JP6735185B2 - Multilayer wiring board and electronic device - Google Patents

Multilayer wiring board and electronic device Download PDF

Info

Publication number
JP6735185B2
JP6735185B2 JP2016165175A JP2016165175A JP6735185B2 JP 6735185 B2 JP6735185 B2 JP 6735185B2 JP 2016165175 A JP2016165175 A JP 2016165175A JP 2016165175 A JP2016165175 A JP 2016165175A JP 6735185 B2 JP6735185 B2 JP 6735185B2
Authority
JP
Japan
Prior art keywords
layer
power supply
ground layer
wiring board
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016165175A
Other languages
Japanese (ja)
Other versions
JP2018032795A (en
Inventor
川畑 幸喜
幸喜 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016165175A priority Critical patent/JP6735185B2/en
Publication of JP2018032795A publication Critical patent/JP2018032795A/en
Application granted granted Critical
Publication of JP6735185B2 publication Critical patent/JP6735185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、ノイズの影響が低減された多層配線基板および電子装置に関する。 The present invention relates to a multilayer wiring board and an electronic device in which the influence of noise is reduced.

無線通信装置、撮像装置および携帯端末装置などの多くの分野で信号処理速度が大きく向上しており、処理対象となる信号に与えるノイズの影響を低減する必要性も大きくなっている。 In many fields such as a wireless communication device, an imaging device, and a mobile terminal device, the signal processing speed has been greatly improved, and the need to reduce the influence of noise on the signal to be processed has also increased.

高速の信号処理を行う演算素子、撮像素子などを搭載する多層配線基板においてもノイズの影響を低減する手段として、例えば多層配線基板内の電源層および接地層の低抵抗化がある。低抵抗化する手段としては、電源層および接地層の構成材料を電気抵抗率が比較的低い材料とする手段、電源層および接地層の厚さを厚くする手段などがある。 As a means for reducing the influence of noise even in a multilayer wiring board having an arithmetic element for performing high-speed signal processing, an imaging element, etc., there is, for example, a reduction in resistance of a power supply layer and a ground layer in the multilayer wiring board. As means for reducing the resistance, there are means for making the constituent materials of the power supply layer and the ground layer a material having a relatively low electric resistivity, means for increasing the thickness of the power supply layer and the ground layer, and the like.

多層配線基板には、絶縁層がセラミック材料からなるセラミック配線基板、絶縁層が有機材料からなる有機配線基板がある。セラミック配線基板では、電源層および接地層の厚さを厚くするには、特許文献1に記載されているように多数の開口が設けられた、いわゆるメッシュ状または格子状とすることがよいとされる。 The multilayer wiring board includes a ceramic wiring board whose insulating layer is made of a ceramic material and an organic wiring board whose insulating layer is made of an organic material. In the ceramic wiring board, in order to increase the thickness of the power supply layer and the ground layer, it is said that a so-called mesh shape or a grid shape having a large number of openings as described in Patent Document 1 is preferable. It

特開2000−223614号公報JP, 2000-223614, A

さらなる低抵抗化を目指した場合、電源層および接地層の厚さをさらに厚くすることが考えられる。しかしながら、電源層および接地層の厚さを厚くすることで、開口が貫通孔の如く深いものとなり、開口内に絶縁層が落ち込んで多層配線基板の表面に凹凸が生じるおそれがある。また、開口周辺での絶縁層間の接合不良、層間の剥離などが生じるおそれもある。 In order to further reduce the resistance, it is possible to further increase the thickness of the power supply layer and the ground layer. However, by increasing the thickness of the power supply layer and the ground layer, the opening becomes deep like a through hole, and the insulating layer may fall into the opening to cause unevenness on the surface of the multilayer wiring board. In addition, there is a possibility that a defective connection between the insulating layers around the opening or peeling between the layers may occur.

本発明の目的は、ノイズの影響が低減され、電気特性が向上した多層配線基板および電子装置を提供することである。 An object of the present invention is to provide a multilayer wiring board and an electronic device in which the influence of noise is reduced and electric characteristics are improved.

本発明の一つの態様の多層配線基板は、電気絶縁性材料で構成される平板状の絶縁性基体と、
前記絶縁性基体に埋設される、電気信号を伝送する信号伝送配線と、
前記絶縁性基体に埋設される、予め定められる電源電位が付与される電源層と、
前記絶縁性基体に埋設される、接地電位が付与される接地層と、を備え、
前記電源層および前記接地層のうち、少なくともいずれか一方には、厚さ方向に貫通する複数の貫通孔が設けられており、
前記複数の貫通孔を充填した充填部材であって、前記電源層および前記接地層の電気抵抗率よりも大きな電気抵抗率を有する充填部材をさらに備えることを特徴とする。
A multilayer wiring board according to one aspect of the present invention includes a flat insulating substrate made of an electrically insulating material,
A signal transmission wiring embedded in the insulating substrate for transmitting an electric signal;
A power supply layer which is embedded in the insulating substrate and to which a predetermined power supply potential is applied,
A ground layer to which a ground potential is applied, which is embedded in the insulating substrate,
At least one of the power supply layer and the ground layer is provided with a plurality of through holes penetrating in the thickness direction,
A filling member filling the plurality of through holes, further comprising a filling member having an electric resistivity larger than that of the power supply layer and the ground layer.

本発明の一つの態様の多層配線基板によれば、電源層および前記接地層のうち、少なくともいずれか一方に設けられた貫通孔に、高抵抗の充填部材を充填したことにより、電源層および前記接地層のうち、少なくともいずれか一方を低抵抗化することができ、多層配線基板の表面凹凸、絶縁層間の接合不良および絶縁層間の剥離を抑制した上で、ノイズの影響を低減して、電気特性を向上させることができる。 According to the multilayer wiring board of one aspect of the present invention, by filling the through hole provided in at least one of the power supply layer and the ground layer with a high-resistance filling member, the power supply layer and the It is possible to reduce the resistance of at least one of the ground layers, suppress surface irregularities of the multilayer wiring board, defective bonding between insulating layers and peeling between insulating layers, and reduce the influence of noise to reduce The characteristics can be improved.

本発明の第1実施形態である多層配線基板100を示す概略断面図である。It is a schematic sectional drawing which shows the multilayer wiring board 100 which is 1st Embodiment of this invention. 電源層2および接地層3を模式的に示す平面図である。FIG. 3 is a plan view schematically showing a power supply layer 2 and a ground layer 3. 本発明の第2実施形態である多層配線基板101を示す概略断面図である。It is a schematic sectional drawing which shows the multilayer wiring board 101 which is 2nd Embodiment of this invention. 電源層2Aおよび接地層3を模式的に示す平面図である。It is a top view which shows 2 A of power supply layers, and the ground layer 3 typically. 本発明の第3実施形態である電子装置200を示す概略断面図である。It is a schematic sectional drawing which shows the electronic device 200 which is 3rd Embodiment of this invention. 実施例における電源層2および接地層3のインピーダンスの周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the impedance of the power supply layer 2 and the ground layer 3 in an Example.

以下、本発明の実施形態を添付図面に基づいて説明する。
図1は、本発明の第1実施形態である多層配線基板100を示す概略断面図であり、図2は、電源層2および接地層3を模式的に示す平面図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view showing a multilayer wiring board 100 according to a first embodiment of the present invention, and FIG. 2 is a plan view schematically showing a power supply layer 2 and a ground layer 3.

多層配線基板100は、例えば矩形平板状の絶縁性基体1と、予め定められる電源電位が付与される電源層2と、接地電位が付与される接地層3と、電気信号を伝送する信号伝送配線4と、を備える。本実施形態では、電源層2と、接地層3と、信号伝送配線4とは、マイクロストリップ線路を構成し、例えば、マイクロ波帯またはミリ波帯等の高周波信号を伝送することができる。 The multilayer wiring board 100 includes, for example, a rectangular flat plate-shaped insulating substrate 1, a power supply layer 2 to which a predetermined power supply potential is applied, a ground layer 3 to which a ground potential is applied, and a signal transmission wiring for transmitting an electric signal. 4 and. In the present embodiment, the power supply layer 2, the ground layer 3, and the signal transmission wiring 4 form a microstrip line, and can transmit a high frequency signal in a microwave band or a millimeter wave band, for example.

