
図1において、ロータリ加圧ポンプ30のインレットd1は逆止弁CV1及び開閉弁V3を介して低圧貯蔵容器28に接続され、アウトレットd2は三方切替制御弁V1を介してアキュムレータ34と、回転式流体機械32の第2回転機械部のインレットa2に接続されている。逆止弁CV4は三方切替制御弁V1と第2回転機械部のインレットa2との間に配置され、第2回転機械部のインレットa2は逆止弁CV3,CV4を介してリサーバとして機能する低圧貯蔵容器28に接続されている。回転式流体機械32の第2回転機械部のアウトレットb2が逆止弁CV2を介して超臨界流体発生器33のインレット1102に接続されている。超臨界流体発生器33のアウトレット1140には超臨界流体発生器33内の超臨界流体の圧力を制御するための開閉制御弁V2が接続される。即ち、開閉制御弁V2は周期的に開閉作動し、超臨界流体の生成時には閉状態とされ、超臨界流体の供給時には解放状態とされる。開閉制御弁V2は周期的に解放されて、超臨界流体Wgが回転式流体機械32の第1回転機械部のインレットa1に供給され、爆発的に膨張して出力軸132に機械エネルギーを発生する。膨張後の低温低圧作動流体はアウトレットb1から排出されて冷却器/凝縮器CNDで冷却液化されて低圧作動流体WMとして低圧貯蔵容器28に回収される。
アキュムレータ34には圧力センサPs1が装着されていて、貯蔵されている高圧作動流体の圧力を検出して、圧力信号としてコントローラ38に出力される。超臨界流体発生器33には圧力センサPs2と温度センサ1132(図3参照)とが装着されていて、圧力信号と温度信号Tがそれぞれコントローラ38に出力される。コントローラ38には、さらに、電力計測器37からの電力信号が供給される。電力計測器37には発電機36の電圧と電流とをそれぞれ検出するための計測用変圧器TRsと計測用変流器CTを備える。入力装置39はカレンダー信号や、温度や圧力等のパラメータ設定信号を基準信号としてコントローラ38に入力する。コントローラ38は中央演算装置(CPU)、RAM,ROMを有するマイクロコンピュータからなり、検出信号や、運転パラメータ及び設定信号に応じて内蔵されている制御プログラムに沿って各種の指令信号を出力する。
回転式流体機械32とロータリ加圧ポンプ30とは、例えば、同一発明者の発明による特願2011−290720号(発明の名称:回転式流体機械)に開示された回転式流体機械、或いは、同一発明者の発明による平成24年8月20日特許出願の特願2012−195513号(発明の名称:回転式流体機械)に開示された「回転式流体機械」及び「過給器」の構造とそれぞれ同一の構造を有するため、これらの詳細な説明を省略する。三方切替制御弁V1は、例えば、日本国特許第3415824号(米国特許公開公報第2004/00V1394号)に開示されたものと構造的に殆ど類似した構造の制御弁を採用することができるため、ここでは詳細な説明を省略する。
図2及び図3より明らかなように、超臨界流体発生器33は、回転式流体機械32に対してこれと同心的に連結された円筒状リアクタケーシング1100と、円筒状リアクタケーシング1100の両端に配置されたエンドプレート16a,16bを備える。図2に示すように、円筒状リアクタケーシング1100とエンドプレート16a,16bは、回転式流体機械32と同心的に配列される。円筒状リアクタケーシング1100は、円筒状リアクタケーシング1100の内側とケーシング1100の中央内周部1114の径方向外側に形成されたセラミック等の絶縁耐熱層1116と、絶縁耐熱層1116の内側に形成されたアーク放電発生室1118を備える。円筒状リアクタケーシング1100の中央内周部1114は出力軸132を通過可能にするための直径を有する内周壁部1114を備える。
超臨界流体発生器33の吸入ポート1102は、径方向壁部1120に延びていて、径方向壁部1120には周方向に延びる複数の開口部1122を有する。アーク放電発生室1118のコーナー部1118a、1118bには一対のアーク電極1124,1126がそれぞれ配置される。一対のアーク電極1124,1126はパルス電源24に接続される。パルス電源24は、例えば、日本国特許第2582956号に開示されたような回路構成やその他の公知のインバータ回路が用いられる。パルス電源16は、コントローラ(図示せず)から出力されたパルス周期指令(タイミング)信号に応じて予め定められた周期(例えば、スタート時には200〜2000ヘルツの周期のパルス電流を供給し、所定の高温状態に達した後には、例えば、50〜100ヘルツ程度の周期)のパルス電流を一対のアーク電極1124,1126に供給する。パルス電流は50A〜200Aのピーク電流となるよう設定されるが、本発明はこれらの数値に限定されるものではなく、次世代電力貯蔵システムの規模その他のパラメータに応じて適宜設計変更可能である。パルス電流の周期はアーク放電発生室1118の温度が、例えば、850℃〜1500℃の範囲になるような値に設定してもよい。
アーク放電発生室1118には、一対のアーク電極1124,1126の間に介在する多数のアーク放電球体1134が充填され、これらアーク放電球体1134の隙間はアーク放電空間1136として作用する。アーク放電球体1134は、飽和蒸気発生ゾーンZ1,過熱蒸気発生ゾーンZ2及び超臨界流体発生ゾーンZ3の広域にて高密度のアーク放電を発生させる機能を有する。飽和蒸気発生ゾーンZ1において、導電水等の作動流体が通電してジュール熱により飽和蒸気が瞬時に発生する。過熱蒸気発生ゾーンZ2において、飽和蒸気が順次広域で発生するアーク放電と接触して瞬時に過熱蒸気となる。アーク放電発生室1118の下流側に流れるにしたがって、超臨界流体発生ゾーンZ3において、過熱蒸気はさらにアーク放電の影響下で高温高圧となり超臨界水が生成される。アーク放電球体1134としては、タングステンボール、或いは、カーボンボールの表面にクロム、モリブデン、タングステン等の導電性金属をコーティングしたものが用いられる。アーク放電は、アーク放電球体1134の互いに隣接した球面部分で発生しやすく、アーク放電球体1134が5mm〜30mm程度の直径を有する場合に最も頻繁に発生する。アーク放電は、パルス電流の電圧がハイレベルとローレベルとの間で周期的に変化することでより頻繁に発生する。アーク放電発生室1118に隣接してデミスター部1106が配置され、デミスター部1106には耐熱性の金属ワイヤー等から形成されたデミスター1110が充填される。電磁開閉弁V2が所定周期で開弁されると、デミスター1110を通過した超臨界水Wgはフィルター1142で濾過された後、アウトレット1140から回転式流体機械32のインレットa1に供給される。
上記構成において、作動流体としては、例えば、純水に微量の硝酸リチウムを添加して所定の電気抵抗を有するように調整された導電水を用いる。なお、作動流体としては、導電水の他に、単純な水、炭酸ガス、水と炭酸ガスの混合流体、水とアセトン(V1%:V1%の比率)の混合流体、導電水とアセトン(V1%:V1%の比率)の混合流体やその他の作動流体を用いても良い。
次に、導電水を作動流体として採用した次世代電力貯蔵システム10の作用及び次世代電力貯蔵方法について説明する。アキュムレータ34には僅かに高圧導電水が残留しており、低圧貯蔵容器28には低圧導電水が貯蔵され、蓄電装置14には再生可能エネルギーにより発生した電力及び発電機36の発電電力の少なくとも一部が蓄電されているものとする。
夜間電力貯蔵時において、遮断器B4を解放し、遮断器B1、B3,B5,B6を閉状態とする。この時、商用電力は変圧器TR1により電圧が所定電圧になるように降圧された後、A/D変換器12で直流電力に変換されて蓄電装置14を介してパルス電源16に供給される。このとき、変圧器TR1の出力側に設置された電圧センサ(図示せず)から電圧信号がコントローラ38に出力され、コントローラ38はこの電圧信号に応答して指令信号Csをパルス電源16に出力する。この結果、超臨界流体発生器33にはパルス電源16からパルス電力が供給される。このとき、コントローラ38から三方切替制御弁V1に指令信号が出力されて三方切替制御弁V1の流路が第1モードに設定され、アキュムレータ34の高圧導電水は逆止弁CV4を介して回転式流体機械32のインレットa2から第2回転機械部及び逆止弁CV2を通過して超臨界流体発生器33に供給される。超臨界流体発生器33は、上述の如く、パルス電源16からパルス電力が供給されているため、導電水は通電により瞬時に飽和蒸気となり、該飽和蒸気は内部で発生するアーク放電と接触して瞬時に過熱蒸気となり、過熱蒸気は広域で発生したアーク放電と接触して高温高圧となる。この時、超臨界流体発生器33のインレット側には逆止弁CV2によって過熱蒸気の逆流が阻止され、一方、超臨界流体発生器33のアウトレット側は開閉制御弁V2が閉状態となっているため、過熱蒸気の温度と圧力が急激に上昇して瞬時に超臨界水が発生する。
この状態において、コントローラ38から開閉制御弁V2に開弁指令が出力されて開閉制御弁V2が開弁する。すると、超臨界流体発生器33から超臨界水Wgが吐出して回転式流体機械32のインレットa1から第1回転機械部に流入して爆発的に膨張して出力軸機械エネルギーが発生する。コントローラ38からの開閉制御弁V2の開弁指令に同期してコントローラ38から指令信号が三方切替制御弁V1に出力され、三方切替制御弁V3の流路が第2モードに設定され、ロータリ加圧ポンプ30がアキュムレータ34と連通する。回転式流体機械32の出力軸に発生した機械エネルギーによってロータリ加圧ポンプ30が駆動され、ロータリ加圧ポンプ30は低圧貯蔵容器28から低圧導電水を吸引・加圧して高圧導電水を生成し、これをアキュムレータ34に圧送して貯蔵する。
この運転サイクルにおいて、開閉制御弁56は周期的に開弁されて超臨界水が周期的に回転式流体機械32の第1回転機械部に供給され、ロータリ加圧ポンプ30が駆動されて低圧貯蔵容器28から低圧導電水を吸引・加圧して高圧導電水PWを生成し、これを順次アキュムレータ34に圧送して貯蔵する。アキュムレータ34の高圧導電水が所定圧に達すると、圧力センサPs1からの圧力検出信号に応答して、コントローラ38から圧力エネルギー貯蔵完了を表す指令信号が出力される。その結果、三方切替制御弁V1によってロータリ加圧ポンプ30とアキュムレータ34との流路が遮断されると共にパルス電源16がOFFとされる。
ピークデマンド時(電力供給時)にメインスイッチ(図示せず)が投入されると、クラッチ35がコントローラ38の指令信号によって締結し、一方、コントローラ38からスタート指令信号が三方切替制御弁V1と、開閉制御弁V2とパルス電源16に出力される。すると、三方切替制御弁V1の流路が第3モードに切り替って、アキュムレータ34が回転式流体機械32のインレットa2と連通する。その結果、アキュムレータ34の高圧導電水が第2回転機械部を通過し、逆止弁CV2を介して超臨界流体発生器33に供給される。パルス電流に応答して超臨界流体発生器33では高圧導電水から瞬時に超臨界水Wgが発生する。コントローラ38からの指令信号に応答して開閉制御弁V2が周期的に開弁すると、超臨界水Wgは回転式流体機械32の第1回転機械部で爆発的に膨張して出力軸に機械エネルギーを発生させる。第1回転機械部のアウトレットb1から排出された低温低圧蒸気は冷却器/凝縮器CNDで冷却液化されて低圧貯蔵容器28に回収される。一方、超臨界流体発生器33が作動を開始すると、圧力センサPs2から出力された圧力検出信号に応答して、コントローラ38から指令信号が出力されてクラッチ35が締結され、発電機36が作動する。このとき、遮断器B2,B3,B5を閉成すると、発電機36の発電電力は負荷郡Loに供給される。
ピークデマンド時における電力貯蔵システム10の作用において、アキュムレータ34の高圧導電水が所定圧以下に低下すると、圧力センサPs1からの圧力検出信号に応答して、コントローラ38から指令信号が出力される。その結果、三方切替制御弁V1によってロータリ加圧ポンプ30と回転式流体機械32の第2回転機械部が連通する。このとき、ロータリ加圧ポンプ30で生成された高圧導電水は逆止弁CV4を介して第2回転機械部に流入し、ここで加圧されて逆止弁CV2を介して超臨界流体発生器33に供給される。このように、アキュムレータ34の高圧導電水が所定圧以下に低下した場合であっても、高圧導電水が連続的に超臨界流体発生器33に供給される。したがって、超臨界水が回転式流体機械32に連続的に供給されて発電機36が駆動される。このようにして、ピークデマンド時に必要な電力が遮断弁B2,B3、B5を介して構内配電網18に供給される。
なお、上記発電サイクルにおいて、遮断器B6を投入すると、発電機36の発電電力の一部は変圧器TR1及びAC/DC変換器12を介して蓄電装置14に蓄電される。再生可能エネルギーによる余剰電力も上述と同様な方法で電力貯蔵システム10に貯蔵され、再生可能エネルギーによる安定した電力が構内配電網18に供給される。
上述したように、超臨界流体発生器33ではアーク放電の発生により、導電水から発生した超臨界水は温度が、少なくとも、600℃〜800℃の時に350bar前後の超臨界圧となり、この超臨界水が回転式流体機械32で爆発的に膨張する。このとき発生する爆発圧力はロータリピストンの回転方向において10平方cm当り1000Kg前後にも達する。このため、本発明による次世代電力貯蔵システムはエネルギー効率が高くなり、小型高性能となる。なお、作動流体としては、導電水の他に、単純な水、炭酸ガス、水と炭酸ガスの混合流体、水とアセトン(50%:50%の比率)の混合流体、導電水とアセトン(50%:50%の比率)の混合流体やその他の作動流体を用いても良い。
以上、本発明の実施例を図面に基づいて説明したが、これ等はあくまでも一実施形態を示すものであり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することが出来る。
10 次世代電力貯蔵システム;12 電気駆動回転式流体機械;16 発電機;18 AC/DCコンバータ;20 太陽光発電装置;23 DC/DC コンバータ;26 蓄電装置;28 パルス電源;43 高圧作動流体供給源;46 アキュムレータ;48 低圧貯蔵容器;40 回転式流体機械;42 超臨界流体発生器;44 ロータリ加圧ポンプ;V1 三方切替制御弁;V2 開閉制御弁;CND 冷却器;38 コントローラ;39 入力装置
Claims (6)
- 電力貯蔵時に外部電源から供給された電力を蓄電する蓄電装置と、
電力供給時に前記蓄電装置から供給された出力電力を利用して周期的なパルス電流を供給するパルス電源と、
前記パルス電流によりアーク放電を発生させて高圧作動流体から超臨界流体を発生させる超臨界流体発生器と、
前記高圧作動流体を前記超臨界流体発生器に連続的に供給する高圧作動流体供給源と、
前記電力供給時に前記超臨界流体を膨張させて機械エネルギーに変換する回転式流体機械と、
前記電力供給時に前記回転式流体機械により駆動されて発電電力を供給する発電機と、
を備えることを特徴とする次世代電力貯蔵システム。 - 前記高圧作動流体供給源が作動流体を貯蔵する低圧貯蔵容器と、前記回転式流体機械により駆動されて前記低圧貯蔵容器から前記作動流体を吸引・加圧して前記高圧作動流体を生成するロータリ加圧ポンプと、前記高圧作動流体を貯蔵するアキュムレータと、前記アキュムレータの前記高圧作動流体と前記ロータリ加圧ポンプの前記高圧作動流体とを選択的に前記超臨界流体発生器に供給する切替制御弁とを備え、前記回転式流体機械が前記超臨界流体を膨張させて前記機械エネルギーに変換する第1回転機械部と、前記ロータリ加圧ポンプから独立して前記作動流体を吸引・加圧して高圧作動流体を生成して前記超臨界流体発生器に供給する第2回転機械部とを備えることを特徴とする請求項1記載の次世代電力貯蔵システム。
- 前記超臨界流体発生器が、リアクタケーシングと、前記リアクタケーシングに形成されていて飽和蒸気発生ゾーンと、過熱蒸気発生ゾーンと、超臨界流体発生ゾーンとを有するアーク放電発生室と、前記パルス電流に応答して前記アーク放電発生室でアーク放電を発生させる複数のアーク電極と、前記アーク電極の間に介在していて前記飽和蒸気発生ゾーン、前記過熱蒸気発生ゾーン及び前記超臨界流体発生ゾーンの広域にて前記アーク放電を発生させる複数のアーク放電球体とを備えることを特徴とする請求項1又は2記載の次世代電力貯蔵システム。
- 前記発電電力の一部を直流出力に変換して前記蓄電装置に蓄電させるAC/DC変換器をさらに備えることを特徴とする請求項1〜3のいずれかに記載の次世代電力貯蔵システム。
- 電力貯蔵時に外部電源から供給された電力を蓄電装置に蓄電し、電力供給時に該蓄電装置の出力電力をパルス電源に供給して周期的なパルス電流を超臨界流体発生器に供給し、前記電力供給時に高圧作動流体を前記超臨界流体発生器に連続的に供給し、前記パルス電流に応答して前記超臨界流体発生器でアーク放電を発生させることにより前記作動流体から超臨界流体を発生させ、前記超臨界流体を回転式流体機械で膨張させて機械エネルギーに変換し、前記電力供給時に前記機械エネルギーにより発電機を駆動して発電電力を発生させることを特徴とする次世代電力貯蔵方法。
