以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。
(第1の実施形態)
本実施形態では、液晶の配向膜に特徴のある液晶表示装置及びその製造方法を例示する。図1は、本実施形態の液晶表示装置の主要構成を示す概略断面図である。この液晶表示装置は、所定間隔をあけて対向する一対の透明ガラス基板11,12と、これら透明ガラス基板11,12間に狭持される液晶層13とを備えて構成されている。
一方の透明ガラス基板11上には、絶縁層14を介して複数の画素電極15が形成され、画素電極15を覆うように透明の配向膜16aが形成されており、他方の透明ガラス基板12上には、カラーフィルター17、共通電極18及び配向膜16bが順次積層されている。そして、液晶層13を狭持するように配向膜16a,16bが突き合わせられてガラス基板11,12が固定され、各基板11,12の外側に偏光子19,20が設けられる。画素電極15はアクティブマトリクスと共に形成され、図示の例ではアクティブマトリクスのデータバスライン21が示されている。なお、電極は一方の基板のみに設けられることもある(例えば、IPSモードの場合)。
配向膜16a(16b)は、液晶層13の液晶分子に対する所定配向性を有しており、ラビングすることなく液晶層13への斜め方向からの紫外線照射によって液晶分子のプレチルト角を伴った配向が実現されている。
具体的に、配向膜16a(16b)は、紫外線照射に応じたプレチルト角の変化率の異なる2種類のポリマーx1,x2を含む材料、ここでは、一方のポリマーx1が液晶分子の配向を初期状態である垂直配向から変化させ、例えばランダム水平配向とするものとし、他方のポリマーx2が液晶分子の配向を初期状態に維持するものを用い、これらを混合又は共重合させたものを含む材料から構成される。即ち、ポリマーx1は紫外線に対する反応性が極端に速く、少ない紫外線照射量でプレチルト角が急減する。それに対して、ポリマーx2は紫外線に対する反応性が極端に遅く、紫外線の照射によってもプレチルト角が殆ど変化しない。なお、プレチルト角の変化率の異なる3種類以上のポリマーを混合又は共重合させて用いることも考えられる。
ここで、紫外線照射に対してプレチルト角の所定変化率を呈する1種類のポリマーを用いて配向膜を構成する場合、紫外線照射量(J/cm2)とプレチルト角(°)との関係は例えば図38のようになる。この場合、紫外線照射量の変化に対するプレチルト角の変化量が大きいため、適正な紫外線照射が困難となる。
そこで、紫外線照射量とプレチルト角との理想的な関係としては、紫外線の少ない照射量時でプレチルト角が速やかに所望値まで減衰し、その後は紫外線照射量が増加してもプレチルト角がほぼ当該所望値で保持されるようになればよい。本実施形態では、上記の理想的なプレチルト角を実現すべく、図2に示すように、紫外線照射量(J/cm2)に対してプレチルト角が急減するポリマーx1と、プレチルト角が紫外線照射量に殆ど依存せずに変化を示さないポリマーx2とを用いて配向膜16a(16b)を構成する。
配向膜16a(16b)のポリマーとしては、垂直配向型のポリイミド又はポリアミック酸を用いる。一例を以下に示す。
前記ポリマーは、化学式1に示すようにアルキル側鎖(アルキル基)Rを有しており、これは配向膜16a(16b)の表面にランダムに突出していると考えられる。前記表面に紫外線が照射されると、アルキル側鎖Rを支えている直鎖に光開烈が生じて切断され、実質的にアルキル側鎖Rが減少し、その結果として液晶分子のプレチルト角の減衰として現れる。ポリマーx1は、アルキル側鎖Rを支えている直鎖がポリマーx2に比して格段に切断され易い構造を有する。具体的には、ポリマーx1のアルキル側鎖Rを支えている直鎖として光開烈が生じ易い部位、例えば二重結合部位を設ける。この二重結合部位に紫外線が照射されると、それが極少ない照射量でも光開烈が生じ、短時間でプレチルト角の大幅な減衰が惹起されることになる。
ここで、ポリマーx1,x2の割合を例えばそれぞれ20%,80%とする。紫外線照射を開始して所定時間経過までにポリマーx1の状態が変化してプレチルト角を発現させるアルキル側鎖Rの実質的な量が減少して殆ど0となる。これに対して、ポリマーx2はポリマーx1の如きアルキル側鎖Rの直鎖に二重結合部位等を有しないため、初期状態の垂直配向状態を保持する。このため、前記所定時間経過後には配向膜16a(16b)全体として見ればアルキル側鎖Rの元からの割合が80に減少した状態でほぼ一定値を保つことを意味する。これは、ポリマーx2のみに紫外線照射を実行した場合に当てはめれば、アルキル側鎖Rの割合が100%から80%まで減少し、その後一定となることに相当する。即ち、ポリマーx1,x2の割合をそれぞれ20%,80%として両者を混合又は共重合させて配向膜16a(16b)を構成することにより、あたかもポリマーx2のみを含む材料からなる配向膜に紫外線を照射し、アルキル側鎖Rの割合が元の80%に達した状態が維持され、当該状態に相当する安定なプレチルト角が実現する。
次に、上記の如き特性を有する好適な配向膜を実現するためのポリマーx1,x2の具体的な選択基準について説明する。配向膜表面への紫外線照射時間(分)と表面自由エネルギー(γs:単位面積あたりのヘルムホルツ自由エネルギー)との関係を図3に示す。両者はある状態に達するまではほぼ比例関係にあり、紫外線照射量が少ないときは表面エネルギーも小さく、紫外線の照射に伴って表面自由エネルギーは大きくなり、最終的にはほぼ一定値となる。ここで、図4(a)に示すように、紫外線の照射時間の増加に伴って表面自由エネルギーが大きくなると、液晶注入時に注入口からいわゆる注入筋が発生する。更に照射時間が増加すると最早初期の垂直配向性を示さず、水平ランダム配向に移行する。即ち本発明者らは、紫外線照射時間(照射量)が増加するにつれて表面自由エネルギーは、領域(1):垂直配向を示す状態、領域(2):流動配向やスペーサ近傍の不良が発生せず、良好な画像表示が実現する状態、領域(3):流動配向により注入筋が発生する状態、領域(4):水平ランダム配向を示す状態に順次移行することを見出した。
更に、図4(b)に示すように、表面自由エネルギーを基準として配向膜を分類すれば、配向膜を構成するポリマーの性質により、少量(短時間)の紫外線照射により領域(4)に移行し、水平ランダム配向となるもの(配向膜A)、紫外線照射時間の経過により領域(3)に移行し、ほぼこの状態で止まるもの(配向膜B)、依然として領域(1)に止まり、初期の垂直配向を維持するもの(配向膜C)の3種類が存在する。従って、配向膜A〜Cを適宜組み合わせることにより、理想的な状態である領域(2)を実現できることが示唆される。
配向膜A,B及び配向膜A,Cの各組み合わせによる紫外線照射量とプレチルト角との関係を図4(c)に示す。配向膜A,Bを組み合わせた場合では、紫外線照射量の増加に伴いプレチルト角は緩やかに下がり続け、マージンの向上に寄与せず、良好な配向も実現されない。これに対して配向膜A,Cを組み合わせた場合では、紫外線照射量の変化によってもプレチルト角が殆ど変化しない領域が実現され、マージンの広い配向が実現される。
上述したように、ポリマーx1,x2としては、プレチルト角の発現に関して両極端の性質を示すもの、即ちポリマーx1が少量(短時間)の紫外線照射により水平ランダム配向となるのに対して、ポリマーx2は依然として初期の垂直配向を維持するものが好適である。従って、表面自由エネルギーを基準として、ポリマーx1を配向膜A(のポリマー)、ポリマーx2を配向膜Cとして選択することが好適である。