絶縁性基体1は、複数の絶縁層1a,1b,1c,1dが積層されてなり、各絶縁層は、セラミック材料などの電気絶縁性材料で構成されている。本実施形態では、絶縁層1a,絶縁層1b,絶縁層1c,絶縁層1dが、上からこの順に積層されている。本実施形態では、絶縁性基体1は、4層が積層されて構成されているが、これに限らず、2層または3層であってもよく、5層以上であってもよい。 The insulating substrate 1 is formed by laminating a plurality of insulating layers 1a, 1b, 1c, 1d, and each insulating layer is made of an electrically insulating material such as a ceramic material. In this embodiment, the insulating layer 1a, the insulating layer 1b, the insulating layer 1c, and the insulating layer 1d are stacked in this order from the top. In the present embodiment, the insulating substrate 1 is configured by laminating four layers, but the present invention is not limited to this, and may be two layers, three layers, or five or more layers.

セラミック材料としては、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体または窒化珪素質焼結体などを用いることができる。 As the ceramic material, for example, an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body can be used.

電源層2は、外部の電源回路などと電気的に接続することで、後述する半導体素子に給電するための電源電位が付与される。電源層2は、絶縁性基体1に埋設されており、本実施形態では、絶縁層1aと絶縁層1bとの層間に配設されている。また、電源層2は、絶縁層1aと絶縁層1bとの接合部分、すなわち互いに隣接する絶縁層同士を接合するための外周部分を除き、絶縁層の表面の全面にわたって設けられている、いわゆるベタパターン層である。なお、後述する半導体素子と信号伝送配線4とを電気的に接続するために、貫通導体を設ける場合、貫通導体と電源層2とが短絡しないように電源層2の一部に切欠きまたは貫通孔などを設けてもよい。 The power supply layer 2 is electrically connected to an external power supply circuit or the like to give a power supply potential for supplying power to a semiconductor element described later. The power supply layer 2 is embedded in the insulating base 1, and in the present embodiment, is disposed between the insulating layer 1a and the insulating layer 1b. Further, the power supply layer 2 is provided over the entire surface of the insulating layer, except for the joint portion between the insulating layer 1a and the insulating layer 1b, that is, the outer peripheral portion for joining the insulating layers adjacent to each other, that is, a so-called solid surface. It is a pattern layer. When a through conductor is provided to electrically connect a semiconductor element to be described later and the signal transmission wiring 4, a notch or a through hole is formed in a part of the power layer 2 so that the through conductor and the power layer 2 are not short-circuited. You may provide a hole etc.

電源層2は、導電性材料である金属材料を含んで構成される。絶縁性基体1を構成する電気絶縁性材料が、上記のようなセラミック材料である場合、電源層2を構成する金属材料としては、セラミック材料と同時焼成が可能な高融点金属材料を用いることが好ましい。高融点金属材料として、例えば、タングステン、モリブデン、レニウムおよびタンタルのうちの少なくともいずれか1つを用いることができる。また、これらの高融点金属材料同士の合金または、これらの高融点金属材料と他の金属材料との合金などを用いることもできる。さらに、電源層2は、隣接する絶縁層1aおよび絶縁層1bとの接合強度を高くするために、金属材料を主成分とし、金属材料とガラス材料、セラミック材料とを混合したものであってもよい。 The power supply layer 2 includes a metal material that is a conductive material. When the electrically insulating material forming the insulating substrate 1 is the ceramic material as described above, the metal material forming the power supply layer 2 is a high melting point metal material that can be co-fired with the ceramic material. preferable. As the refractory metal material, for example, at least one of tungsten, molybdenum, rhenium, and tantalum can be used. Further, alloys of these refractory metal materials or alloys of these refractory metal materials with other metal materials can also be used. Further, the power supply layer 2 may be a mixture of a metal material, a glass material, and a ceramic material, which is mainly composed of a metal material in order to increase the bonding strength between the adjacent insulating layers 1a and 1b. Good.

接地層3は、外部の電源回路などと電気的に接続することで、接地電位が付与される。接地層3は、絶縁性基体1に埋設されており、本実施形態では、絶縁性基体1の厚さ方向において、電源層2と異なる位置、具体的には、絶縁層1cと絶縁層1dとの層間に配設されている。また、接地層3は、絶縁層1cと絶縁層1dとの接合部分、すなわち互いに隣接する絶縁層同士を接合するための外周部分を除き、絶縁層の表面の全面にわたって設けられている、いわゆるベタパターン層である。なお、信号伝送配線4と後述する外部接続端子とを電気的に接続するために、貫通導体を設ける場合、貫通導体と接地層3とが短絡しないように接地層3の一部に切欠きまたは貫通孔などを設けてもよい。 The ground layer 3 is electrically connected to an external power supply circuit or the like to be applied with a ground potential. The ground layer 3 is embedded in the insulating base 1, and in the present embodiment, a position different from the power supply layer 2 in the thickness direction of the insulating base 1, specifically, the insulating layer 1c and the insulating layer 1d. Are disposed between the layers. In addition, the ground layer 3 is provided over the entire surface of the insulating layer, except for the joint portion between the insulating layer 1c and the insulating layer 1d, that is, the outer peripheral portion for joining the mutually adjacent insulating layers. It is a pattern layer. When a through conductor is provided to electrically connect the signal transmission wiring 4 and an external connection terminal described later, a cutout or a part of the ground layer 3 is provided so that the through conductor and the ground layer 3 are not short-circuited. A through hole or the like may be provided.

接地層3は、電源層2と同様の導電性材料である金属材料を含んで構成される。すなわち、絶縁性基体1を構成する電気絶縁性材料が、上記のようなセラミック材料である場合、接地層3を構成する金属材料としては、セラミック材料と同時焼成が可能な高融点金属材料であって、例えば、タングステン、モリブデン、レニウムおよびタンタルのうちの少なくともいずれか一つを用いることができる。また、これらの高融点金属材料同士の合金または、これらの高融点金属材料と他の金属材料との合金などを用いることもできる。 The ground layer 3 includes a metal material that is a conductive material similar to that of the power supply layer 2. That is, when the electrically insulating material forming the insulating substrate 1 is the ceramic material as described above, the metal material forming the ground layer 3 is a high melting point metal material that can be co-fired with the ceramic material. For example, at least one of tungsten, molybdenum, rhenium, and tantalum can be used. Further, alloys of these refractory metal materials or alloys of these refractory metal materials with other metal materials can also be used.

信号伝送配線4は、外部の演算回路および後述する半導体素子などと接続し、外部と半導体素子との間で高周波信号を伝送させる。信号伝送配線4も電源層2と同様に、絶縁性基体1に埋設されており、本実施形態では、絶縁性基体1の厚さ方向において、電源層2および接地層3と異なる位置であって、電源層2と接地層3との間、具体的には、絶縁層1bと絶縁層1cとの層間に配設されている。 The signal transmission wiring 4 is connected to an external arithmetic circuit and a semiconductor element described later, and transmits a high frequency signal between the external and the semiconductor element. Similarly to the power supply layer 2, the signal transmission wiring 4 is also embedded in the insulating base 1, and in this embodiment, it is located at a position different from the power supply layer 2 and the ground layer 3 in the thickness direction of the insulating base 1. It is arranged between the power supply layer 2 and the ground layer 3, specifically, between the insulating layer 1b and the insulating layer 1c.

