JP2018137737A - Antenna substrate - Google Patents

Antenna substrate Download PDF

Info

Publication number
JP2018137737A
JP2018137737A JP2018008923A JP2018008923A JP2018137737A JP 2018137737 A JP2018137737 A JP 2018137737A JP 2018008923 A JP2018008923 A JP 2018008923A JP 2018008923 A JP2018008923 A JP 2018008923A JP 2018137737 A JP2018137737 A JP 2018137737A
Authority
JP
Japan
Prior art keywords
conductor
substrate
dielectric
radiation
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018008923A
Other languages
Japanese (ja)
Other versions
JP7005357B2 (en
Inventor
尾上 勝彦
Katsuhiko Onoe
勝彦 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2018137737A publication Critical patent/JP2018137737A/en
Application granted granted Critical
Publication of JP7005357B2 publication Critical patent/JP7005357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antenna substrate high in antenna characteristic and strength.SOLUTION: An antenna substrate 10 comprises: a dielectric substrate 1 formed from a plurality of dielectric layers 1a arranged in a stack; a first radiation conductor 2 provided in the dielectric substrate 1; and a grounding conductor 3 provided in the dielectric substrate 1 so as to be superposed on the first radiation conductor 2 in a stacking direction of the dielectric layers 1a. The dielectric layer 1a located between the first radiation conductor 2 and the grounding conductor 3 has, in a portion between the first radiation conductor 2 and the grounding conductor 3, a plurality of hollow parts 1b arranged in a direction intersecting the stacking direction.SELECTED DRAWING: Figure 1

Description

本発明は、アンテナ基板に関するものである。   The present invention relates to an antenna substrate.

従来から、各種無線機器に用いられる小型の平面アンテナとして、誘電体基板を挟んで放射導体と接地導体を配置した、マイクロストリップアンテナあるいはパッチアンテナと呼ばれるものが知られている。このようなアンテナに用いられるアンテナ基板として、放射導体と接地導体との間の誘電体に空洞部を設けたものが知られている(例えば、特許文献1を参照。)。空洞部により放射導体と接地導体との間の誘電率を低くすることでアンテナ特性を向上させるものである。   2. Description of the Related Art Conventionally, small planar antennas used in various wireless devices are known as microstrip antennas or patch antennas in which a radiation conductor and a ground conductor are arranged with a dielectric substrate interposed therebetween. As an antenna substrate used for such an antenna, a substrate in which a cavity is provided in a dielectric between a radiation conductor and a ground conductor is known (see, for example, Patent Document 1). The antenna characteristic is improved by lowering the dielectric constant between the radiation conductor and the ground conductor by the hollow portion.

特開2012−151467号公報JP 2012-151467 A

しかしながら誘電体に空洞部を設けることで放射導体と接地導体との間の誘電率が低くなっても、アンテナ特性が低下してしまうとことがあった。これは、アンテナ基板において比較的面積の大きい放射導体と接地導体との間において誘電体に空洞部を設けると、空洞部を挟んで位置している、放射導体あるいは接地導体が設けられた誘電体が変形して放射導体と接地導体との間隔が一定とならなくなるためであった。また、従来技術では、このような変形を抑えるために、焼成前の積層体の空洞部となる部分に空洞部仮設体を配置して、焼成後に取り出すことを行なっており、それによって空洞部はアンテナ基板の側面に開放したものとなるため、強度が低下しやすいものであった。   However, by providing a cavity in the dielectric, antenna characteristics sometimes deteriorate even if the dielectric constant between the radiation conductor and the ground conductor is low. This is because when a cavity is provided in the dielectric between the radiation conductor and the ground conductor having a relatively large area on the antenna substrate, the dielectric provided with the radiation conductor or the ground conductor is located across the cavity. This is because the distance between the radiation conductor and the ground conductor is not constant due to deformation. Further, in the prior art, in order to suppress such deformation, a temporary cavity body is disposed in a portion that becomes a cavity of the laminate before firing, and is taken out after firing, whereby the cavity is Since the antenna substrate is open to the side surface, the strength tends to decrease.

本開示のアンテナ基板は、複数の誘電体層が積層されてなる誘電体基板と、該誘電体基板に設けられた放射導体と、前記誘電体層の積層方向で前記放射導体と重なるように前記誘電体基板に設けられた接地導体とを備えており、前記積層方向において前記放射導体と前記接地導体との間に位置している前記誘電体層は、前記放射導体と前記接地導体とで挟まれた部分に、積層方向と交差する方向に離間して配置された複数の中空部を有している。   The antenna substrate of the present disclosure includes a dielectric substrate formed by laminating a plurality of dielectric layers, a radiation conductor provided on the dielectric substrate, and the radiation conductor so as to overlap the radiation conductor in the lamination direction of the dielectric layers. A ground conductor provided on a dielectric substrate, and the dielectric layer positioned between the radiation conductor and the ground conductor in the stacking direction is sandwiched between the radiation conductor and the ground conductor. The portion has a plurality of hollow portions that are spaced apart in a direction intersecting the stacking direction.

本開示の1つの態様のアンテナ基板によれば、上記構成であることから、アンテナ特性が向上した、強度の高いものとなる。   According to the antenna substrate of one aspect of the present disclosure, because of the above configuration, the antenna characteristics are improved and the strength is high.

アンテナ基板の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of an antenna board | substrate. (a)は図1に示すアンテナ基板の下面図であり、(b)は(a)のB−B線における断面図である。(A) is a bottom view of the antenna substrate shown in FIG. 1, and (b) is a cross-sectional view taken along line BB of (a). アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. (a)は図3に示すアンテナ基板の下面図であり、(b)は(a)のB−B線における断面図であり、(c)は(a)のC−C線における断面図である。(A) is a bottom view of the antenna substrate shown in FIG. 3, (b) is a sectional view taken along line BB in (a), and (c) is a sectional view taken along line CC in (a). is there. (a)および(b)は、アンテナ基板の他の一例を示す下面図である。(A) And (b) is a bottom view which shows another example of an antenna board | substrate. アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. (a)は図6に示すアンテナ基板の下面図であり、(b)は(a)のB部を拡大して示す断面図である。(A) is a bottom view of the antenna substrate shown in FIG. 6, and (b) is an enlarged cross-sectional view showing a portion B of (a). (a)および(b)は、アンテナ基板の他の一例を示す下面図である。(A) And (b) is a bottom view which shows another example of an antenna board | substrate. アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. (a)は図9に示すアンテナ基板の断面図であり、(b)は(a)のB部を拡大して示す断面図である。(A) is sectional drawing of the antenna board | substrate shown in FIG. 9, (b) is sectional drawing which expands and shows the B section of (a). アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate. アンテナ基板の他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example of an antenna board | substrate.

アンテナ基板について、添付の図面を参照して説明する。なお、以下の説明における上下の区別は便宜的なものであり、実際にアンテナ基板が使用されるときの上下を限定するものではない。図1は、本開示のアンテナ基板の一例を示す分解斜視図である。図2(a)は図1に示すアンテナ基板の下面図であり、図2(b)は図2(a)のB−B線における断面図である。   The antenna substrate will be described with reference to the accompanying drawings. In addition, the upper and lower distinction in the following description is for convenience, and does not limit the upper and lower when the antenna substrate is actually used. FIG. 1 is an exploded perspective view illustrating an example of the antenna substrate of the present disclosure. 2A is a bottom view of the antenna substrate shown in FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.

アンテナ基板10は、複数の誘電体層1aが積層されてなる誘電体基板1と、誘電体基板1に設けられた第1放射導体2と、第1放射導体2と誘電体層1aの積層方向で重なるように誘電体基板1に設けられた接地導体3とで基本的に構成されている。そして、第1放射導体2と接地導体3と間に位置している誘電体層1aは、第1放射導体2と接地導体3とで挟まれた部分に、積層方向と交差する方向に配置された複数の中空部1bを有している。   The antenna substrate 10 includes a dielectric substrate 1 formed by laminating a plurality of dielectric layers 1a, a first radiation conductor 2 provided on the dielectric substrate 1, and a lamination direction of the first radiation conductor 2 and the dielectric layer 1a. And a ground conductor 3 provided on the dielectric substrate 1 so as to overlap each other. The dielectric layer 1a located between the first radiating conductor 2 and the ground conductor 3 is arranged in a direction intersecting the laminating direction at a portion sandwiched between the first radiating conductor 2 and the ground conductor 3. And a plurality of hollow portions 1b.

このような構成のアンテナ基板10によれば、中空部1bを有していることによって第1放射導体2と接地導体3との間の誘電率が低いものであるとともに、中空部1bが比較的小さい複数に分かれていることで第1放射導体2または接地導体3が形成された誘電体層1aが作製時に変形し難く、放射導体2と接地導体3との間隔が一定となるのでアンテナ特性が向上したものとなる。また、低誘電率の部分は中空部1bであることから、誘電体基板の外面に開口するような空洞部を有するものに対して、誘電体基板1の強度が高く、アンテナ基板10として信頼性の高いものとなる。   According to the antenna substrate 10 having such a configuration, since the hollow portion 1b is provided, the dielectric constant between the first radiation conductor 2 and the ground conductor 3 is low, and the hollow portion 1b is relatively Since the dielectric layer 1a on which the first radiating conductor 2 or the ground conductor 3 is formed is not easily deformed by being divided into a plurality of small parts and the distance between the radiating conductor 2 and the ground conductor 3 is constant, the antenna characteristics are improved. It will be improved. Further, since the low dielectric constant portion is the hollow portion 1b, the dielectric substrate 1 has higher strength than the one having a hollow portion that opens to the outer surface of the dielectric substrate, and the antenna substrate 10 is reliable. Will be expensive.