続いて、液晶表示装置の製造方法において、本実施形態の主要工程である配向処理工程について説明する。先ず、透明ガラス基板11については、表面に絶縁膜14を積層形成した後、カラーフィルター17及び画素電極15を順次形成する。他方、透明ガラス基板12については、表面にカラーフィルター17及び共通電極18を順次形成する。
次に、透明ガラス基板11,12の各々の表面に、上記の性質を有するポリマーx1,x2として、例えば日本合成ゴム株式会社製の垂直配向型のポリイミド又はポリアミック酸(化学式1参照)を用い、x1,x2を2:8の割合で混合又は共重合させて透明ガラス基板11,12の各表面に配向膜16a,16bを形成する。そして、図5に示す配向処理装置を用いて当該被膜に以下に示す配向処理を施す。
配向処理装置は、無偏光の紫外線を照射する光源31と、ミラー32と、配向膜16a(16b)が形成された透明ガラス基板11(12)を支持するホルダー33とを備えて構成されている。ホルダー33は紫外線の光軸に対して斜めに透明ガラス基板11(12)を支持する。即ち、光源31からの平行な紫外線が配向膜16a(16b)の表面に対してθ=45°の角度(又は45°以下の所定角度)で入射するようになされている。
光源31は、ショートアーク型のキセノン水銀ランプであり、放物面リフレクタ3104aを含んで無偏光の紫外線をほぼ平行に照射するものであり、当該紫外線波長のスペクトル分布は250nm近傍にピークを持つものである。このスペクトル分布において、300nm以上の波長成分はプレチルト角の発現に寄与しないことが判っており、有効にプレチルト角を発現させることを考慮して波長が280nm以下の紫外線を用いることが好適である。なお、照射する紫外線としては、偏光として有するP波及びS波について、P波がS波より多い状態或いはP波のみの状態のものを用いてもよい。
上記構成の配向処理装置を用い、配向膜16a(16b)の表面に斜め45°の角度から紫外線を照射する。このとき、ポリマーx1は紫外線照射量が数10(mJ/cm2)でプレチルト角が減少するものであり、ポリマーx2は紫外線照射量が数(J/cm2)でもプレチルト角に殆ど変化がないものであるため、紫外線照射量を1(J/cm2)とする。
なお、ポリマーx1,x2がそれぞれ前記各性質を確実に示すことを考慮し、紫外線照射量とプレチルト角の関係について、ポリマーx1については紫外線照射量が0.5(J/cm2)以下でプレチルト角の変化が2°以上となり、ポリマーx2については紫外線照射量が1(J/cm2)以下でプレチルト角の変化が0.5°以下となるものが好適である。
これらの条件で実際に紫外線照射を行なったところ、図6に示すように、約89°の安定なプレチルト角が実現でき、紫外線照射量が1±0.3(J/cm2)の範囲におけるプレチルト角の変動は0.1°以下であった。従って、紫外線の斜め照射に伴い照射量に変動が生じても、安定な所望のプレチルト角が得られることが判る。
続いて、一対の透明ガラス基板11,12間に液晶を注入して液晶層13を形成した後、注入口を封止する。しかる後、諸々の後工程を経て、液晶表示装置を完成させる。
以上説明したように、本実施形態によれば、簡素な構造で、ラビングを行なうことなく簡便な配向処理が可能であって、液晶層13の液晶分子の適正なプレチルト角を極めて安定且つ容易に得ることができる配向膜16a(16b)を備えた液晶表示装置を実現することができる。
(第2の実施形態)
本実施形態では、液晶表示装置の構成要素である配向膜に分割配向を施す際に用いる配向処理装置及び方法を例示する。先ず始めに、本実施形態の概略的骨子について説明する。図7は、本実施形態の配向処理装置の主要構成を示す模式図である。この配向処理装置は、紫外線の散乱光を照射する光源101と、光源101下に設けられ、スリット111が形成された光学マスク102とを備えて構成される。
光源101は、散乱性を有する紫外線ランプを用いる。例えば、チューブタイプの低圧水銀ランプがこれにあたる。形状は通常の長い蛍光灯と同様であるが、気体の成分あるいは重光管のガラスの材質が異なっており紫外線、特に波長250nm付近の散乱光が照射される。
光学マスク102を、配向膜103の塗布あるいは印刷された基板104から一定の距離、例えば50μm離して設置する。光学マスク102には、散乱した紫外線を透過させられるようにスリット111が形成されている。光源101として水銀ランプをこの光学マスク102の上で図7中矢印の方向にスキャンさせると、スリット111を中心として拡がる拡散光を生成し、当該拡散光が配向膜103に照射されて、スリット111直下を境界として拡散光の斜めの拡散方向に依存した2分割配向が形成される。このように、1回の紫外線照射により斜めの2分割配向を実現させる技術が本実施形態の第1の骨子である。
第1の骨子においては、光学マスク102のスリット111の直下部位を対称中心として対称に配向膜103の表面に対して斜め方向から紫外線の拡散光が照射される。これにより、前記対称中心を境界として配向膜103に自動的に2分割配向が生じることになる。この場合、拡散光は前記対称中心から離間するにつれて照射角度が変化し、これに応じた多数のプレチルト角を有する視覚特性に優れた液晶層が実現する。このような配向膜は、(1)液晶分子の倒れる方向が互いに逆方位であること、(2)倒れる中心部分での配向は垂直配向であること、(3)配向膜の表面エネルギーの大きさはスリットに近いほど大きい又は小さいこと、という性質を有するため、当該配向膜を備えた液晶表示装置は、液晶に所定の境界において複数の分割配向が施されており、配向膜の表面エネルギーは、前記配向分割の境界において最大値又は最小値となり、境界から離れるほど小さく又は大きくなるものとなる。
更に第1の骨子の構成によれば、光学マスク102に撓みが生じても、さしたる影響を受けることなく所期の分割配向が得られる。これは、例えば図8に示すように、光学マスク102が撓んだ場合においても元々の散乱光は光学マスク102に対して垂直な方向から入射されるので、光が照射される対称中心は変化しないからである。但し、回り込む光の範囲は変化するので、このマージンを見込んで光学マスク2と基板との間隙、スリット111の幅を設計する必要がある。
更に本実施形態では、第1の実施形態の液晶表示装置の主要構成である配向膜、即ち2種のポリマーからなり、紫外線の照射により垂直配向からプレチルト角が変化し始め、ある紫外線照射量を超えるとプレチルト角が90°近傍の一定値となるものを用いることが好適である。このような性質を有する配向膜を用いることにより、スリット111の直下では垂直配向を保ち、散乱光の照射角度及び照射量に応じて液晶層のプレチルト角が90°から前記一定値までの間で安定に分布する。
また、配向膜としては、紫外線の照射により垂直配向からプレチルト角が変化し始め、更に紫外線を照射することにより再び垂直配向に戻る特性を有するものを用いても好適である。この場合における配向膜の紫外線照射に伴うチルト角の変化を図9に示す。紫外線照射量を増加させるにしたがって、垂直配向から傾いた垂直配向に移行し、更に紫外線を照射すると再びプレチルト角は小さくなって垂直配向になる。
この場合、紫外線が多く照射されるスリット111の直下であっても配向は水平配向にはならず垂直配向となるので、配向乱れが生じない。このスリット111の直下には紫外線が多く照射され、通常の配向膜では水平配向となってしまい、配向方位が規定されないため電圧の印加されていないときの黒表示状態にあっても白く光る配向不良領域となる。これに対して、本実施形態のような配向膜を用いている場合には、配向は連続的となり配向不良が生じることなく、垂直配向となるのみで黒表示の状態においても確実に画面全体が黒くなる。即ちこのような性質を有する配向膜を用いることにより、照射強度の高いスリット直下における配向を垂直配向に制御することができ、スリット直下以外の部位では所定のプレチルト角の範囲内で連続的な配向を生ぜしめて配向不良が抑止される。このように、当該配向処理装置を用いて好適な分割配向が施されることに優れた配向膜を利用することが、本実施形態における第2の骨子である。
更に、本実施形態では、図10(a)に示すように、2分割配向を行なう場合の具体的な配向状態、及び土手状部材を併用するにあたっての液晶パネル構造を開示する。これが基本的な構成で、この考え方が4分割配向の場合にも援用されている。画素電極118の上下のゲート電極113から画素中央に向かって液晶層114の液晶分子が傾いて配向するように設定、又は(及び)画素電極118の左右のデータ電極115から画素中央に向かって液晶分子が傾いて配向するように設定される。更に、TFT基板104a側には光学マスク102のスリット111を画素中央に設定して紫外線を照射し、対向するCF側基板104bにおいては同様に紫外線を斜めに照射する。更に、TFT基板104a又は(及び)CF基板104b上に樹脂等からなる土手状部材116を設けて配向方向の規制を助けることが可能である。これらが本実施形態における第3の骨子である。
第3の骨子においては、例えば図10(a)に示すように、ゲート電極113からの漏れ電界による配向規制と同一の方向に液晶層112の配向規制を行う。これによりゲート電極115近傍から配向は連続的に変化してディスクリネーションが生じることがない。例えば、図10(a)における液晶の配向を逆にした場合には、図10(b)の中の破線の円で示した部位付近にディスクリネーションが生じてしまう。これに対して本実施形態では、光配向を用いているため、配向規制は表示電極面全体で生じており、応答は速く、且つディスクリネーションも発生しない。
ここで、土手状部材の作用について言及しておく。現在、土手状部材を設けて配向を制御する手法が実用化されており、このディスプレイにおいては土手状部材の側面の傾斜を利用して液晶の配向を規制するものである。本実施形態では、この土手状部材の作用を活用している。土手状部材のみを利用した調合には、隣接する土手状部材の間隙を狭くする必要がある。例えば30μm程度の間隙をとることが望ましい。しかしながらこの場合、土手状部材が表示画素内に多く存在してしまう。本実施形態においては、光配向が使われているので土手状部材の間隙を広げることができる。ところで、光配向を行なう場合には土手状部材が積極的に配向規制力を有する必要は必ずしもない。光配向で配向を行わせた場合には、図10(a)に示す中央の部分の位置が確実に決まらない可能性がある。例えば、光学マスクのスリットの幅が20μm程度あるような場合には、その中央に配向分割の中心を確実に持ってくることは難しいと考えられる。この配向分割の分割地点を土手の形成により確実にすることが、本実施形態における土手状部材の大きな役割である。
以上説明した第1〜第3の骨子の内容を踏まえ、本実施形態の具体的構成について説明する。光配向を行わせるための配向膜としては、垂直配向性あるいは水平配向性のポリイミド、ポリアミック酸、架橋型の樹脂フィルム(例えばポリビニールシンナメートなど)を用いた。材料についてはこれらに限定されるものでないことは言うまでもなく、また、垂直配向、水平配向に限定されるものでもない。本実施形態では、垂直配向性のポリイミドを用いた構成として述べる。配向は望ましくは初期状態では垂直配向である。液晶としては誘電率の異方性が負の液晶、特にフッ素系の液晶を用いた。また、土手状部材の材料としてはポジ型のフォトレジストを用いた。
図11は、本実施形態の配向処理に用いる光源(ランプ)の構成を示す模式図であり、(a)がランプの長手方向に沿った断面図、(b)がランプの短手方向に沿った断面図である。ランプ121としてはウシオ電機株式会社製の低圧水銀ランプを用いた。図11(b)に示すように、ランプ121であるチューブ状の紫外線発光管と被照射体である配向膜103の表面との間には直接光が当該被照射物に達しないように遮蔽板122が設けられ、背面には赤外線を反射しない所謂コールドミラー123を設けている。このランプ構成においては、図11(a)に示すように、ランプ121の長手方位には紫外線はランダムに照射されるのに対して、ランプ121の短手方位においてはほぼ光学マスク102に垂直に紫外線が照射される。
この場合、図11(a)に示すように、光学マスク2のスリット111とランプ121とが直交するように設定した。これによりスリット111からは、当該スリット111の短手方向に漏れる形で光が斜めに配向膜103に照射されることになる。そして、図12に示すように、スリット111に対してランプ121を垂直に保ったまま走査し、配向膜3全体に散乱光が均一に照射されるようにした。勿論この構成に限定される必要はなく、ランプ121の設置方向を90度異ならせることも可能であり、ランプ121の直下に設けている遮蔽板122を除去し、ランプ121から直接に散乱光を照射しつつ配向膜103の表面に向かう紫外線を積極的に用いることも可能である。しかしながら、本実施形態の遮蔽板122とコールドミラー123との組み合わせにより、本来液晶分子が傾いてほしい方向、即ちスリット111の伸びる方向と垂直な方向とは異なる方向へ光が照射される可能性が小さくなり、配向がより安定且つ確実に実現される。
スリット111から回り込む形の光においては、無偏光であっても偏光であっても良いが、垂直配向の配向膜を用いた場合に、無偏光を用いることが可能である。光の照射方法としては、光を回り込ませて照射するため、プロキシミティ露光となる。ここで、光学マスク102と配向膜103との距離としては、数μmから100μm程度が好ましい。この範囲を外れると、光の回り込みが十分でなくて、配向が得られず又は分割配向の境界を規定する事が難しくなるなどの弊害が発生するおそれがある。
また、光学マスク102のスリット111の幅としては、数μmから100μm程度が望ましい。この範囲を外れると、同様に光の回り込みが十分でなくなり、配向不良や分割配向の境界を規定する事が難しくなるなどの弊害が発生するおそれがある。
以下、本実施形態の分割配向をTFT−LCDに適用した諸例について説明する。
図13は、TFT−LCDに上下に2分割配向した一例を示す模式図であり、(a)が画素電極近傍の拡大平面図、(b)がCF基板側の配向処理時の断面図、(c)がTFT基板側の配向処理時の断面図である。紫外線の照射はスリット111から散乱した光を照射するが、図13(b)では、スリット111はゲート電極113と平行に且つゲート電極113近傍に沿って配置してCF基板104bに対して紫外線を照射している。図13(c)では、スリットは蓄積容量(Cs)電極117(ゲート電極113)と平行に且つCs電極117と一致した位置に配置されてTFT基板104aに対して紫外線が照射されている。これら図13(a),(b)ともに、TFT基板104aのゲート電極113からCF基板104bの画素電極118の上下中央へ向かう方向に液晶分子が傾くように散乱光の照射がなされている。
この光照射に加えて、土手状部材116を併設することが可能であって、CF基板104b側では画素電極118の中央付近にゲート電極113(CS電極117)に平行に設けることが有効である。また、光照射に加えて、土手状部材116を、TFT基板104a側のゲート電極113にほぼ一致する位置にゲート電極113(Cs電極117)に平行に設けることが有効である。
図14は、TFT−LCDに左右に2分割配向した一例を示す模式図であり、(a)が画素電極近傍の拡大平面図、(b)がCF基板側の配向処理時の断面図、(c)がTFT基板側の配向処理時の断面図である。CF基板104a側については、紫外線照射のスリット111をほぼデータ電極115の位置に一致してデータ電極115と平行に設置して紫外線を照射する。TFT基板104b側については、スリット111を画素電極118の左右中央部分にデータ電極115と平行に設定して散乱光を照射する。これにより、液晶分子が、TFT基板104b側のデータ電極115からCF基板104bの画素電極118の左右中央部分に向かって傾くように配向する。これは、データ電極115からの斜め漏れ電界による配向方向に一致する。ここで、この配向を安定させる、特に配向の境界部分のディスクリネーション発生の位置を固定することを勘案して、土手状部材116を形成することが有効である。
この場合、CF基板104a側については画素電極118の中央を上下に走る形で土手状部材116を形成することが有効であり、TFT基板104b側については、データ電極115にほぼ一致する位置にデータ電極115と平行に土手状部材116を形成することが有効である。
図15,図16は、TFT−LCDに上下左右に4分割配向した一例を示す模式図であり、(a)が画素電極近傍の拡大平面図、(b)がデータ電極に沿った配向処理時の断面図、(c)がゲート電極に沿った配向処理時の断面図である。
図15,図16の何れも液晶分子の傾きとして、CF基板104aを紙面手前に置いた場合に、TFT基板104bの画素電極118の四隅から画素電極118の中央に向かって液晶分子が倒れる方向へ配向方向を実現するものである。画素電極118上では上下左右に4分割配向されており、右上の領域では液晶分子は平均して北東から南西に向かって倒れるように配向し、以下同様に、液晶分子の傾きは右下では南東から北西へ左下では南西から北東へ左上では北西から南東へ向かって倒れるように配向する。
この斜め45度に液晶分子を傾けさせるにあたっては、CF基板104a側の配向とTFT基板104b側の配向とを90度方向の真なる方向とし、これら2つの方位の中間方位に向けて液晶分子が倒れるようにする。この配向方向の原理については例えば、Digest of AM−LCD98に開示されている。ここで、液晶分子を北東から南西へ向けて傾斜させる場合、(1)TFT基板104b側を南向きに倒れるように配向処理し、CF基板104a側を西向きに倒れるように処理する手法と、(2)TFT基板104b側を西向きに倒れるように配向処理し、CF基板104a側を南向きに倒れるように配向処理する手法との、2つの手法が考えられる。
図15は(1)に示した手法による配向処理を示している。TFT基板104b側では、紫外線照射の光学マスクのスリットをCS電極117の近傍にCs電極117と平行に設けて散乱光を照射する(図15(b))。CF基板104a側では、紫外線照射の光学マスクのスリットをデータ電極115の近傍にデータ電極115と平行に設けて散乱光を照射する(図15(c))。更に、土手状部材116をTFT基板104b,CF基板104aの双方に設けることが有効である。TFT基板104b側においては、データ電極115及びゲート電極113の近傍にデータ電極115及びゲート電極113のそれぞれに平行となるように土手状部材16を形成する。これにより液晶の4分割配向を助ける働きがある。また、CF基板104a側においては、画素電極118の中央から上下左右に伸びる形で土手状部材116を形成する。先述したように、この土手状部材の働きとしては、配向分割の境界を確定するのを助長する作用を行っている。
図16は(2)に示した手法による配向処理を示している。CF基板104a側では、紫外線照射の光学マスクのスリットをゲート電極113の近傍にゲート電極113と平行に設けて散乱光を照射する(図16(b))。TFT基板104b側では、紫外線照射の光学マスクのスリットを画素電極18の左右中央近傍にデータ電極115と平行に設けて散乱光を照射する(図16(c))。更に、土手状部材116をTFT基板104b,CF基板104a双方に設けることが有効である。TFT基板104b側においては、データ電極115及びゲート電極113の近傍にデータ電極115及びゲート電極113のそれぞれに平行に土手状部材116を形成した。これにより液晶の4分割配向を助ける働きがある。また、CF基板104a側においては、画素電極118の中央から上下左右に伸びる形となるように土手状部材116を形成した。
ここで、配向分割された液晶表示装置の画素内の配向膜の表面エネルギーとして、分割境界の表面エネルギーが最大となり、境界から離れた部位で最低となる。これは紫外線の照射される量自体が画素内で異なるためである。スリットの直下が分割の境界となるが、この部分に最も紫外線が照射されるため表面エネルギーは最大となり、境界から離れた部分には漏れ光が照射されるのみなので紫外線の照射される絶対量は小さく表面エネルギーは大きくならない。
図17は、TFT−LCDに上下2分割配向した場合において、データ電極からの横電界による配向の乱れをCF基板側に設けた土手状部材により抑える構成の模式図であり、(a)が画素電極近傍の拡大平面図、(b)がデータ電極に沿った(線分C−Dに沿った)配向処理時の断面図、(c)がゲート電極に沿った(線分A−Bに沿った)配向処理時の断面図である。
図17(a)に示すように、CF基板104a側において、画素電極18の中央左右方向及びデータ電極15に対向する部分に、データ電極15に平行に土手状部材116を形成する。このデータ電極115と平行に設けている土手状部材116の効果を図17(c)に基づいて説明する。データ電極115からの電界によってデータ電極115近傍の液晶分子は画素中央に向けて倒れるように配向しようとする。これに対して、対向するCF基板104a上に設けられた土手状部材116は、その斜面の効果により液晶分子を画素電極118から離れる方向に傾斜させる働きをする。これらの効果が相殺し合って、液晶分子は画素中央に向かって倒れることなく均一に上下方向に向くようになる。
更にこの場合、図18に示すように、データ電極115と向かい合う土手状部材116の端部を、TFT基板104bの画素電極118の端部と一部重畳して対向するように形成する。この重畳部分116aの幅と画素電極118の端部における配向不良の幅との関係を図19に示す。このように、重畳部分116aの幅を1μm以上、好ましくは2μm以上とすることにより、配向不良の発生を抑止することが可能となる。そこで、実際に重畳部分116aを形成するに際して、合わせずれを3μm程度確保して、重畳部分116aの幅を確実に1μm以上得ることを考慮し、画素電極等の機能を損なわない程度で重畳部分116aの上限を5μmとすれば、1μm(必要な幅の下限)+3μm(合わせずれ)〜5μm(必要な幅の上限)+3μm(合わせずれ)=4μm以上8μm以下、5μm以上8μm以下に設計する。これにより、配向不良の発生を十分防止することができる。
ここまで、CF基板104a上又はTFT基板104b上に土手状部材16を形成する構成を述べてきたが、これらの土手状部材116の替わりに、画素電極118において電極部分のないスリット状の抜けとして形成しても、同様の効果を得ることができる。具体例を図20に示す。ここで、(a)が図13(a)に対応し、画素電極118のCs電極117(ゲート電極113)と平行に且つCs電極117と一致した位置にスリット状の抜け131が形成された場合、(b)が図14(a)に対応し、データ電極115と平行に且つ画素電極118の中央部位に相当する位置の画素電極118にスリット状の抜け131が形成された場合、(c)が図15(a)に対応し、画素電極118に十字状にスリット状の抜け131が形成された場合をそれぞれ示す。
図21は、配向状態が良好となった光学マスクのスリットの幅及び光学マスクと基板との距離(距離A)の最適値についての検討結果を示す特性図である。スリットの幅が3μmから100μm、マスクと基板との距離が3μmから100μmのときに良好な配向を実現することができる。更に、光学マスクと基板との距離は50μm〜100μm程度が好ましく、スリットの幅と距離Aとがほぼ等しいか、スリットの幅は距離Aと同程度から1/20程度の範囲に設定した時に特に良好な配向を実現することができる。
以上説明したように、本実施形態によれば、紫外線を用いた配向処理を最小限の工程数で正確に行ない、2分割あるいは4分割配向のディスクリネーションラインの少ない垂直配向型の液晶表示装置が実現され、その結果、TN型モードを用いた場合と遜色のない明るい画面を実現することができる。更に、応答速度としても土手状部材を多く設けた所謂MVA型の液晶表示装置と同様又はそれ以上の高速応答性を実現することが可能となる。
(第3の実施形態)
本実施形態では、液晶表示装置の構成要素である配向膜に分割配向を施す際に用いる配向処理装置及び方法を例示する。本実施形態においても、第2の実施形態と同様の配向膜、即ち、2種のポリマーからなり、紫外線の照射により垂直配向からプレチルト角が変化し始め、ある紫外線照射量を超えるとプレチルト角が90°近傍の一定値となるものや、紫外線の照射により垂直配向からプレチルト角が変化し始め、更に紫外線を照射することにより再び垂直配向に戻る特性を有するものを用いて好適である。
図22は、本実施形態の配向処理装置の主要構成を示す概略断面図である。外線の短波長領域(例えば254nm)を透過させる性質をもつ石英ガラスを、光学マスク201の材料とする。光学マスク201の一方の面には、金属クロムによるマスクパターンが形成されている、マスタパターンは、金属クロムにストライプ状のスリット211が設けられてなる。ストライプ状のスリット211は、配向分割を行う画素のピッチと同じピッチで並べるものとする。一例を挙げると、画素ピッチが200μmであった場合、スリット211の幅が10μm、スリット211から隣のスリット211までの金属クロムパターンの幅が190μmとなる。
光学マスク201の光源側の面には、平行光を散乱光とする散乱機構221が形成されている。具体的には、前記光源側の面にサンドブラスト加工を施すことにより、すりガラス状にする。
次に、ガラス基板202上の配向膜203に紫外線を照射する。TFT基板204b側に紫外線を照射する場合の光学マスク201の配置は、ストライプ状のスリット211の位置が、データ電極と平行に画素の左右の中心位置とほぼ一致するように配置する。
一方、逆に対向基板(CF基板)204a側に紫外線を照射する場合の光学マスク201の配置は、ストライプ状のスリット211の位置が、対向基板204aにおいてTFT基板204bのデータ電極の位置に、データ電極と平行な方向に配置する。
以上のように光学マスク201を配置した後に、光学マスク201の光源側の面に対して垂直に、平行光の紫外線を照射する。照射された紫外線は、すりガラス状の部分で散乱を起こし、図示のようにスリット211の部分から中央部を境として2方向に分散されて照射される。
TFT基板204bと対向基板204aを貼り合わせた場合、お互いのスリット部分の位置は、スリットの並んだピッチの中心部に来ることになる。これにより、TFT基板204b側のスリットと対向基板204a側のスリットとの間、即ち幅90μmの間に、スリットに対して垂直の方向に傾斜配向する領域ができる。画素中心部のスリットの位置を境にし、お互いに反対方向に傾斜配向することにより、一画素内に2方向の配向分割を実現することができる。
図23は、本実施形態の他の例を示す概略断面図である。ここでは、散乱機能221を実現する手法として、上述のサンドブラスト加工を行う部分を、光学マスク201のマスタパターンがある側のスリット211が開口している部分にのみ行うことにより、すりガラス状にする。
光学マスク201の配置は上述と同様とし、光学マスク201の光源側の面に対して垂直に、平行光の紫外線を照射する。照射された紫外線は、すりガラス状の部分で散乱を起こし、図示のようにスリット211の部分から散乱光が出射される際に中央部を境として2方向に分散し、配向膜203上に照射される。
TFT基板204bと対向基板204aを貼り合わせた場合、お互いのスリット部分の位置は、スリットの並んだピッチの中心部にあたることになる。これにより、TFT基板204b側のスリットと対向基板204a側のスリットとの間、即ち幅90μmの間に、スリットに対して垂直の方向に傾斜配向する領域ができる。画素の中心部のスリットの位置を境にし、互いに反対方向に傾斜配向することにより、1画素内に2方向の配向分割を実現することが可能となる。
図24は、本実施形態の更に他の例を示す概略断面図である。上述の光学マスク201のスリット211の開口部分に、スリットの開口幅を底辺とする二等辺三角形の断面形状を持つプリズム212を設ける。光学マスク201の配置は上述と同様とし、光学マスク201の光源側の面に対して垂直に、平行光の紫外線を照射する。照射された紫外線は、プリズム212の部分で反射・屈折を起こし、図示のようにプリズム212の部分から散乱光が出射される際に、2方向の平行光として分割され、配向膜203上に照射される。
TFT基板204bと対向基板204aを貼り合わせた場合、お互いのスリット部分の位置は、スリットの並んだピッチの中心部にあたることになる。これにより、TFT基板204b側のスリットと対向基板204a側のスリットとの間、即ち幅90μmの問に、スリットに対して垂直の方向に傾斜配向する領域ができる。画素中心部のスリットの位置を境にし、お互いに反対方向に傾斜配向することにより、1画素内に2方向の配向分割を実現することが可能となる。
なお、本実施形態において、光学マスク201の光源側の面に対して照射させる紫外線を散乱光とした場合でも、平行光を照射した場合と同様に、配向膜203に対して照射される紫外線は2方向に分散され、所望の配向分割を実現することができる。この方法により、スリット直下にあたる配向膜203上に照射される紫外線が分散され、この部分における紫外線露光量が過剰になってしまうことがなくなり、且つ、一方の基板に対して1回の露光を行うことによって、配向分割を実現することができる。
以上説明したように、本実施形態によれば、光学マスク201に対する紫外線が平行光である場合でも、光学マスク201におけるすりガラス状の部分、あるいはプリズム212の部分にて紫外線が分散、または反射・屈折することにより、散乱光の紫外線を光学マスク201に対して照射した場合と同様の効果を得ることができる。これは、光源として平行光を出射する紫外線露光装置を利用できることを表している。
また、スリット211の開口部にあたる配向膜203の部分における紫外線を分散させることができるため、この部分の過剰な露光を防ぐことができ、この部分のチルト低下による白抜けや、流動配向を防ぐことが可能となる。
(第4の実施形態)
本実施形態では、液晶表示装置の構成要素である配向膜に分割配向を施す際に用いる配向処理装置及び方法を例示する。本実施形態においても、第2の実施形態と同様の配向膜、即ち、2種のポリマーからなり、紫外線の照射により垂直配向からプレチルト角が変化し始め、ある紫外線照射量を超えるとプレチルト角が90°近傍の一定値となるものや、紫外線の照射により垂直配向からプレチルト角が変化し始め、更に紫外線を照射することにより再び垂直配向に戻る特性を有するものを用いて好適である。
図25は、本実施形態の原理を説明する模式図であり、(a)が本実施形態の配向処理装置の主要構成を示す概略断面図、(b)が当該配向処理を施された液晶表示装置の主要構成を示す概略断面図である。紫外線の短波長領域(例えば254nm)を透過させる性質をもつ石英ガラスを、光学マスク301の材料とする。光学マスク301の一方の面には、図26に示すように、金属クロムによるマスクパターンが形成されている。マスクパターンは、金属クロムにストライプ状の配向規制スリット211が設けられている。この配向規制スリット211は、第3の実施形態で説明したスリット211と同様のものであり、液晶分子を所望の方向に配向させるためのものであり、配向分割を行う画素のピッチと同じピッチで並べるものとする。一例を挙げると、画素ピッチが200μmであった場合、スリット211の幅が10μm、スリットから隣のスリット211までの金属クロムパターンの幅が190μmとなる。
更に、同一の光学マスク311上に、配向補正スリット311を設ける。このスリットは、液晶分子を所望の方向に配向させるスリットよりも細くなければならず、かつお互いに垂直の方向に配置されていなければならない。画素ピッチがおよそ3分の1の70μm、スリット311の幅は約1μmとする。
次に、ガラス基板304上の配向膜303に紫外線を照射する。TFT基板304b側に紫外線を照射する場合の光学マスク301の配置は、図27に示すように、配向規制スリット211の位置が、データ電極315と垂直に画素の左右の中心位置とほぼ一致するように配置する。また、配向補正スリット311の位置は、データ電極315と平行に、互いに隣接する画素電極318の間の中心、即ち、データ電極315の中心部にあたるように配置する。
一方、逆に対向基板304a側に紫外線を照射する場合の光学マスク301は、配向規制スリット211のみが必要となる。このスリット211の位置が、対向基板304aにおいてTFT基板304bのゲート電極313の位置に、データ電極315と垂直な方向に配置する。
以上のように光学マスク301を配置した後に、光学マスク301の光源側の面に対して垂直に、散乱光の紫外線を照射する。照射された紫外線は、図25のようにスリットの部分から2方向に分散されて照射される。
即ち、スリット311により紫外線が照射された部分の近傍では、図25のように散乱光がスリット311を中心として扇状に広がって照射されるため、配向膜303に対し、液晶分子がスリット311のある方向に傾斜する配向規制力が与えられる。これによって、液晶分子が、画素電極318の端部の電界により配向しようとする力と、配向膜303の配向規制力の方向が互いに反対となり、それぞれの液晶を配向させようとする力を相殺させることにより、所望の液晶分子の傾斜配向方向に対して垂直方向の液晶分子の傾斜を引き起こすことを防ぐことができる。
実際、本実施形態の手法により2分割の配向規制に加え、前記配向補正を施してなる画像表示装置(装置A)における輝度変化について、2分割の配向規制のみを行なった画像表示装置(装置B)との比較に基づいて検討した。その結果、装置Bでは、図28(a)のように画素電極318の端部の電界により液晶分子に傾斜が生じ、これにより図28(b)のように、ブラックマトリクス321の端部で輝度の低下が発生する。これに対して、装置Aでは、図29(a)のように画素電極318の端部における液晶分子の傾斜が解消されるため、図29(b)のように、ブラックマトリクス321の端部で輝度の低下が発生することなく、極めて良好な画像が得られる。
TFT基板304bと対向基板304aを貼り合わせた場合、お互いのスリット部分の位置は、スリットの並んだピッチの中心部に来ることになる。これにより、TFT基板304b側のスリットと対向基板側のスリット304aとの間、即ち幅90μmの間に、スリットに対して垂直の方向に傾斜配向する領域ができる。画素電極318の中心部のスリットの位置を境にし、お互いに反対方向に傾斜配向することにより、1画素内に2方向の配向分割を実現することが可能となる。
図30は、本実施形態の他の例における光学マスクを示す概略平面図である。光学マスクのスリットの形成までは上述と同様であるが、液晶分子を所望の方向に配向させるスリット211の、配向膜303と対峙する側の面に、入射された紫外線の散乱機構を設ける。散乱機構を具体的に挙げると、スリット211の開口部のみにサンドブラスト加工を施して、すりガラス状の部分211aを形成したり、レーザーパルスを照射することにより、断面が窪み状の溝を設ける等が考えられる。
照射された紫外線は、すりガラス状の部分211aで散乱を起こし、配向補正スリット211における照射の幅がこれにより狭くなり、液晶分子の本来の配向方向に対して悪影響を与えない。
図31は、本実施形態の更に他の例における光学マスクを示す概略平面図である。ここでは、光学マスク301のうち、配向補正スリット311の部分のみを高さが所定高さ、例えば50μm程度高くなるように形成する。これにより、光学マスク301と配向膜304とが互いに対峙する間隔が、配向補正スリット311の部分のみ50μm程度狭くなることになり、この部分のみ入射した紫外線が散乱する幅を狭くすることができる、これにより、液晶分子の本来の配向方向に対して悪影響を与えない。
図32は、本実施形態の更に他の例で用いる光源の一例を示す模式図((a)が短手方向、(b)が長手方向)であり、図33は、光源の散乱性と光学マスクのスリットとの関係を示す概略平面図である。ここでは、光源302の向きを変える方法を採る。例えば、紫外線を照射するチューブ状の光源302は図示のようになっており、光源302の短辺方向よりも、長辺方向の方が散乱性が高い性質がある。本実施形態ではこの性質を利用する。具体的には次のような方法である。
紫外線の光源302の長辺方向を、光学マスク301の配向補正スリット311の方向に対して平行に位置するように配置を行う。これにより、配向補正スリット311を通った紫外光は散乱の幅が狭くなり、逆に光源302の長辺方向と垂直の位置関係となる。液晶分子を所望の方向に配向させるスリット211を通った紫外光は散乱の幅が広くなる。これにより、液晶分子の本来の配向方向に対して悪影響を与えない。
以上説明したように、本実施形態によれば、画素電極318の端部における配向規制力と電界により配向しようとする力の方向が互いに相殺されるため、所望の液晶分子の傾斜配向方向に対して垂直方向の液晶分子の傾斜を引き起こすことを防ぐことができる、これにより、ディスクリネーションの発生を防止し、画素端部における輝度低下を抑止することが可能となる。
一方、土手状部材を新たに形成する必要がなくなるため、また、光学マスク301に配向補正スリット211と共に配向規制スリット311を形成することにより、配向規制を与えるプロセスを簡略化させることが可能である。
(第5の実施形態)本実施形態では、画素電極に特徴のある液晶表示装置を例示する。本実施形態においても、第2の実施形態と同様の配向膜、即ち、2種のポリマーからなり、紫外線の照射により垂直配向からプレチルト角が変化し始め、ある紫外線照射量を超えるとプレチルト角が90°近傍の一定値となるものや、紫外線の照射により垂直配向からプレチルト角が変化し始め、更に紫外線を照射することにより再び垂直配向に戻る特性を有するものを用いて好適である。
図34は、本実施形態の液晶表示装置の画素電極近傍を示す概略平面図である。データ電極415からの横電界に起因する配向不良を防止するため、画素電極418のデータ電極415近傍にスリット411を設ける。スリット411は、データ電極415と平行な方向(ゲート電極413と直交する方向)に伸びている。このスリット411の幅としては、2μmから5μmの範囲にすることが有効である。特に、3μmの幅のスリットとした時にもっとも配向不良を抑制する効果の大きいことが確認できた。
このように、画素電極418に細いスリット411を設けることにより、液晶分子は、このスリット411に平行な方向に倒れようとする特性を有する。本実施形態では、この作用を光配向に併用するものである、本来、液晶は画素電極に隙間部分が存在すると、その電界が斜めになるため、間隙から離れる方位に傾く(図35(a)参照)。しかしながら、細いスリット、例えば幅3μmのスリット411を設けた場合には、スリット411の両側で液晶分子が傾こうとし、行き場がなくなって結局スリット方向に傾くように配向するものである(図35(b)参照)。ここで、図34のようにスリット411が設けられていると、このスリット部分によって液晶分子の傾きは行き場を失って(図35(b)と同様に)結局スリット411と平行な方位に傾くことになり、データ電極に起因する配向不良が抑止される。
図36は本実施形態の他の例を示す模式図であり、(a)が画素電極近傍の平面図、(b)が断面図である。ここでは、複数のスリット411を画素電極418の全域に設ける。これにより、配向の安定性はより確実なものになる。また、これらスリット411を画素電極418の中央の接続部分421で繋げることが重要である。即ち、接続部分421とスリット411との関係を考察すると、接続部分421における電界は、図34(b)のようになり、電界は接続部分421から扇型に広がる。この効果により液晶分子はより好ましい方向に傾くようになる。
以上説明したように、本実施形態によれば、配向不良の無い、視野角の広い液晶表示装置を実現することができる。
以下、本発明の諸態様を付記としてまとめて記載する。
(付記1)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置であって、前記配向膜は、前記液晶層の液晶分子に対する所定の初期配向性を有し、紫外線照射に応じたプレチルト角の変化率の異なる少なくとも2種類のポリマーを含む材料からなることを特徴とする液晶表示装置。
(付記2)前記配向膜は、前記各ポリマーの混合物を含む材料からなるものであることを特徴とする付記1に記載の液晶表示装置。
(付記3)前記配向膜は、前記各ポリマーの共重合体を含む材料からなるものであることを特徴とする付記1に記載の液晶表示装置。
(付記4)前記2種類のポリマーは、一方が液晶分子の配向を初期状態から変化させるものであり、他方が液晶分子の配向を初期状態に維持するものであることを特徴とする付記1に記載の液晶表示装置。
(付記5)前記初期状態が垂直配向であり、前記一方のポリマーによる配向が水平配向であることを特徴とする付記4に記載の液晶表示装置。
(付記6)一対の基板にそれぞれ配向膜を形成し、前記各配向膜を対向させるように前記配向膜間に液晶層を挿入し、前記各基板間隔を一定に保持して液晶表示装置を製造する方法であって、前記配向膜を、前記液晶層の液晶分子に対する初期配向性を有し、紫外線照射に応じたプレチルト角の変化の異なる少なくとも2種類のポリマーを含む材料から構成して前記一対の基板に塗布し、前記配向膜の表面に対して斜め方向から紫外線を照射し、前記液晶層の液晶分子に対して所望の配向を実現することを特徴とする液晶表示装置の製造方法。
(付記7)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置であって、前記配向膜は、前記液晶層の液晶分子に対する所定の初期配向性を有し、紫外線照射に応じた表面エネルギーの変化率の異なる少なくとも2種類のポリマーを含む材料からなり、前記配向膜に対する紫外線照射により所定の表面エネルギーに調節されていることを特徴とする液晶表示装置。
(付記8) 前記配向膜は前記各ポリマーの混合物を含む材料又は前記各ポリマーの共重合体を含む材料からなるものであることを特徴とする付記7に記載の液晶表示装置。
(付記9)前記配向膜の初期配向状態を垂直配向のものとすることを特徴とする付記8に記載の液晶表示装置の製造方法。
(付記10)前記少なくとも2種類のポリマーのうち、少なくとも1種を紫外線の照射によって配向が初期状態から変化し易く、少なくとも他の1種を紫外線の照射によって配向が初期状態から変化し難いものとすることを特徴とする付記8に記載の液晶表示装置の製造方法。
(付記11)配向膜に紫外線を照射し、前記配向膜上に設けられる液晶を配向させる配向処理装置であって、紫外線の散乱光を照射する光源と、前記光源下に設けられ、スリットが形成された光学マスクとを備え、前記光学マスクを前記配向膜の上方に配置し、前記光源から前記光学マスクに散乱光を照射することにより、前記スリットを中心として拡がる拡散光を生成し、当該拡散光を前記配向膜に照射して、前記液晶に拡散光の拡散方向に依存した分割配向を生ぜしめることを特徴とする配向処理装置。
(付記12)前記光学マスクは、前記スリットがストライプ状に形成されてなるものであることを特徴とする付記11に記載の配向処理装置。
(付記13)前記光学マスクは、前記スリットが前記配向膜の下部に形成されたデータ電極の近傍でこれと略平行する部位に位置するように配置されることを特徴とする付記11に記載の配向処理装置。
(付記14)前記光学マスクは、前記スリットが前記配向膜の下部に形成されたデータ電極と略平行に画素の左右の中心位置と略一致する部位に位置するように配置されることを特徴とする付記11に記載の配向処理装置。
(付記15)前記光学マスクは、前記スリットが前記配向膜の下部に形成されたゲート電極の近傍でこれと略平行する部位に位置するように配置されることを特徴とする付記11に記載の配向処理装置。
(付記16)前記光学マスクは、前記スリットが前記配向膜の下部に形成されたゲート電極と略平行に画素の上下の中心位置と略一致する部位に位置するように配置されることを特徴とする付記11に記載の配向処理装置。
(付記17)前記光源はチューブ形状のランプであることを特徴とする付記11に記載の配向処理装置。
(付記18)前記光学マスクと前記光源は、前記光学マスクの前記スリットの長手方向と前記光源の長手方向とが平行又は直交するように配置されることを特徴とする付記17に記載の配向処理装置。
(付記19)前記光源の背後を覆うように、赤外線を吸収するコールドミラーが設けられており、前記コールドミラーからの反射光は、前記光源の長手方向に沿った面内では散乱光として、前記光源の長手方向に直交した面内では平行光として、前記配向膜に照射されることを特徴とする付記17に記載の配向処理装置。
(付記20)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置であって、前記液晶に所定の境界において複数の分割配向が施されており、前記配向膜の表面エネルギーは、前記配向分割の境界において最大値又は最小値となり、境界から離れるほど小さく又は大きくなることを特徴とする液晶表示装置。
(付記21)前記配向膜は、前記液晶の液晶分子に対する所定の初期配向性を有し、紫外線照射に応じたプレチルト角の変化率の異なる少なくとも2種類のポリマーを含む材料からなるものであることを特徴とする付記20に記載の液晶表示装置。
(付記22)前記配向膜は、紫外線の照射により垂直配向からプレチルト角が変化し始め、ある紫外線照射量を超えるとプレチルト角が90°近傍の一定値となるものであることを特徴とする付記21に記載の液晶表示装置。
(付記23)前記配向膜は、紫外線の照射により垂直配向からプレチルト角が変化し始め、更に紫外線を照射することにより再び垂直配向に戻る特性を有するものであることを特徴とする付記20に記載の液晶表示装置。
(付記24)配向膜に紫外線を照射し、前記配向膜上に設けられる液晶を配向させる配向処理方法であって、スリットが形成された光学マスクを前記配向膜の上方に配置し、紫外線の散乱光を照射する光源から前記光学マスクに散乱光を照射することにより、前記スリットを中心として拡がる拡散光を生成し、当該拡散光を前記配向膜に照射して、前記液晶に拡散光の拡散方向に依存した分割配向を生ぜしめることを特徴とする配向処理方法。
(付記25)前記配向膜は、画素の複数の領域において互いに異なる配向となるように分割配向され、一対の基板にそれぞれ設けられて液晶表示装置の構成要素をなすものであって、初期配向は垂直配向又は水平配向であり、一方の前記基板における前記分割配向の分割数は2であり、前記画素において互いに逆方向に液晶分子が傾斜するように配向規制がなされることを特徴とする付記24に記載の配向処理方法。
(付記26)前記配向分割の前記各基板における方向は、ゲート電極及び/又はデータ電極との関係において、前記ゲート電極及び/又は前記データ電極から対向する前記基板の前記画素中央を結ぶ線分の方向であることを特徴とする付記24に記載の配向処理方法。
(付記27)配向膜に紫外線を照射し、前記配向膜上に設けられる液晶を配向させる配向処理装置であって、紫外線を照射する光源と、前記光源下に設けられ、スリットが形成されるとともに紫外線の散乱機構を有する光学マスクとを備え、前記光学マスクを前記配向膜の上方に配置し、前記光源から前記光学マスクに紫外線を照射することにより、前記スリットを中心として拡がる拡散光を生成し、当該拡散光を前記配向膜に照射して、前記液晶に拡散光の拡散方向に依存した分割配向を生ぜしめることを特徴とする配向処理装置。
(付記28)前記散乱機構は、前記光学マスクの前記光源側の面に形成された散乱手段であることを特徴とする付記27に記載の配向処理装置。
(付記29)前記散乱機構は、前記光学マスクの前記スリットの開口部分に形成された散乱手段であることを特徴とする付記27に記載の配向処理装置。
(付記30)前記光学マスクは、前記スリットがストライプ状に形成されてなるものであることを特徴とする付記27に記載の配向処理装置。
(付記31)前記光学マスクは、前記配向膜の上部に配置された際に、前記スリットが前記配向膜の下部に形成されたデータ電極と略平行に画素の左右の中心位置と略一致する部位に位置するように形成されていることを特徴とする付記27に記載の配向処理装置。
(付記32)前記光学マスクは、前記配向膜の上部に配置された際に、前記スリットが前記配向膜の下部に形成されたゲート電極と略平行に画素の上下の中心位置と略一致する部位に位置するように形成されていることを特徴とする付記27に記載の配向処理装置。
(付記33)配向膜に紫外線を照射し、前記配向膜上に設けられる液晶を配向させる配向処理方法であって、スリットが形成されるとともに紫外線の散乱機構を有する光学マスクを前記配向膜の上方に配置し、光源から前記光学マスクに紫外線を照射することにより、前記スリットを中心として拡がる拡散光を生成し、当該拡散光を前記配向膜に照射して、前記液晶に拡散光の拡散方向に依存した分割配向を生ぜしめることを特徴とする配向処理方法。
(付記34)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置であって、一方の前記基板に画素電極が形成されており、前記画素電極の端部に相当する部位の液晶分子に、当該端部で発生する電界による配向を打ち消す方向へ向かう配向規制力が与えられていることを特徴とする液晶表示装置。
(付記35)前記液晶層は、前記配向膜の配向規制により前記画素電極上で所定の分割配向が施されていることを特徴とする請求項34に記載の液晶表示装置。
(付記36)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置を製造するに際して、一方の前記基板に形成された画素電極の端部に相当する部位の液晶分子に、当該端部で発生する電界による配向を打ち消す方向へ向かう配向規制力を与えることを特徴とする液晶表示装置の製造方法。
(付記37)スリットが形成された光学マスクを、前記スリットがゲート電極上又はデータ電極上でこれと平行となるように、前記配向膜の上部に配置し、前記光学マスクに上部から紫外線を照射することにより、前記スリットを中心として拡がる拡散光を生成し、当該拡散光を前記配向膜に照射して、前記画素電極の前記端部で発生する電界による配向を打ち消す方向へ向かう配向規制力を与えることを特徴とする付記36に記載の液晶表示装置の製造方法。
(付記38)それぞれ配向膜を対向させて所定間隔に保たれた一対の基板を備え、前記配向膜間に液晶層が挿入されてなる液晶表示装置であって、一方の前記基板に、画素電極と当該画素電極間に形成されたバスラインとを有し、前記画素電極の前記バスライン近傍に当該バスラインに略平行なスリットが形成されていることを特徴とする液晶表示装置。
(付記39)前記画素電極の前記スリットにより、前記画素電極の端部に相当する部位の液晶分子に、当該端部で発生する電界による配向を打ち消す方向へ向かう配向規制力が与えられることを特徴とする付記38に記載の液晶表示装置。
(付記40)前記画素電極には、前記スリットが少なくとも2本形成されていることを特徴とする付記38に記載の液晶表示装置。
(付記41)複数の前記スリットが前記画素電極の全面に形成されていることを特徴とする付記38に記載の液晶表示装置。
(付記42)前記各スリットが前記画素電極の中央部位で途切れ、電極として繋がった領域が形成されていることを特徴とする付記41に記載の液晶表示装置。