信号伝送配線4は、例えば、配線幅が10〜200μm、配線厚さが5〜30μm、隣接する配線との間隔が50μm以上の帯状導体によって構成される。信号伝送配線4を伝送する高周波信号は、多層配線基板100に搭載される半導体素子の種類に応じて異なるものであるが、例えば、信号伝送配線4が、互いに結合した状態で信号を伝送することができる一対のペア配線等であれば、それぞれの信号伝送配線4を伝送する信号を、互いに逆位相の信号である差動信号とすることもできる。信号伝送配線4を伝送する信号が差動信号であれば、より高周波の信号を伝送することができる。 The signal transmission wiring 4 is composed of, for example, a strip-shaped conductor having a wiring width of 10 to 200 μm, a wiring thickness of 5 to 30 μm, and an interval between adjacent wirings of 50 μm or more. The high-frequency signal transmitted through the signal transmission wiring 4 varies depending on the type of the semiconductor element mounted on the multilayer wiring board 100. For example, the signal transmission wiring 4 transmits the signal in a coupled state. In the case of a pair of pair wirings or the like capable of performing the above, the signals transmitted through the respective signal transmission wirings 4 can be differential signals that are signals having opposite phases. If the signal transmitted through the signal transmission wiring 4 is a differential signal, a higher frequency signal can be transmitted.

信号伝送配線4は、電源層2と同様の導電性材料である金属材料を含んで構成される。すなわち、絶縁性基体1を構成する電気絶縁性材料が、上記のようなセラミック材料である場合、信号伝送配線4を構成する金属材料としては、セラミック材料と同時焼成が可能な高融点金属材料であって、例えば、タングステン、モリブデン、レニウムおよびタンタルのうちの少なくともいずれか一つを用いることができる。また、これらの高融点金属材料同士の合金または、これらの高融点金属材料と他の金属材料との合金などを用いることもできる。 The signal transmission wiring 4 includes a metal material that is a conductive material similar to that of the power supply layer 2. That is, when the electrically insulating material forming the insulating substrate 1 is the ceramic material as described above, the metal material forming the signal transmission wiring 4 is a high melting point metal material that can be co-fired with the ceramic material. Therefore, for example, at least one of tungsten, molybdenum, rhenium, and tantalum can be used. Further, alloys of these refractory metal materials or alloys of these refractory metal materials with other metal materials can also be used.

本発明の多層配線基板は、電源層および接地層のうち、少なくともいずれか一方に、厚さ方向に貫通する複数の貫通孔が設けられている。すなわち、複数の貫通孔が設けられた電源層、接地層は、いわゆるメッシュ状またはネット状に形成されている。本実施形態の多層配線基板100では、図2(a)に示すように、電源層2には、貫通孔が設けられておらず、図2(b)に示すように、接地層3に複数の貫通孔30が設けられ、メッシュ状の接地層3となっている。 In the multilayer wiring board of the present invention, at least one of the power supply layer and the ground layer is provided with a plurality of through holes penetrating in the thickness direction. That is, the power supply layer and the ground layer provided with the plurality of through holes are formed in a so-called mesh or net shape. In the multilayer wiring board 100 of this embodiment, as shown in FIG. 2A, the power supply layer 2 is not provided with through holes, and as shown in FIG. Through holes 30 are provided to form the mesh-shaped ground layer 3.

接地層3に設けられた複数の貫通孔30は、開口形状および断面形状が、円形状、楕円形状および長孔形状などであってもよく、三角形状、矩形状、正方形状および五角形以上の多角形状などであってもよく、各貫通孔30全てが同一の開口形状であってもよく、各貫通孔30がそれぞれ異なる開口形状であってもよい。 The plurality of through holes 30 provided in the ground layer 3 may have a circular shape, an elliptical shape, a long hole shape, or the like in the opening shape and the cross-sectional shape, such as a triangular shape, a rectangular shape, a square shape, and a pentagonal or higher polygon. The through holes 30 may all have the same opening shape, or the through holes 30 may have different opening shapes.

貫通孔30は、その断面形状が、接地層3の厚さ方向(貫通方向)に一様であってもよく、厚さ方向に異なっていてもよい。貫通孔30の開口の大きさは、例えば、開口形状が円形状である場合は、直径が50〜500μmであってもよく、開口形状が正方形状である場合は、一辺の長さが50〜500μmであってもよい。開口形状が、円形状でも正方形状でもない場合は、円相当径(面積相当径)が上記の範囲内であればよい。 The cross-sectional shape of the through hole 30 may be uniform in the thickness direction (penetration direction) of the ground layer 3 or may be different in the thickness direction. The size of the opening of the through hole 30 may be, for example, 50 to 500 μm in diameter when the opening shape is circular, and 50 to 500 μm in the case where the opening shape is square. It may be 500 μm. When the opening shape is neither circular nor square, the equivalent circle diameter (area equivalent diameter) may be within the above range.

接地層3の面方向における複数の貫通孔30の分布は、規則的であってもよく、不規則的であってもよい。規則的な分布とは、例えば、図2(b)に示すように、各貫通孔30が、格子点上に位置するような分布、言い換えればマトリクス状の分布である。貫通孔30を見ると、各貫通孔30はマトリクス状に分布しており、接地層3の貫通孔30以外の導体部分を見ると、帯状導体が縦方向と横方向に一定間隔で配置されたメッシュ状の接地層3である。また、貫通孔30の分布は、マトリクス状に限らず、千鳥格子状(市松状)などであってもよい。 The distribution of the plurality of through holes 30 in the plane direction of the ground layer 3 may be regular or irregular. The regular distribution is, for example, as shown in FIG. 2B, a distribution in which each through hole 30 is located on a grid point, in other words, a matrix-like distribution. Looking at the through-holes 30, the through-holes 30 are distributed in a matrix, and when looking at the conductor portions other than the through-holes 30 of the ground layer 3, the band-shaped conductors are arranged at regular intervals in the vertical and horizontal directions. The ground layer 3 has a mesh shape. The distribution of the through holes 30 is not limited to the matrix shape, and may be a houndstooth check pattern (checkered pattern) or the like.

ここで、本発明においては、ノイズ低減のために電源層、接地層の厚さを厚くして電気抵抗をより低くしている。例えば、本実施形態において、接地層3の厚さは、10〜30μmである。接地層3に設けられた貫通孔30の深さ(長さ)は、接地層3の厚みと同じで10〜30μmである。 Here, in the present invention, in order to reduce noise, the thickness of the power supply layer and the ground layer is increased to lower the electric resistance. For example, in the present embodiment, the ground layer 3 has a thickness of 10 to 30 μm. The depth (length) of the through hole 30 provided in the ground layer 3 is the same as the thickness of the ground layer 3 and is 10 to 30 μm.

セラミック材料で構成される絶縁性基体1の製法上、このような深い貫通孔30は、孔内の空間に焼成前の絶縁層が大きく落ち込んでしまう。孔内の空間では、接地層3を挟む絶縁層1cと絶縁層1dとが部分的に接合しないので、絶縁層の剥離などが生じるおそれもある。 Due to the manufacturing method of the insulating substrate 1 made of a ceramic material, such a deep through hole 30 causes the insulating layer before firing to largely fall into the space inside the hole. In the space inside the hole, the insulating layer 1c and the insulating layer 1d that sandwich the ground layer 3 are not partially joined, so that the insulating layer may be peeled off.

本発明では、この貫通孔30は、充填部材5によって充填されており、不要な空間が形成されないようにしている。充填部材5は、電源層2および接地層3の電気抵抗率よりも大きな電気抵抗率を有している。充填部材5の電気抵抗率は、充填部材5が一種の材料から構成される場合は、その材料の電気抵抗率と同じであるものとする。充填部材5が複数種類の材料が混合して構成される場合は、混合して得られた状態の充填部材の電気抵抗率を、充填部材5の電気抵抗率とする。 In the present invention, the through hole 30 is filled with the filling member 5 so that an unnecessary space is not formed. Filling member 5 has an electric resistivity higher than that of power supply layer 2 and ground layer 3. When the filling member 5 is made of a kind of material, the electric resistivity of the filling member 5 is the same as the electric resistivity of the material. When the filling member 5 is formed by mixing a plurality of types of materials, the electric resistivity of the filling member obtained by mixing is defined as the electric resistivity of the filling member 5.

充填部材5を構成する材料としては、セラミック材料からなる絶縁性基体1と同時焼成が可能なように、融点および電気抵抗率が比較的高い抵抗材料を用いることが好ましく、例えば、ルテニウム系複合酸化物および金属ホウ化物のうちの少なくともいずれか一方を含んでいてもよい。ルテニウム系複合酸化物としては、例えば、酸化ルテニウム−酸化カルシウム、酸化ルテニウム−酸化ストロンチウム、酸化ルテニウム−酸化バリウムおよび酸化ルテニウム−酸化ビスマスなどを用いることができる。金属ホウ化物としては、例えば、六ホウ化ランタンなどを用いることができる。また、接地層3などと同様に、これらの抵抗材料とガラス材料、セラミック材料とを混合することができる。これらの混合率の目安は、本実施形態であれば、メッシュ状の接地層3の電気抵抗率を基準としたときに、充填部材5の電気抵抗率が10〜100倍となるような混合率とすればよい。 As the material for forming the filling member 5, it is preferable to use a resistance material having a relatively high melting point and a relatively high electric resistivity so that the insulating substrate 1 made of a ceramic material can be co-fired. For example, a ruthenium-based composite oxide is used. The material may contain at least one of a substance and a metal boride. As the ruthenium-based composite oxide, for example, ruthenium oxide-calcium oxide, ruthenium oxide-strontium oxide, ruthenium oxide-barium oxide and ruthenium oxide-bismuth oxide can be used. As the metal boride, for example, lanthanum hexaboride or the like can be used. Further, like the ground layer 3 and the like, these resistance materials can be mixed with glass materials and ceramic materials. In the present embodiment, the standard of the mixing ratio of these is such that the filling member 5 has an electric resistivity of 10 to 100 times when the electric resistivity of the mesh-shaped ground layer 3 is used as a reference. And it is sufficient.

充填部材5は、接地層3の貫通孔30を必ずしも満たさなくてもよく、貫通孔30からはみ出していてもよい。例えば、貫通孔30の孔内空間の体積を基準としたときに、充填部材5の体積が50〜110%であってもよい。 The filling member 5 may not necessarily fill the through hole 30 of the ground layer 3 and may protrude from the through hole 30. For example, the volume of the filling member 5 may be 50 to 110% based on the volume of the space inside the through hole 30.

このように、充填部材5を設けることによって、厚さが厚く低抵抗化された接地層3であっても、多層配線基板100表面の凹凸の発生、貫通孔30周辺での絶縁層1c,1d間の剥離の発生などを抑制することができる。 As described above, by providing the filling member 5, even in the ground layer 3 having a large thickness and a low resistance, unevenness is generated on the surface of the multilayer wiring board 100 and the insulating layers 1c and 1d around the through hole 30. It is possible to suppress the occurrence of peeling between them.

平面透視において、信号伝送配線4が貫通孔30と重なる部分では、その他の部分と特性インピーダンスが異なるおそれがあり、信号伝送配線4において、そのような部分が存在すると、伝送する高周波信号の反射などにより、信号伝送特性が劣化してしまうので、信号伝送配線4は、平面透視において、接地層3に設けられている複数の貫通孔30と重ならないように設けることが好ましい。なお、信号伝送配線4の全長にわたって貫通孔30と重ならないように設けることが最も好ましいが、多層配線基板100に搭載される半導体素子のピン数(入出力端子数)が多い場合などは、信号伝送配線4を貫通孔30と全く重ならないように設けることは困難であるので、信号伝送特性の劣化が許容可能な範囲において、信号伝送配線4の一部が、平面透視において、貫通孔30と重なっていてもよい。例えば、信号伝送配線4は、平面透視において、接地層3に設けられている複数の貫通孔30と重ならない部分を全長の80%以上有している。言い換えれば、信号伝送配線4は、平面透視において、貫通孔30と重なる部分を、全長の20%未満であれば有していてもよい。 When seen through in a plan view, the characteristic impedance may be different from the other portions in the portion where the signal transmission wiring 4 overlaps the through hole 30, and when such a portion exists in the signal transmission wiring 4, reflection of a high frequency signal to be transmitted, etc. As a result, the signal transmission characteristics are deteriorated. Therefore, it is preferable that the signal transmission wiring 4 is provided so as not to overlap the plurality of through holes 30 provided in the ground layer 3 when seen in a plan view. It is most preferable to provide the signal transmission wiring 4 so as not to overlap the through hole 30 over the entire length thereof. However, when the number of pins (the number of input/output terminals) of the semiconductor element mounted on the multilayer wiring board 100 is large, the signal transmission Since it is difficult to provide the transmission wire 4 so as not to overlap the through hole 30 at all, a part of the signal transmission wire 4 does not overlap with the through hole 30 in a plan view as long as the deterioration of the signal transmission characteristics is allowable. May overlap. For example, the signal transmission wiring 4 has a portion which does not overlap with the plurality of through holes 30 provided in the ground layer 3 in a plan view of 80% or more of the entire length. In other words, the signal transmission wiring 4 may have a portion that overlaps with the through hole 30 as long as it is less than 20% of the entire length when seen in a plan view.

上記の第1実施形態では、電源層2と接地層3のうち、接地層3にのみ貫通孔30を設け、充填部材5で貫通孔30を充填しているが、電源層2と接地層3のうち、電源層2にのみ貫通孔を設け、この貫通孔を充填部材で充填してもよい。 In the first embodiment described above, the through hole 30 is provided only in the ground layer 3 of the power layer 2 and the ground layer 3, and the through hole 30 is filled with the filling member 5. However, the power layer 2 and the ground layer 3 are not provided. Of these, a through hole may be provided only in the power supply layer 2, and the through hole may be filled with a filling member.

図3は、本発明の第2実施形態である多層配線基板101を示す概略断面図であり、図4は、電源層2Aおよび接地層3を模式的に示す平面図である。 FIG. 3 is a schematic sectional view showing a multilayer wiring board 101 according to a second embodiment of the present invention, and FIG. 4 is a plan view schematically showing a power supply layer 2A and a ground layer 3.

多層配線基板101は、第1実施形態の多層配線基板100と電源層2Aの構成が異なるだけで、他の構成は同様であるので、以下では、電源層2Aについて主に説明し、他の構成については、説明を省略する。 The multilayer wiring board 101 is the same as the multilayer wiring board 100 of the first embodiment except for the configuration of the power supply layer 2A, and other configurations are the same. Therefore, hereinafter, the power supply layer 2A will be mainly described and other configurations will be described. The description will be omitted.

本実施形態の多層配線基板101では、図4(b)に示すように、接地層3に貫通孔30が設けられ、貫通孔30が充填部材5によって充填されているのに加えて、図4(a)に示すように、電源層2Aにも複数の貫通孔20が設けられており、貫通孔20は、充填部材6によって充填されている。本実施形態によれば、接地層3だけでなく、電源層2Aも厚さを厚くして電気抵抗をより低くしているので、さらにノイズが低減される。 In the multilayer wiring board 101 of the present embodiment, as shown in FIG. 4B, the ground layer 3 is provided with the through hole 30, and the through hole 30 is filled with the filling member 5. As shown in (a), the power supply layer 2A is also provided with a plurality of through holes 20, and the through holes 20 are filled with the filling member 6. According to this embodiment, not only the ground layer 3 but also the power supply layer 2A is made thicker to lower the electric resistance, so that the noise is further reduced.

例えば、本実施形態において、電源層2Aの厚さは、10〜30μmである。電源層2Aに設けられた貫通孔20の深さ(長さ)は、電源層2Aの厚みと同じで10〜30μmである。電源層2Aの厚さと接地層3の厚さとは、同じであってもよく、異なっていてもよい。 For example, in this embodiment, the power supply layer 2A has a thickness of 10 to 30 μm. The depth (length) of the through hole 20 provided in the power supply layer 2A is 10 to 30 μm, which is the same as the thickness of the power supply layer 2A. The thickness of the power supply layer 2A and the thickness of the ground layer 3 may be the same or different.

電源層2Aに設けられた複数の貫通孔20は、接地層3に設けられた貫通孔30と同様に、開口形状および断面形状が、円形状、楕円形状および長孔形状などであってもよく、三角形状、矩形状、正方形状および五角形以上の多角形状などであってもよく、各貫通孔20全てが同一の開口形状であってもよく、各貫通孔20がそれぞれ異なる開口形状であってもよい。貫通孔20と貫通孔30とは、同一の開口形状であってもよく、異なる開口形状であってもよい。 Like the through holes 30 provided in the ground layer 3, the plurality of through holes 20 provided in the power supply layer 2A may have an opening shape and a cross-sectional shape such as a circular shape, an elliptical shape, and an elongated hole shape. It may have a triangular shape, a rectangular shape, a square shape, a pentagonal or more polygonal shape, and the like, all the through holes 20 may have the same opening shape, and the through holes 20 may have different opening shapes. Good. The through holes 20 and the through holes 30 may have the same opening shape or different opening shapes.

貫通孔20は、その断面形状が、電源層2Aの厚さ方向(貫通方向)に一様であってもよく、厚さ方向に異なっていてもよい。貫通孔20の開口の大きさは、例えば、開口形状が円形状である場合は、直径が50〜200μmであってもよく、開口形状が正方形状である場合は、一辺の長さが50〜200μmであってもよい。開口形状が、円形状でも正方形状でもない場合は、円相当径(面積相当径)が上記の範囲内であればよい。 The cross-sectional shape of the through hole 20 may be uniform in the thickness direction (penetration direction) of the power supply layer 2A or may be different in the thickness direction. The size of the opening of the through hole 20 may be, for example, a diameter of 50 to 200 μm when the opening shape is circular, and a side length of 50 to 200 μm when the opening shape is square. It may be 200 μm. When the opening shape is neither circular nor square, the equivalent circle diameter (area equivalent diameter) may be within the above range.

電源層2Aの面方向における複数の貫通孔20の分布は、規則的であってもよく、不規則的であってもよい。規則的な分布は、接地層3の複数の貫通孔30と同様に、例えば、図4(a)に示す各貫通孔20が、格子点上に位置するような分布、言い換えればマトリクス状の分布である。貫通孔20を見ると、各貫通孔20はマトリクス状に分布しており、電源層2Aの貫通孔20以外の導体部分を見ると、帯状導体が縦方向と横方向に一定間隔で配置されたメッシュ状の電源層2Aである。また、貫通孔20の分布は、マトリクス状に限らず、千鳥格子状(市松状)などであってもよい。 The distribution of the plurality of through holes 20 in the surface direction of the power supply layer 2A may be regular or irregular. The regular distribution is similar to the plurality of through holes 30 of the ground layer 3, for example, a distribution in which each through hole 20 illustrated in FIG. 4A is located on a grid point, in other words, a matrix distribution. Is. Looking at the through-holes 20, the through-holes 20 are distributed in a matrix, and when looking at the conductor portions other than the through-holes 20 of the power supply layer 2A, the strip-shaped conductors are arranged at regular intervals in the vertical and horizontal directions. It is the mesh-shaped power supply layer 2A. The distribution of the through holes 20 is not limited to the matrix shape, and may be a houndstooth check pattern (checkered pattern) or the like.

本実施形態のように、電源層2Aにも接地層3にも貫通孔が設けられている構成では、電源層2Aに設けられている複数の貫通孔20および接地層3に設けられている複数の貫通孔30は、平面透視において、一部または全部が重なるように設けられていてもよく、重ならないように設けられていてもよい。本実施形態では、図3および図4に示すように、電源層2Aに設けられている複数の貫通孔20および接地層3に設けられている複数の貫通孔30は、平面透視において、重ならないように設けられている。 In the configuration in which through holes are provided in both the power supply layer 2A and the ground layer 3 as in the present embodiment, a plurality of through holes 20 provided in the power supply layer 2A and a plurality of through holes provided in the ground layer 3 are provided. The through holes 30 may be provided so as to partially or entirely overlap with each other in plan view, or may be provided so as not to overlap. In the present embodiment, as shown in FIGS. 3 and 4, the plurality of through holes 20 provided in the power supply layer 2A and the plurality of through holes 30 provided in the ground layer 3 do not overlap with each other in plan view. Is provided.

電源層2Aの貫通孔20は、第1実施形態の接地層3の貫通孔30と同様に充填部材6によって充填されており、貫通孔内に不要な空間が形成されないようにしている。充填部材6は、電源層2および接地層3の電気抵抗率よりも大きな電気抵抗率を有している。充填部材6の電気抵抗率は、充填部材6が一種の材料から構成される場合は、その材料の電気抵抗率と同じであるものとする。充填部材6が複数種類の材料が混合して構成される場合は、混合して得られた状態の充填部材の電気抵抗率を、充填部材6の電気抵抗率とする。 The through hole 20 of the power supply layer 2A is filled with the filling member 6 similarly to the through hole 30 of the ground layer 3 of the first embodiment so that an unnecessary space is not formed in the through hole. Filling member 6 has an electrical resistivity higher than that of power supply layer 2 and ground layer 3. When the filling member 6 is made of a kind of material, the electric resistivity of the filling member 6 is the same as that of the material. When the filling member 6 is formed by mixing a plurality of kinds of materials, the electric resistivity of the filling member obtained by mixing is defined as the electric resistivity of the filling member 6.

充填部材6を構成する材料は、融点および電気抵抗率が比較的高い抵抗材料、具体的には、第1実施形態の充填部材5を構成する材料と同様の材料を用いることができる。充填部材5と充填部材6とで、構成する抵抗材料を同じ材料としてもよく、それぞれ異なる抵抗材料としてもよい。 As a material forming the filling member 6, a resistance material having a relatively high melting point and a high electric resistivity, specifically, the same material as the material forming the filling member 5 of the first embodiment can be used. The filling members 5 and 6 may be made of the same resistance material or different resistance materials.

充填部材6は、電源層2Aの貫通孔20を必ずしも満たさなくてもよく、貫通孔20からはみ出していてもよい。例えば、貫通孔20の孔内空間の体積を基準としたときに、充填部材6の体積が50〜110%であってもよい。 The filling member 6 does not necessarily have to fill the through hole 20 of the power supply layer 2</b>A and may protrude from the through hole 20. For example, the volume of the filling member 6 may be 50 to 110% based on the volume of the space inside the through hole 20.

また、本実施形態でも第1実施形態と同様に、信号伝送配線4は、平面透視において、接地層3に設けられている複数の貫通孔30および電源層2Aの設けられている複数の貫通孔20と重ならないように設けることが好ましい。なお、信号伝送配線4の全長にわたって貫通孔20および貫通孔30と重ならないように設けることが最も好ましいが、信号伝送特性の劣化が許容可能な範囲において、信号伝送配線4の一部が、平面透視において、貫通孔20および貫通孔30と重なっていてもよい。例えば、信号伝送配線4は、平面透視において、電源層2Aに設けられている複数の貫通孔20および接地層3に設けられている複数の貫通孔30と重ならない部分を全長の80%以上有している。言い換えれば、信号伝送配線4は、平面透視において、貫通孔20または貫通孔30と重なる部分を、全長の20%未満であれば有していてもよい。 Also in the present embodiment, as in the first embodiment, the signal transmission wiring 4 has a plurality of through holes 30 provided in the ground layer 3 and a plurality of through holes provided with the power supply layer 2A in plan view. It is preferable to provide so as not to overlap 20. Although it is most preferable to provide the signal transmission wiring 4 so as not to overlap the through holes 20 and 30 over the entire length of the signal transmission wiring 4, a part of the signal transmission wiring 4 is a flat surface in a range where deterioration of the signal transmission characteristics is allowable. It may overlap with the through hole 20 and the through hole 30 when seen through. For example, the signal transmission wiring 4 has a portion which does not overlap with the plurality of through holes 20 provided in the power supply layer 2A and the plurality of through holes 30 provided in the ground layer 3 in a plan view of 80% or more of the entire length. doing. In other words, the signal transmission wiring 4 may have a portion that overlaps with the through hole 20 or the through hole 30 as long as it is less than 20% of the entire length in the plan view.

多層配線基板100の製造方法について一例を示す。例えば、酸化アルミニウム質焼結体、ムライト質焼結体等のセラミック原料粉末に適当な有機溶剤・溶媒を添加混合して泥漿状になすとともにこれを従来周知のドクターブレード法やカレンダーロール法等を採用してシート状となすことによって複数枚のセラミックグリーンシートを得る。しかる後、これらセラミックグリーンシートの各々に適当な打ち抜き加工を施してビアホールなどを形成するとともに、導体ペーストをビアホールへ充填し、信号伝送配線となる配線パターン、電源層および接地層となるベタパターンを印刷する。このとき、電源層および接地層の少なくとも一方は、貫通孔が形成された層を、複数回重ねて印刷するなどして、比較的厚い層を形成する。電源層および接地層の少なくとも一方に形成された貫通孔には、上記の導体ペーストよりも電気抵抗率が高い抵抗材ペーストを充填する。こうして得られたものを積層し、アルミナ質セラミックスの場合は1500〜1700℃、窒化アルミニウム質セラミックスの場合は1600〜1900℃の温度で焼成することによって製作される。 An example of a method of manufacturing the multilayer wiring board 100 will be described. For example, a ceramic raw material powder such as an aluminum oxide sintered body or a mullite sintered body is mixed with an appropriate organic solvent/solvent to form a slurry, which is then formed by a conventionally known doctor blade method or calendar roll method. A plurality of ceramic green sheets are obtained by adopting a sheet shape. Then, appropriate punching is performed on each of these ceramic green sheets to form via holes, and a conductive paste is filled into the via holes to form a wiring pattern for signal transmission wiring, and a solid pattern for power supply layer and ground layer. Print. At this time, at least one of the power supply layer and the ground layer is formed as a relatively thick layer by printing the layer in which the through-hole is formed a plurality of times. The through hole formed in at least one of the power supply layer and the ground layer is filled with a resistance material paste having a higher electrical resistivity than the conductor paste. It is produced by stacking the thus obtained materials and firing at a temperature of 1500 to 1700° C. for alumina ceramics and 1600 to 1900° C. for aluminum nitride ceramics.

図5は、本発明の第3実施形態である電子装置200を示す概略断面図である。電子装置200は、多層配線基板100と、多層配線基板100に搭載される半導体素子40とを備える。多層配線基板100の各構成については、第1実施形態で説明した構成と同じであるので、第1実施形態と同じ参照符号を付して詳細な説明は省略する。 FIG. 5 is a schematic sectional view showing an electronic device 200 according to the third embodiment of the present invention. The electronic device 200 includes a multilayer wiring board 100 and a semiconductor element 40 mounted on the multilayer wiring board 100. Since each structure of the multilayer wiring board 100 is the same as the structure described in the first embodiment, the same reference numerals as those in the first embodiment are attached and detailed description thereof will be omitted.

多層配線基板100において、半導体素子40を搭載する面には、半導体素子40と、絶縁性基体1内の信号伝送配線4とを電気的に接続させるための素子接続端子8が設けられており、半導体素子40が搭載される面と反対側の面には、外部回路などと電気的に接続するための外部接続端子9が設けられている。多層配線基板100の外部に露出する素子接続端子8および外部接続端子に9は、めっき層が設けられることが好ましい。めっき層を設けることによって、各端子の露出表面を保護して酸化を防止できる。また、めっき層を設けることによって、半導体素子40との電気的接続、外部回路との電気的接続を良好にできる。めっき層は、例えば、厚さ0.5〜10μmのNiめっき層を被着させればよい。または、このNiめっき層の上に、さらに、厚さ0.5〜3μmの金(Au)めっき層を被着させてもよい。 On the surface of the multilayer wiring board 100 on which the semiconductor element 40 is mounted, the element connection terminal 8 for electrically connecting the semiconductor element 40 and the signal transmission wiring 4 in the insulating substrate 1 is provided, An external connection terminal 9 for electrically connecting to an external circuit or the like is provided on the surface opposite to the surface on which the semiconductor element 40 is mounted. The element connection terminals 8 and the external connection terminals 9 exposed to the outside of the multilayer wiring board 100 are preferably provided with a plating layer. By providing the plating layer, the exposed surface of each terminal can be protected and oxidation can be prevented. Further, by providing the plating layer, the electrical connection with the semiconductor element 40 and the electrical connection with the external circuit can be improved. As the plating layer, for example, a Ni plating layer having a thickness of 0.5 to 10 μm may be applied. Alternatively, a gold (Au) plating layer having a thickness of 0.5 to 3 μm may be further deposited on the Ni plating layer.

半導体素子40と素子接続端子8とは、例えば、はんだ等の金属材料や、異方性導電性膜等の樹脂材料が用いて電気的に接続される。多層配線基板100の内部には、素子接続端子8と信号伝送配線4とを電気的に接続する配線および信号伝送配線4と外部接続端子9とを接続する配線が設けられており、半導体素子40と外部回路とが、多層配線基板100を介して電気的に接続される。 The semiconductor element 40 and the element connection terminal 8 are electrically connected using, for example, a metal material such as solder or a resin material such as an anisotropic conductive film. Inside the multilayer wiring board 100, wiring for electrically connecting the element connection terminal 8 and the signal transmission wiring 4 and wiring for connecting the signal transmission wiring 4 and the external connection terminal 9 are provided, and the semiconductor element 40 is provided. And the external circuit are electrically connected via the multilayer wiring board 100.

本実施形態では、図5に示すように、素子接続端子8と信号伝送配線4とは、絶縁層1aおよび絶縁層1bを貫通する貫通導体7によって電気的に接続されており、信号伝送配線4と外部接続端子9とは、絶縁層1cおよび絶縁層1dを貫通する貫通導体7によって電気的に接続されている。上記のように、貫通導体7と電源層2とが短絡しないように、電源層2には、貫通導体7およびその周辺に相当する部分に切欠きまたは貫通孔、いわゆるクリアランスを設けている。また、上記のように、貫通導体7と接地層3とが短絡しないように、接地層3にも、貫通導体7およびその周辺に相当する部分にクリアランスを設けている。 In the present embodiment, as shown in FIG. 5, the element connection terminal 8 and the signal transmission wiring 4 are electrically connected by the penetrating conductor 7 penetrating the insulating layers 1a and 1b. The external connection terminal 9 and the external connection terminal 9 are electrically connected to each other by a through conductor 7 penetrating the insulating layer 1c and the insulating layer 1d. As described above, in order to prevent the short-circuit between the through conductor 7 and the power supply layer 2, the power supply layer 2 is provided with notches or through holes, so-called clearances, in the portions corresponding to the through conductor 7 and its periphery. Further, as described above, in order to prevent the through conductor 7 and the ground layer 3 from being short-circuited, the ground layer 3 is also provided with a clearance in the portion corresponding to the through conductor 7 and its periphery.

上記の電子装置200では、素子接続端子8と信号伝送配線4とを貫通導体7のみで接続しているが、例えば、絶縁層1aを貫通する貫通導体と、絶縁層1bを貫通する貫通導体とが直接接続されておらず、絶縁層1aと絶縁層1bとの層間に、絶縁層1aを貫通する貫通導体と、絶縁層1bを貫通する貫通導体とを電気的に接続する配線などを設けてもよい。貫通導体7と同様に、このような配線が電源層2と短絡しないように電源層2にクリアランスを設けている。また、信号伝送配線4と外部接続端子9とを電気的に接続する貫通導体7も、直接接続されている必要はなく、絶縁層1cと絶縁層1dとの層間に、絶縁層1cを貫通する貫通導体と、絶縁層1bを貫通する貫通導体とを電気的に接続する配線などを設けてもよい。貫通導体7と同様に、このような配線が接地層3と短絡しないようにクリアランスを設けている。 In the above electronic device 200, the element connection terminal 8 and the signal transmission wiring 4 are connected only by the penetrating conductor 7. However, for example, a penetrating conductor that penetrates the insulating layer 1a and a penetrating conductor that penetrates the insulating layer 1b. Is not directly connected, and a wiring or the like is provided between the insulating layer 1a and the insulating layer 1b to electrically connect the through conductor penetrating the insulating layer 1a and the through conductor penetrating the insulating layer 1b. Good. Similar to the through conductor 7, a clearance is provided in the power supply layer 2 so that such wiring does not short-circuit with the power supply layer 2. Further, the through conductor 7 that electrically connects the signal transmission wiring 4 and the external connection terminal 9 does not need to be directly connected, and penetrates the insulating layer 1c between the insulating layer 1c and the insulating layer 1d. You may provide the wiring etc. which electrically connect the penetration conductor and the penetration conductor which penetrates insulating layer 1b. Similar to the through conductor 7, a clearance is provided so that such a wiring does not short-circuit with the ground layer 3.

上記の第3実施形態では、半導体素子40を搭載する多層配線基板を、第1実施形態の多層配線基板100としたが、これに限らず多層配線基板として多層配線基板100に代えて第2実施形態の多層配線基板101を用いてもよい。 In the third embodiment described above, the multilayer wiring board on which the semiconductor element 40 is mounted is the multilayer wiring board 100 of the first embodiment, but the present invention is not limited to this, and the multilayer wiring board 100 is replaced by the multilayer wiring board 100 in the second embodiment. You may use the multilayer wiring board 101 of a form.

上記の実施形態では、電源層、接地層および信号伝送配線が、絶縁性基体1内において、厚さ方向の位置がいずれも異なるように埋設されている構成、言い換えれば、異なる絶縁層間に埋設されている構成を示したが、このような埋設位置の構成は一例に過ぎず、互いに絶縁されていれば、厚さ方向に同じ位置、すなわち同じ絶縁層間に埋設されていてもよい。例えば、電源層と接地層とが、絶縁性基体1内において、厚さ方向の位置が同じ位置となるように埋設されている構成であってもよいし、電源層と信号伝送配線とが同じ位置であってもよいし、接地層と信号伝送配線とが同じ位置であってもよい。さらに、電源層、接地層および信号伝送配線が、絶縁性基体1内において、厚さ方向の位置が同じ位置に全て埋設されていてもよい。 In the above embodiment, the power supply layer, the ground layer, and the signal transmission wiring are embedded in the insulating substrate 1 so that the positions in the thickness direction are different, in other words, they are embedded between different insulating layers. Although the structure of the buried position is shown as an example, the structure may be buried at the same position in the thickness direction, that is, between the same insulating layers as long as they are insulated from each other. For example, the power supply layer and the ground layer may be embedded in the insulating substrate 1 so that the positions in the thickness direction are the same, and the power supply layer and the signal transmission wiring are the same. The ground layer and the signal transmission wiring may be at the same position. Furthermore, the power supply layer, the ground layer, and the signal transmission wiring may all be embedded in the insulating base 1 at the same position in the thickness direction.

また、電源層、接地層および信号伝送配線が、絶縁性基体1内において、厚さ方向の位置がいずれも異なるように埋設されている構成では、電源層、接地層および信号伝送配線の厚さ方向における配置の順序は、上記の実施形態のような電源層、信号伝送信号、接地層の順序に限定されず、順序が異なっていてもよい。例えば、電源層、接地層、信号伝送信号の順序であってもよく、接地層、電源層、信号伝送信号の順序であってもよい。 Further, in the configuration in which the power supply layer, the ground layer, and the signal transmission wiring are embedded in the insulating substrate 1 so that the positions in the thickness direction are different from each other, the thicknesses of the power supply layer, the ground layer, and the signal transmission wiring are large. The order of arrangement in the directions is not limited to the order of the power supply layer, the signal transmission signal, and the ground layer as in the above embodiment, and the order may be different. For example, the order of the power supply layer, the ground layer, and the signal transmission signal may be used, or the order of the ground layer, the power supply layer, and the signal transmission signal may be used.

また、上記の実施形態では、電源層および接地層が1つの層のみ配置される構成を示したが、電源層が2層以上であってもよく、接地層が2層以上であってもよく、複数配置される電源層および接地層のうち、少なくともいずれか1つの層に、複数の貫通孔が設けられ、貫通孔内に充填部材が充填されていればよい。また、信号伝送配線も1つの層間にのみ配置される構成に限らず、複数の層間に配置される構成であってもよい。 Further, in the above embodiments, the configuration in which the power supply layer and the ground layer are arranged in only one layer has been shown, but the power supply layer may be two or more layers, or the ground layer may be two or more layers. A plurality of through holes may be provided in at least one of the plurality of power supply layers and ground layers, and the filling member may be filled in the through holes. Further, the signal transmission wiring is not limited to be arranged only in one layer, but may be arranged in a plurality of layers.

(実施例)
下記に示すようなシミュレーション条件において、電源層2および接地層3の高周波抵抗を表すインピーダンスの周波数特性を算出した。
接地層3は、全体の外形を縦10mm×横10mm、厚さ15μmとし、接地層3の電気抵抗率を7.0×10−8Ω・mとした。貫通孔30は、外形を縦250μm×横250μmの正方形状とした。電源層2も同様の条件とした。
(Example)
Under the simulation conditions as shown below, the frequency characteristics of impedance representing the high frequency resistance of the power supply layer 2 and the ground layer 3 were calculated.
The ground layer 3 has an overall outer shape of 10 mm in length×10 mm in width and 15 μm in thickness, and the ground layer 3 has an electrical resistivity of 7.0×10 −8 Ω·m. The through hole 30 has a square outer shape with a length of 250 μm×width of 250 μm. The power supply layer 2 was also set under the same conditions.

貫通孔20および貫通孔30の分布は、いずれも千鳥格子状であり、縦ピッチ1mm、横ピッチ0.5mmとし、平面透視にて、貫通孔20と貫通孔30とが重ならないように設けた。また、電源層2と接地層3の厚さは、0.015mmとした。電源層2の下面と接地層3の上面との距離は、0.185mmとし、電源層2の下面と接地層3の上面との間に比誘電率9.8の絶縁層を配置した。電源層2の上および接地層3の下には、それぞれ厚さ0.1mm、比誘電率9.8の絶縁層を配置した。 The distribution of the through-holes 20 and the through-holes 30 is a houndstooth pattern, and the vertical pitch is 1 mm and the horizontal pitch is 0.5 mm. The through-holes 20 and the through-holes 30 are provided so as not to overlap each other in plan view. It was The thickness of the power supply layer 2 and the ground layer 3 was 0.015 mm. The distance between the lower surface of the power supply layer 2 and the upper surface of the ground layer 3 was 0.185 mm, and an insulating layer having a relative dielectric constant of 9.8 was arranged between the lower surface of the power supply layer 2 and the upper surface of the ground layer 3. An insulating layer having a thickness of 0.1 mm and a relative dielectric constant of 9.8 was arranged above the power supply layer 2 and below the ground layer 3.

貫通孔20および貫通孔30に充填部材5を充填していない空洞のものを参考例(リファレンス)とし、充填部材5の電気抵抗率が、接地層3の電気抵抗率の10倍である7.0×10−7Ω・mとしたものを実施例1とし、電気抵抗率が、接地層3の電気抵抗率の100倍である7.0×10−6Ω・mとしたものを実施例2とした。 6. A hollow member in which the through hole 20 and the through hole 30 are not filled with the filling member 5 is used as a reference example, and the electric resistivity of the filling member 5 is 10 times the electric resistivity of the ground layer 3. Example 1 was set to 0×10 −7 Ω·m, and Example 1 was set to have an electrical resistivity of 7.0×10 −6 Ω·m, which is 100 times the electrical resistivity of the ground layer 3. It was set to 2.

図6は、実施例における電源層2および接地層3のインピーダンスの周波数特性を示すグラフである。縦軸がインピーダンス(Ω)を示し、横軸が周波数(GHz)を示す。図5のグラフからわかるように、9GHz付近では、参考例のインピーダンスが183Ωであるのに対し、実施例1では151Ωと低下し、実施例2ではさらに81Ωに低下しており、低抵抗化できたことがわかる。 FIG. 6 is a graph showing frequency characteristics of impedance of the power supply layer 2 and the ground layer 3 in the example. The vertical axis represents impedance (Ω) and the horizontal axis represents frequency (GHz). As can be seen from the graph of FIG. 5, in the vicinity of 9 GHz, the impedance of the reference example is 183 Ω, whereas in Example 1 it decreased to 151 Ω, and in Example 2 it further decreased to 81 Ω, and it is possible to lower the resistance. I understand that

1 絶縁性基体
1a,1b,1c,1d 絶縁層
2,2A 電源層
3 接地層
4 信号伝送配線
5,6 充填部材
7 貫通導体
8 素子接続端子
9 外部接続端子
20,30 貫通孔
40 半導体素子
100,101 多層配線基板
200 電子装置
1 Insulating Substrate 1a, 1b, 1c, 1d Insulating Layer 2, 2A Power Supply Layer 3 Grounding Layer 4 Signal Transmission Wiring 5, 6 Filling Member 7 Through Conductor 8 Element Connecting Terminal 9 External Connecting Terminal 20, 30 Through Hole 40 Semiconductor Element 100 , 101 Multilayer wiring board 200 Electronic device

Claims (7)

電気絶縁性材料で構成される平板状の絶縁性基体と、
前記絶縁性基体に埋設される、電気信号を伝送する信号伝送配線と、
前記絶縁性基体に埋設される、予め定められる電源電位が付与される電源層と、
前記絶縁性基体に埋設される、接地電位が付与される接地層と、を備え、
前記電源層および前記接地層のうち、少なくともいずれか一方には、厚さ方向に貫通する複数の貫通孔が、面方向に一様に設けられており、
前記複数の貫通孔を充填した充填部材であって、前記電源層および前記接地層の電気抵抗率よりも大きな電気抵抗率を有する充填部材をさらに備えることを特徴とする多層配線基板。
A flat insulating substrate made of an electrically insulating material,
A signal transmission wiring embedded in the insulating substrate for transmitting an electric signal;
A power supply layer which is embedded in the insulating substrate and to which a predetermined power supply potential is applied,
A ground layer to which a ground potential is applied, which is embedded in the insulating substrate,
In at least one of the power supply layer and the ground layer, a plurality of through holes penetrating in the thickness direction are provided uniformly in the surface direction ,
The multilayer wiring board further comprising: a filling member filled with the plurality of through holes, the filling member having an electric resistivity larger than that of the power supply layer and the ground layer.
前記複数の貫通孔は、前記電源層および前記接地層に設けられていることを特徴とする請求項1記載の多層配線基板。 The multilayer wiring board according to claim 1, wherein the plurality of through holes are provided in the power supply layer and the ground layer. 前記電源層と前記接地層とは、前記絶縁性基体の厚さ方向において、互いに異なる位置に埋設されており、
前記電源層に設けられている複数の貫通孔および前記接地層に設けられている複数の貫通孔は、平面透視において、重ならないように設けられていることを特徴とする請求項2記載の多層配線基板。
The power supply layer and the ground layer are embedded in different positions in the thickness direction of the insulating substrate,
The multilayer according to claim 2, wherein the plurality of through holes provided in the power supply layer and the plurality of through holes provided in the ground layer are provided so as not to overlap with each other when seen in a plan view. Wiring board.
前記信号伝送配線は、前記絶縁性基体の厚さ方向において、前記電源層および前記接地層と異なる位置に埋設されており、
前記信号伝送配線は、平面透視において、前記電源層に設けられている複数の貫通孔および前記接地層に設けられている複数の貫通孔のいずれの貫通孔にも重ならない部分を、全長の80%以上有していることを特徴とする請求項1〜3のいずれか1つに記載の多層配線基板。
The signal transmission wiring is embedded in a position different from the power supply layer and the ground layer in the thickness direction of the insulating substrate,
In the plan view, the signal transmission wiring has a total length of 80, which is a portion which does not overlap with any of the plurality of through holes provided in the power supply layer and the plurality of through holes provided in the ground layer. % Or more is contained, The multilayer wiring board as described in any one of Claims 1-3.
前記電源層および前記接地層は、タングステン、モリブデン、レニウムおよびタンタルのうちの少なくともいずれか一つを含んで構成され、
前記充填部材は、ルテニウム系複合酸化物および金属ホウ化物のうちの少なくともいずれか一方を含んで構成されることを特徴とする請求項1〜4のいずれか1つに記載の多層配線基板。
The power supply layer and the ground layer are configured to include at least one of tungsten, molybdenum, rhenium, and tantalum,
The multilayer wiring board according to claim 1, wherein the filling member is configured to include at least one of a ruthenium-based composite oxide and a metal boride.
前記複数の貫通孔の開口形状が、正方形状または矩形状であることを特徴とする請求項1〜5のいずれか1つに記載の多層配線基板。 The multilayer wiring board according to any one of claims 1 to 5, wherein an opening shape of the plurality of through holes is a square shape or a rectangular shape. 請求項1〜6のいずれか1つに記載の多層配線基板と、
前記多層配線基板に搭載される半導体素子であって、前記信号伝送配線と電気的に接続される半導体素子と、を備えることを特徴とする電子装置。
A multilayer wiring board according to any one of claims 1 to 6,
An electronic device, comprising: a semiconductor element mounted on the multilayer wiring board, the semiconductor element electrically connected to the signal transmission wiring.
JP2016165175A 2016-08-25 2016-08-25 Multilayer wiring board and electronic device Active JP6735185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016165175A JP6735185B2 (en) 2016-08-25 2016-08-25 Multilayer wiring board and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165175A JP6735185B2 (en) 2016-08-25 2016-08-25 Multilayer wiring board and electronic device

Publications (2)

Publication Number Publication Date
JP2018032795A JP2018032795A (en) 2018-03-01
JP6735185B2 true JP6735185B2 (en) 2020-08-05

Family

ID=61304589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165175A Active JP6735185B2 (en) 2016-08-25 2016-08-25 Multilayer wiring board and electronic device

Country Status (1)

Country Link
JP (1) JP6735185B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124608A (en) * 1997-01-17 2000-04-28 Ibiden Co Ltd Multilayer printed wiring board
JPH11112142A (en) * 1997-10-01 1999-04-23 Kyocera Corp Multilayered wiring board
US6469259B2 (en) * 2000-02-29 2002-10-22 Kyocera Corporation Wiring board
JP2003224227A (en) * 2002-01-30 2003-08-08 Kyocera Corp Wiring board and semiconductor device employing it

Also Published As

Publication number Publication date
JP2018032795A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6140834B2 (en) Wiring board and electronic device
JP2018137737A (en) Antenna substrate
JP5926290B2 (en) Input / output member and electronic component storage package and electronic device
US9883589B2 (en) Wiring board, and electronic device
JP6151572B2 (en) Electronic device mounting substrate and electronic device
JP6735185B2 (en) Multilayer wiring board and electronic device
JP3878795B2 (en) Multilayer wiring board
JP6487240B2 (en) Wiring board
JP5294828B2 (en) Laminated board
JP6680521B2 (en) Electronic equipment
JP5743779B2 (en) Multi-circuit board and electronic device
JP6301738B2 (en) Electronic device mounting package and electronic device
JP5956185B2 (en) Multiple wiring board
JP4249601B2 (en) Wiring board
JP2008251850A (en) Semiconductor device and manufacturing method of the semiconductor device
JP5988360B2 (en) Wiring board
JP4177849B2 (en) Wiring board for mounting electronic parts and electronic device
JP7237474B2 (en) Ceramic wiring board and probe board
JP4518664B2 (en) Wiring board mounting structure and semiconductor device
JP2013115347A (en) Differential transmission line and multilayer wiring board
JP2019057690A (en) Ceramic wiring board and probe substrate
JP6219695B2 (en) WIRING BOARD AND SEMICONDUCTOR DEVICE HAVING THE SAME
JP6258679B2 (en) Wiring board and electronic device
JP2019078658A (en) Ceramic wiring board and probe substrate
JP2013125840A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150