- 前記発電電力の一部を直流出力に変換して前記蓄電装置に充電することを特徴とする請求項6記載の次世代電力貯蔵方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012234176A JP5305209B1 (ja) | 2012-10-04 | 2012-10-04 | 次世代電力貯蔵システム及び次世代電力貯蔵方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012234176A JP5305209B1 (ja) | 2012-10-04 | 2012-10-04 | 次世代電力貯蔵システム及び次世代電力貯蔵方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5305209B1 true JP5305209B1 (ja) | 2013-10-02 |
JP2014074397A JP2014074397A (ja) | 2014-04-24 |
Family
ID=49529457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012234176A Expired - Fee Related JP5305209B1 (ja) | 2012-10-04 | 2012-10-04 | 次世代電力貯蔵システム及び次世代電力貯蔵方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5305209B1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205044A (ja) * | 1999-01-19 | 2000-07-25 | Shigeaki Kimura | コ―ジェネレ―ション装置 |
JP2008121620A (ja) * | 2006-11-15 | 2008-05-29 | Nishishiba Electric Co Ltd | パワータービン発電装置 |
US20080136186A1 (en) * | 2006-11-29 | 2008-06-12 | Yshape Inc. | Hydraulic energy accumulator |
US20100096858A1 (en) * | 2007-09-27 | 2010-04-22 | William Riley | Hydroelectric pumped-storage |
US20100270801A1 (en) * | 2009-04-28 | 2010-10-28 | Liu Kuo-Shen | Electricity storage and recovery system |
JP2011196801A (ja) * | 2010-03-18 | 2011-10-06 | Mitsubishi Heavy Ind Ltd | 非常用システム |
-
2012
- 2012-10-04 JP JP2012234176A patent/JP5305209B1/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000205044A (ja) * | 1999-01-19 | 2000-07-25 | Shigeaki Kimura | コ―ジェネレ―ション装置 |
JP2008121620A (ja) * | 2006-11-15 | 2008-05-29 | Nishishiba Electric Co Ltd | パワータービン発電装置 |
US20080136186A1 (en) * | 2006-11-29 | 2008-06-12 | Yshape Inc. | Hydraulic energy accumulator |
US20100096858A1 (en) * | 2007-09-27 | 2010-04-22 | William Riley | Hydroelectric pumped-storage |
US20100270801A1 (en) * | 2009-04-28 | 2010-10-28 | Liu Kuo-Shen | Electricity storage and recovery system |
JP2011196801A (ja) * | 2010-03-18 | 2011-10-06 | Mitsubishi Heavy Ind Ltd | 非常用システム |
Also Published As
Publication number | Publication date |
---|---|
JP2014074397A (ja) | 2014-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Design and thermodynamic analysis of a multi-level underwater compressed air energy storage system | |
JP6709225B2 (ja) | 液圧−空気圧式エネルギー貯蔵システム | |
CN106879259B (zh) | 压缩空气储藏发电装置及压缩空气储藏发电方法 | |
WO2020153896A1 (en) | Method and system for storing electrical energy in the form of heat and producing a power output using said heat | |
EP2876282A1 (en) | Combined cycle caes technology (ccc) | |
WO2011157220A1 (zh) | 储能式风能发电系统 | |
CN105281624A (zh) | 热动力发电装置和热动力发电系统 | |
CN103362760A (zh) | 太阳能低温有机朗肯循环热能发电系统 | |
EP1984972B1 (en) | Reversible fuel cell | |
JP5305209B1 (ja) | 次世代電力貯蔵システム及び次世代電力貯蔵方法 | |
JP2014227990A (ja) | クリーンエネルギー発生装置、クリーンエネルギー発生方法及びクリーンエネルギー発生装置を具備した次世代移動体 | |
JP2014230477A (ja) | 次世代太陽光発電方法及び装置 | |
JP5228152B1 (ja) | 太陽光発電システム及び自然エネルギー発電方法 | |
CN111535886B (zh) | 一种多能联合的压力恒定的发电系统 | |
JP5352797B1 (ja) | 次世代電力供給システム、次世代電力供給方法及び次世代太陽光発電システム | |
JP5299656B1 (ja) | 熱エネルギー回収システム、熱エネルギー回収方法及びこれを利用した次世代太陽熱発電システム | |
JP5440966B1 (ja) | ネットゼロエネルギー支援システムを備えた建築物 | |
JP5413531B1 (ja) | 次世代太陽光発電装置及び次世代自然エネルギー発電方法 | |
CN110316002A (zh) | 一种用于户外应急需求的救能车 | |
JP5397719B1 (ja) | クリーンエネルギー発生装置及びクリーンエネルギー発生装置した移動体 | |
JP5403383B1 (ja) | クリーンエネルギー発生装置、クリーンエネルギー発生方法及びクリーンエネルギー発生装置を具備した移動体 | |
EP2594748A1 (en) | Energy storage and recovery system comprising a thermal storage and a pressure storage | |
JP2012527862A (ja) | 電気機械式リアクタ | |
JP2015017598A (ja) | 次世代太陽光発電方法及び装置 | |
JP2014227991A (ja) | ネットゼロエネルギー建築物及び建築物用ネットゼロエネルギー管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130614 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5305209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |