JP5294828B2 - Laminated board - Google Patents

Laminated board Download PDF

Info

Publication number
JP5294828B2
JP5294828B2 JP2008325051A JP2008325051A JP5294828B2 JP 5294828 B2 JP5294828 B2 JP 5294828B2 JP 2008325051 A JP2008325051 A JP 2008325051A JP 2008325051 A JP2008325051 A JP 2008325051A JP 5294828 B2 JP5294828 B2 JP 5294828B2
Authority
JP
Japan
Prior art keywords
conductor layer
conductor
layer
ceramic insulating
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008325051A
Other languages
Japanese (ja)
Other versions
JP2009206495A (en
Inventor
憲一郎 森茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008325051A priority Critical patent/JP5294828B2/en
Publication of JP2009206495A publication Critical patent/JP2009206495A/en
Application granted granted Critical
Publication of JP5294828B2 publication Critical patent/JP5294828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated substrate which can effectively suppress occurrence of defects such as delamination or cracks of a ceramic insulating layer. <P>SOLUTION: The laminated substrate 9 is formed as follows: an insulating substrate 2 is formed by lamination of three or more ceramic insulating layers 1; grounding conductor layers or power supply conductor layers 3 are formed in a vertically overlapping manner on two or more consecutive interlayer portions of the ceramic insulating layers 1; a penetrating conductor 4 is formed to be electrically insulated from the grounding or power supply conductor layers 3, while penetrating the portions of the ceramic insulating layers 1 where the grounding or power supply conductor layers 3 are formed in the thickness direction therebetween, and land patterns 5 are formed to be connected with the penetrating conductor 4 vertically, with outer edges of the land patterns 5 being not overlapped along the vertical direction of the penetrating conductor 4. Since the outer edges of the land patterns 5 are not overlapped in the vertical direction, a good contact can be obtained between the ceramic insulating layers 1, and due to dispersion of stress, cracks in the ceramic insulating layers 1 can be effectively suppressed. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、3層以上のセラミック絶縁層が積層されてなる積層基板に関するものであり、特に、セラミック絶縁層を厚み方向に貫通する貫通導体と上下に接続されたランドパターンと、ランドパターンを取り囲み、貫通導体と電気的に絶縁された接地導体層または電源導体層とがセラミック絶縁層の2つ以上の連続する層間にそれぞれ形成された積層基板に関するものである。   The present invention relates to a laminated substrate in which three or more ceramic insulating layers are laminated, and in particular, surrounds a through-conductor that penetrates the ceramic insulating layer in the thickness direction, a land pattern connected vertically, and the land pattern. The present invention relates to a multilayer substrate in which a ground conductor layer or a power supply conductor layer electrically insulated from a through conductor is formed between two or more successive layers of a ceramic insulating layer.

半導体素子や容量素子,圧電振動子等の電子部品が搭載される積層基板として、ガラスセラミック焼結体や酸化アルミニウム質焼結体等のセラミック材料からなるセラミック絶縁層が複数積層されてなる絶縁基体と、絶縁基体に形成された貫通導体や接地導体,電源導体,配線導体等の導体とを備えるものが多用されている。   Insulating substrate in which a plurality of ceramic insulating layers made of a ceramic material such as a glass ceramic sintered body or an aluminum oxide sintered body are laminated as a laminated substrate on which electronic components such as semiconductor elements, capacitive elements, and piezoelectric vibrators are mounted And conductors such as through conductors, ground conductors, power supply conductors, and wiring conductors formed on an insulating base are widely used.

絶縁基体は、例えば平板状(直方体状)であり、上面や下面に電子部品を搭載するための搭載部を有している。この搭載部には、例えば配線導体が形成され、この配線導体に電子部品が電気的に接続される。配線導体は、絶縁基体の搭載部や内部、搭載部と反対側の面(下面等)に回路パターン状に形成され、電子部品を外部電気回路と電気的に接続する導電路の一部となる。   The insulating substrate has, for example, a flat plate shape (cuboid shape), and has a mounting portion for mounting electronic components on the upper surface and the lower surface. For example, a wiring conductor is formed on the mounting portion, and an electronic component is electrically connected to the wiring conductor. The wiring conductor is formed in a circuit pattern on the mounting portion and the inside of the insulating base, and on the surface (lower surface, etc.) opposite to the mounting portion, and becomes a part of a conductive path that electrically connects the electronic component to the external electric circuit. .

貫通導体は、セラミック絶縁層を厚み方向に貫通して形成されており、絶縁基体の内部を上下に導通する導電路として機能する。例えば、搭載部に形成された配線導体に貫通導体が接続し、この貫通導体を介して、絶縁基体の下面や内部に位置する部分が搭載部の配線導体と電気的に接続される。   The through conductor is formed so as to penetrate the ceramic insulating layer in the thickness direction, and functions as a conductive path that conducts the inside of the insulating base body vertically. For example, a through conductor is connected to a wiring conductor formed in the mounting portion, and a portion located on the lower surface or inside of the insulating base is electrically connected to the wiring conductor of the mounting portion through the through conductor.

なお、セラミック絶縁層の層間には、貫通導体と上下に接続するランドパターンが形成されている。ランドパターンは、例えば円形状に形成され、上下のセラミック絶縁層に形成された貫通導体同士の電気的な接続をより確実なものとしている。   Note that land patterns connected to the through conductors in the vertical direction are formed between the ceramic insulating layers. The land pattern is formed in, for example, a circular shape, and makes the electrical connection between the through conductors formed in the upper and lower ceramic insulating layers more reliable.

また、搭載される電子部品に対する電磁的な遮蔽や、電子部品に対する接地電位や電源の供給等のために、セラミック絶縁層の層間に接地導体や電源導体を層状に形成される。   In addition, a ground conductor and a power supply conductor are formed in layers between the ceramic insulating layers for electromagnetic shielding of the mounted electronic component, ground potential and power supply to the electronic component, and the like.

このような積層基板は、セラミック粉末やガラス粉末等の原料粉末を有機溶剤,バインダとともにシート状に成形してなるセラミックグリーンシートに貫通導体となる貫通孔を形成し、その後、セラミックグリーンシートの表面や貫通孔内に金属ペーストを塗布または充填するとともに3層以上のセラミックグリーンシートを積層し、この積層体を焼成することにより製作される。
特開2007-324557号公報
Such a multilayer substrate forms a through-hole serving as a through conductor in a ceramic green sheet obtained by forming raw powders such as ceramic powder and glass powder into a sheet shape together with an organic solvent and a binder, and then the surface of the ceramic green sheet In addition, a metal paste is applied or filled in the through-holes, three or more ceramic green sheets are laminated, and the laminate is fired.
JP 2007-324557 A

しかしながら、このような積層基板においては、上記の電磁的な遮蔽や、接地電位や電源の供給等をより確実とするために、2つ以上の層間に連続して接地導体層または電源導体層が形成されるとともに、接地導体層または電源導体層に取り囲まれてランドパターンが形成される場合があり、このような場合に、セラミック絶縁層の層間の密着不良(デラミネーション)やセラミック絶縁層のクラック等の不具合が発生しやすいという問題点があった。   However, in such a laminated substrate, in order to ensure the above-described electromagnetic shielding, ground potential, power supply, etc., a ground conductor layer or a power conductor layer is continuously provided between two or more layers. In some cases, a land pattern may be formed by being surrounded by the ground conductor layer or power supply conductor layer. In such a case, adhesion failure (delamination) between layers of the ceramic insulating layer or cracks in the ceramic insulating layer may occur. There has been a problem that defects such as these are likely to occur.

これは、接地導体層または電源導体層で取り囲まれたランドパターンの外縁付近では、ランドパターンの厚みや接地導体層または電源導体層の厚みの分、上下のセラミック絶縁層(セラミック絶縁層となるセラミックグリーンシート)の密着が妨げられやすいためである。   This is because, in the vicinity of the outer edge of the land pattern surrounded by the ground conductor layer or the power supply conductor layer, the upper and lower ceramic insulation layers (ceramics to be ceramic insulation layers) are divided by the thickness of the land pattern and the thickness of the ground conductor layer or the power supply conductor layer. This is because the adhesion of the green sheet is likely to be hindered.

また、貫通導体と上下に接続されたランドパターンの外縁が上下で重なると、このような外縁ではセラミック絶縁層(セラミックグリーンシート)とランドパターン(金属ペースト)との間に焼成時の収縮差に起因する応力等の応力が生じやすく、その応力が上下で重なるため、クラックが発生しやすくなる。   Also, if the outer edges of the land pattern connected to the top and bottom of the penetrating conductor overlap vertically, there is a difference in shrinkage during firing between the ceramic insulating layer (ceramic green sheet) and the land pattern (metal paste) at such an outer edge. Stresses such as stress are easily generated, and the stresses are superposed on each other, so that cracks are likely to occur.

特に、近年、高周波化にともない変動のない接地や安定した電源供給が必要なため、例えば6つ以上と、多数のセラミック絶縁層の層間に接地導体層や電源導体層を形成する場合がある。このような場合、前述した密着不良やクラックを発生させる原因になりやすい部分が上下の層間により多く連続するため、上記のような問題の発生が顕著なものとなっている。   In particular, since there is a need for grounding without fluctuation and stable power supply in recent years as the frequency increases, there are cases in which, for example, six or more ground conductor layers and power conductor layers are formed between a plurality of ceramic insulating layers. In such a case, the above-described problems are prominent because many of the portions that tend to cause the above-described poor adhesion and cracks continue in the upper and lower layers.

本発明は、上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、絶縁基体を形成するセラミック絶縁層の2つ以上の層間に連続して、貫通導体と接続されたランドパターンと、ランドパターンを取り囲む接地導体層とが形成されていたとしても、デラミネーションやセラミック絶縁層のクラック等の不具合の発生を効果的に抑制することが可能な積層基板を提供することにある。   The present invention has been completed in view of the above-mentioned problems of the prior art, and the object thereof is to connect with a through conductor continuously between two or more layers of a ceramic insulating layer forming an insulating base. To provide a multilayer substrate capable of effectively suppressing the occurrence of defects such as delamination and cracks in a ceramic insulating layer even when a land pattern and a ground conductor layer surrounding the land pattern are formed. is there.

本発明の積層基板は、3層以上のセラミック絶縁層が積層されて絶縁基体が形成され、前記セラミック絶縁層の層間のうち2つ以上の連続するものにそれぞれ接地導体層または電源導体層が上下に重なるように形成されるとともに、該接地導体層または電源導体層の間の前記セラミック絶縁層の前記接地導体層または電源導体層が形成されていない部分を厚み方向に貫通する貫通導体が前記接地導体層または電源導体層と電気的に絶縁されて形成され、前記貫通導体上下に接続されたランドパターンが形成されており、該ランドパターンの外縁が前記貫通導体の上下で重なっておらず、前記接地導体層または電源導体層は、前記ランドパターンを取り囲む内縁が前記貫通導体の上下で重なっておらず、前記セラミック絶縁層の同じ層間において、隣り合う前記貫通導体のそれぞれに接続された前記ランドパターンの大きさが互いに異なることを特徴とするものである。
In the multilayer substrate of the present invention, an insulating base is formed by laminating three or more ceramic insulating layers, and a ground conductor layer or a power conductor layer is vertically disposed on two or more successive layers of the ceramic insulating layers. And a through conductor penetrating in a thickness direction through a portion of the ceramic insulating layer between the ground conductor layer or the power conductor layer where the ground conductor layer or the power conductor layer is not formed. A land pattern is formed that is electrically insulated from the conductor layer or the power supply conductor layer and connected to the top and bottom of the through conductor, and the outer edges of the land pattern do not overlap the top and bottom of the through conductor , In the ground conductor layer or the power supply conductor layer, the inner edge surrounding the land pattern does not overlap the upper and lower sides of the through conductor, and is not between the same layers of the ceramic insulating layer. Te, the size of the land pattern connected to the respective adjacent said through conductor is to different from each other.

本発明の積層基板によれば、3層以上のセラミック絶縁層が積層されて絶縁基体が形成され、セラミック絶縁層の層間のうち2つ以上の連続するものにそれぞれ接地導体層または電源導体層が上下に重なるように形成されるとともに、接地導体層または電源導体層の間のセラミック絶縁層の接地導体層または電源導体層が形成されていない部分を厚み方向に貫通する貫通導体が接地導体層または電源導体層と電気的に絶縁されて形成され、貫通導体と上下に接続されたランドパターンが形成されており、ランドパターンの外縁が貫通導体の上下で重なっていないことから、上下のセラミック絶縁層の層間で、セラミック絶縁層同士の密着の妨げになる部分(ランドパターンの外縁)が分散されるため、上下のセラミック絶縁層を良好に密着させることができる。また、ランドパターンとセラミック絶縁層との間に生じる応力も上下の層間で作用する位置が重ならないため、セラミック絶縁層にクラックが生じることを抑制することができる。
According to the multilayer substrate of the present invention, three or more ceramic insulating layers are laminated to form an insulating base, and a ground conductor layer or a power conductor layer is provided on two or more continuous layers of the ceramic insulating layers. A through conductor that is formed so as to overlap vertically and penetrates the portion of the ceramic insulating layer between the ground conductor layer or the power conductor layer where the ground conductor layer or the power conductor layer is not formed in the thickness direction is a ground conductor layer or Since the land pattern is formed to be electrically insulated from the power supply conductor layer and connected to the through conductors in the upper and lower directions, the outer edges of the land pattern do not overlap the upper and lower sides of the through conductors. Since the part (outer edge of the land pattern) that hinders the adhesion between the ceramic insulation layers is dispersed between the two layers, the upper and lower ceramic insulation layers are adhered well. Rukoto can. In addition, since the stress acting between the land pattern and the ceramic insulating layer does not overlap at the position where the upper and lower layers act, the occurrence of cracks in the ceramic insulating layer can be suppressed.

したがって、本発明の積層基板によれば、絶縁基体を形成するセラミック絶縁層の2つ以上の層間に連続して、貫通導体と接続されたランドパターンと、ランドパターンを取り囲む接地導体層または電源導体層とが形成されていたとしても、デラミネーションやセラミック絶縁層のクラック等の不具合の発生を効果的に抑制することが可能な積層基板を提供することができる。   Therefore, according to the multilayer substrate of the present invention, the land pattern connected to the through conductor in succession between two or more layers of the ceramic insulating layer forming the insulating base, and the ground conductor layer or the power supply conductor surrounding the land pattern Even if the layer is formed, it is possible to provide a multilayer substrate capable of effectively suppressing the occurrence of defects such as delamination and cracks in the ceramic insulating layer.

また、本発明の積層基板は、上記構成において、接地導体層または電源導体層は、ランドパターンを取り囲む内縁が貫通導体の上下で重なっていない場合には、上下のセラミック絶縁層の層間で、セラミック絶縁層同士の密着を妨げたり、焼成時の収縮差に起因する応力等の応力が作用したりしやすい、ランドパターンを取り囲む接地導体層や電源導体層のランドパターンを取り囲む内縁の位置も上下で分散される。そのため、上下のセラミック絶縁層をより良好に密着させることができるとともに、セラミック絶縁層にクラックが生じることをより効果的に抑制することができる。   In the multilayer substrate of the present invention, in the above configuration, the ground conductor layer or the power supply conductor layer is formed between the upper and lower ceramic insulating layers between the upper and lower ceramic insulating layers when the inner edges surrounding the land pattern do not overlap the upper and lower sides of the through conductor. The position of the inner edge surrounding the land pattern surrounding the land pattern and the ground pattern of the power supply conductor layer that is easy to interfere with the adhesion between the insulating layers or to be affected by stress such as stress caused by the difference in shrinkage during firing Distributed. Therefore, the upper and lower ceramic insulating layers can be more closely adhered, and the occurrence of cracks in the ceramic insulating layer can be more effectively suppressed.

また、本発明の積層基板は、上記構成において、セラミック絶縁層の同じ層間において、隣り合う貫通導体のそれぞれに接続されたランドパターンの大きさが互いに異なる場合には、隣り合う貫通導体の間で、接地導体層や電源導体層の幅が部分的に狭くなることを抑制することができる。   Further, in the above-described configuration, the laminated substrate of the present invention has the same structure between the adjacent through conductors when the size of the land pattern connected to each of the adjacent through conductors is different between the same layers of the ceramic insulating layer. The width of the ground conductor layer and the power supply conductor layer can be suppressed from being partially narrowed.

すなわち、同じ貫通導体に接続しているランドパターンは、平面視したときにそれぞれの外縁同士が貫通導体の上下で重なることを防ぐために、一部のものが他よりも大きくなっている。そのため、大きいランドパターン同士が同じ層間において隣り合えば、その貫通導体の間において接地導体層や電源導体層の幅が狭くなり、電気抵抗が高くなって接地や電源の電位が不安定になる可能性がある。これに対して、上記のように、セラミック絶縁層の同じ層間において、隣り合う貫通導体のそれぞれに接続されたランドパターンの大きさを互いに異ならせておけば、同じ層間において大きいランドパターン同士が隣り合うことを防ぐことが容易であるため、接地導体層や電源導体層の幅が狭くなることを抑制して、接地や電源の電位をより安定させることができる。   That is, some of the land patterns connected to the same through conductor are larger than others in order to prevent the outer edges of the land patterns from overlapping above and below the through conductor when viewed in plan. For this reason, if large land patterns are adjacent to each other in the same layer, the width of the ground conductor layer and the power supply conductor layer between the through conductors may be narrowed, resulting in an increase in electrical resistance and unstable ground and power supply potentials. There is sex. On the other hand, as described above, if the sizes of the land patterns connected to each of the adjacent through conductors are different from each other in the same layer of the ceramic insulating layer, large land patterns are adjacent to each other in the same layer. Since it is easy to prevent matching, it is possible to suppress the width of the ground conductor layer and the power supply conductor layer from being narrowed, and to stabilize the potential of the ground and the power supply.

本発明の積層基板を添付の図面を参照しつつ詳細に説明する。図1は本発明の積層基板の実施の形態の一例を示す断面図である。図1において、1はセラミック絶縁層、2は3層以上のセラミック絶縁層1が積層されてなる絶縁基体、3は接地導体層または電源導体層、4は貫通導体、5はランドパターンある。これらセラミック絶縁層1(絶縁基体2),接地導体層または電源導体層3,貫通導体4およびランドパターン5により積層基板9が基本的に構成されている。この積層基板9は、例えば上面に電子部品(図示せず)が搭載されるとともに、この電子部品が貫通導体4およびランドパターン5を介して外部電気回路に電気的に接続される電子部品搭載用の基板として用いられる。   The multilayer substrate of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a laminated substrate of the present invention. In FIG. 1, 1 is a ceramic insulating layer, 2 is an insulating substrate formed by laminating three or more ceramic insulating layers 1, 3 is a ground conductor layer or power supply conductor layer, 4 is a through conductor, and 5 is a land pattern. The laminated substrate 9 is basically constituted by the ceramic insulating layer 1 (insulating base 2), the ground conductor layer or power source conductor layer 3, the through conductor 4, and the land pattern 5. For example, an electronic component (not shown) is mounted on the top surface of the multilayer substrate 9 and the electronic component is electrically connected to an external electric circuit through the through conductor 4 and the land pattern 5. Used as a substrate.

セラミック絶縁層1は、ガラスセラミック焼結体,酸化アルミニウム質焼結体,窒化アルミニウム質焼結体,ムライト質焼結体,窒化珪素質焼結体,炭化珪素質焼結体等のセラミック焼結材料から成る。   The ceramic insulating layer 1 is made of a ceramic sintered body such as a glass ceramic sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon nitride sintered body, or a silicon carbide sintered body. Made of material.

このセラミック絶縁層1が3層以上積層されて、絶縁基体2が形成されている。絶縁基体2は、後述するように連続して2つ以上が上下に重なるように接地導体層または電源導体層3を、セラミック絶縁層1の層間に形成する必要があるため、3層以上のセラミック絶縁層1が積層されて形成されている。   Three or more ceramic insulating layers 1 are laminated to form an insulating substrate 2. Since the insulating base 2 needs to form the ground conductor layer or the power source conductor layer 3 between the ceramic insulating layers 1 so that two or more of the insulating bases 2 continuously overlap each other as described later, three or more ceramic layers are required. The insulating layer 1 is formed by being laminated.

この絶縁基体2は、例えば各セラミック絶縁層1がガラスセラミック焼結体からなる場合であれば、ガラス等のガラス粉末と酸化アルミニウム等のセラミック粉末とからなる原料粉末に適当な有機バインダ,溶剤を添加混合して泥漿状となすとともに、これをドクターブレード法を採用してシート状となすことにより複数枚のセラミックグリーンシートを得て、しかる後、セラミックグリーンシートを切断加工や打ち抜き加工により適当な形状とするとともにこれを複数枚積層し、最後にこの積層されたセラミックグリーンシートを還元雰囲気中において約900〜1000℃の温度で焼成することによって製作される。   For example, if each ceramic insulating layer 1 is made of a glass ceramic sintered body, the insulating base 2 has a suitable organic binder and solvent for the raw material powder made of glass powder such as glass and ceramic powder such as aluminum oxide. Add and mix to make a mud-like shape, and then apply a doctor blade method to make it into a sheet shape to obtain a plurality of ceramic green sheets. Then, the ceramic green sheets are cut and punched appropriately. A plurality of the laminated green sheets are formed, and finally, the laminated ceramic green sheets are fired at a temperature of about 900 to 1000 ° C. in a reducing atmosphere.

この絶縁基体2は、半導体素子や容量素子,圧電振動子等の電子部品を搭載したり、内部にフィルタ用の回路素子や増幅回路素子等の電子部品素子を内蔵させたりするための基体として機能し、例えば上面や下面等(図1の例では上面)に電子部品が搭載される搭載部2aを有している。   The insulating base 2 functions as a base for mounting electronic components such as semiconductor elements, capacitive elements, and piezoelectric vibrators, and for incorporating electronic component elements such as filter circuit elements and amplifier circuit elements therein. For example, it has a mounting portion 2a on which an electronic component is mounted on the upper surface, the lower surface, or the like (upper surface in the example of FIG. 1).

また、この実施の形態の例において、絶縁基体2に配線導体6が形成されている。配線導体6のうち絶縁基体2の上面の搭載部2aに形成されている部分は、搭載部2aに搭載される電子部品(図示せず)を電気的に接続させるためのものであり、下面に形成されている部分は外部電気回路(図示せず)と電気的に接続させるためのものである。   In the example of this embodiment, a wiring conductor 6 is formed on the insulating base 2. A portion of the wiring conductor 6 formed on the mounting portion 2a on the upper surface of the insulating base 2 is for electrically connecting an electronic component (not shown) mounted on the mounting portion 2a. The formed part is for electrical connection with an external electric circuit (not shown).

接地導体層または電源導体層3は、例えば、搭載部2aに搭載される電子部品に接地電位や電源を供給したり、電子部品を電磁的に外部と遮蔽したりするためのものである。また、絶縁基体2に内蔵された電子部品素子(図示せず)の電磁的な遮蔽を行なう場合もある。絶縁基体2に内蔵された電子部品素子は、例えばセラミック絶縁層1の層間に形成されてフィルタ用の回路を構成するインダクタやキャパシタ等の導体層からなるものである。   The ground conductor layer or the power supply conductor layer 3 is for supplying, for example, a ground potential or a power source to an electronic component mounted on the mounting portion 2a, or electromagnetically shielding the electronic component from the outside. In addition, an electronic component element (not shown) built in the insulating base 2 may be electromagnetically shielded. The electronic component element built in the insulating base 2 is formed of a conductive layer such as an inductor or a capacitor that is formed between the ceramic insulating layers 1 and constitutes a filter circuit.

このような目的のため、つまり接地や電源の電位を十分に安定させたり、電磁的な遮蔽を確実に行なわせたりするために、接地または電源導体層3は、セラミック絶縁層1の層間のうち連続する2つ以上のものにそれぞれ、上下重なるように形成されている。   For this purpose, that is, in order to sufficiently stabilize the potential of the ground and the power supply or to ensure the electromagnetic shielding, the ground or power supply conductor layer 3 is provided between the ceramic insulating layers 1. Each of the two or more continuous objects is formed so as to overlap each other.

このような接地導体層または電源導体層3は、接地電位や電源の電子部品に対する供給の安定のために、例えばセラミック絶縁層1の層間のほぼ全面にわたるような広い面積で形成されている。   Such a ground conductor layer or power supply conductor layer 3 is formed in a wide area, for example, covering almost the entire surface between layers of the ceramic insulating layer 1 in order to stabilize the supply of the ground potential and the power supply to the electronic components.

この場合、例えば電子部品の信号を伝送する導電路である後述する貫通導体4およびランドパターン5との電気的な短絡を避けるために、接地導体層または電源導体層3は、ランドパターン5を取り囲んで形成されている。また、絶縁基体2の内部に配線導体6を形成する場合には、配線導体6の一部が接地導体層または電源導体層3が形成されていない部分を通過する場合には、接地導体層または電源導体3と配線導体6との間も電気的に絶縁しておく。 In this case, for example, the ground conductor layer or the power supply conductor layer 3 surrounds the land pattern 5 in order to avoid an electrical short circuit with a through conductor 4 and a land pattern 5, which will be described later, which are conductive paths for transmitting signals of electronic components. It is formed with. Further, when the wiring conductor 6 is formed inside the insulating substrate 2, when a part of the wiring conductor 6 passes through a portion where the ground conductor layer or the power supply conductor layer 3 is not formed, The power supply conductor 3 and the wiring conductor 6 are also electrically insulated.

貫通導体4は、セラミック絶縁層1を厚み方向に貫通して形成されており、絶縁基体2の内部を上下に導通する導電路として機能している。   The through conductor 4 is formed so as to penetrate the ceramic insulating layer 1 in the thickness direction, and functions as a conductive path that conducts the inside of the insulating base 2 up and down.

この実施の形態の例において、貫通導体4のうち絶縁基体2の上側のセラミック絶縁層1を貫通するものは、搭載部2aに形成された配線導体6と接続され、この配線導体6を、絶縁基体2の内部に形成された配線導体(図示せず)と電気的に接続している。   In the example of this embodiment, the through conductor 4 that penetrates the ceramic insulating layer 1 on the upper side of the insulating base 2 is connected to the wiring conductor 6 formed in the mounting portion 2a, and the wiring conductor 6 is insulated. It is electrically connected to a wiring conductor (not shown) formed inside the base 2.

また、貫通導体4のうち絶縁基体2の下側のセラミック絶縁層1を貫通するものは、例えば絶縁基体2の内部に形成された配線導体(図示せず)と接続され、この配線導体と絶縁基体2の下面の配線導体6とを電気的に接続している。   Further, the through conductor 4 that penetrates the ceramic insulating layer 1 on the lower side of the insulating base 2 is connected to, for example, a wiring conductor (not shown) formed inside the insulating base 2 and insulated from the wiring conductor. The wiring conductor 6 on the lower surface of the base 2 is electrically connected.

なお、図1に示す例では、貫通導体4は、絶縁基体2の上面や下面と絶縁基体2の内部との間に形成されているが、絶縁基体2の内部同士の間に、例えば絶縁基体2の内部に形成された配線導体同士の間を電気的に接続するように形成される場合もある。   In the example shown in FIG. 1, the through conductor 4 is formed between the upper surface and the lower surface of the insulating base 2 and the inside of the insulating base 2. 2 may be formed so as to be electrically connected to each other between the wiring conductors formed inside.

また、セラミック絶縁層1の層間には、貫通導体4と上下に接続されたランドパターン5が形成されている。ランドパターン5は、上下の貫通導体4同士の間の電気的な接続をより確実なものとするためのものである。すなわち、例えば直径が約75μm程度と細い貫通導体4同士を直接上下に接続させるよりも、例えば直径が約200μm程度と、比較的広いランドパターン5を介して上下の貫通導体4の電気的な接続を行なわせる方が、多少の位置ずれは許容されるため、接続が容易、且つ確実である。   In addition, land patterns 5 connected to the through conductors 4 are formed between the ceramic insulating layers 1. The land pattern 5 is for ensuring the electrical connection between the upper and lower through conductors 4. That is, for example, when the thin through conductors 4 having a diameter of about 75 μm are directly connected to each other, the upper and lower through conductors 4 are electrically connected to each other through a relatively wide land pattern 5. Since a slight misalignment is allowed, the connection is easy and reliable.

なお、ランドパターン5は、一定の距離をおいて接地導体層または電源導体層3に取り囲まれるように形成され、接地導体層または電源導体層3とは電気的に絶縁されている。   The land pattern 5 is formed so as to be surrounded by the ground conductor layer or the power supply conductor layer 3 at a certain distance, and is electrically insulated from the ground conductor layer or the power supply conductor layer 3.

これらの貫通導体4およびランドパターン5は、前述したように絶縁基体2の内部を上下に導通する導電路であり、例えば搭載部2aに搭載される電子部品を絶縁基体2の下面や側面等の外表面に電気的に導出するために形成されている。   The through conductors 4 and the land patterns 5 are conductive paths that vertically conduct the interior of the insulating base 2 as described above. For example, electronic components mounted on the mounting portion 2a are connected to the lower surface and side surfaces of the insulating base 2 and the like. It is formed to lead out electrically to the outer surface.

このような、接地導体層または電源導体層3,貫通導体4およびランドパターン5は、銅や銀,パラジウム,金,タングステン,モリブデン,マンガン等の金属材料により形成されている。また、これらの金属材料は、例えば絶縁基体2と一体的に焼成されてなるメタライズ導体の形態でセラミック絶縁層1に形成されている。   The ground conductor layer or power supply conductor layer 3, the through conductor 4, and the land pattern 5 are formed of a metal material such as copper, silver, palladium, gold, tungsten, molybdenum, or manganese. Further, these metal materials are formed on the ceramic insulating layer 1 in the form of a metallized conductor which is fired integrally with the insulating base 2, for example.

接地導体層または電源導体層3,貫通導体4およびランドパターン5は、例えば銅からなる場合であれば、銅の金属ペーストを絶縁基体2となるセラミックグリーンシートの表面およびあらかじめセラミックグリーンシートに金型加工等の加工手段で形成した貫通孔に印刷塗布,充填しておき、セラミックグリーンシートと同時焼成することにより形成される。   If the ground conductor layer or the power supply conductor layer 3, the through conductor 4 and the land pattern 5 are made of, for example, copper, a metal paste of copper is molded on the surface of the ceramic green sheet to be the insulating base 2 and the ceramic green sheet in advance. It is formed by printing, filling and filling the through-holes formed by processing means such as processing and co-firing with the ceramic green sheet.

また、この積層基板9において、ランドパターン5は、外縁が貫通導体4の上下で重なっていない。このようにランドパターン5の外縁が貫通導体4の上下で重なっていないことから、上下のセラミック絶縁層1の層間で、セラミック絶縁層1同士の密着の妨げになる部分(ランドパターン5の外縁)が分散され、上下のセラミック絶縁層1を良好に密着させることができる。   In the multilayer substrate 9, the land pattern 5 does not overlap the upper and lower sides of the through conductor 4. Since the outer edge of the land pattern 5 does not overlap the upper and lower sides of the through conductor 4 in this way, a portion that hinders the close contact between the ceramic insulating layers 1 between the upper and lower ceramic insulating layers 1 (the outer edge of the land pattern 5). Can be dispersed and the upper and lower ceramic insulating layers 1 can be satisfactorily adhered.

したがって、この積層基板9によれば、絶縁基体2を形成するセラミック絶縁層1の2つ以上の層間に連続して、貫通導体4と接続されたランドパターン5と、ランドパターン5を取り囲む接地導体層または電源導体層3とが形成されていたとしても、上下のセラミック絶縁層1の密着不良やセラミック絶縁層1のクラック等の不具合の発生を効果的に抑制することが可能な積層基板9を提供することができる。   Therefore, according to this multilayer substrate 9, the land pattern 5 connected to the through conductor 4 and the ground conductor surrounding the land pattern 5 continuously between two or more layers of the ceramic insulating layer 1 forming the insulating base 2. Even if the layer or the power supply conductor layer 3 is formed, the multilayer substrate 9 capable of effectively suppressing the occurrence of defects such as poor adhesion between the upper and lower ceramic insulating layers 1 and cracks in the ceramic insulating layer 1 is provided. Can be provided.

なお、セラミック絶縁層1は、例えば、ガラスセラミック焼結体からなる場合であれば50〜300μm程度の厚さで形成されており、接地導体層または電源導体層3やランドパターン5,配線導体6等の導体は10〜25μm程度の厚さで形成されている。   The ceramic insulating layer 1 is formed with a thickness of about 50 to 300 μm, for example, when it is made of a glass ceramic sintered body, and is composed of a ground conductor layer or power source conductor layer 3, a land pattern 5, and a wiring conductor 6. Etc. are formed with a thickness of about 10 to 25 μm.

また、セラミック絶縁層1の積層数は、搭載される電子部品の種類や個数,端子数等に応じて適宜設定される。例えば半導体素子(IC等)および容量素子(チップコンデンサ等)を搭載する積層基板9の場合であれば、3〜15層程度で、合計の厚さ(絶縁基体2の厚さ)が300〜1500μm程度になるような積層数で積層される。   The number of laminated ceramic insulating layers 1 is appropriately set according to the type and number of electronic components to be mounted, the number of terminals, and the like. For example, in the case of the multilayer substrate 9 on which a semiconductor element (IC or the like) and a capacitor element (chip capacitor or the like) are mounted, the total thickness (thickness of the insulating substrate 2) is 300 to 1500 μm with about 3 to 15 layers. The layers are stacked in such a number that the degree is reached.

このような積層基板9の場合であれば、接地導体層または電源導体層3のランドパターン5を取り囲む内縁とランドパターン5の外縁との間の距離は50〜150μm程度に設定すればよい。また、連続する上下のセラミック絶縁層1の層間で、互いのランドパターン5の外縁同士の間の距離は50〜300μm程度離すようにしておけばよい。   In the case of such a laminated substrate 9, the distance between the inner edge surrounding the land pattern 5 of the ground conductor layer or the power supply conductor layer 3 and the outer edge of the land pattern 5 may be set to about 50 to 150 μm. Further, the distance between the outer edges of the land patterns 5 between the upper and lower ceramic insulating layers 1 may be about 50 to 300 μm.

また、ランドパターン5は、貫通導体4と上下に接続されたものの外縁同士が重なっていなければ、上下のセラミック絶縁層1の密着不良やセラミック絶縁層1のクラックといった問題点を抑制する効果がある。そのため、ランドパターン5は、例えば2層以上のセラミック絶縁層1において貫通導体4と上下に接続されている(3つ以上が上下に連続している)場合でも、その外形寸法および形状の異なるものが2種類あり、これらが上下に交互に配置されていればよい。   In addition, the land pattern 5 is connected to the through conductor 4 in the vertical direction, but has an effect of suppressing problems such as poor adhesion between the upper and lower ceramic insulating layers 1 and cracks in the ceramic insulating layer 1 if the outer edges do not overlap each other. . Therefore, even when the land pattern 5 is connected to the through conductor 4 in the upper and lower directions in the ceramic insulating layer 1 having two or more layers (three or more are continuous in the vertical direction), the land pattern 5 has different external dimensions and shapes. There are two types, and these may be arranged alternately on the top and bottom.

また、ランドパターン5は、貫通導体4と上下に接続されたものが上下で重なっていないという条件を満たしていれば、外形寸法や形状の異なるものが3種類以上、上下に不規則に配置されているものでもよい。また、ランドパターン5は、全部が異なる外形寸法および形状を有するものでもよい。   Further, as long as the land pattern 5 satisfies the condition that the top and bottom connected to the through conductor 4 do not overlap vertically, three or more types having different external dimensions and shapes are randomly arranged vertically. It may be what you have. The land patterns 5 may all have different external dimensions and shapes.

なお、これらの条件でランドパターン5を形成する場合には、ある貫通導体4の上下で、その貫通導体4と上下に接続されたランドパターン5の外縁と、これらのランドパターン5をそれぞれ取り囲む接地導体層または電源導体層3の内縁とが重ならないようにすることが好ましい。   When the land pattern 5 is formed under these conditions, the upper and lower sides of a certain through conductor 4, the outer edge of the land pattern 5 connected to the through conductor 4 and the upper and lower sides, and the ground surrounding each of the land patterns 5. It is preferable not to overlap the inner edge of the conductor layer or the power supply conductor layer 3.

また、この積層基板9は、上記構成において、接地導体層または電源導体層3は、ランドパターン5を取り囲む内縁が貫通導体4の上下で重なっていない場合には、上下のセラミック絶縁層1の層間で、セラミック絶縁層1同士の密着を妨げたり、焼成時の収縮差に起因する応力等の応力が作用したりしやすい、ランドパターン5を取り囲む接地導体層または電源導体層3のランドパターン5を取り囲む内縁の位置も上下で分散される。そのため、上下のセラミック絶縁層1をより良好に密着させることができるとともに、セラミック絶縁層1にクラックが生じることをより効果的に抑制することができる。   Further, the laminated substrate 9 has the above-described configuration, and the ground conductor layer or the power source conductor layer 3 is formed between the upper and lower ceramic insulating layers 1 when the inner edges surrounding the land pattern 5 do not overlap the upper and lower sides of the through conductors 4. Therefore, the ground pattern 5 surrounding the land pattern 5 or the land pattern 5 of the power supply conductor layer 3 that is likely to interfere with the close contact between the ceramic insulating layers 1 or to be subjected to stress such as stress due to a difference in shrinkage during firing. The position of the surrounding inner edge is also distributed vertically. Therefore, the upper and lower ceramic insulating layers 1 can be more closely adhered, and the occurrence of cracks in the ceramic insulating layer 1 can be more effectively suppressed.

この場合、接地導体層または電源導体層3のランドパターン5を取り囲む内縁は、例えば前述したような材料および寸法でセラミック絶縁層1および絶縁基体2が形成されているような場合であれば、貫通導体4の上下で約50〜300μm程度離れていればよい。この距離は、例えば、前述した、貫通導体4と上下に接続されたランドパターン5の外縁同士の間の距離と同程度に設定してもよい。   In this case, the inner edge surrounding the land pattern 5 of the ground conductor layer or the power supply conductor layer 3 is penetrated if the ceramic insulating layer 1 and the insulating substrate 2 are formed with the materials and dimensions as described above, for example. What is necessary is just to be about 50-300 micrometers apart above and below the conductor 4. For example, this distance may be set to be approximately the same as the distance between the outer edges of the land pattern 5 connected to the through conductor 4 and the above-described land pattern 5.

なお、本発明の積層基板9は、例えば図2に断面図で示すように、貫通導体4が、絶縁基体2を上面から下面にかけて貫通しているものでもよい。   Note that the laminated substrate 9 of the present invention may be one in which the through conductor 4 penetrates the insulating base 2 from the upper surface to the lower surface, for example, as shown in a sectional view in FIG.

この場合、貫通導体4のうち絶縁基体2の上面および下面にそれぞれ露出する表面を、電子部品や外部電気回路との電気的な接続のための端子として用いるようにしてもよい。貫通導体4の露出する表面をこのような端子として用いる場合には、配線導体6を形成しなくても、搭載される電子部品を外部電気回路と電気的に接続させることもできる。   In this case, you may make it use the surface exposed to the upper surface and lower surface of the insulation base | substrate 2 among the penetration conductors 4 as a terminal for electrical connection with an electronic component or an external electric circuit, respectively. When the exposed surface of the through conductor 4 is used as such a terminal, the mounted electronic component can be electrically connected to an external electric circuit without forming the wiring conductor 6.

また、例えば図2に示すような7層以上のセラミック絶縁層1が積層されてなる絶縁基体2の上面から下面にかけて貫通するように貫通導体4が形成され、6つ以上の層間に連続してランドパターン5が形成されているような場合には、全部のランドパターン5の外縁が互いに重ならないようにしてもよい。この場合、例えば各ランドパターン5を円形状に形成し、平面視したときにこれらのランドパターン5が同心円状に並ぶようにすればよい。円形状のランドパターン5は、例えば配線導体6との電気的な接続や、電気的な短絡の防止等のために、部分的に円周の一部に凹凸状の部分があったり、若干歪んでいたりしてもよい。   Further, for example, a through conductor 4 is formed so as to penetrate from the upper surface to the lower surface of an insulating substrate 2 formed by laminating seven or more ceramic insulating layers 1 as shown in FIG. 2, and continuously between six or more layers. When the land pattern 5 is formed, the outer edges of all the land patterns 5 may not overlap each other. In this case, for example, each land pattern 5 may be formed in a circular shape, and these land patterns 5 may be arranged concentrically when viewed in plan. The circular land pattern 5 is partially distorted or slightly distorted, for example, for electrical connection with the wiring conductor 6 or prevention of an electrical short circuit. You may go out.

また、セラミック絶縁層1の層数が例えば15層を超えるように多くなり、全部の層間にランドパターン5とそれを取り囲む接地導体層または電源導体層3とが形成されるような場合には、積層基板9としての小型化や必要な接地導体層または電源導体層3の面積の確保等を図りながら、全部のランドパターン5の外縁を重ならないようにすることが難しくなる可能性がある。このような場合には、例えば図3に断面図として示すように、数種類(図3に示す例では4種類)の寸法のランドパターン5を外形寸法が大きい(または小さい)順に配置して、この配置パターンを繰り返すようにすればよい。なお、図3は本発明の積層基板9の実施の形態の他の例を示す要部拡大断面図である。図3において図1と同様の部位には同様の符号を付している。   Further, when the number of ceramic insulating layers 1 is increased to exceed, for example, 15 layers, and the land pattern 5 and the ground conductor layer or the power supply conductor layer 3 surrounding the land pattern 5 are formed between all layers, It may be difficult to prevent the outer edges of all the land patterns 5 from overlapping while reducing the size of the multilayer substrate 9 and securing the necessary ground conductor layer or power supply conductor layer 3 area. In such a case, for example, as shown in a cross-sectional view in FIG. 3, land patterns 5 of several types (four in the example shown in FIG. 3) are arranged in order of increasing (or decreasing) outer dimensions, and this The arrangement pattern may be repeated. FIG. 3 is an enlarged cross-sectional view of a main part showing another example of the embodiment of the laminated substrate 9 of the present invention. In FIG. 3, the same parts as those in FIG.

なお、この図3に示すような、セラミック絶縁層1の積層数の多い積層基板9は、積層基板9としての薄型化等のために、各セラミック絶縁層1の厚みが50μm程度以下と非常に薄い場合がある。このような場合には、層間の密着不良をより有効に抑制する上で、接地導体層または電源導体層3やランドパターン5,配線導体6等の導体も10μm程度に薄く形成することが好ましい。   As shown in FIG. 3, a laminated substrate 9 having a large number of laminated ceramic insulating layers 1 has a thickness of about 50 μm or less for each ceramic insulating layer 1 in order to reduce the thickness of the laminated substrate 9. It may be thin. In such a case, it is preferable to form conductors such as the ground conductor layer or the power supply conductor layer 3, the land pattern 5, and the wiring conductor 6 as thin as about 10 μm in order to more effectively suppress the adhesion failure between the layers.

また、接地導体層または電源導体層3を上下に接続するために、貫通導体4とは別に、セラミック絶縁層1を厚み方向に貫通する接続導体7を形成してもよい。また、接続導体7は、一端(例えば下端)が接地導体層または電源導体層3と接続し、他端(例えば上端)が絶縁基体2の上面等に露出するようなものでもよい。   Further, in order to connect the ground conductor layer or the power supply conductor layer 3 up and down, a connection conductor 7 that penetrates the ceramic insulating layer 1 in the thickness direction may be formed separately from the through conductor 4. Further, the connection conductor 7 may have one end (for example, the lower end) connected to the ground conductor layer or the power supply conductor layer 3 and the other end (for example, the upper end) exposed to the upper surface of the insulating base 2 or the like.

また、本発明の積層基板9は、例えば図4および図5に示すように、セラミック絶縁層1の同じ層間において、隣り合う貫通導体4のそれぞれに接続されたランドパターン5の大きさが互いに異なる場合には、隣り合う貫通導体4の間で、接地導体層や電源導体層3の幅が部分的に狭くなることを抑制することができる。なお、図4は、本発明の積層基板9の実施の形態の他の例を示す断面図であり、図5(a)および(b)は、それぞれ図4に示す積層基板9のA−A線およびB−B線における断面図である。図4および図5において、図1と同様の部位には同様の符号を付している。   Further, in the multilayer substrate 9 of the present invention, for example, as shown in FIGS. 4 and 5, the size of the land pattern 5 connected to each of the adjacent through conductors 4 is different between the same layers of the ceramic insulating layer 1. In this case, it is possible to prevent the width of the ground conductor layer and the power supply conductor layer 3 from being partially narrowed between the adjacent through conductors 4. FIG. 4 is a cross-sectional view showing another example of the embodiment of the multilayer substrate 9 of the present invention. FIGS. 5A and 5B are AA of the multilayer substrate 9 shown in FIG. It is sectional drawing in a line and a BB line. 4 and 5, the same parts as those in FIG. 1 are denoted by the same reference numerals.

すなわち、同じ貫通導体4に接続しているランドパターン5は、それぞれの外縁が貫通導体4の上下で重なることを防ぐために、一部のものが他よりも大きくなっている。そのため、大きいランドパターン5同士が同じ層間において隣り合えば、その貫通導体4の間において接地導体層や電源導体層3の幅が狭くなり、電気抵抗が高くなって接地や電源の電位が不安定になる可能性がある。これに対して、上記のように、セラミック絶縁層1の同じ層間において、隣り合う貫通導体4のそれぞれに接続されたランドパターン5の大きさを互いに異ならせておけば、同じ層間において大きいランドパターン5同士が隣り合うことを防ぐことが容易であるため、接地導体層や電源導体層3の幅が狭くなることを抑制して、接地や電源の電位をより安定させることができる。   That is, some of the land patterns 5 connected to the same through conductor 4 are larger than others in order to prevent the outer edges of the land patterns 5 from overlapping each other above and below the through conductor 4. Therefore, if the large land patterns 5 are adjacent to each other in the same layer, the width of the ground conductor layer and the power supply conductor layer 3 between the through conductors 4 becomes narrow, the electric resistance becomes high, and the potential of the ground and the power supply becomes unstable. There is a possibility. On the other hand, as described above, if the sizes of the land patterns 5 connected to the respective adjacent through conductors 4 are different from each other in the same layer of the ceramic insulating layer 1, a large land pattern is formed in the same layer. Since it is easy to prevent 5 from adjoining, it can suppress that the width | variety of a grounding conductor layer or the power supply conductor layer 3 becomes narrow, and can stabilize the electric potential of grounding or a power supply.

例えば、積層基板9において、貫通導体4の直径が75μmで、隣り合う貫通導体4の外縁同士の間隔が450μmのときに、同じ層間においてそれぞれの貫通導体4に接続されたランドパターン5がともに直径約200μm(半径が100μm)の円形状パターンであり、ランドパターン5(外縁)と接地導体層または電源導体層3(内縁)との間の距離が50μmであれば、隣り合う貫通導体4の間における接地導体層または電源導体層3の幅は、450−(100−75/2)×2−(50×2)=225μmになる。   For example, in the multilayer substrate 9, when the diameter of the through conductor 4 is 75 μm and the interval between the outer edges of the adjacent through conductors 4 is 450 μm, both the land patterns 5 connected to the respective through conductors 4 in the same layer have the diameter. If the distance between the land pattern 5 (outer edge) and the ground conductor layer 3 or the power supply conductor layer 3 (inner edge) is 50 μm, it is a circular pattern with a radius of about 200 μm (radius is 100 μm). The width of the ground conductor layer or the power supply conductor layer 3 is 450− (100−75 / 2) × 2− (50 × 2) = 225 μm.

この積層基板9において、隣り合う両方のランドパターン5の直径を、それぞれ貫通導体4の上または下の他のランドパターン5との平面視したときの外縁同士の間の距離を50μm離すために、同じ層間においてランドパターン5の直径をそれぞれ300μmに大きくした場合には、隣り合う貫通導体4の間における接地導体層または電源導体層3の幅は、450−(150−75/2)×2−(50×2)=125μmになる。そのため、接地導体層または電源導体層3は、厚みが一定であれば、この幅が狭い部分において抵抗が約1.8(225/125)倍に大きくなる。   In this laminated substrate 9, in order to separate the diameters of both adjacent land patterns 5 from each other by 50 μm between the outer edges when viewed in plan with the other land patterns 5 above or below the through conductors 4, respectively. When the diameter of the land pattern 5 is increased to 300 μm between the same layers, the width of the ground conductor layer or the power supply conductor layer 3 between the adjacent through conductors 4 is 450− (150−75 / 2) × 2−2. (50 × 2) = 125 μm. Therefore, if the thickness of the ground conductor layer or the power supply conductor layer 3 is constant, the resistance increases about 1.8 (225/125) times in the narrow portion.

なお、このような抵抗の増大は、面積が比較的広い接地導体層または電源導体層3の狭い範囲ではあるものの、その部分が電流の流れる経路であるときに抵抗が約1.8倍になると、その部分が妨げになって電流が通りにくくなる。そのため、電気特性の低下等の原因となり得る。また、そのように幅の狭い部分が1つの接地導体層または電源導体層3の中に複数存在すると、さらに抵抗が大きくなるため、その接地導体層または電源導体層3の接地電位または電源の電位が不安定となる可能性が大きくなる。   Such an increase in resistance is in a narrow area of the ground conductor layer or the power supply conductor layer 3 having a relatively large area, but when the resistance is about 1.8 times when that portion is a current flow path, A part becomes obstructed and current becomes difficult to pass. Therefore, it may cause a decrease in electrical characteristics. Further, when there are a plurality of such narrow portions in one ground conductor layer or power supply conductor layer 3, the resistance further increases, and therefore the ground potential of the ground conductor layer or power supply conductor layer 3 or the potential of the power supply Is likely to be unstable.

これに対して、同じ層間において、隣り合う貫通導体4の一方の貫通導体4に接続されているランドパターン5の直径を300μmにしたときに、他方の貫通導体4に接続されているランドパターン5の直径を100μmにすれば、隣り合う貫通導体4の間における接地導体層または電源導体層3の幅は、450−(150−75/2)−(50−75/2)−(50×2)=225μmになるので、抵抗の増加を抑えることができる。   On the other hand, when the diameter of the land pattern 5 connected to one through conductor 4 of the adjacent through conductors 4 is 300 μm in the same layer, the land pattern 5 connected to the other through conductor 4 is used. The diameter of the ground conductor layer or the power supply conductor layer 3 between the adjacent through conductors 4 is 450− (150−75 / 2) − (50−75 / 2) − (50 × 2). ) = 225 μm, so that an increase in resistance can be suppressed.

なお、このような接地導体層または電源導体層3の幅が狭くなることによる抵抗の増加を防ぐために、ランドパターン5の外縁と、そのランドパターン5を囲む接地導体層または電源導体層3の内縁との間の距離を、例えば前述のような値(50〜150μm程度)よりも狭くすることも考えられる。しかし、ランドパターン5(外縁)と接地導体層または電源導体層3(内縁)との間の距離を狭くした場合には、両者の間で電気絶縁性が低下する可能性があり、積層基板9の信頼性を高くする上では適していない。   In order to prevent an increase in resistance due to such a narrow width of the ground conductor layer or power supply conductor layer 3, the outer edge of the land pattern 5 and the inner edge of the ground conductor layer or power supply conductor layer 3 surrounding the land pattern 5 are used. It is also conceivable that the distance between and is made narrower than the above-mentioned value (about 50 to 150 μm), for example. However, when the distance between the land pattern 5 (outer edge) and the ground conductor layer or the power supply conductor layer 3 (inner edge) is narrowed, there is a possibility that the electrical insulation between them decreases, and the laminated substrate 9 It is not suitable for increasing the reliability.

酸化ケイ素−酸化マグネシウム−酸化マグネシウム系のガラス材料および酸化アルミニウムを主原料とするガラスセラミック焼結体からなる、1辺の長さが12mmの正方形板状で、厚さが100μmのセラミック絶縁層を12層積層してなる絶縁基体に、最上層から最下層までセラミック絶縁層を連続して貫通する貫通導体と、各セラミック絶縁層の貫通導体と上下に接続するランドパターンと、各セラミック絶縁層の層間(11の層間)それぞれのほぼ全面にわたる接地導体層とを形成して、本発明の積層基板を作製した。   A ceramic insulating layer made of a silicon oxide-magnesium oxide-magnesium oxide glass material and a glass ceramic sintered body mainly made of aluminum oxide and having a square plate shape with a side length of 12 mm and a thickness of 100 μm. 12 layers of insulating substrate, through conductors that continuously penetrate the ceramic insulation layer from the top layer to the bottom layer, land patterns that connect the through conductors of each ceramic insulation layer up and down, and each ceramic insulation layer A grounding conductor layer covering almost the entire surface of each of the layers (11 layers) was formed to produce the multilayer substrate of the present invention.

この積層基板において、貫通導体は直径が100μmの円柱状に形成し、ランドパターンは、直径が約250μmの円形状ものと、直径が約150μmの円形状のものとの2種類を形成した。この直径の異なるランドパターンを上下に交互に配置して、貫通導体と上下に接続されたランドパターンの外縁が上下で重ならないようにした。上下のランドパターンの外縁同士の間の距離は約50μmとした。また、ランドパターンと接地導体層とは100μmの幅で離し、互いに電気的に絶縁させた。   In this laminated substrate, the through conductor was formed in a cylindrical shape having a diameter of 100 μm, and the land pattern was formed in two types, a circular shape having a diameter of about 250 μm and a circular pattern having a diameter of about 150 μm. The land patterns having different diameters are alternately arranged up and down so that the outer edges of the land patterns connected to the through conductors do not overlap with each other. The distance between the outer edges of the upper and lower land patterns was about 50 μm. The land pattern and the ground conductor layer were separated by a width of 100 μm and were electrically insulated from each other.

また、ランドパターンおよび接地導体層は、いずれも15μmの厚さで形成した。   The land pattern and the ground conductor layer were both formed with a thickness of 15 μm.

絶縁基体は、酸化ケイ素−酸化マグネシウム−酸化マグネシウム系のガラス材料の粉末に酸化アルミニウムの粉末を添加した原料粉末を有機溶剤,バインダとともに混練した後、ドクターブレード法によりセラミックグリーンシートを成形し、このセラミックグリーンシートを12層積層した後、積層体を950℃で焼成することにより作製した。   The insulating substrate is made by mixing a raw material powder obtained by adding aluminum oxide powder to silicon oxide-magnesium oxide-magnesium oxide glass material powder together with an organic solvent and a binder, and then molding a ceramic green sheet by a doctor blade method. After 12 layers of ceramic green sheets were laminated, the laminate was produced by firing at 950 ° C.

貫通導体,ランドパターンおよび接地導体層は、銅のメタライズ層を用いて、セラミックグリーンシートの積層体との同時焼成により形成した。銅のメタライズ層は、銅の粉末に有機溶剤を添加,混練して作製した金属ペーストを、セラミックグリーンシートの表面、およびあらかじめセラミックグリーンシートに形成しておいた貫通孔にスクリーン印刷法で印刷塗布または充填して形成した。貫通孔は、金属ピンを用いた加工方法により形成した。   The through conductor, the land pattern, and the ground conductor layer were formed by cofiring with a ceramic green sheet laminate using a copper metallized layer. The copper metallized layer is a screen-printed printing method using a metal paste prepared by adding and kneading an organic solvent to copper powder to the surface of the ceramic green sheet and the through holes previously formed in the ceramic green sheet. Or it was formed by filling. The through hole was formed by a processing method using a metal pin.

また、比較例として、実施例の積層基板と同様の材料および寸法で作製した絶縁基体に、実施例の積層基板と同様の貫通導体および接地導体を形成するとともに、貫通導体と上下に接続されたランドパターンの形状および寸法を上下で同じとして(ランドパターンの外縁が上下で重なるようにして)形成してなる積層基板を作製した。   In addition, as a comparative example, a through conductor and a ground conductor similar to those of the multilayer substrate of the example were formed on an insulating base made of the same material and dimensions as those of the multilayer substrate of the example, and connected to the through conductor vertically. A layered substrate formed by making the shape and dimensions of the land pattern the same in the upper and lower sides (with the outer edges of the land pattern overlapping in the upper and lower sides) was produced.

この実施例および比較例の積層基板を、ヒーターブロック上(設定温度:450℃)で加熱した後、セラミック絶縁層の層間の密着性(密着不良の有無)の確認およびセラミック絶縁層に生じているクラックの有無の確認を行なった。密着不良およびクラックの有無の確認は、超音波探傷で絶縁基体の内部を検査することにより行なった。超音波探傷は層間の密着不良やセラミック絶縁層のクラックに応じて生じた絶縁基体の内部の微細な空間を超音波の反射パターンで探知する検査方法であり、日立建機株式会社製の超音波探傷装置を用いて実施した。   After the laminated substrates of this example and the comparative example were heated on the heater block (set temperature: 450 ° C.), the adhesion between the ceramic insulating layers (presence of adhesion failure) was confirmed and occurred in the ceramic insulating layer. The presence or absence of cracks was confirmed. The presence or absence of adhesion failure and cracks were confirmed by inspecting the inside of the insulating substrate by ultrasonic flaw detection. Ultrasonic flaw detection is an inspection method that uses an ultrasonic reflection pattern to detect minute spaces inside an insulating substrate that are generated in response to poor adhesion between layers or cracks in a ceramic insulating layer. It carried out using the flaw detector.

また、超音波探傷で異常(絶縁基体の内部の空間と判断される超音波の反射)が検知された積層基板については、異常が検知された部分で絶縁基体を切断するとともに切断面を研磨し、実際に観察して密着不良やクラックを確認した。   For laminated substrates in which abnormalities (reflection of ultrasonic waves determined to be the space inside the insulating substrate) are detected by ultrasonic flaw detection, the insulating substrate is cut and the cut surface is polished at the portion where the abnormality is detected. Actually, the adhesion failure and the crack were confirmed by observation.

なお、試験個数は、実施例および比較例ともに100個とした。   The number of tests was 100 in both the examples and comparative examples.

その結果、本発明の実施例である、貫通導体と上下に接続されたランドパターンの外縁が上下で重なっていない積層基板では、上下のセラミック絶縁層の密着不良およびセラミック絶縁層のクラックのいずれも発生していなかった。これに対し、比較例では、約12個の積層基板において、上下のセラミック絶縁層(それぞれ1〜3つ程度の層間)に密着不良が発生していた。また、比較例では、セラミック絶縁層にクラックは発生していなかったものの、2個の積層基板において、それぞれ1箇所ずつ、セラミック絶縁層の層間と接する部分に微細な剥離を生じているものが見られた。   As a result, in the multilayer substrate in which the outer edges of the land pattern connected to the through conductor and the top and bottom are not vertically overlapped, which is an embodiment of the present invention, both the adhesion failure of the upper and lower ceramic insulating layers and the crack of the ceramic insulating layer are both It did not occur. On the other hand, in the comparative example, adhesion failure occurred in the upper and lower ceramic insulating layers (about 1 to 3 layers each) in about 12 laminated substrates. Further, in the comparative example, although no crack was generated in the ceramic insulating layer, it was observed that in each of the two laminated substrates, fine peeling occurred at a portion in contact with the interlayer of the ceramic insulating layer. It was.

この結果、本発明の積層基板においては、従来の積層基板に比べて、セラミック絶縁層の層間に密着不良やセラミック絶縁層のクラックといった問題点の抑制が可能であることがわかる。   As a result, it can be seen that in the multilayer substrate of the present invention, it is possible to suppress problems such as poor adhesion and cracks in the ceramic insulating layer between the layers of the ceramic insulating layer as compared with the conventional multilayer substrate.

本発明の積層基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the laminated substrate of this invention. 本発明の積層基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the laminated substrate of this invention. 本発明の積層基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the laminated substrate of this invention. 本発明の積層基板の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the laminated substrate of this invention. (a)は図4のA−A線における断面を拡大して示す要部拡大断面図であり、(b)は図4のB−B線における断面を拡大して示す要部拡大断面図である。(A) is the principal part expanded sectional view which expands and shows the cross section in the AA line of FIG. 4, (b) is the principal part expanded sectional view which expands and shows the cross section in the BB line of FIG. is there.

符号の説明Explanation of symbols

1・・・・セラミック絶縁層
2・・・・絶縁基体
2a・・・搭載部
3・・・・接地導体層または電源導体層
4・・・・貫通導体
5・・・・ランドパターン
6・・・・配線導体
7・・・・接続導体
9・・・・積層基板
DESCRIPTION OF SYMBOLS 1 ... Ceramic insulation layer 2 ... Insulation base 2a ... Mounting part 3 ... Grounding conductor layer or power supply conductor layer 4 ... Penetration conductor 5 ... Land pattern 6 ... ..Wiring conductor 7 ... Connection conductor 9 ... Laminated substrate

Claims (1)

3層以上のセラミック絶縁層が積層されて絶縁基体が形成され、前記セラミック絶縁層の層間のうち2つ以上の連続するものにそれぞれ接地導体層または電源導体層が上下に重なるように形成されるとともに、該接地導体層または電源導体層の間の前記セラミック絶縁層の前記接地導体層または電源導体層が形成されていない部分を厚み方向に貫通する貫通導体が前記接地導体層または電源導体層と電気的に絶縁されて形成され、
前記貫通導体上下に接続されたランドパターンが形成されており、該ランドパターンの外縁が前記貫通導体の上下で重なっておらず、
前記接地導体層または電源導体層は、前記ランドパターンを取り囲む内縁が前記貫通導体の上下で重なっておらず、
前記セラミック絶縁層の同じ層間において、隣り合う前記貫通導体のそれぞれに接続された前記ランドパターンの大きさが互いに異なることを特徴とする積層基板。
Three or more ceramic insulating layers are laminated to form an insulating base, and two or more continuous layers of the ceramic insulating layers are formed such that a ground conductor layer or a power supply conductor layer overlaps each other. In addition, a through conductor penetrating in a thickness direction through a portion of the ceramic insulating layer between the ground conductor layer or the power conductor layer where the ground conductor layer or the power conductor layer is not formed is the ground conductor layer or the power conductor layer. Formed electrically insulated,
Land patterns connected to the top and bottom of the through conductor are formed, and the outer edges of the land pattern do not overlap with the top and bottom of the through conductor ,
The ground conductor layer or the power supply conductor layer has an inner edge surrounding the land pattern that does not overlap above and below the through conductor,
The multilayer substrate , wherein the size of the land pattern connected to each of the adjacent through conductors is different from each other in the same layer of the ceramic insulating layer .
JP2008325051A 2008-01-28 2008-12-22 Laminated board Expired - Fee Related JP5294828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325051A JP5294828B2 (en) 2008-01-28 2008-12-22 Laminated board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008015808 2008-01-28
JP2008015808 2008-01-28
JP2008325051A JP5294828B2 (en) 2008-01-28 2008-12-22 Laminated board

Publications (2)

Publication Number Publication Date
JP2009206495A JP2009206495A (en) 2009-09-10
JP5294828B2 true JP5294828B2 (en) 2013-09-18

Family

ID=41148410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325051A Expired - Fee Related JP5294828B2 (en) 2008-01-28 2008-12-22 Laminated board

Country Status (1)

Country Link
JP (1) JP5294828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362603B2 (en) 2010-06-30 2016-06-07 Nec Corporation Via structures and compact three-dimensional filters with the extended low noise out-of-band area
JP6165436B2 (en) * 2012-12-19 2017-07-19 新電元工業株式会社 Multilayer substrate and method for designing multilayer substrate
US10178764B2 (en) * 2017-06-05 2019-01-08 Waymo Llc PCB optical isolation by nonuniform catch pad stack

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273455A (en) * 1994-03-30 1995-10-20 Oki Electric Ind Co Ltd Ceramic multilayer substrate and manufacturing method thereof
JP3737597B2 (en) * 1997-02-07 2006-01-18 日本特殊陶業株式会社 Flip chip mounting circuit board
JP3987664B2 (en) * 1999-09-29 2007-10-10 京セラ株式会社 Wiring board
JP3973402B2 (en) * 2001-10-25 2007-09-12 株式会社日立製作所 High frequency circuit module
JP3825350B2 (en) * 2002-03-27 2006-09-27 京セラ株式会社 Ceramic wiring board
JP2004356564A (en) * 2003-05-30 2004-12-16 Murata Mfg Co Ltd Ceramic multilayered circuit board and its manufacturing method
JP4551730B2 (en) * 2004-10-15 2010-09-29 イビデン株式会社 Multilayer core substrate and manufacturing method thereof
JP4683269B2 (en) * 2005-03-23 2011-05-18 Tdk株式会社 Manufacturing method of multilayer ceramic substrate

Also Published As

Publication number Publication date
JP2009206495A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5294828B2 (en) Laminated board
JP6128209B2 (en) MULTILAYER WIRING BOARD, MANUFACTURING METHOD THEREOF, AND PROBE CARD BOARD
JP5627391B2 (en) Multiple wiring board
JP5558321B2 (en) Multiple wiring board
JP2005210028A (en) Multi-molded wiring board
JP6487240B2 (en) Wiring board
JP2005136232A (en) Wiring board
JP6250943B2 (en) Wiring board
JP3911466B2 (en) Electronic component mounting substrate and electronic component mounting structure
JP5956185B2 (en) Multiple wiring board
JP5400993B2 (en) Multilayer ceramic wiring board and manufacturing method thereof
JP5036591B2 (en) Wiring board
JP4177849B2 (en) Wiring board for mounting electronic parts and electronic device
CN102655055A (en) Method for manufacturing lamination capacitor
JP2008159731A (en) Substrate for mounting electronic component
JP2005159125A (en) Wiring board
JP6735185B2 (en) Multilayer wiring board and electronic device
JP2013115347A (en) Differential transmission line and multilayer wiring board
JP3935030B2 (en) Electronic component mounting substrate and electronic component mounting structure
JP6258679B2 (en) Wiring board and electronic device
JP2005136235A (en) Wiring board
JP2000223614A (en) Ceramic multilayer wiring board
JP4953684B2 (en) WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP2006270081A (en) Wiring board
JPH11312752A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees