JP5302263B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5302263B2
JP5302263B2 JP2010124534A JP2010124534A JP5302263B2 JP 5302263 B2 JP5302263 B2 JP 5302263B2 JP 2010124534 A JP2010124534 A JP 2010124534A JP 2010124534 A JP2010124534 A JP 2010124534A JP 5302263 B2 JP5302263 B2 JP 5302263B2
Authority
JP
Japan
Prior art keywords
layer
fuel cell
active surface
cell according
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010124534A
Other languages
English (en)
Other versions
JP2010251329A (ja
Inventor
シュワルツ,ステファン
Original Assignee
パワーセル スウェーデン アーベー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パワーセル スウェーデン アーベー filed Critical パワーセル スウェーデン アーベー
Publication of JP2010251329A publication Critical patent/JP2010251329A/ja
Application granted granted Critical
Publication of JP5302263B2 publication Critical patent/JP5302263B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、後述する特許請求項1の前文に記載される燃料電池に関する。
燃料電池は、燃料と酸化剤を、電気エネルギー(電流)に電気化学的に変換する。これは燃焼を伴わずに起き、燃料と酸化剤が供給される限り電気エネルギーが生成される。反応生成物は純水である。燃料電池は、クリーン、静粛、および高効率であり、かつ可動部分がないため、例えば、通常の内燃エンジンに対する代替手段として関心をもたれている。燃料電池の好適な適用例としては、自動車の推進力、固定設置での発電、およびAPU(補助動力装置)等の移動用発電装置がある。
燃料電池は、2つの電極すなわち負極と正極から構成され、イオン伝導性電解質がその間に配置される。燃料電池を構成するイオン伝導性電解質の種類を基に、燃料電池を分類できる。燃料電池の種類には、PEFC(ポリマー電解質燃料電池、またはプロトン交換燃料電池)、AFC(アルカリ燃料電池)、PAFC(燐酸燃料電池)、およびSOFC(固体酸化物燃料電池)等がある。PEFCの分類は、例えばSPFC(固体ポリマー燃料電池)やPEM燃料電池(プロトン交換膜)とも呼ばれる。
PEFCにおいては、例えば、電極と電解質は通常MEA(膜電極組立)と呼ばれる状態に組立てられる。燃料電池は、MEAが層の1つを構成するあるいは1つの層にMEAを含んで構成する、層構造に組立てられることが多い。その他の層は、特に燃料、酸化剤、反応生成物、および必要に応じて冷却材が流れるように設計される。
電解質としてプロトン導電膜を有する燃料電池(PEM燃料電池)においては、水素ガス等の燃料および空気/酸素などの酸化剤中の化学エネルギーは電気エネルギーに直接変換される。負極の活性表面でのセルスペースでは、燃料が供給されて水素イオン(プロトン)と電子に分解される。電子は負極を経由して外部の電気回路に導かれ、水素イオンは電解質/膜を通過して正極に輸送される。正極の活性表面でのセルスペースでは、酸化剤が供給されて水素イオンと反応することにより、熱と水が生成される。外部電気回路は、例えば、自動車の運転、電池の充電、自動車の運転用周辺装置や、その他の応用に用いる。該当する応用に対して充分な電力および/または電圧を供給可能なように、通常、多数の燃料電池が一群の燃料電池と呼ばれる状態に順番に組み立てられる。発生した電流は、その一群の燃料電池を通過してセルからセルへ流れることが可能となる。
燃料電池を商業的に採算が取れるようにするには、製造コストが十分に低く、効率すなわち電気エネルギー/化学エネルギー変換比率が十分に高いことが特に必要である。高効率により、一群の燃料電池の重量および容積を小さく抑えることができる。これは、重量が燃料消費量およびその他の性能に大きく影響し、かつ利用可能な空間が限られる自動車への応用では、さらに重要である。燃料電池の効率を高めることは、所定の電力に対して電極/膜表面積が小さくなり、それにより電極/膜材料の必要量が減ることを意味する。通常そのような材料は非常に高価であるので、効率を高めることにより製造コストの大幅な削減に貢献することができる。
従来の燃料電池において、燃料/酸化剤はMEAの一角に位置する入口を経由して電極表面に供給される。出口はMEAの対角線上で反対側にある角に位置しており、セルスペース自体は、通常バイポーラ板と呼ばれるMEAにある層中にくり抜かれた多数の薄い溝から成る。これらの溝は、入り口と出口の間で比較的複雑なパターン形状を持つ電極表面に沿って流れる流路を形成する。バイポーラ板の溝のない部分は、活性表面と接触しており、電極からまたは電極へと電流を流す。この種の伝導の欠点の1つは、狭い流路がガス、水、あるいはゴミで簡単に塞がれてしまうことである。さらに、MEAの活性表面の比較的大きな部品が、バイポーラ板の溝のない部品により覆われる。これにより活性表面のかなりの割合が流れに接触できないようになり、従って活性表面の かなりの割合が発電に使われないことになる。また、MEA中の溝は、MEAとバイポーラ板間の接触圧を側面でのそれよりも悪くしているので、一群の燃料電池の電気伝導度および結合が悪くなる。他の欠点は、MEAの一部はくり抜いた溝を有する領域の外側を封止するために通常用いられていることであり、これはMEAのさらに別の部分が発電に用いられないことを意味する。また、この種の溝は、複雑な工程つまりコストのかかる製造工程が必要である。一群の燃料電池を外部に対して封止し、かつ種々の流れが混ざらないようにするため、通常、層とセル間の充填は種々の配置方法が行われている。耐密性と、一群の燃料電池を通過する良好な電気伝導度を保証するためには、層の良好な結合とパッキンが必要である。一般にこれは端壁からの圧力により、例えば貫通ボルトにより実現される。パッキンは時間の経過とともに安定されることが多いため、ガス漏れの発生や電気伝導度の低下する問題が比較的よくある。
日本国特許第11283636号は、MEAと入口/出口層との間に配置された分離層に組み込まれた多数の平行なスロット中に、セルスペースが形成された、別の種類の構造を記述している。セルスペース/スロットへの注入およびセルスペース/スロットからの排出は、入口/出口層中の2つの長い空洞部を経由して行われる。空洞部は、スロットの端部に、スロットと直角に置かれている。1つの空洞部の端部の穴から、燃料または酸化剤が注入されて平行なスロットに向かって輸送される。燃料または酸化剤はスロットを通過した後、端部に配置された出口穴を備える他の空洞部を経由して排出される。前述のように、入口穴および出口穴はMEAの対角線上の両角に配置される。従来技術と比較して、提案された構成における種々の流路の設計が、製造上の長所を提供していると考えられる。日本国特許第11283636号は、層構造燃料電池の製造工程に関する問題のみを扱っているので、例えば電極表面の効率や利用に関する作用については記述されておらず、また議論されてもいない。この文献には、これらの領域の問題点に関する指摘がない。しかし、比較的大きな割合の電極表面(スロット間に位置する割合)が流れに接触することが難しいため、発電に寄与する割合はほんの少しであるということを明細書から理解できる。
燃料電池の機能を果たすために、温度は重要である。高温になり過ぎないように、生成された熱はセル/一群の燃料電池から放散させる必要がある。一方、反応速度を増加させるには高温が望ましいが、超えてはならない最高温度レベルがある。これはPEFCに対しては、高温で膜が破損するため、特に重要である。通常、5〜7個の連続するセルの後に冷却ユニット等を置くことにより、一群の燃料電池中に一定間隔で多数の冷却ユニットが離れて配置される。
本発明の第1の目的は、従来技術と比較して、特に効率性および経済性に優れた製造に関して改良された燃料電池を提供することである。この目的は、後述の特許請求項1に記述される装置の特徴により達成される。本発明の第2の目的は、従来技術と比較して改良された一群の燃料電池を提供することである。この目的は、後述の特許請求項に記述される装置の特徴により達成される。その他の特許請求項は、本発明の優れた展開および変形例を記述する。
本発明は、両側に負極と正極がある形状の電極を備える電解質と、第1の反応物を含む第1の流れを負極上の活性表面と接触させ、さらに第2の反応物を含む第2の流れを正極上の活性表面と接触させる流路システムとを備える燃料電池を構成する。本発明は、流路システムが、活性表面に流入する流れを、活性表面に沿って延びる入口領域の全体に均一に分散させるように適合された分散配置から成ることを特徴とする。高効率を達成するために、電極/膜での活性表面が最大限の活用に耐えられることが必要であり、それにより燃料と酸化剤に対する好適な流れのパターンを推定する。本発明によれば、燃料と酸化剤が均一かつ十分に分散することにより、電極表面への好適な流れの分布が得られるので、電極表面を非常に効率的に活用する機会が提供される。このように、効率性が向上し、それにより単位電極面積あたりの電力が増加する。これにより、全有用電力を増加させること、あるいは製造コストを下げるために電極/電解質の合計量を減らすことができる。さらに、本発明による広い入口領域により、セルスペースを設計する際の自由度が大きくなる。従って、本発明は、流れが角部の穴を経由して活性表面中に導かれる従来の燃料電池とは大きく異なる。本発明は、日本国特許第11283636号とも大きく異なる。明細書から理解できる限りでは、流れのパターンは以下のようなものである。すなわち、入口穴を経由する流れが空洞部の端部に達すると、全流れ量の大部分が入口穴の最も近くに位置する平行スロットを通過して流れ、全流れ量のやや小さな部分が次の平行スロット等を流れるが、全流れ量の小部分が入口穴の最も遠くに位置する平行スロットを通過する。そのため、活性電極表面は不均一な流れ分布となり、電極の位置により反応条件が異なる結果となる。そのような流れのパターンではプロセスを最適化することは困難となり、例えば、特に正極側での不均一な消耗と乾燥のために寿命が短くなる。日本国特許第11283636号とは異なり、本発明は電極表面全体において均一かつ十分に分散する流れ分布を提供する。
本発明の第1の好適な実施例において、入口領域は、横方向または垂直方向の活性表面の少なくともほぼ半分、好適には実質的に活性表面全体に沿って延びる。入口領域は、活性表面の境界の1つに隣接して好適に設置される。これにより、活性表面への好都合な流入が得られる。
本発明の第2の好適な実施例において、流路システムは、活性表面から排出する流れが、活性表面の少なくともほぼ半分、好適には実質的に活性表面全体に沿って延びる出口領域内の活性表面から離れることが可能なよう適合された収集配置を備える。これにより、活性表面上の流れパターンがさらに向上する。さらに、そのような設計は、活性表面でのセルスペースの設計において大きな自由度を与える。すなわち、例えば溝およびスロットの変形例に加えて、本発明による幅広の入口および出口を用いて活性表面上に好適な流れパターンを保証することにより大きな有効性を確保するため、セルスペースを均一な容積に構成できる。出口領域は、入口領域と対向する活性表面の境界に隣接して好適に設置され、入口領域および出口領域は、好適に実質的に平行である。
本発明の第3の好適な実施例において、分散配置は、活性表面に沿う方向に延びる分配チャンバーと、分配チャンバーから活性表面への前記流れの運び込みを可能にする少なくとも1つの入口開口であって、入口領域を確定する前記少なくとも1つの入口開口を備える。分配チャンバーと少なくとも1つの入口開口は、分配チャンバーを通過する流れ抵抗よりも少なくとも1つの入口開口を通過する流れ抵抗が大きくなるように好適に設計される。これにより、流れは、よく分散される前に、すなわち開口/開口を通過してセルスペースに流入する前に、分配チャンバー内で十分に分散される。このような構成は、開口の数、寸法、および形状を変更することにより容易に改良できる。これは、例えば新たに実装する際の圧力降下に適合するために好都合である。
優れた解決法は、活性表面が第1の平面内に実質的に延び、また分配チャンバーが第2の平面内に実質的に延び、第2の平面は第1の平面と実質的に平行であり、第2の平面は第1の平面から所定距離離れて設置され、また分配チャンバーは第1の平面内で活性表面に対応する領域上に少なくとも部分的に延びることである。これにより、分配チャンバー/流路システムが電極/電解質側において占めるスペースが減り、それによりセル/一群の燃料電池の前表面が小さくなる。これは、ある応用において一群の燃料電池の物理的形状を利用可能なスペースに適合する可能性に対して重要である。さらに、セルスペースに接続する作業が簡単になり、出口領域の近くに設置する第2の入口領域を設ける自由度がさらに増加する。これにより、反応物の「新鮮な」流れが、セルスペースの下流に追加される。
本発明の第4の好適な実施例において、燃料電池は、活性表面が設置される第1層と、前記少なくとも1つの入口開口を備える第2層と、少なくともさらにもう1つの層を備える層構造であって、第1層と少なくともさらにもう1つの層との間に第2層が設置され、第2層と少なくともさらにもう1つの層は分配チャンバーを画定する表面を構成する層構造により形成される。そのような層構造はいくつかの理由により優位性ある。製造に関する限り、例えば、打ち抜きを使用できないような堅い構成と比較して、個々の層を機械加工することが比較的簡単である。さらに、異なる層に異なる材料を使用する自由度が与えられ、製造工程の単純化と機能の向上の両方に利用することができる。個々の層を交換したり簡単に改良できたりするため、この構造は試験運転/実装の際の適合性に対しても優位性がある。本発明のこの実施例の更なる優位性は、異なる層が独創的な方法で相互作用することである。すなわち、例えば、層を組立てるとき第2層と少なくともさらにもう1つの層との間に分配チャンバーが形成されることである。これは、個々の層の機械加工が比較的単純であるにもかかわらず、比較的複雑な流路システムとチャンバーが形成できることを意味する。分配チャンバーは、第2層および/または少なくともさらにもう1つの層内の空洞部の少なくとも一部から好適に構成される。好都合な変形例において、少なくともさらにもう1つの層は、第3層および第4層を備え、分配チャンバーは第3層内の貫通切開部の少なくとも一部を備え、第2層は一方向において分配チャンバーを画定する表面を構成し、第4層は反対方向において分配チャンバーを画定する表面を構成する。
第2層は活性表面でのセルスペース内の境界表面を構成し、さらに第2層はセルスペースと分配チャンバー間の境界を構成し、さらに第2層は少なくとも1つの開口を備え、少なくとも1つの開口は分配チャンバーとセルスペース間の連通を可能にしかつ少なくとも1つの入口開口を形成するように、層構造は好適に設計される。
第2層は、活性表面から所定距離離れて好適に設置される。これにより、セルスペースは、第2層と活性表面との間に形成される空間を備えることができる。従って、例えば、コストがかさみ時間のかかる作業である溝の形成が無くなり、さらに例えばスロット形状のセルスペース形成層を追加する必要がない。上記の流れパターンの制御とともに、本発明は、「開放」セルスペース中に設置される活性表面を非常に高い効率で活用することが可能となる。
層構造に応じた本発明の好適な変形例において、流路システムは冷却材分配システムを備え、冷却チャンバーは少なくともさらにもう1つの層中に配置される。これにより、一群の燃料電池中の各セルの冷却が可能となる。これにより、一群の燃料電池中の温度が非常に良好に制御される。また、これは均一な温度分布を得ることができ、さらに実現可能な最大電力を得るために動作温度を最大許容温度近くに維持できることを意味する。冷却チャンバーは、少なくともさらにもう1つの層内の貫通切開部の少なくとも一部を好適に備え、第2層は冷却チャンバーを画定する表面を構成する。
本発明は、以下の図面に関してさらに詳細に説明する。
以下、本発明が層構造に応じて構成される好適な実施例において、本発明を説明する。そのような構成は、製造的観点から見て好適なものである。
流路システムという表現は、あらゆる種類の流れを導くことを対象とする、すべての流路、チャンバー、接続部、空間等を意味する。
活性表面という表現は、化学反応が主に起きる電極表面上の面を意味する。
図1aは第1層1の概略平面図であり、図1bは図1aのI−Iに関する断面図である。第1層1は平板状の構造(MEAとも呼ばれる)を有する。MEAは、電解質2と、電解質2の両側に2つの電極3、すなわち負極と正極を備える。各電極の外側表面5(以下活性表面5という)は、燃料電池の動作中に反応性媒体に接触するように意図されている。通常、電極3は触媒物質(図示せず)を備え、さらに電極3は、ガスを触媒電極に向けるために、ガス拡散層(図示せず)により覆われている。電解質2と電極3は、活性表面5を離隔要素6中に通すことにより、周囲にて封止される離隔要素6に接続される。さらに第1層は、多数の貫通切開部と、層構造をボルトで締めることを可能にする多数のボルト穴13(この例では4個)を備える。貫通切開部は、流入する冷媒用の主管路7であり、流出する冷媒用の主管路8であり、流入する第1の流れ用の主管路9であり、流出する第1の流れ用の主管路10であり、流入する第2の流れ用の主管路11であり、流出する第2の流れ用の主管路12である。
図1において、離隔要素6は、第1層1を種々の方法で構成できかつ第1層1が例えば多数の部品層を備えることを示すために、2つの部分6aと6bに分けられる。例えば、電解質2は、2つの部分6aと6bとの間で部分的に連続し、スペーサとパッキン材料を配置して封止することが可能である。
図2aは第2層21の概略平面図であり、図2bは図2aのII−IIに関する断面図である。第1層1と同様に、第2層21は、前述のような多数の貫通切開部7〜13を備える。第2層21は、多数の穴形状の入口開口22(この例では6個)と、多数の穴形状の出口開口23(この例では6個)も備える。入口開口22と出口開口23は、それぞれ入口領域24と出口領域25が図(図2a)の縦方向に延びるように限定するように、図(図2a)の縦方向に所定の距離を隔てて分配される。これらの開口22と23および領域24と25の機能は以下に説明する。
図3aは第3層31の概略平面図であり、図3bは図3aのIII−IIIに関する断面図である。第1層1および第2層21と同様に、第3層31は、前述のような多数の貫通切開部7〜13を備える。さらに第3層31は、流入する第1の流れ用の主管路9と連通する第1の分配チャンバー32、流出する第1の流れ用の主管路10と連通する第1の収集チャンバー33、および流入および流出する冷却材用の主管路7、8と連通する第1の冷却チャンバー34’を備える。
図4aは第4層41の概略平面図であり、図4bは図4aのIV−IVに関する断面図である。前述の層と同様に、第4層41は、前述のような多数の貫通切開部7〜13を備える。第4層41は、流入および流出する冷却材用の主管路7、8と連通する第2の冷却チャンバー34’’も備える。
図5aは第5層51の概略平面図であり、図5bは図5aのV−Vに関する断面図である。前述の層と同様に、第5層51は、前述のような多数の貫通切開部7〜13を備える。さらに第5層51は、流入する第2の流れ用の主管路11と連通する第2の分配チャンバー52、流出する第2の流れ用の主管路12と連通する第2の収集チャンバー53、および流入および流出する冷却材用の主管路7、8と連通する第3の冷却チャンバー34’’’を備える。
図6は、図1b、2b、3b、4bおよび5bに示す層を順番に2回繰り返して組み立てた層構造60の層の組合せを示す。図6は、各々層構造を構成する2つの燃料電池を備えた、一群の燃料電池の一部を示しているとも言うことができる。第1層1から始めて図6の上方に向かって、各繰返し順、つまり各燃料電池は次のように構成される。すなわち、第1層1、第2層21、第3層31、第4層41、第5層51、および第2層21と同一の第6層61である。図6の組み立てられた層構造60は、第1層1中の活性表面5においてセルスペース4を有する。セルスペース4は、境界表面により、すなわち活性表面5、離隔要素6、および第2層21または、その代わりに第6層61により画定される(図1および図2参照)。図6は、3つの冷却チャンバー34’、 34’’および 34’’’が組み合わされて共通の冷却チャンバー 34を形成することも示している。
図1〜図6により、層構造を通過する種々の流れを以下に説明する。多数の矢印が図6中に挿入されている。すなわち、細い実線の矢印は第1の流れを表し、細い破線の矢印は第2の流れを表し、太い矢印は冷却材の流れを表している。基本的に、第1の流れは例えば水素やその他の燃料等の第1の反応物を含み、第2の流れは例えば酸素やその他の酸化剤等の第2の反応物を含む。これら2つの流れは、各セル中の各電解質2のそれぞれの側にある各セルスペース4を通過し、所望の反応が起き、流れの成分が変化する。流出する第1および第2の流れは、流入する流れに比べて、反応物が消耗されており、少なくとも1つの流出する流れには例えば水等の反応生成物が含まれる。
3つの流れは、主管路7〜12を経由して燃料電池に流入し、かつ燃料電池から流出する。流入する第1の流れは、その主管路9から第3層31中の第1の分配チャンバー32に導かれて、第2層中の入口開口22を通過してセルスペース4に至り、ここで第1の流れは、活性表面5と接触し、所望の反応が起きる。さらに第1の流れは、セルスペース4から出口開口23を経由して第1の収集チャンバー33へ流れて、流出する第1の流れ用の主管路10中に入る。第1の 第1の分配チャンバー32および入口開口22は、第1の分配チャンバー32を通過する流れ抵抗よりも入口開口22を通過する流れ抵抗が大きくなるように設計されるため、第1の流れは第1の分配チャンバー32中で充分に分配され、従って入口開口22により確定される入口領域24(図2a参照)において均一に分配される。図1、図2および図6の組合せは、入口領域24が、図1aと図2aにおいて図の縦方向の活性表面5に沿って、また図1b、図2bおよび図6において図の表面(つまり紙面)と直交する方向に延びていることを示している。図1a、図2aおよび図6は、入口領域24が縦方向において活性表面5の実質的の全領域に沿って延びていることを示しており、また入口領域24は活性表面5の境界の1つに隣接して、すなわちこの場合は離隔要素6に隣接して設置されていることも示している。出口領域25、出口開口23、および第1の収集チャンバー33は、入口側について説明したものと同様の方法により配置されている。従って、出口領域25は広がっており、入口領域24と対向する活性表面5の境界と隣接して設置される。入口領域24および出口領域25は平行である。広がった入口領域24から活性表面5への前述の均一な流れ分布のために、活性表面5を有効利用する非常によい機会が得られる。活性表面5からの出口を上記のように設計することにより、さらに良好な機会が得られる。これらの機会を、セルスペース4に関してより広範に以下に説明する。
流入する第2の流れは、その主管路11(図6には図示せず)から第5層51中の第2の分配チャンバー52に導かれ、第6層61中の入口開口22を経由してセルスペース4に至り、ここで第2の流れは、活性表面5と接触し、所望の反応が起きる。さらに第2の流れは、セルスペース4から出口開口23を経由して第2の収集チャンバー53へ流れて、流出する第2の流れ用の主管路12中に入る(図6には図示せず)。流れ抵抗、入口領域24、出口領域25、および流れ分布等の説明は、第1の流れに関して説明したものと同様である。
入口開口22および流入する第1と第2の流れ用の主管路9、11は、当該セル全体にわたる圧力降下が流入する第1と第2の流れが一群の燃料電池のすべてのセルについて均一に分配される寸法であるように、好適な寸法に決められる。これは、セル中で均一な化学反応が起き、それによりセル電圧が均一になりさらに一群の燃料電池の中で均一な発電が起きることを意味する。これにより、セル電圧の制御が良好になる。従って、セル電圧がセルにとって危険であり、さらにはMEA、一群の燃料電池が破壊される結果になるレベル以下に降下するリスクを最小限にすることができる。均一な発電により、高温になり過ぎて膜の乾燥や破損/割れが発生する等のセルの問題を回避することが容易になる。
流入する冷却材の流れは、その主管路7(図6には図示せず)から、第3層、第4層、および第5層31、41と51の結合部を経由して、共通冷却チャンバー34に導かれ、流出する冷却材用の主管路8中に入る(図6には図示せず)。図6から分かるように、冷却チャンバーは第2層21と第6層61の間に各繰返し順に設置されている。従って、層構造60は一群の燃料電池の中の各セルの冷却が可能になる。これにより、一群の燃料電池の中の温度制御が非常に良好になる。またこれは、均一な温度分布を得ることができ、さらに実現可能な最大電力を得るために動作温度を最大許容温度近くに維持できることを意味する。最大の冷却効果を得るために水などの液体系冷却材を好適に用いるが、ガス状の冷却材を用いてもよい。
図1、図2および図6から分かるように、セルスペース4は活性表面5に接して位置する均一な体積を備える。入口領域24と出口領域25に関する上記の説明によれば、セルスペース4全体について均一で良好な流れパターンが得られ、それにより活性表面5上の全領域についても均一で良好な流れパターンが得られる。これにより、活性表面5を非常に有効的に利用可能である。電極3と第2層21との間、及びそれぞれと第6層61との間に電流を通すために、図7に示す第1の導電手段71を各セルスペース4中に配置する。導電手段71は、セルスペース4中の化学環境に対して好適に充分適合する導電材料から少なくとも部分的に構成される。また、第1の 導電手段71は、活性表面5上における均一で良好な流れ分布をさらに保証することにより、例えば、質量輸送を増加させ、それにより反応速度を増加させるためにセルスペース4中の流れに乱流を生成することにより、活性表面5の利用度をさらに増加させるように好適に設計される。さらに、第1の 導電手段71は、ある期間にわたり良好な接触を確保するために、弾性特性を好適に有する。第1の導電手段71は、網構造、あるいは折り曲げた形状や穴開き形状を好適に有するが、その他の実施例も考えられる。
第2層21と第6層61の間に電流を通すために、図7に示す第2の導電手段72を各冷却チャンバー34中に配置する。第1の 導電手段71との類推から、第2の 導電手段72は、i)化学環境に対して適合する導電材料から少なくとも部分的に構成され、ii)冷却チャンバー34を通過する良好な流れ分布を保証することにより、例えば、質量輸送を増加させるために冷却チャンバー34中の流れに乱流を生成することにより、冷却効果を向上させるように好適に設計され、iii)ある期間にわたり良好な接触と一群の燃料電池の安定性を確保するために、弾性特性を有するように好適に構成される。これにより発生する燃料電池に含まれる部品間の接触圧は、均一な流れおよびセル間の電圧分布に寄与する。第2の 導電手段72は、網構造、あるいは折り曲げた穴開き形状の板を好適に有するが、その他の実施例も考えられる。
導電手段71と72は、もちろん多数の部品から構成することができる。
図6と図7による層構造60は、第1の流れが第2の流れ用に確保された流路とスペースを第2の流れに代わって通過して導かれる範囲までは対称であり、この逆もまた同様である。流れの方向は、説明された3つの流れの1つあるいはその他に対して変えることができる。例えば、このように反応速度に対して好ましい方法における濃度差または部分的な圧力差を増加させるように、第1層1中の2つのセルスペース4を通過する逆方向の流れを得るために、これを用いることができる。別の例は、流出する冷却材の流れと流入する反応物の流れとの間の熱交換を促進する目的で、前述の方向とは逆方向に冷却材の流れを導くことである。
前述のように、一群の燃料電池は外部に対して封止することが必要であり、多数の流れを混合することはできない。図1〜図7に説明される実施例において、第3層31、第5層51、および離隔要素6は、封止材を有する。これにより、封止機能を有する別の層の必要性がなくなる。もちろん封止層を、上記の1つまたはそれ以上の層間に挿入することもできる。例えば、離隔要素6の部品が封止材を備えることも考えられる。従って、本実施例において、分配と収集チャンバー32、33、52、53、および第1と第3の冷却チャンバー34’、34’’は、封止機能を有する層中に貫通切開部を備える。第2層21と第6層61は、セルスペース4中の化学環境に適合する一方、例えば金属のように、良好な冷却効果を得るために熱を充分に伝導する材料により好適に形成する。第4層41は周囲の封止層が安定するように好適に設計され、また第4層41は金属で形成される。もちろん、多く種類の材料が各層に付いて考えられる。
層構造60において、層構造の繰返し回数は、すなわち燃料電池の数は、要望どおりに変えることができる。例えば、第5層51に代えて、前述の貫通切開部7〜13のみを備える第7層(図示せず)を配置する端部構造により、一群の燃料電池は終了する。
本発明は、上述の例示した実施例に限定されるものではなく、後述する本発明の請求項の範囲内において多くの変形が考えられる。
例えば、図面は略図であることを強調する必要がある。すなわち、当該分野の技術者は、説明した入口領域24と出口領域25の変形を行うために、本発明の好適な実施例の記述を叩き台として、多くの変形を行うことが可能である。例えば、i)主管路7〜12の位置決め、ii)分配、収集、および冷却チャンバー32、33、34、34’、34’’、34’’’、52、53の位置決めおよび幾何学形状、およびiii)主管路とチャンバー間の結合部の位置決めおよび幾何学形状を変更することが可能である。入口開口22と出口開口23、および活性表面5の外観、幾何学形状、および位置決めも変形可能である。図1〜図6を叩き台として、活性表面5の全面に延びる入口領域24を比較的単純な方法で作成可能な方法の例は、第1と第2の分配チャンバー32、52が活性表面5の全幅に沿って延びるように図3と図5の上方へ分配チャンバー32、52を拡張することを可能にするため、流入する冷却材用の主管路7とその冷却チャンバー34、34’、34’’、34’’’への結合部とを、流入する第1の流れ用の主管路9からさらに遠ざける方向(すなわち図1〜図5の上方へ)に移動するものである。1つまたはそれ以上の入口開口22を追加することにより、このように活性表面5の全面に延びる入口領域24を生成できる。また、対応する方法により流出する冷却材用の主管路8とその冷却チャンバー34、34’、34’’、34’’’への結合部とを、流出する第1の流れ用の主管路10からさらに遠ざける方向(すなわち図1〜図5の下方へ)に移動し、第1と第2の収集チャンバー33、53が活性表面5の全幅の沿って延びるように第1と第2の収集チャンバー33、53を図3と図5の下方に拡張し、さらに1つまたはそれ以上の出口開口23を追加する。この方法によっても、活性表面5の全面に沿って延びる出口領域25を生成することができる。電極3と電解質2の寸法を小さくする自由度があれば、別法として図2a中の入口開口22の底部入口開口と出口開口23の頂部出口開口を省くことができ、活性表面5を入口領域24と出口領域25の幅に応じて適合して作成できる。
本発明は、例えば水素ガスや酸素ガス等のガス状反応物を有する燃料電池用に好適に意図されたものであるが、例えばメタノールやガソリン等の液体反応物にも充分に適合する。本発明は、種々の電極/膜配置を有する各種の燃料電池への応用にも充分に適合する。
前述の実施例の別法として、すべての3つの流れの対する入口/出口を第3層31中に配置して第4層41と第5層51を構成から省くものである。そのような別法においては、第3層31は各主管路への関連する結合部を有する5つのチャンバーを備える。すなわち、2つの流入する反応物の流れに対する2つの分配チャンバー32、52、2つの流出する流れに対する収集チャンバー33、53および冷却チャンバー34’である。例えば、(2つの入口領域/出口領域が互いに隣接するよう)入口領域24と出口領域25が活性表面5の幅の約半分にわたり延び、かつ流れが活性表面5の対角線上に起きるよう入口領域24と出口領域25を設置することにより、分配チャンバー、入口開口、出口開口、および収集チャンバーを配置することができる。この場合、第3層31は、入口開口と出口開口を備える第2層21の2つの鏡面対称の変形体により囲まれている。別法として、前記実施形態と実質的に同じように第1の流れが活性表面5上を流れ、かつ第1の流れの方向に対して実質的に直角な方向に第2の流れが活性表面5上を流れるような方法で、すなわち電解質/電極の両側で流れが横切るように、入口領域24と出口領域25を配置することができる。従って、この場合、第3層31中の2つの流れに対して、2つの分配チャンバーおよび2つの収集チャンバー延長方向は互いに直角になる。この場合も、第3層31は第2層21の2つの変形体により囲まれる。すなわち、水平な入口領域/出口領域を有する変形体と垂直な入口領域/出口領域を有する変形体である。しかし、前述の好適な実施例の優位性は、第4層41が2つの流れを効果的に分離し、それにより漏れのリスクが軽減されることである。
入口領域/出口領域24と25の設計に関する限り、多数の小さな開口を分布させる代わりに、別法として、例えばスロット等の細長い開口により入口領域/出口領域24と25を画定させることができる。また、多数の入口領域24を直列に配置してもよい。すなわちセルスペース4内の下流に第2の入口領域を配置する。これにより、流れの見通しから分かるように、セルスペース4の後半部分において例えば反応物の濃度を高いレベルに保つことが可能となる。そのような構成には、当然冷却チャンバー34’を別の設計にすることが必要である。
本発明は、例えば図6に示すように均一な体積を有するセルスペースに限定されない。例えば、活性表面5が第1層1に入らないことが可能であり、セルスペースが隣接する層中の溝またはスロットを備えることも可能である。別法として、挿入物をセルスペース4中に配置することができる。例えば、挿入物は、活性表面5の逆側に多数の細い溝を備えて、入口開口22から活性表面5を経由して出口開口23までの好適なガスの流れを実現するように適合される。前記挿入物は、セルスペースに嵌合する凸状体等の第2層21中に組み入れられる部品を備えることができる。そのような場合も、活性表面5に流入する流れが活性表面5に沿って延びる入口領域で均一に分配されることが有利である。例えば、溝の設計は、溝を平行にすることにより単純化でき、それにより製造が簡単になる。
さらに、本発明は、電流を流すためにセルスペース4中の活性表面5に配置される導電手段71に限定されない。別法として、活性表面5の境界に隣接する材料を経由して電流を通してもよい。また、別法として、活性表面に面しセルスペースの画定表面の1つを構成する表面が、電気的な接触をセルスペース4上で得る三次元構造を有してもよい。そのような構造の例としては、ある形状のピンを備える表面、非常に粗い表面、活性表面上の流れを充分に分配する別のあるパターンを有する表面などがある。
セル/一群の燃料電池の形状を変化させることもできる。例えば、セル/一群の燃料電池を円筒形状の設計することができる。活性表面5も、図示されたような長方形とは別の幾何学形状とすることができる。
層構造60中の種々の層に関して、それらは当然異なる厚さを持ち、またボルト穴13を通してボルトによってのみ保持されなければならないというわけではない。すなわち、いくつかの層は例えば接着、はんだ付け、溶接等のその他の固定方法により接合することができ、あるいは別の方法で一体化することができる。
本発明の変形例において、関連する結合部を有する第1の分配チャンバー32と第1の収集チャンバー33は、第2層21および/または第4層41中の空洞部により作成することができる。例えば、これらの空洞部は図3aに示すように同じ基本形状を有する。これらの第1チャンバー32と33が第3層31中に位置する前述の実施例とは異なり、この変形例では、第1チャンバー32と33は第2層21および/または第4層41中に位置する。第2層21と第4層41を互いに封止することを確保することにより、好適な層材料を選択することにより、あるいは1つの層または両方の層に好適な表面層を用意することにより、第3層31を構成から取除くことができる。同様に、第2の分配チャンバー52と第2の収集チャンバー53を、第4層41および/または第6層61中の空洞部により作成することができ、それにより第4層41と第6層61との間が封止されていれば、第5層51を構成から取除くこともできる。この方法で、層構造60中の層の合計数を1回の繰返しにつき4層までに減少させることができる。すなわち、第1層1、第2層21、第4層41、および第6層61である。本発明のこの変形例の利点は、層構造/一群の燃料電池を組立てるとき層の数が少ないので嵌合の点から有利であることである。更なる優位性は、層の数が少ないので全体の構成がよりコンパクトになり、さらに漏れが起きる箇所の数を減らせることである。本発明のこの変形例においては、第4層41に設置される冷却チャンバー34’’を経由して冷却を行う。前述の実施例ように、第4層41は第1の流れと第2の流れの間の漏れを防ぐ分離層としても機能する。前述の実施例と同様に、第2層21はセルスペース4と分配チャンバー32と収集チャンバー33間の境界を構成し、それぞれ入口開口22と出口開口23を経由してそれらの間の連通を可能にする。さらに、前述のように、第2層21はセルスペース4と冷却チャンバー34’’間の境界を構成する。
もちろん、チャンバー32、33、52と53は、第3層31と第5層51中にそれぞれ貫通切開部の組合せと、第2層21および/または第4層41中、そして第4層41および/または第6層61中にそれぞれ空洞部を備えることもできる。
本発明の上記実施例によれば、そのため、層構造60を組立てるとき分配チャンバー32と52は異なる層の間に形成される。分配チャンバー32と52の画定表面は、第2層21を備える一方で、他方でさらに1つまたはそれ以上の層をも備える。すなわち、第3層31と第4層41の貫通切開部中の「壁」、または分配チャンバー32と52が空洞部を備えるときの第4層41のどちらかである。収集チャンバー33と53も対応する方法で形成される。層構造60を組立てるとき冷却チャンバー34も形成され、この場合も同様に、第2層21は形成した内部空洞に対する境界表面を備える。本発明の上記実施例によれば、相互に影響し合う種々の層が流路やチャンバー等の異なる種類のスペースを形成する独創的な層構造60を用いる。比較的薄い層を用いて、製造は、例えば種々のスペースを形成するために用いる穴開け加工の代わりに、例えば打ち抜きにより、簡単に行うことができる。さらに、より堅い構成と比較して、個々の層は取外し、改造、あるいは交換化可能なため、例えば試験運転/適合の際に、前記層構造60は変更が比較的容易である。
本発明の好適な実施例における第1層の概略平面図であり、本発明は層構造に応じて構成される。 図1aのI−Iに関する断面図である。 好適な実施例に関する第2層の概略平面図である。 図2aのII−IIに関する断面図である。 好適な実施例に関する第3層の概略平面図である。 図3aのIII−IIIに関する断面図である。 好適な実施例に関する第4層の概略平面図である。 図4aのIV−IVに関する断面図である。 好適な実施例に関する第5層の概略平面図である。 図5aのV−Vに関する断面図である。 好適な実施例に関する層構造に組立てた、図1b、2b、3b、4bおよび5bによる層の組合せを概略的に示す。 図6に関する層構造をさらに改良したものを示す。

Claims (28)

  1. 両側に負極と正極がある形状の電極(3)を備える電解質(2)と、第1の反応物を含む第1の流れを負極(3)上の活性表面(5)と接触させ、さらに第2の反応物を含む第2の流れを正極(3)上の活性表面(5)と接触させる流路システムとを備えた燃料電池であって、
    前記流路システムは活性表面(5)が設置される第1層(1)と、活性表面(5)に沿って延びる入口領域(24)を備える第2層(21)と、少なくともさらにもう1つの層(31、41)とを備える層構造(60)により形成され
    前記もう1つの層(31、41)は、貫通切開部を備えることで、前記もう1つの層(31、41)内には、活性表面(5)に流入する流れを、活性表面(5)に沿って延びる入口領域(24)の全体に均一に分散させるように適合された空洞部が形成され、
    前記第2層(21)が、活性表面(5)から所定距離離れて設置されることで該第2層と活性表面との間にセルスペース(4)が構成され、
    前記第2層(21)は、前記空洞部と前記セルスペース(4)との間の境界構成していることを特徴とする燃料電池。
  2. 入口領域(24)は、活性表面(5)の少なくとも半分の領域において、横方向または垂直方向に延びることを特徴とする請求項1に記載の燃料電池。
  3. 入口領域(24)は、活性表面(5)の境界の1つに隣接して設置されることを特徴とする請求項1または2に記載の燃料電池。
  4. 流路システムは、活性表面(5)から排出する流れが、活性表面(5)の少なくとも半分の領域において延びる出口領域(25)内の活性表面(5)から離れることが可能なよう適合された収集配置を、備えることを特徴とする請求項1ないし3のいずれかに記載の燃料電池。
  5. 出口領域(25)は、入口領域(24)と対向する活性表面(5)の境界に隣接して設置されることを特徴とする請求項3または4に記載の燃料電池。
  6. 入口領域(24)と出口領域(25)は、平行であることを特徴とする請求項4または5に記載の燃料電池。
  7. 前記空洞部は、活性表面(5)に沿う方向に延びる分配チャンバー(32、52)と、分配チャンバー(32、52)から活性表面(5)への前記流れの運び込みを可能にする少なくとも1つの入口開口(22)であって、入口領域(24)を確定する前記少なくとも1つの入口開口(22)を備えることを特徴とする請求項1ないし6のいずれかに記載の燃料電池。
  8. 分配チャンバー(32、52)と少なくとも1つの入口開口(22)は、分配チャンバー(32、52)を通過する流れ抵抗よりも少なくとも1つの入口開口(22)を通過する流れ抵抗が大きくなるように設計されることを特徴とする請求項7に記載の燃料電池。
  9. 活性表面(5)が第1の平面内に延び、また分配チャンバー(32、52)が第2の平面内に延び、第2の平面は第1の平面と平行であり、第2の平面は第1の平面から所定距離離れて設置され、また分配チャンバー(32、52)は第1の平面内で活性表面(5)に対応する領域上に少なくとも部分的に延びることを特徴とする請求項7または8に記載の燃料電池。
  10. 少なくともさらにもう1つの層(31、41)が形成されており、第1層(1)と少なくともさらにもう1つの層(31、41)との間に第2層(21)が設置され、第2層(21)と少なくともさらにもう1つの層(31、41)は分配チャンバー(32、52)を画定して形成されることを特徴とする請求項7ないし9のいずれかに記載の燃料電池。
  11. 分配チャンバー(32、52)は、第2層(21)内の空洞部の少なくとも一部を備えることを特徴とする請求項10に記載の燃料電池。
  12. 分配チャンバー(32、52)は、少なくともさらにもう1つの層(31、41)内の空洞部の少なくとも一部を備えることを特徴とする請求項10または11に記載の燃料電池。
  13. 少なくともさらにもう1つの層(31、41)は、第3層(31)および第4層(41)を備え、分配チャンバー(32、52)は、第3層(31)内の貫通切開部の少なくとも一部を備え、第2層(21)は、一方向において分配チャンバー(32、52)を画定する表面を構成し、第4層(41)は、反対方向において分配チャンバー(32、52)を画定する表面を構成することを特徴とする請求項10ないし12のいずれかに記載の燃料電池。
  14. 第2層(21)はセルスペース(4)と分配チャンバー(32、52)間の境界を構成し、さらに第2層(21)は少なくとも1つの開口を備え、少なくとも1つの開口は分配チャンバー(32、52)とセルスペース(4)間の連通を可能にしかつ少なくとも1つの入口開口(22)を形成することを特徴とする請求項10ないし13のいずれかに記載の燃料電池。
  15. セルスペース(4)は、電極(3)と第2層(21)との間に電流を流すように適合された第1の導電手段(71)を備えることを特徴とする請求項14に記載の燃料電池。
  16. 第1の導電手段(71)は弾性特性を有し、および/または第1の導電手段(71)は活性表面(5)に近接した流れのパターンを向上させるように適合されることを特徴とする請求項15に記載の燃料電池。
  17. 第1の導電手段(71)は網構造を備えることを特徴とする請求項15または16に記載の燃料電池。
  18. 流路システムは冷却材分配システムを備え、さらに冷却チャンバー(34、34’、34’’、34’’’)は少なくともさらにもう1つの層(31、41)中に配置されることを特徴とする請求項10ないし17のいずれかに記載の燃料電池。
  19. 冷却チャンバー(34、34’、34’’、34’’’)は、少なくともさらにもう1つの層(31、41)内の貫通切開部の少なくとも一部を備え、さらに第2層(21)は冷却チャンバー(34、34’、34’’、34’’’)を画定する表面を構成することを特徴とする請求項18に記載の燃料電池。
  20. 冷却チャンバー(34、34’、34’’、34’’’)は、冷却チャンバー(34、34’、34’’、34’’’)に電流が流れるように適合された第2の導電手段(72)を備えることを特徴とする請求項18または19に記載の燃料電池。
  21. 第2の導電手段(72)は弾性特性を有し、および/または第2の導電手段(72)は冷却効果を高めるために流れのパターンを向上させるように適合されることを特徴とする請求項20に記載の燃料電池。
  22. 第2の導電手段(72)は網構造を備えることを特徴とする請求項20または21に記載の燃料電池。
  23. 収集配置は、活性表面(5)に沿う方向に延びる収集チャンバー(33、53)と、活性表面(5)から収集チャンバー(33、53)への前記流れの運び出しを可能にする前記少なくとも1つの出口開口(23)であって、出口領域(25)を確定する前記少なくとも1つの出口開口(23)を備えることを特徴とする請求項4ないし6のいずれかに記載の燃料電池。
  24. 第3層(31)は、少なくとも1つの分配チャンバー(32、52)、少なくとも1つの収集チャンバー(33、53)、および少なくとも1つの冷却チャンバー(34、34’、34’’、34’’’)を備えることを特徴とする請求項13ないし23のいずれかに記載の燃料電池。
  25. 第2層(21)は、一方向における分配チャンバー(32、52)、収集チャンバー(33、53)、および冷却チャンバー(34、34’、34’’、34’’’)の境界を構成し、さらに第4層(41)は、反対方向における少なくとも分配チャンバー(32、52)と収集チャンバー(33、53)の境界を構成することを特徴とする請求項24に記載の燃料電池。
  26. 第3層(31)中の分配チャンバー(32、52)と収集チャンバー(33、53)は第1の流れ用に意図されており、さらに燃料電池は、第2の分配チャンバー(32、52)と第2の収集チャンバー(33、53)を備える第5層(51)を有し、これらの第2チャンバーは第2の流れ用に意図されることを特徴とする請求項25に記載の燃料電池。
  27. 前記空洞部は、電解質(2)の負極側と正極側の両方に配置されることを特徴とする請求項1ないし26のいずれかに記載の燃料電池。
  28. 多数の燃料電池を備え、少なくとも1つの燃料電池は請求項1ないし27のいずれかに記載の燃料電池により構成されることを特徴とする一群の燃料電池。
JP2010124534A 2002-09-20 2010-05-31 燃料電池 Expired - Lifetime JP5302263B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0202795A SE523665C2 (sv) 2002-09-20 2002-09-20 Bränslecell och bränslecellsstack
SE0202795-1 2002-09-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004538104A Division JP4717439B2 (ja) 2002-09-20 2003-09-17 燃料電池

Publications (2)

Publication Number Publication Date
JP2010251329A JP2010251329A (ja) 2010-11-04
JP5302263B2 true JP5302263B2 (ja) 2013-10-02

Family

ID=20289054

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004538104A Expired - Lifetime JP4717439B2 (ja) 2002-09-20 2003-09-17 燃料電池
JP2010124534A Expired - Lifetime JP5302263B2 (ja) 2002-09-20 2010-05-31 燃料電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004538104A Expired - Lifetime JP4717439B2 (ja) 2002-09-20 2003-09-17 燃料電池

Country Status (8)

Country Link
US (1) US10020530B2 (ja)
EP (1) EP1547181B8 (ja)
JP (2) JP4717439B2 (ja)
CN (1) CN1319199C (ja)
AU (1) AU2003264572A1 (ja)
CA (1) CA2499861C (ja)
SE (1) SE523665C2 (ja)
WO (1) WO2004027910A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2413002B (en) * 2004-04-08 2006-12-06 Intelligent Energy Ltd Fuel cell gas distribution
US20100108236A1 (en) * 2006-10-31 2010-05-06 Powercell Sweden Ab Method of manufacturing fuel cells
JP5125275B2 (ja) * 2007-02-05 2013-01-23 トヨタ自動車株式会社 燃料電池および燃料電池搭載車両
DE102009015619A1 (de) * 2008-11-13 2010-05-27 Tedatex Industrie Gmbh Beratung-Planung-Entwicklung Brennstoffzelle ohne Bipolarplatten
JP5648378B2 (ja) * 2010-09-06 2015-01-07 日産自動車株式会社 燃料電池スタック
FR3031753B1 (fr) * 2015-01-16 2020-12-25 Areva Stockage Denergie Electrolyseur comprenant un echangeur de chaleur pour le transfert de chaleur de cellules d'electrolyse a un fluide de refroidissement
CN114094142B (zh) * 2021-10-29 2023-10-03 中广核研究院有限公司 固体氧化物燃料电池发电系统多堆模组配气平台

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476197A (en) * 1983-10-12 1984-10-09 The United States Of America As Represented By The United States Department Of Energy Integral manifolding structure for fuel cell core having parallel gas flow
JPS60130567A (ja) * 1983-12-19 1985-07-12 Teikoku Hormone Mfg Co Ltd 3−置換−2−フエニルインド−ル誘導体
JPS60130567U (ja) * 1984-02-09 1985-09-02 石川島播磨重工業株式会社 積層燃料電池
JPS62287576A (ja) * 1986-06-06 1987-12-14 Hitachi Ltd 燃料電池
US5240785A (en) * 1989-04-04 1993-08-31 Koa Oil Company, Limited Air cell
JPH04237962A (ja) * 1991-01-18 1992-08-26 Matsushita Electric Ind Co Ltd 平板型固体電解質燃料電池
JP3064023B2 (ja) * 1991-02-22 2000-07-12 三菱重工業株式会社 燃料電池用ガスセパレータ
JPH05109415A (ja) 1991-10-16 1993-04-30 Mitsubishi Heavy Ind Ltd 燃料電池用ガスセパレータ
JP3383319B2 (ja) * 1991-12-27 2003-03-04 本田技研工業株式会社 燃料電池
ATE257513T1 (de) * 1992-06-22 2004-01-15 Matritech Inc Neuartige marker maligner zelltypen in der inneren nukleären matrix
JPH07135005A (ja) 1993-11-08 1995-05-23 Sanyo Electric Co Ltd 燃料電池
US5773160A (en) * 1994-06-24 1998-06-30 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams
US5863671A (en) * 1994-10-12 1999-01-26 H Power Corporation Plastic platelet fuel cells employing integrated fluid management
DE4443945C1 (de) 1994-12-09 1996-05-23 Fraunhofer Ges Forschung PEM-Brennstoffzelle
US5686199A (en) * 1996-05-07 1997-11-11 Alliedsignal Inc. Flow field plate for use in a proton exchange membrane fuel cell
US5804326A (en) * 1996-12-20 1998-09-08 Ballard Power Systems Inc. Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
JP3229827B2 (ja) 1997-02-17 2001-11-19 有限会社西原工器 燃料電池用セパレータ
JP4061684B2 (ja) 1997-12-18 2008-03-19 トヨタ自動車株式会社 燃料電池
CN1122322C (zh) * 1998-04-17 2003-09-24 松下电器产业株式会社 固体高分子电解质型燃料电池及其制造方法
GB9809372D0 (en) * 1998-05-02 1998-07-01 British Gas Plc Stack assembly primarily for an electrochemical fuel
JP4318771B2 (ja) * 1998-11-06 2009-08-26 本田技研工業株式会社 燃料電池スタック
IT1312198B1 (it) * 1999-04-21 2002-04-09 De Nora Spa Cella a combustibile raffreddata mediante iniezione diretta di acqualiquida
US6458479B1 (en) * 1999-12-17 2002-10-01 The Regents Of The University Of California Air breathing direct methanol fuel cell
US6296964B1 (en) * 1999-12-23 2001-10-02 The Regents Of The University Of California Enhanced methanol utilization in direct methanol fuel cell
US6770394B2 (en) 2000-02-11 2004-08-03 The Texas A&M University System Fuel cell with monolithic flow field-bipolar plate assembly and method for making and cooling a fuel cell stack
JP3596761B2 (ja) 2000-12-27 2004-12-02 松下電器産業株式会社 高分子電解質型燃料電池
SE516741C2 (sv) 2001-02-27 2002-02-26 Cellkraft Ab Bipolär platta för bränslecell eller elektrokemisk reaktor samt användning av plattan i en bränslecellstack eller elektrokemisk reaktor
US20020155338A1 (en) * 2001-04-24 2002-10-24 Nitech S. A. Electrochemical cell
JP4278349B2 (ja) * 2002-06-28 2009-06-10 三洋電機株式会社 燃料電池
JP5109415B2 (ja) 2007-03-02 2012-12-26 株式会社セガ 陸上競技シミュレーションゲーム装置

Also Published As

Publication number Publication date
EP1547181A1 (en) 2005-06-29
EP1547181B1 (en) 2017-01-04
US10020530B2 (en) 2018-07-10
CA2499861A1 (en) 2004-04-01
SE0202795L (sv) 2004-03-21
SE523665C2 (sv) 2004-05-11
AU2003264572A1 (en) 2004-04-08
SE0202795D0 (sv) 2002-09-20
CN1685546A (zh) 2005-10-19
JP2006500743A (ja) 2006-01-05
JP2010251329A (ja) 2010-11-04
CA2499861C (en) 2013-01-22
EP1547181B8 (en) 2017-07-05
CN1319199C (zh) 2007-05-30
WO2004027910A1 (en) 2004-04-01
JP4717439B2 (ja) 2011-07-06
US20060147779A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP5302263B2 (ja) 燃料電池
CN101267042B (zh) 双极板流场中的流动通道的分叉
US7781122B2 (en) Bipolar plate with cross-linked channels
KR101693993B1 (ko) 연료전지용 분리판
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
EP2519993B1 (en) Fuel cell stack
JP2000231929A (ja) 燃料電池
JP5962847B2 (ja) 燃料電池、燃料電池の配流装置、および燃料電池を備えた車両
US8268503B2 (en) Fuel cell stack
US20090123799A1 (en) Fuel cell
US8053125B2 (en) Fuel cell having buffer and seal for coolant
US7846613B2 (en) Fuel cell with separator having a ridge member
US9166244B2 (en) Fuel cell
JP4803957B2 (ja) 内部マニホールド型燃料電池
JP2011096498A (ja) 燃料電池積層体
US7745062B2 (en) Fuel cell having coolant inlet and outlet buffers on a first and second side
KR101534940B1 (ko) 연료전지용 분리판 및 이를 이용한 연료전지
US8247133B2 (en) Fuel cell
JP2007207570A (ja) 燃料電池
JP5021219B2 (ja) 燃料電池スタック
EP3576200B1 (en) Fuel cell stack
JPH07192739A (ja) 燃料電池
KR20200020519A (ko) 연료전지 스택
JPH11345621A (ja) リン酸型燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5302263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term