図3は、アンテナ基板の他の一例を示す分解斜視図である。図4(a)は図3に示すアンテナ基板の下面図であり、図4(b)は図4(a)のB−B線における断面図である。図3および図4に示す例は、図1および図2に示す例に対して、中空部1bの形態が異なっている。図1および図2に示す例では、中空部1bは、平面透視で長方形状のものが2つ設けられ、第1放射導体2と接地導体3との間の誘電体層1aにおいて、中空部1bの間に、中空部1bが設けられていない部分が平面透視でI字状に設けられている。これに対して、図3および図4に示す例では、中空部1bは平面透視で正方形状のものが4つ設けられ、第1放射導体2と接地導体3との間の誘電体層1aにおいて、中空部1bが設けられていない部分は平面透視で+字形状となっている。このような、誘電体層1aにおける複数の中空部1bに挟まれた、中空部1bが設けられていない部分が、第1放射導体2が設けられた誘電体層1aと接地導体3が設けられた誘電体層1aとの間において、これらを支える支持部として機能するので、第1放射導体2または接地導体3が設けられた誘電体層1aが変形することが抑えられる。また、複数の中空部1bそれぞれの大きさも小さくなるので、中空部1bを設けることによる誘電体基板1の強度低下も抑えられる。   FIG. 3 is an exploded perspective view showing another example of the antenna substrate. 4A is a bottom view of the antenna substrate shown in FIG. 3, and FIG. 4B is a cross-sectional view taken along line BB in FIG. 4A. The example shown in FIGS. 3 and 4 differs from the example shown in FIGS. 1 and 2 in the form of the hollow portion 1b. In the example shown in FIG. 1 and FIG. 2, two hollow portions 1b having a rectangular shape in plan view are provided. In the dielectric layer 1a between the first radiation conductor 2 and the ground conductor 3, the hollow portion 1b A portion where the hollow portion 1b is not provided is provided in an I shape in plan view. On the other hand, in the example shown in FIG. 3 and FIG. 4, the hollow portion 1b is provided with four square-shaped parts in plan view, and in the dielectric layer 1a between the first radiating conductor 2 and the ground conductor 3 The portion where the hollow portion 1b is not provided has a + -shape in plan perspective. In such a portion of the dielectric layer 1a sandwiched between the plurality of hollow portions 1b where the hollow portion 1b is not provided, the dielectric layer 1a provided with the first radiation conductor 2 and the ground conductor 3 are provided. Since it functions as a support portion for supporting the dielectric layer 1a, the deformation of the dielectric layer 1a provided with the first radiation conductor 2 or the ground conductor 3 can be suppressed. Moreover, since the magnitude | size of each of the some hollow part 1b also becomes small, the strength reduction of the dielectric substrate 1 by providing the hollow part 1b is also suppressed.

アンテナ基板10は、第1放射導体2に給電するための給電導体4を備えている。図1および図2に示す例では、給電導体4は、第1放射導体2との間に接地導体3を挟むよう
に、誘電体基板1の下面に設けられている。給電導体4はいわゆるストリップ線路導体であり、誘電体基板1の下面の外縁から中心部へ向けて延びている。
The antenna substrate 10 includes a feed conductor 4 for feeding power to the first radiation conductor 2. In the example shown in FIGS. 1 and 2, the power supply conductor 4 is provided on the lower surface of the dielectric substrate 1 so that the ground conductor 3 is sandwiched between the power supply conductor 4 and the first radiation conductor 2. The feed conductor 4 is a so-called strip line conductor and extends from the outer edge of the lower surface of the dielectric substrate 1 toward the center.

図1および図2に示す例では、給電導体4の先端部は誘電体基板1の下面の中心部に位置しており、接地導体3は、この給電導体4の先端部と重なる位置に開口部3aを有している。この開口部3aは、平面透視で給電導体4に対して直交する方向に長い形状で、例えば長方形状である。給電導体4に電流(信号)が流れると、その周りに磁界が発生し、この磁界がこの開口部3a(スロット)を通って、給電導体4と第1放射導体2とが結合することで給電導体4から第1放射導体2に給電される。   In the example shown in FIG. 1 and FIG. 2, the front end portion of the power supply conductor 4 is located at the center of the lower surface of the dielectric substrate 1, and the ground conductor 3 has an opening at a position overlapping the front end portion of the power supply conductor 4. 3a. The opening 3a has a shape that is long in a direction orthogonal to the power supply conductor 4 in a plan view, for example, a rectangular shape. When a current (signal) flows through the power supply conductor 4, a magnetic field is generated around the current, and the magnetic field passes through the opening 3 a (slot) and the power supply conductor 4 and the first radiation conductor 2 are coupled to supply power. Power is supplied from the conductor 4 to the first radiation conductor 2.

図3および図4に示す例では、給電導体4の先端部と第1放射導体2とが貫通導体4aによって電気的に接続されており、貫通導体4aによって給電導体4から放射導体2に給電される。このときの接地導体3には開口部3aが設けられており、貫通導体4aはこの開口部3a内を通って給電導体4と第1放射導体2とを接続している。開口部3aは、接地導体3と貫通導体4aとの間にクリアランスを設けて、これらが短絡しないようにするためのものであり、平面透視の形状は、例えば円形状である。この例においては、貫通導体4aは第1放射導体2の中心部ではなく、中心部と外縁部との間に接続されており、給電導体4は誘電体基板1の下面の外縁から中心部までの間までの長さである。このように給電導体4の長さを短くすることで損失が低減されたアンテナ基板10となる。貫通導体4aによって給電導体4と第1放射導体2とを接続するためには、給電導体4と第1放射導体2との間に誘電体層1aが設けられている必要がある。図1および図2に示す例では、給電導体4が延びる方向(給電導体4の長さ方向)に2つの中空部1bが配列されているが、2つの中空部1bを給電導体4の長さ方向に直交する方向に配列して、中空部1bが設けられていない部分(支持部となる部分)を給電導体4と平面透視で重なる位置に設ければ、貫通導体4aで給電導体4と第1放射導体2とを接続することができる。なお、給電導体4と第1放射導体2との電気的な接続は、貫通導体4aだけでなく、誘電体基板1の側面に設けた側面導体で行なうこともできる。この場合には、中空部1bの配置に関係なく給電導体4と第1放射導体2とを電気的に接続することができる。   In the example shown in FIG. 3 and FIG. 4, the front end portion of the feed conductor 4 and the first radiation conductor 2 are electrically connected by the through conductor 4a, and the feed conductor 4 feeds the radiation conductor 2 from the feed conductor 4a. The At this time, the grounding conductor 3 is provided with an opening 3a, and the through conductor 4a connects the feeding conductor 4 and the first radiation conductor 2 through the opening 3a. The opening 3a is provided to provide a clearance between the ground conductor 3 and the through conductor 4a so that they are not short-circuited. The shape of the plan perspective is, for example, a circular shape. In this example, the through conductor 4 a is not connected to the center portion of the first radiation conductor 2 but connected between the center portion and the outer edge portion, and the feed conductor 4 extends from the outer edge to the center portion of the lower surface of the dielectric substrate 1. It is the length to between. Thus, the antenna substrate 10 with reduced loss is obtained by shortening the length of the feed conductor 4. In order to connect the power supply conductor 4 and the first radiation conductor 2 by the through conductor 4a, it is necessary to provide the dielectric layer 1a between the power supply conductor 4 and the first radiation conductor 2. In the example shown in FIGS. 1 and 2, the two hollow portions 1 b are arranged in the direction in which the power supply conductor 4 extends (the length direction of the power supply conductor 4), but the two hollow portions 1 b have the length of the power supply conductor 4. If a portion where the hollow portion 1b is not provided (portion serving as a support portion) is provided at a position that overlaps the power supply conductor 4 in a plan perspective view, the through conductor 4a and the power supply conductor 4 are arranged in a direction perpendicular to the direction. One radiating conductor 2 can be connected. The electrical connection between the feeding conductor 4 and the first radiating conductor 2 can be performed not only by the through conductor 4 a but also by a side conductor provided on the side surface of the dielectric substrate 1. In this case, the feeding conductor 4 and the first radiation conductor 2 can be electrically connected regardless of the arrangement of the hollow portion 1b.

図5(a)、図5(b)は、それぞれアンテナ基板の他の一例を示す下面図である。図3および図4に示す例における4つの中空部1bのそれぞれの形状が平面透視で正方形であるのに対して、図5(a)に示す例においては、4つの中空部1bのそれぞれの形状は、正方形の角部を丸めた形状である点が異なる。中空部1bの平面透視の形状が正方形や長方形あるいはその他の多角形状である場合には、平面透視における形状の角部を丸めた形状にすると、アンテナ基板10(誘電体基板1)に加わった応力が角部に集中して、角部を起点とするクラックが入る可能性が低減される。このような効果を得るために、中空部1bの平面透視の形状を角部のない形状、例えば図5(b)に示す例のような円形状、あるいは楕円形状とすることができる。なお、図5(a)に示す例と図3および図4に示す例とは4つの中空部1bの配置は同じであるが、給電導体4と第1放射導体2との接続方法は異なっている。図5(a)に示す例のように、接地導体3にスロット(開口部3a)を設けた場合には、開口部3aを挟んで両方向、すなわち放射導体2側および給電導体4側に電波を放射することができる。電波の指向性を高めたい場合には、貫通導体4a等で給電導体4と第1放射導体2とを接続して、第1放射導体2から外側への一方向だけに電波が放射されるようにすることができる。   5A and 5B are bottom views showing other examples of the antenna substrate. Each of the four hollow portions 1b in the example shown in FIGS. 3 and 4 is square in a plan view, whereas in the example shown in FIG. 5 (a), each shape of the four hollow portions 1b. Is different in that the corners of the square are rounded. When the shape of the hollow portion 1b in plan view is a square, rectangle, or other polygonal shape, the stress applied to the antenna substrate 10 (dielectric substrate 1) is obtained by rounding the corners of the shape in plan view. The possibility of cracks starting from the corners by concentrating on the corners is reduced. In order to obtain such an effect, the planar perspective shape of the hollow portion 1b can be a shape having no corners, for example, a circular shape as shown in FIG. 5B or an elliptical shape. In the example shown in FIG. 5A and the examples shown in FIGS. 3 and 4, the arrangement of the four hollow portions 1b is the same, but the connection method between the feeding conductor 4 and the first radiation conductor 2 is different. Yes. When the slot (opening 3a) is provided in the ground conductor 3 as in the example shown in FIG. 5 (a), radio waves are transmitted in both directions, that is, on the radiation conductor 2 side and the feeding conductor 4 side across the opening 3a. Can radiate. When it is desired to improve the directivity of the radio wave, the feed conductor 4 and the first radiation conductor 2 are connected by the through conductor 4a or the like so that the radio wave is radiated only in one direction from the first radiation conductor 2 to the outside. Can be.

また、図5(b)に示す例ではb、誘電体基板1は、41個の中空部1bを有している。中空部1bの数は複数であれば特に制限はない。第1放射導体2と接地導体3との間に位置している誘電体層1bにおける第1放射導体2と接地導体3とで挟まれた部分に、複数の中空部1bが積層方向と交差する方向に離間して配置されていれば、放射導体2が設けられた誘電体層1aと接地導体3が設けられた誘電体層1aとの間において、誘電体基
板1にこれらを支える支持部として機能する部分が設けられる。
In the example shown in FIG. 5B, b, the dielectric substrate 1 has 41 hollow portions 1b. There is no particular limitation as long as the number of the hollow portions 1b is plural. A plurality of hollow portions 1b intersect the stacking direction at a portion sandwiched between the first radiation conductor 2 and the ground conductor 3 in the dielectric layer 1b located between the first radiation conductor 2 and the ground conductor 3. As long as they are spaced apart from each other in the direction, the dielectric substrate 1 serves as a support portion that supports the dielectric layer 1a between the dielectric layer 1a provided with the radiation conductor 2 and the dielectric layer 1a provided with the ground conductor 3. A functional part is provided.

図6は、アンテナ基板の他の一例を示す分解斜視図である。図7(a)は図6に示すアンテナ基板の下面図であり、図7(b)は図7(a)のB−B線における断面図である。図6および図7に示す例は、図1および図2に示す例に対して、2つの中空部1bの配置が異なっている。図1および図2に示す例では、第1放射導体2と接地導体3との間には1層の誘電体層1aが設けられており、この1層の誘電体層1aに2つの中空部1bが設けられている。これに対して、図6および図7に示す例では、第1放射導体2と接地導体3との間には2層の誘電体層1aが設けられており、この2層の誘電体層1aのそれぞれに1つずつの中空部1bが設けられている。2つの中空部1bは、誘電体層1aの積層方向において異なる位置に配置されている点では異なるが、積層方向と交差する方向に離間して配置されているという点では同じである。そのため、この例においても、第1放射導体2が設けられた誘電体層1aと接地導体3が設けられた誘電体層1aとの間において、誘電体基板1にこれらを支える支持部として機能する部分が設けられている。このように、複数の中空部1bは、誘電体1の積層方向にも複数設けることができる。なお、図6および図7に示す例において、第1放射導体2と接地導体3との間の2層の誘電体層1aのそれぞれに、2つの貫通孔を設けてもよい。すなわち、第1放射導体2と接地導体3との間の複数層の誘電体層1aが設けられている場合に、複数層の誘電体層1aを貫通して複数の中空部1bが設けられていてもよい。この場合は、図6および図7に示す例と比較して、第1放射導体2と接地導体3との間の誘電率がより低減されてアンテナ特性が向上する。   FIG. 6 is an exploded perspective view showing another example of the antenna substrate. 7A is a bottom view of the antenna substrate shown in FIG. 6, and FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A. The example shown in FIGS. 6 and 7 differs from the example shown in FIGS. 1 and 2 in the arrangement of the two hollow portions 1b. In the example shown in FIGS. 1 and 2, a single dielectric layer 1a is provided between the first radiation conductor 2 and the ground conductor 3, and two hollow portions are formed in the single dielectric layer 1a. 1b is provided. On the other hand, in the example shown in FIG. 6 and FIG. 7, two dielectric layers 1a are provided between the first radiation conductor 2 and the ground conductor 3, and the two dielectric layers 1a are provided. One hollow portion 1b is provided for each of the two. The two hollow portions 1b are different in that they are arranged at different positions in the laminating direction of the dielectric layer 1a, but are the same in that they are arranged apart in a direction crossing the laminating direction. Therefore, also in this example, between the dielectric layer 1a provided with the first radiation conductor 2 and the dielectric layer 1a provided with the ground conductor 3, the dielectric substrate 1 functions as a support portion for supporting them. A part is provided. Thus, a plurality of hollow portions 1b can be provided in the stacking direction of the dielectric 1 as well. In the example shown in FIGS. 6 and 7, two through holes may be provided in each of the two dielectric layers 1 a between the first radiation conductor 2 and the ground conductor 3. That is, when a plurality of dielectric layers 1a between the first radiation conductor 2 and the ground conductor 3 are provided, a plurality of hollow portions 1b are provided through the plurality of dielectric layers 1a. May be. In this case, compared with the example shown in FIGS. 6 and 7, the dielectric constant between the first radiation conductor 2 and the ground conductor 3 is further reduced, and the antenna characteristics are improved.

また、図6および図7に示す例では、第1放射導体2は誘電体基板1の外面に設けられている。図1〜図4に示す例のように第1放射導体2を誘電体基板1の内部に設けると、第1放射導体2と接地導体3との間の誘電体層1aを貫通する中空部1bとして、第1放射導体2および接地導体3を中空部1b内に面するようにすることができる。この場合には、第1放射導体2と接地導体3との間の誘電率をより小さくすることができる。また、第1放射導体2が誘電体層1aで覆われているので、アンテナ基板10の使用環境の雰囲気等によって第1放射導体2が腐食され難いものとなる。これに対して、図6および図7(さらには、後述する図9および図10)に示す例のように、誘電体層1aの外面に第1放射導体2を設けると、電波を放射する面に誘電体層1aが存在しないので、電波が閉じ込められず、より遠くまで電波を飛ばすことができる。アンテナ基板10に要求される特性に応じて第1放射導体2を配置することができる。   In the example shown in FIGS. 6 and 7, the first radiation conductor 2 is provided on the outer surface of the dielectric substrate 1. When the first radiating conductor 2 is provided inside the dielectric substrate 1 as in the examples shown in FIGS. 1 to 4, the hollow portion 1 b penetrating the dielectric layer 1 a between the first radiating conductor 2 and the ground conductor 3. As a result, the first radiating conductor 2 and the grounding conductor 3 can face the hollow portion 1b. In this case, the dielectric constant between the first radiation conductor 2 and the ground conductor 3 can be further reduced. Further, since the first radiating conductor 2 is covered with the dielectric layer 1a, the first radiating conductor 2 is hardly corroded by the atmosphere of the environment in which the antenna substrate 10 is used. On the other hand, when the first radiation conductor 2 is provided on the outer surface of the dielectric layer 1a as in the example shown in FIGS. 6 and 7 (and FIG. 9 and FIG. 10 to be described later), a surface that emits radio waves. Since the dielectric layer 1a does not exist, the radio wave is not confined and the radio wave can be emitted farther. The first radiation conductor 2 can be arranged according to the characteristics required for the antenna substrate 10.

図8(a)および図8(b)は、それぞれアンテナ基板の他の一例を示す下面図である。図8(a)に示す例は、図3および図4に示す例に対して、中空部1bの数および配置は同じであるが、中空部1bの平面透視の形状が異なる。図3および図4に示す例における中空部1bの平面透視の形状が正方形であるのに対して、図8(a)に示す例における中空部1bの平面透視の形状は台形である。台形にすることで、中空部1bが設けられていない部分の幅を大きくしている。そのため、第1放射導体2が設けられた誘電体層1aと接地導体3が設けられた誘電体層1aとの間を支える支持部が大きくなるので、第1放射導体2または接地導体3が設けられた誘電体層1aが変形することがより抑えられる。そして、台形の下底(最も長い辺)が、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺に沿って外側に位置するように配置されている。第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺の近傍に電界が集中しやすく、ここの誘電率を小さくすることでアンテナ特性がより向上する。すなわち、図8(a)に示す例においては、図3および図4に示す例に対して、アンテナ特性をあまり低下させることなく、誘電体層1aの変形をより抑えることができる。このような効果を得るための中空部1bの平面透視の形状は、台形に限られず、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺の近傍において大きく、第
1放射導体2の中央部において小さくなる形状であればよい。なお、図8においては接地導体3を破線で示し、第1放射導体2は示していないが、第1放射導体2は接地導体3より一回り小さく、第1放射導体2の外縁は接地導体3の外縁より内側に位置しているので、図8において、放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺と中空部1bとが平面透視で重なっている。
FIG. 8A and FIG. 8B are bottom views showing other examples of the antenna substrate, respectively. The example shown in FIG. 8A is the same as the example shown in FIGS. 3 and 4 in the number and arrangement of the hollow portions 1b, but the shape of the planar perspective view of the hollow portion 1b is different. 3 and FIG. 4, the shape of the plan view of the hollow portion 1 b is square, whereas the shape of the plan view of the hollow portion 1 b in the example shown in FIG. 8A is a trapezoid. By making it trapezoidal, the width of the portion where the hollow portion 1b is not provided is increased. Therefore, since the support part supporting between the dielectric layer 1a provided with the first radiation conductor 2 and the dielectric layer 1a provided with the ground conductor 3 becomes large, the first radiation conductor 2 or the ground conductor 3 is provided. It is possible to further suppress deformation of the formed dielectric layer 1a. Then, the lower base (longest side) of the trapezoid is arranged so as to be located outside along the side orthogonal to the direction (length direction) in which the feed conductor 4 extends among the outer sides of the first radiation conductor 2. ing. Of the outer side of the first radiating conductor 2, the electric field tends to concentrate in the vicinity of the side orthogonal to the direction (length direction) in which the feed conductor 4 extends, and the antenna characteristics are further improved by reducing the dielectric constant here. . That is, in the example shown in FIG. 8A, the deformation of the dielectric layer 1a can be further suppressed without significantly reducing the antenna characteristics as compared with the examples shown in FIGS. The shape of the planar perspective view of the hollow portion 1b for obtaining such an effect is not limited to a trapezoidal shape, but is a side of the outer side of the first radiating conductor 2 that is orthogonal to the direction in which the feed conductor 4 extends (length direction). Any shape that is large in the vicinity and small in the central portion of the first radiation conductor 2 may be used. In FIG. 8, the ground conductor 3 is indicated by a broken line and the first radiation conductor 2 is not illustrated, but the first radiation conductor 2 is slightly smaller than the ground conductor 3, and the outer edge of the first radiation conductor 2 is the ground conductor 3. In FIG. 8, in the outer side of the radiation conductor 2, the side perpendicular to the direction (length direction) in which the feed conductor 4 extends overlaps the hollow portion 1 b in FIG. Yes.

図8(b)に示す例は、図3および図4に示す例に対して、中空部1bの数は同じであるが配置が異なり、中空部1bの平面透視の形状も異なる。図3および図4に示す例においては、平面透視の形状が正方形である4つの中空部1bを、平面透視の形状が正方形である第1放射導体2の4つの角部のそれぞれに合わせて配置している。このときの中空部1bが設けられていない部分の形状は、平面透視で第1放射導体2の辺部間を結ぶ十字(+字)状である。これ対して、図8(b)に示す例においては、平面透視の形状が台形である4つの中空部1bを、平面透視の形状が正方形である第1放射導体2の4つの辺部のそれぞれに、台形の下底が外側で沿うように配置している。中空部1bが設けられていない部分の形状は、平面透視で第1放射導体2の対角間を結ぶX字(×)状である。この場合は、給電導体4と平面透視で重なる位置に中空部1bが設けられるので、貫通導体4aによって給電導体4と第1放射導体2とを接続することができないので、接地導体3に開口部3a(スロット)を設けて、給電導体4と第1放射導体2とを電磁界結合させる。開口部3a(スロット)と第1放射導体2との間に誘電体層1aを配置するため、中空部1bが設けられていない部分の形状は、完全なX字(×)ではなく、中央部に開口部3a(スロット)に沿って延びる部分を有している。この図8(b)に示す例の場合においても図8(a)に示す例と同様に、台形の下底(最も長い辺)が、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺に沿って外側に位置するように配置されているので、アンテナ特性をあまり低下させることなく、誘電体層1aの変形をより抑えることができる。また、図8(a)に示す例に対して、図8(b)に示す例の中空部1bは、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺と重なる部分が大きいのでアンテナ特性の点では優れている。なお、図1〜図7に示す例において、複数の中空部1b全体の外周は、平面透視で放射導体2の外周より外側に位置している。すなわち、図1〜図7に示す例においても、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺と中空部1bとが平面透視で重なっている。このように、第1放射導体2と接地導体3とで挟まれた部分だけでなく、第1放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺と平面透視で重なる部分まで中空部1bを設けることができる。中空部1bが第1放射導体2と接地導体3とで挟まれた部分だけに配置される場合に対して、アンテナ特性がより向上する。   The example shown in FIG. 8B is different from the examples shown in FIGS. 3 and 4 in the number of the hollow portions 1b, but the arrangement is different, and the shape of the perspective view of the hollow portion 1b is also different. In the example shown in FIGS. 3 and 4, the four hollow portions 1b whose planar perspective shape is square are arranged in accordance with the four corners of the first radiation conductor 2 whose planar perspective shape is square. doing. The shape of the portion where the hollow portion 1b is not provided at this time is a cross (+ character) shape connecting the side portions of the first radiation conductor 2 in a plan view. On the other hand, in the example shown in FIG. 8B, each of the four hollow portions 1b having a trapezoidal shape in plan view and each of the four sides of the first radiation conductor 2 having a square shape in plan view. In addition, the bottom of the trapezoid is arranged along the outside. The shape of the portion where the hollow portion 1b is not provided is an X shape (x) that connects the diagonals of the first radiation conductor 2 in a plan view. In this case, since the hollow portion 1b is provided at a position overlapping the feeding conductor 4 in plan view, the feeding conductor 4 and the first radiation conductor 2 cannot be connected by the through conductor 4a. 3a (slot) is provided to electromagnetically couple the feed conductor 4 and the first radiation conductor 2 to each other. Since the dielectric layer 1a is disposed between the opening 3a (slot) and the first radiating conductor 2, the shape of the portion where the hollow portion 1b is not provided is not a complete X-shape (x) but a central portion. Has a portion extending along the opening 3a (slot). Also in the case of the example shown in FIG. 8B, the lower base (longest side) of the trapezoid is the feeding conductor 4 of the outer sides of the first radiating conductor 2 as in the example shown in FIG. Since the antenna layer is disposed so as to be located outside along the side perpendicular to the extending direction (length direction), the deformation of the dielectric layer 1a can be further suppressed without significantly deteriorating the antenna characteristics. In addition, in contrast to the example shown in FIG. 8A, the hollow portion 1 b in the example shown in FIG. 8B has a direction (length direction) in which the feeding conductor 4 extends in the outer side of the first radiation conductor 2. Since the portion that overlaps the side orthogonal to is large, the antenna characteristics are excellent. In the example shown in FIGS. 1 to 7, the entire outer periphery of the plurality of hollow portions 1 b is located outside the outer periphery of the radiation conductor 2 in a plan view. That is, also in the example shown in FIGS. 1 to 7, the side perpendicular to the extending direction (length direction) of the power supply conductor 4 and the hollow portion 1 b of the outer side of the first radiating conductor 2 overlap with each other in a plan view. Yes. Thus, not only the portion sandwiched between the first radiating conductor 2 and the grounding conductor 3, but also the side orthogonal to the extending direction (length direction) of the feed conductor 4 among the outer sides of the first radiating conductor 2. The hollow portion 1b can be provided up to the overlapping portion in plan perspective. As compared with the case where the hollow portion 1b is arranged only in the portion sandwiched between the first radiation conductor 2 and the ground conductor 3, the antenna characteristics are further improved.

以上の例における複数の中空部1bは、第1放射導体2と接地導体3との間で誘電体層1aを貫通している。そのため、複数の中空部1bの1つ1つをより大きいものとすることができ、誘電率をより低減することができる。また、中空部1bの形成が容易である。中空部1bが誘電体層1aを貫通している場合の縦断面視における形状は、図2、図4および図7に示す例のように矩形状となる。   The plurality of hollow portions 1b in the above example penetrate the dielectric layer 1a between the first radiation conductor 2 and the ground conductor 3. Therefore, each of the plurality of hollow portions 1b can be made larger, and the dielectric constant can be further reduced. Moreover, formation of the hollow part 1b is easy. When the hollow portion 1b penetrates the dielectric layer 1a, the shape in a longitudinal sectional view is a rectangular shape as in the examples shown in FIGS.

図9は、アンテナ基板の他の一例を示す分解斜視図である。図10(a)は図9に示すアンテナ基板の断面図であり、図10(b)は図10(a)のB部を拡大して示す断面図である。図9および図10に示す例は、図6および図7に示す例に対して、中空部1bの形態が異なっている。複数の中空部1bは、第1放射導体2と接地導体3と間に位置している誘電体層1aに設けられた多孔質部1cの細孔1cpである。図1〜図8に示す例に対して、中空部1bの1つの大きさが小さく、誘電体層1aの積層方向と交差する方向と誘電体層1aの積層方向の両方に複数の中空部1bが配置されている。そのため、中空部1bが設けられていない部分は、多孔質部1cにおいて三次元網目構造となっているともいえる。このような構成においては、第1放射導体2が設けられた誘電体層1aと接地導
体3が設けられた誘電体層1aとの間を支える支持部が、これらの間でより一様に分布し、支持部が存在しない領域がないものとなる。そのため、第1放射導体2または接地導体3が設けられた誘電体層1aの変形がより抑えられる。また、大きな中空部1bがなく、小さい中空部1bが一様に分散しているので、大きく強度が低下する部分がなく、誘電体基板1の強度がより高いものとなる。そして、図9および図10に示す例において、中空部1bを含んでいる多孔質部1cの外周は、平面透視で第1放射導体2の外周より外側に位置している。すなわち、図9および図10に示す例においても、放射導体2の外辺のうち、給電導体4の延びる方向(長さ方向)と直交する辺と中空部1bを含む多孔質部1cとが平面透視で重なっている。
FIG. 9 is an exploded perspective view showing another example of the antenna substrate. FIG. 10A is a cross-sectional view of the antenna substrate shown in FIG. 9, and FIG. 10B is an enlarged cross-sectional view of a portion B in FIG. The example shown in FIGS. 9 and 10 differs from the example shown in FIGS. 6 and 7 in the form of the hollow portion 1b. The plurality of hollow portions 1b are pores 1cp of the porous portion 1c provided in the dielectric layer 1a located between the first radiation conductor 2 and the ground conductor 3. 1 to 8, the size of one hollow portion 1b is small, and a plurality of hollow portions 1b are provided both in the direction intersecting the stacking direction of the dielectric layer 1a and in the stacking direction of the dielectric layer 1a. Is arranged. Therefore, it can be said that the part where the hollow part 1b is not provided has a three-dimensional network structure in the porous part 1c. In such a configuration, the support portion that supports between the dielectric layer 1a provided with the first radiation conductor 2 and the dielectric layer 1a provided with the ground conductor 3 is more uniformly distributed between them. However, there is no region where the support portion does not exist. Therefore, deformation of the dielectric layer 1a provided with the first radiation conductor 2 or the ground conductor 3 is further suppressed. Further, since there is no large hollow portion 1b and the small hollow portions 1b are uniformly dispersed, there is no portion where the strength is greatly reduced, and the strength of the dielectric substrate 1 is higher. 9 and FIG. 10, the outer periphery of the porous portion 1c including the hollow portion 1b is located outside the outer periphery of the first radiation conductor 2 in a plan view. That is, also in the examples shown in FIGS. 9 and 10, the side perpendicular to the extending direction (length direction) of the feed conductor 4 and the porous portion 1 c including the hollow portion 1 b are planar among the outer sides of the radiation conductor 2. It overlaps with fluoroscopy.

図11はアンテナ基板の他の一例を示す分解斜視図である。図11に示す例は、図1に示す例に対して、さらに第2放射導体2aを備えている。第2放射導体2aは、第1放射導体2に対して接地導体3とは反対側で、第1放射導体2との間に誘電体層1aを挟んで重なっている。言い換えれば、第2放射導体2aと接地導体3との間に第1放射導体2配置している。すなわち、接地導体3との間に第1放射導体2を挟んで誘電体層1aの積層方向で重なるように誘電体基板1に設けられた第2放射導体2aを備えているアンテナ基板10とすることができる。このように第2放射導体2aが第1放射導体2に対して誘電体層1aの積層方向で重なるように配置されていることから、第1放射導体2および第2放射導体2aで複合的な共振が起こり、そのため広い周波数帯域において信号の送受信を行なうことが可能な広帯域のアンテナ基板10を提供することができる。   FIG. 11 is an exploded perspective view showing another example of the antenna substrate. The example shown in FIG. 11 further includes a second radiation conductor 2a as compared with the example shown in FIG. The second radiating conductor 2 a is opposite to the ground conductor 3 with respect to the first radiating conductor 2, and overlaps with the first radiating conductor 2 with the dielectric layer 1 a interposed therebetween. In other words, the first radiation conductor 2 is disposed between the second radiation conductor 2 a and the ground conductor 3. That is, the antenna substrate 10 includes the second radiating conductor 2 a provided on the dielectric substrate 1 so as to overlap with the ground conductor 3 in the stacking direction of the dielectric layer 1 a with the first radiating conductor 2 interposed therebetween. be able to. Since the second radiating conductor 2a is disposed so as to overlap the first radiating conductor 2 in the stacking direction of the dielectric layer 1a in this way, the first radiating conductor 2 and the second radiating conductor 2a are combined. Resonance occurs, so that it is possible to provide a broadband antenna substrate 10 capable of transmitting and receiving signals in a wide frequency band.

図12〜図14はアンテナ基板の他の一例を示す分解斜視図である。図12〜図14に示す例は、図11に示す例に対して、第1放射導体2と第2放射導体2aとの間に位置している誘電体層1aが中空部1bを備えている。これらのように、積層方向において第1放射導体2と第2放射導体2aとの間に位置している誘電体層1aが、第1放射導体2と第2放射導体2aとで挟まれた部分に、積層方向と交差する方向に離間して配置された複数の中空部1bを有しているアンテナ基板10とすることができる。第1放射導体2と第2放射導体2aとで挟まれた部分にも中空部1bを設けることにより、これらの間の比誘電率も低いものとなるので、広い周波数帯域においてより良好な信号の送受信を行なうことが可能な広帯域のアンテナ基板10を提供することができる。また、第1放射導体2と第2放射導体2aとの間の中空部1bもまた、積層方向と交差する方向に離間して配置された複数個であるので、誘電体層1aが作製時に変形し難く、第1放射導体2と第2放射導体2aとの間隔が一定となってアンテナ特性が向上したものとなる。また、低誘電率の部分は中空部1bであって、誘電体基板の外面に開口するような空洞部ではないので、誘電体基板1の強度が高く、アンテナ基板10として信頼性の高いものとなる。   12 to 14 are exploded perspective views showing other examples of the antenna substrate. In the example shown in FIGS. 12 to 14, the dielectric layer 1 a located between the first radiating conductor 2 and the second radiating conductor 2 a has a hollow portion 1 b as compared with the example shown in FIG. 11. . As described above, a portion in which the dielectric layer 1a located between the first radiation conductor 2 and the second radiation conductor 2a in the stacking direction is sandwiched between the first radiation conductor 2 and the second radiation conductor 2a. In addition, the antenna substrate 10 having a plurality of hollow portions 1b that are spaced apart from each other in the direction crossing the stacking direction can be obtained. By providing the hollow portion 1b in the portion sandwiched between the first radiating conductor 2 and the second radiating conductor 2a, the relative dielectric constant between them becomes low, so that a better signal can be obtained in a wide frequency band. A broadband antenna substrate 10 capable of transmitting and receiving can be provided. Further, since the hollow portion 1b between the first radiating conductor 2 and the second radiating conductor 2a is also plurally arranged in a direction intersecting with the stacking direction, the dielectric layer 1a is deformed at the time of manufacture. However, the distance between the first radiating conductor 2 and the second radiating conductor 2a is constant, and the antenna characteristics are improved. Further, the low dielectric constant portion is the hollow portion 1b and is not a hollow portion that opens to the outer surface of the dielectric substrate. Therefore, the strength of the dielectric substrate 1 is high, and the antenna substrate 10 has high reliability. Become.

図12に示す例において、第1放射導体2と第2放射導体2aとの間の中空部1bは、第1放射導体2と接地導体3との間の中空部1bと同じ形状で同じ配置である。これに対して、図13および図14に示す例においては、第1放射導体2と第2放射導体2aとの間の中空部1bの形状あるいは配置は、第1放射導体2と接地導体3との間の中空部1bとは異なっている。具体的には、図12に示す例では、平面視で長方形の2つの中空部1bが、第1放射導体2と接地導体3との間の中空部1bの配列方向と同じ方向に配列されている。これに対して、図13に示す例では、3つの長方形の中空部1bが第1放射導体2と接地導体3との間の中空部1bの配列方向と同じ方向に配列されている。また、図14に示す例では、2つの長方形の中空部1bが第1放射導体2と接地導体3との間の中空部1bの配列方向と直交する方向に配列されている。このように、第1放射導体2と接地導体3との間の中空部1bと第1放射導体2と第2放射導体2aとの間の中空部1bとが、平面視で重ならない部分を有するように配置されていると、中空部1bを設けることによる誘電体基板1の強度低下が抑えられ、アンテナ基板10として信頼性の高いものとなる。また、第1放射導体2と第2放射導体2aとの間の中空部1bもまた、図9および図
10に示す例のような、多孔質部1cの細孔1cpとすることができる。
In the example shown in FIG. 12, the hollow portion 1b between the first radiating conductor 2 and the second radiating conductor 2a has the same shape and the same arrangement as the hollow portion 1b between the first radiating conductor 2 and the ground conductor 3. is there. On the other hand, in the example shown in FIGS. 13 and 14, the shape or arrangement of the hollow portion 1b between the first radiating conductor 2 and the second radiating conductor 2a is the same as that of the first radiating conductor 2 and the ground conductor 3. It is different from the hollow portion 1b. Specifically, in the example shown in FIG. 12, two hollow portions 1 b that are rectangular in plan view are arranged in the same direction as the arrangement direction of the hollow portions 1 b between the first radiation conductor 2 and the ground conductor 3. Yes. On the other hand, in the example shown in FIG. 13, the three rectangular hollow portions 1 b are arranged in the same direction as the arrangement direction of the hollow portions 1 b between the first radiation conductor 2 and the ground conductor 3. In the example shown in FIG. 14, the two rectangular hollow portions 1 b are arranged in a direction orthogonal to the arrangement direction of the hollow portions 1 b between the first radiation conductor 2 and the ground conductor 3. Thus, the hollow portion 1b between the first radiating conductor 2 and the ground conductor 3 and the hollow portion 1b between the first radiating conductor 2 and the second radiating conductor 2a have portions that do not overlap in a plan view. With such an arrangement, the strength reduction of the dielectric substrate 1 due to the provision of the hollow portion 1b is suppressed, and the antenna substrate 10 is highly reliable. Moreover, the hollow part 1b between the 1st radiation conductor 2 and the 2nd radiation conductor 2a can also be made into the pore 1cp of the porous part 1c like the example shown to FIG. 9 and FIG.

誘電体基板1は、アンテナ基板10の基本的な構造部分であり、アンテナ基板10としての機械的な強度の確保、および複数の第1放射導体2と接地導体3との間絶縁性の確保等の機能を有している。誘電体基板1は、例えば上から見たときに(平面視において)正方形状等の四角形状で、平板状である。誘電体基板1の寸法は、例えば、四角形の一辺の長さが2mm〜10mmで、厚みが0.3mm〜3mmである。   The dielectric substrate 1 is a basic structural part of the antenna substrate 10, and ensures mechanical strength as the antenna substrate 10 and ensures insulation between the plurality of first radiation conductors 2 and the ground conductor 3. It has the function of The dielectric substrate 1 has, for example, a rectangular shape such as a square shape when viewed from above (in plan view), and has a flat plate shape. The dimensions of the dielectric substrate 1 are, for example, that the length of one side of the quadrangle is 2 mm to 10 mm and the thickness is 0.3 mm to 3 mm.

誘電体基板1は、例えば酸化アルミニウム質焼結体、ガラスセラミック焼結体、ムライト質焼結体または窒化アルミニウム質焼結体等のセラミック材料から成る誘電体材料からなる複数の誘電体層1aが積層されて形成されている。図1〜図14に示す例では誘電体層1aは3層〜5層であるが、絶縁層1aの層数はこれらに限られるものではない。   The dielectric substrate 1 includes a plurality of dielectric layers 1a made of a dielectric material made of a ceramic material such as an aluminum oxide sintered body, a glass ceramic sintered body, a mullite sintered body, or an aluminum nitride sintered body. It is formed by stacking. In the example shown in FIGS. 1 to 14, the dielectric layer 1 a has three to five layers, but the number of insulating layers 1 a is not limited thereto.

誘電体基板1は、例えばガラスセラミック焼結体からなる場合であれば、次のようにして製作することができる。まず、ガラス成分となる酸化ケイ素、酸化ホウ素およびフィラー成分となる酸化アルミニウム等の粉末を主成分とする原料粉末を、有機溶剤、バインダと混練してスラリーとするとともに、このスラリーをドクターブレード法またはリップコータ法等の成形方法でシート状に成形して誘電体基板1の誘電体層1aとなるセラミックグリーンシート(以下、グリーンシートともいう)を作製する。図1〜図8に示す例のような中空部1bは、セラミックグリーンシートに金型等を用いて貫通孔を設けておくことで、容易に形成することができる。次に、複数のグリーンシートを積層して積層体を作製する。このとき、中空部1bとなる貫通孔が大きいと、その上下に位置するグリーンシートが変形し、貫通孔内へ凸状に変形してしまう場合がある。中空部1bとなる貫通孔が複数設けられ、1つの貫通孔の大きさが小さいので変形し難い。また、1つの大きな貫通孔の場合に対して、グリーンシートの複数の貫通孔間に位置する部分(貫通孔が設けらていない)が上下のグリーンシートを支える支持部のように機能する。グリーンシートの変形をより抑えるために、貫通孔の内部を、例えば後の焼成工程において焼失する有機成分から成る充填材で充填しておくこともできる。充填材は、例えば、アクリル樹脂と有機溶剤とを含むグリーンシートと同等の厚みのシート状のものである。例えば、グリーンシートに貫通孔を設ける際に、グリーンシート上にシート状の充填材を載置した状態で、充填材とともにグリーンシートを打ち抜きつつ、グリーンシートの貫通孔に打ち抜かれた充填材シートをはめ込むことで貫通孔に充填材を充填させることができる。この場合には、貫通孔の大きさが小さいので充填材から発生するガスの量が少なく、このガスによる変形も発生し難い。その後、この積層体を約900〜1000℃程度の温度で焼成することによって誘電
体基板1を製作することができる。
If the dielectric substrate 1 is made of, for example, a glass ceramic sintered body, it can be manufactured as follows. First, a raw material powder mainly composed of powders such as silicon oxide, boron oxide and aluminum oxide serving as a glass component are kneaded with an organic solvent and a binder to form a slurry. A ceramic green sheet (hereinafter also referred to as a green sheet) to be a dielectric layer 1a of the dielectric substrate 1 is formed by forming into a sheet by a molding method such as a lip coater method. The hollow portion 1b as in the example shown in FIGS. 1 to 8 can be easily formed by providing a through hole in the ceramic green sheet using a mold or the like. Next, a plurality of green sheets are laminated to produce a laminate. At this time, if the through-hole serving as the hollow portion 1b is large, the green sheets positioned above and below the shape may be deformed and deformed into a convex shape into the through-hole. Since a plurality of through holes serving as the hollow portion 1b are provided and the size of one through hole is small, it is difficult to deform. In addition, in the case of one large through hole, a portion (no through hole is provided) located between the plurality of through holes of the green sheet functions as a support portion that supports the upper and lower green sheets. In order to further suppress the deformation of the green sheet, the inside of the through-hole can be filled with a filler made of an organic component that is burned off in a subsequent baking step, for example. The filler is, for example, a sheet having a thickness equivalent to that of a green sheet containing an acrylic resin and an organic solvent. For example, when a through-hole is provided in a green sheet, the filler sheet punched into the through-hole of the green sheet is punched with the filler while the sheet-like filler is placed on the green sheet. By inserting, the through hole can be filled with the filler. In this case, since the size of the through hole is small, the amount of gas generated from the filler is small, and deformation due to this gas hardly occurs. Then, the dielectric substrate 1 can be manufactured by firing this laminated body at a temperature of about 900 to 1000 ° C.

図9および図10に示す例のように、複数の中空部1bが多孔質部1cの細孔1cpである場合は、多孔質部1cとなるセラミックグリーンシートを、誘電体層1aとなるグリーンシートに設けた貫通孔内に配置することで作製することができる。あるいは、多孔質部1cとなるセラミックペーストを誘電体層1aとなるグリーンシートに設けた貫通孔内に充填することで作製することができる。多孔質部1cとなるセラミックグリーンシートおよび多孔質部1cとなるセラミックペーストは、誘電体層1aとなるグリーンシートに対して、例えば焼成工程で焼失して細孔1cpとなる焼失成分を含むものとすればよい。焼失成分としては、例えば、アクリル樹脂製のビーズを用いることができる。多孔質部1cとなるセラミックグリーンシートを用いる場合であれば、貫通孔内への配置は、上記した充填材を充填する方法と同様の方法で行なえばよい。多孔質部1cとなるセラミックペーストを用いる場合は、貫通孔を設けたシートを基材の上に載置した状態で、あるいは積層体を作製する途中の、貫通孔の一方の開口がグリーンシートで塞がれた状態で、セラミックペーストをスクリーン印刷などの方法を用いて貫通孔へ充填すればよい。   When the plurality of hollow portions 1b are the pores 1cp of the porous portion 1c as in the example shown in FIGS. 9 and 10, the ceramic green sheet that becomes the porous portion 1c is replaced with the green sheet that becomes the dielectric layer 1a. It can produce by arrange | positioning in the through-hole provided in. Or it can produce by filling the ceramic paste used as the porous part 1c in the through-hole provided in the green sheet used as the dielectric material layer 1a. The ceramic green sheet that becomes the porous portion 1c and the ceramic paste that becomes the porous portion 1c contain, for example, a burned-out component that burns away in the firing step and becomes the pores 1cp with respect to the green sheet that becomes the dielectric layer 1a. do it. As the burnout component, for example, acrylic resin beads can be used. If a ceramic green sheet to be used as the porous portion 1c is used, the placement in the through hole may be performed by a method similar to the method of filling the filler. When using the ceramic paste that becomes the porous portion 1c, one of the openings in the through-hole is a green sheet in a state where the sheet provided with the through-hole is placed on the base material or in the middle of manufacturing the laminate. What is necessary is just to fill a through-hole with methods, such as screen printing, in the state where it was plugged up.

誘電体基板1を含むアンテナ基板10は、このようなアンテナ基板10となる複数の基板領域が母基板に配列された多数個取り基板として製作することもできる。複数の基板領域を含む母基板を、基板領域毎に分割して複数のアンテナ基板10をより効率よく製作することもできる。この場合には、母基板のうち基板領域の境界に沿って分割用の溝が設けられていてもよい。   The antenna substrate 10 including the dielectric substrate 1 can be manufactured as a multi-piece substrate in which a plurality of substrate regions to be the antenna substrate 10 are arranged on a mother substrate. A plurality of antenna substrates 10 can be more efficiently manufactured by dividing a mother substrate including a plurality of substrate regions into each substrate region. In this case, a dividing groove may be provided along the boundary of the substrate region in the mother substrate.

誘電体基板1の表面または内部には、図1〜図10に示す例のように、第1放射導体2、接地導体3、給電線路導体4が設けられている。また、図11〜図14に示す例では、さらに第2放射導体2aが設けられている。図1〜図14に示す例においては省略しているが、例えば、接地導体3は外部回路の接地電位に接続するための、誘電体基板1の内部から外表面にかけて引出線路部を備えている。給電導体4と第1放射導体2との電気的な接続を貫通導体4aで行なう場合には、これらの間の誘電体層1aを貫通する貫通導体4aを設ける。また、給電導体4と第1放射導体2との電気的な接続を、誘電体基板1の側面に設けた側面導体で行なう場合には、誘電体基板1の側面に側面導体を設ける。   A first radiation conductor 2, a ground conductor 3, and a feed line conductor 4 are provided on the surface or inside of the dielectric substrate 1 as in the examples shown in FIGS. 1 to 10. Moreover, in the example shown in FIGS. 11-14, the 2nd radiation | emission conductor 2a is further provided. Although omitted in the examples shown in FIGS. 1 to 14, for example, the ground conductor 3 is provided with a lead line portion from the inside to the outer surface of the dielectric substrate 1 for connection to the ground potential of the external circuit. . When electrical connection between the feeding conductor 4 and the first radiation conductor 2 is performed by the through conductor 4a, the through conductor 4a penetrating the dielectric layer 1a therebetween is provided. Further, when electrical connection between the power supply conductor 4 and the first radiation conductor 2 is performed by a side conductor provided on the side surface of the dielectric substrate 1, a side conductor is provided on the side surface of the dielectric substrate 1.

第1放射導体2、第2放射導体2a、接地導体3、給電線路導体4、貫通導体4aおよび側面導体(以下、まとめて配線導体とも呼ぶ。)は、例えば、タングステン、モリブデン、マンガン、銅、銀、パラジウム、金、白金、ニッケルまたはコバルト等の金属、またはこれらの金属を含む合金の金属材料を導体材料として主に含むものである。このような金属材料は、メタライズ層またはめっき層等の金属層として誘電体基板1の表面に設けられている。この金属層は、1層でもよく、複数層でもよい。   The first radiating conductor 2, the second radiating conductor 2a, the ground conductor 3, the feed line conductor 4, the through conductor 4a and the side conductor (hereinafter also collectively referred to as a wiring conductor) are, for example, tungsten, molybdenum, manganese, copper, Metal materials such as silver, palladium, gold, platinum, nickel or cobalt, or an alloy material containing these metals are mainly included as the conductor material. Such a metal material is provided on the surface of the dielectric substrate 1 as a metal layer such as a metallized layer or a plating layer. This metal layer may be a single layer or a plurality of layers.

第1放射導体2、第2放射導体2a、接地導体3および給電線路導体4は、例えば、銅のメタライズ層である場合には、銅の粉末を有機溶剤および有機バインダと混合して作製した金属ペーストを誘電体層1aとなるグリーンシートの所定位置にスクリーン印刷法等の方法で印刷してグリーンシートとともに焼成する方法で形成することができる。また、貫通導体4aは、上記の金属ペーストの印刷に先駆けてグリーンシートの所定の位置に貫通孔を設け、上記と同様の金属ペーストをこの貫通孔に充填しておくことで形成することができる。側面導体は、積層体の側面に上記と同様の金属ペーストを印刷することで形成することができる。あるいは、側面導体は、いわゆるキャスタレーション導体とすることもできる。この場合は、グリーンシートに設けた貫通孔の内面に金属ペーストを印刷するか、貫通孔を充填するかして、貫通孔が分割されるように積層体を切断して誘電体基板1の側面となる側面を形成することで、誘電体基板1の側面にキャスタレーション導体である側面導体を形成することができる。   For example, when the first radiating conductor 2, the second radiating conductor 2 a, the ground conductor 3, and the feed line conductor 4 are copper metallized layers, a metal prepared by mixing copper powder with an organic solvent and an organic binder. The paste can be formed by printing at a predetermined position of the green sheet to be the dielectric layer 1a by a method such as screen printing and firing together with the green sheet. Further, the through conductor 4a can be formed by providing a through hole at a predetermined position of the green sheet prior to printing of the metal paste and filling the through hole with the same metal paste as described above. . The side conductor can be formed by printing a metal paste similar to the above on the side of the laminate. Alternatively, the side conductor can be a so-called castoration conductor. In this case, by printing a metal paste on the inner surface of the through hole provided in the green sheet or filling the through hole, the laminate is cut so that the through hole is divided, and the side surface of the dielectric substrate 1 is cut. By forming the side surface that becomes, a side conductor that is a castellation conductor can be formed on the side surface of the dielectric substrate 1.

また、配線導体うち、第1放射導体2、第2放射導体2a、給電線路導体4、および側面導体となるメタライズ層の露出表面には、電解めっき法または無電解めっき法等のめっき法でニッケルおよび金等のめっき層がさらに被着されていてもよい。この場合、前述したように多数個取り基板の形態でアンテナ基板10を製作する際に、複数の基板領域の配線導体を互いに電気的に接続させておけば、複数のアンテナ基板10の配線導体に一括してめっき層を被着させることもできる。   Further, among the wiring conductors, the exposed surfaces of the first radiating conductor 2, the second radiating conductor 2 a, the feed line conductor 4, and the metallized layer serving as the side conductors are nickel plated by a plating method such as an electrolytic plating method or an electroless plating method. Further, a plating layer such as gold may be further deposited. In this case, as described above, when the antenna substrate 10 is manufactured in the form of the multi-piece substrate, if the wiring conductors of the plurality of substrate regions are electrically connected to each other, the wiring conductors of the plurality of antenna substrates 10 are connected. It is also possible to deposit the plating layer all at once.

第1放射導体2および第2放射導体2aの平面視の形状は、矩形状あるいは円形状であり、正方形の誘電体基板1にできるだけ大きい第1放射導体2および第2放射導体2aを設けるためには正方形とすることができる。また、接地導体3の平面視の形状は、第1放射導体2の相似形で、一回り大きいものとすることができる。そして、平面透視で、接地導体3の外周が第1放射導体2の外周より外側に位置して重なるように配置することができる。このようにすることで、第1放射導体2の外周部まで確実に電波を放射することができるものとなる。   The shape of the first radiating conductor 2 and the second radiating conductor 2a in plan view is rectangular or circular, and in order to provide the first radiating conductor 2 and the second radiating conductor 2a that are as large as possible on the square dielectric substrate 1. Can be square. Further, the shape of the ground conductor 3 in plan view is similar to that of the first radiation conductor 2 and can be made slightly larger. And it can arrange | position so that the outer periphery of the grounding conductor 3 may be located outside the outer periphery of the 1st radiation | emission conductor 2, and may overlap by planar perspective. In this way, radio waves can be reliably radiated to the outer peripheral portion of the first radiation conductor 2.

第1放射導体2、第2放射導体2aおよび接地導体3の大きさは、アンテナ基板10に求められるアンテナ特性に応じて、また、誘電体層1aの比誘電率および厚みによって、適宜設定することができる。また、接地導体3に設けられる開口部(スロット)3aおよび給電線路導4の寸法についても同様である。   The sizes of the first radiating conductor 2, the second radiating conductor 2a, and the grounding conductor 3 are appropriately set according to the antenna characteristics required for the antenna substrate 10 and according to the relative dielectric constant and thickness of the dielectric layer 1a. Can do. The same applies to the dimensions of the opening (slot) 3 a and the feed line conductor 4 provided in the ground conductor 3.

1・・・誘電体基板
1a・・・誘電体層
1b・・・中空部
1c・・・多孔質部
1cp・・・細孔
2・・・第1放射導体
2a・・・第2放射導体
3・・・接地導体
3a・・・開口部
4・・・給電線路導体
4a・・・貫通導体
10・・・アンテナ基板
DESCRIPTION OF SYMBOLS 1 ... Dielectric substrate 1a ... Dielectric layer 1b ... Hollow part 1c ... Porous part 1cp ... Pore 2 ... 1st radiation conductor 2a ... 2nd radiation conductor 3 ... Grounding conductor 3a ... Opening part 4 ... Feeding line conductor 4a ... Penetration conductor 10 ... Antenna substrate

Claims (5)

複数の誘電体層が積層されてなる誘電体基板と、
該誘電体基板に設けられた第1放射導体と、
前記誘電体層の積層方向で前記第1放射導体と重なるように前記誘電体基板に設けられた接地導体とを備えており、
前記積層方向において前記第1放射導体と前記接地導体と間に位置している前記誘電体層は、前記第1放射導体と前記接地導体とで挟まれた部分に、積層方向と交差する方向に離間して配置された複数の中空部を有しているアンテナ基板。
A dielectric substrate formed by laminating a plurality of dielectric layers;
A first radiation conductor provided on the dielectric substrate;
A ground conductor provided on the dielectric substrate so as to overlap the first radiation conductor in the stacking direction of the dielectric layer,
The dielectric layer positioned between the first radiating conductor and the ground conductor in the stacking direction is in a direction intersecting the stacking direction at a portion sandwiched between the first radiating conductor and the ground conductor. An antenna substrate having a plurality of hollow portions spaced apart from each other.
前記複数の中空部は、前記第1放射導体と前記接地導体との間で前記誘電体層を前記積層方向に貫通している請求項1に記載のアンテナ基板。 2. The antenna substrate according to claim 1, wherein the plurality of hollow portions penetrate the dielectric layer in the stacking direction between the first radiation conductor and the ground conductor. 前記複数の中空部は、前記第1放射導体と前記接地導体と間に位置している前記誘電体層に設けられた多孔質部の細孔である請求項1に記載のアンテナ基板。 2. The antenna substrate according to claim 1, wherein the plurality of hollow portions are pores of a porous portion provided in the dielectric layer located between the first radiation conductor and the ground conductor. 前記接地導体との間に前記第1放射導体を挟んで前記誘電体層の積層方向で重なるように前記誘電体基板に設けられた第2放射導体を備えている請求項1〜請求項3のいずれかに記載のアンテナ基板。 The second radiation conductor provided on the dielectric substrate so as to overlap in the stacking direction of the dielectric layers with the first radiation conductor interposed between the ground conductor and the ground conductor. The antenna substrate according to any one of the above. 前記積層方向において前記第1放射導体と前記第2放射導体との間に位置している前記誘電体層は、前記第1放射導体と前記第2放射導体とで挟まれた部分に、積層方向と交差する方向に離間して配置された複数の中空部を有している請求項4に記載のアンテナ基板。
The dielectric layer located between the first radiating conductor and the second radiating conductor in the laminating direction has a portion sandwiched between the first radiating conductor and the second radiating conductor in the laminating direction. The antenna substrate according to claim 4, wherein the antenna substrate has a plurality of hollow portions that are spaced apart from each other in a direction intersecting with.
JP2018008923A 2017-02-21 2018-01-23 Antenna board Active JP7005357B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030072 2017-02-21
JP2017030072 2017-02-21

Publications (2)

Publication Number Publication Date
JP2018137737A true JP2018137737A (en) 2018-08-30
JP7005357B2 JP7005357B2 (en) 2022-01-21

Family

ID=63367143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008923A Active JP7005357B2 (en) 2017-02-21 2018-01-23 Antenna board

Country Status (1)

Country Link
JP (1) JP7005357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162120A (en) * 2019-03-23 2020-10-01 京セラ株式会社 Antenna substrate and antenna module
US11211689B2 (en) 2019-08-13 2021-12-28 Samsung Electro-Mechanics Co., Ltd. Chip antenna
WO2022034732A1 (en) * 2020-08-13 2022-02-17 株式会社村田製作所 Multilayer dielectric substrate, and method for manufacturing multilayer dielectric substrate
WO2022234769A1 (en) * 2021-05-07 2022-11-10 株式会社村田製作所 Antenna element and electronic device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529826A (en) * 1991-07-22 1993-02-05 Nec Corp Monolithic millimeter wave antenna and production method
JPH0951224A (en) * 1995-05-29 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> Microstrip antenna made of plural kinds of multi-layer dielectric films
JPH09275317A (en) * 1996-04-05 1997-10-21 Nec Corp Microstrip antenna
US6307509B1 (en) * 1999-05-17 2001-10-23 Trimble Navigation Limited Patch antenna with custom dielectric
JP2006094349A (en) * 2004-09-27 2006-04-06 Japan Radio Co Ltd Antenna device
JP2006229871A (en) * 2005-02-21 2006-08-31 Mitsubishi Electric Corp Antenna device
JP2006522565A (en) * 2003-03-31 2006-09-28 ハリス コーポレイション High efficiency slot fed microstrip antenna with improved stub
WO2007037422A1 (en) * 2005-09-30 2007-04-05 Kyocera Corporation Fuel cell and electronic device comprising such fuel cell
KR20110114267A (en) * 2010-04-13 2011-10-19 포항공과대학교 산학협력단 Composite smart structure for satellite communication
JP2013519275A (en) * 2010-02-04 2013-05-23 イーエイーディーエス、ドイチュラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Multilayer microstrip antenna
WO2018147381A1 (en) * 2017-02-13 2018-08-16 日立金属株式会社 Planar antenna

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529826A (en) * 1991-07-22 1993-02-05 Nec Corp Monolithic millimeter wave antenna and production method
JPH0951224A (en) * 1995-05-29 1997-02-18 Nippon Telegr & Teleph Corp <Ntt> Microstrip antenna made of plural kinds of multi-layer dielectric films
JPH09275317A (en) * 1996-04-05 1997-10-21 Nec Corp Microstrip antenna
US6307509B1 (en) * 1999-05-17 2001-10-23 Trimble Navigation Limited Patch antenna with custom dielectric
JP2006522565A (en) * 2003-03-31 2006-09-28 ハリス コーポレイション High efficiency slot fed microstrip antenna with improved stub
JP2006094349A (en) * 2004-09-27 2006-04-06 Japan Radio Co Ltd Antenna device
JP2006229871A (en) * 2005-02-21 2006-08-31 Mitsubishi Electric Corp Antenna device
WO2007037422A1 (en) * 2005-09-30 2007-04-05 Kyocera Corporation Fuel cell and electronic device comprising such fuel cell
JP2013519275A (en) * 2010-02-04 2013-05-23 イーエイーディーエス、ドイチュラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Multilayer microstrip antenna
KR20110114267A (en) * 2010-04-13 2011-10-19 포항공과대학교 산학협력단 Composite smart structure for satellite communication
WO2018147381A1 (en) * 2017-02-13 2018-08-16 日立金属株式会社 Planar antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162120A (en) * 2019-03-23 2020-10-01 京セラ株式会社 Antenna substrate and antenna module
JP7417448B2 (en) 2019-03-23 2024-01-18 京セラ株式会社 Antenna board and antenna module
US11211689B2 (en) 2019-08-13 2021-12-28 Samsung Electro-Mechanics Co., Ltd. Chip antenna
WO2022034732A1 (en) * 2020-08-13 2022-02-17 株式会社村田製作所 Multilayer dielectric substrate, and method for manufacturing multilayer dielectric substrate
WO2022234769A1 (en) * 2021-05-07 2022-11-10 株式会社村田製作所 Antenna element and electronic device

Also Published As

Publication number Publication date
JP7005357B2 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP7417448B2 (en) Antenna board and antenna module
JP7005357B2 (en) Antenna board
EP2919323A1 (en) Array antenna
WO2019107382A1 (en) Antenna device
WO2019054094A1 (en) Antenna module
JP2013223000A (en) Antenna device
KR101992620B1 (en) The Antenna with High Gain and Omni-Directional characteristics
JP6949640B2 (en) Array antenna board
JP6867274B2 (en) Array antenna board and communication module
JP7002406B2 (en) Array antenna board and communication module
JP6569826B2 (en) Antenna module
JP2008172697A (en) Microstrip antenna sharing multiple frequency
JP2012165329A (en) Communication module
JP2020174285A (en) Antenna device
US20200091619A1 (en) Planar array antenna and wireless communication module
JP2007006246A (en) Microstrip antenna sharing many frequencies
JP6730099B2 (en) Antenna board and antenna device
US10971822B2 (en) Antenna, module substrate, and module
KR101332178B1 (en) Panorama glass roof antenna apparatus for vehicle
JP6747880B2 (en) Antenna board and antenna device
JP2018198365A (en) Array antenna substrate
JP2008042246A (en) Antenna device
JP7430100B2 (en) antenna device
CN219329377U (en) Multilayer dielectric substrate
JP2022022542A (en) Antenna element and array antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150