JP5294057B2 - Method for manufacturing aluminum titanate ceramic honeycomb structure - Google Patents

Method for manufacturing aluminum titanate ceramic honeycomb structure Download PDF

Info

Publication number
JP5294057B2
JP5294057B2 JP2008257726A JP2008257726A JP5294057B2 JP 5294057 B2 JP5294057 B2 JP 5294057B2 JP 2008257726 A JP2008257726 A JP 2008257726A JP 2008257726 A JP2008257726 A JP 2008257726A JP 5294057 B2 JP5294057 B2 JP 5294057B2
Authority
JP
Japan
Prior art keywords
honeycomb
firing
powder
aluminum titanate
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008257726A
Other languages
Japanese (ja)
Other versions
JP2010083738A (en
Inventor
友正 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008257726A priority Critical patent/JP5294057B2/en
Publication of JP2010083738A publication Critical patent/JP2010083738A/en
Application granted granted Critical
Publication of JP5294057B2 publication Critical patent/JP5294057B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum titanate-based ceramic honeycomb structure which is hardly cracked by relieving the shrinkage occurring during firing. <P>SOLUTION: The method for producing an aluminum titanate-based ceramic honeycomb structure includes mixing, forming, and drying a material including a ceramic raw material including at least a titania powder and an alumina powder and a binder to form a dried honeycomb and firing the dried honeycomb. In the firing step, the honeycomb structure is fired under the following conditions: V1&lt;V2 and V2&gt;V3, wherein V1 is the heating rate in the temperature range where the shrinkage is mainly caused by the titania powder and the alumina powder; V2 is the heating rate in the temperature range where the synthetic reaction of aluminum titanate mainly proceeds; and V3 is the heating rate in the temperature range where the firing reaction of aluminum titanate mainly proceeds. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、チタン酸アルミニウム質セラミックハニカム構造体の製造方法に関する。中でも、ディーゼルエンジン等から排出されるPMを含む排気ガスを浄化するのに使用されるセラミックハニカムフィルタに使用されるに好適なチタン酸アルミニウム質セラミックハニカム構造体の製造方法に関する。   The present invention relates to a method for manufacturing an aluminum titanate ceramic honeycomb structure. In particular, the present invention relates to a method for manufacturing an aluminum titanate ceramic honeycomb structure suitable for use in a ceramic honeycomb filter used for purifying exhaust gas containing PM discharged from a diesel engine or the like.

ディーゼルエンジンから排出される排気ガスに含まれる微粒子を除去するため、セラミックハニカム構造体の隔壁を多孔質セラミック体で構成し、隔壁に排気ガスを通過させることで、排気ガス中の微粒子を隔壁に捕集する構造の微粒子捕集用セラミックハニカムフィルタ(以下、ハニカムフィルタと略す)が実用化されている。このハニカムフィルタにおいて、捕集された微粒子が堆積すると、隔壁の細孔が目詰まりを生じることにより圧力損失が高くなるため、堆積した微粒子を燃焼して除去し、ハニカムフィルタを再生する必要がある。このため、ハニカムフィルタの機能としては、堆積した微粒子を燃焼する際の高温に繰返し晒される使用環境に耐えることが要求されている。従って、ハニカムフィルタには高い耐熱性と、高い耐熱衝撃性が必要であり、隔壁を構成するセラミック体としてコーディエライトが主に用いられてきた。しかしながら、微粒子が燃焼する際には、微粒子の燃焼熱によりセラミックハニカムフィルタの温度がコーディエライトの融点である1450℃を超えることがあり、隔壁が溶損して、フィルタ機能が果たせなくなる場合もあった。そこで、融点が1860℃程度であるチタン酸アルミニウムを使用する検討も行われている。このチタン酸アルミニウムは、融点が高く、熱膨張係数が低いという利点を持っている反面、焼成時の収縮が大きく、焼成時のワレの発生を抑える必要がある。   In order to remove the fine particles contained in the exhaust gas discharged from the diesel engine, the partition walls of the ceramic honeycomb structure are made of a porous ceramic body, and the exhaust gas is passed through the partition walls, so that the fine particles in the exhaust gas are made into the partition walls. A ceramic honeycomb filter for collecting fine particles (hereinafter abbreviated as “honeycomb filter”) having a structure for collecting particles has been put into practical use. In this honeycomb filter, if the collected fine particles are accumulated, the pores of the partition walls are clogged and the pressure loss becomes high. Therefore, it is necessary to burn and remove the accumulated fine particles and regenerate the honeycomb filter. . For this reason, as a function of the honeycomb filter, it is required to endure a use environment in which the deposited fine particles are repeatedly exposed to a high temperature when burning. Therefore, the honeycomb filter needs to have high heat resistance and high thermal shock resistance, and cordierite has been mainly used as a ceramic body constituting the partition walls. However, when the fine particles burn, the temperature of the ceramic honeycomb filter may exceed the melting point of cordierite of 1450 ° C. due to the combustion heat of the fine particles, and the partition wall may be melted and the filter function may not be performed. It was. Therefore, studies have been made to use aluminum titanate having a melting point of about 1860 ° C. This aluminum titanate has the advantages of a high melting point and a low coefficient of thermal expansion, but has a large shrinkage during firing, and it is necessary to suppress cracking during firing.

特許文献1には、高温用途に使用するための構造体であって、約50〜90重量%の鉄またはマグネシウム安定化チタン酸アルミニウム(Al2TiO5)および約10〜50重量%のストロンチウム・フェルドスパー(SrO・Al2O・2SiO2)から実質的になる多孔質セラミック材料を含み、室温から1000℃までの温度範囲に亘り約−10×10-7/℃から+15×10-7/℃の熱膨張係数、約15〜50体積パーセント、好ましくは、40〜50体積パーセントの気孔率、および約5〜50マイクロメートル、好ましくは、8〜15マイクロメートルのメジアン細孔径を持つセラミックハニカム構造体が記載されている。そして、その実施例には、1485〜1500℃の最高温度まで様々な温度間隔で20〜40℃/時の速度で焼成することが開示されている。 Patent Document 1 discloses a structure for use in high temperature applications, comprising about 50-90 wt% iron or magnesium stabilized aluminum titanate (Al 2 TiO 5 ) and about 10-50 wt% strontium. feldspar comprises a porous ceramic material consisting essentially of (SrO · Al 2 O · 2SiO 2), about -10 × 10 -7 / ℃ from + 15 × 10 -7 / ℃ over the temperature range up to 1000 ° C. from room temperature Ceramic honeycomb structure having a thermal expansion coefficient of about 15-50 volume percent, preferably 40-50 volume percent porosity, and a median pore size of about 5-50 micrometers, preferably 8-15 micrometers Is described. In the examples, it is disclosed that firing is performed at a rate of 20 to 40 ° C./hour at various temperature intervals up to a maximum temperature of 1485 to 1500 ° C.

また、特許文献2には、低い圧力降下およびエンジンに対する低い背圧のために、ディーゼル排気物質用のフィルタとして使用できる、高い透過度と共に、高い相互連絡した気孔率および大きなメジアン孔径を有するムライト・チタン酸アルミニウムセラミック製品として次のことが記載されている。すなわち、全体の重量パーセントで表して、60〜90%の、xが0〜0.1であるAl2(1−x)Fe2xTiO5の化学量を有する鉄・チタン酸アルミニウム固溶体、および10〜40%のムライト(3Al23・2SiO2)を含有し、酸化物基準の重量パーセントで表して、3から15%のSiO2、55から65%のAl23、22から40%のTiO2、および0から10%のFe23から実質的になる多孔質セラミック体から構成され、ディーゼル排気物質の濾過に有用なムライト・チタン酸アルミニウム製多孔質ディーゼル微粒子フィルタが記載されている。そして、その実施の形態には、1650〜1700℃の最高温度まで様々な温度間隔で10〜20℃/時の速度で焼成することが開示されている。 Also, US Pat. No. 6,057,056 includes mullite with high permeability, high interconnected porosity and large median pore size that can be used as a filter for diesel exhaust due to low pressure drop and low back pressure on the engine. The following is described as an aluminum titanate ceramic product. That is, an iron-aluminum titanate solid solution having a stoichiometric amount of Al 2 (1-x) Fe 2x TiO 5 of 60 to 90%, where x is 0 to 0.1, expressed as a percentage by weight of the total, and 10 Contains -40% mullite (3Al 2 O 3 .2SiO 2 ), expressed as weight percent on an oxide basis, 3 to 15% SiO 2 , 55 to 65% Al 2 O 3 , 22 to 40% Porous diesel particulate filter made of mullite / aluminum titanate composed of a porous ceramic body consisting essentially of TiO 2 and 0 to 10% Fe 2 O 3 and useful for diesel exhaust filtration is described Yes. And the embodiment discloses firing at a rate of 10 to 20 ° C./hour at various temperature intervals up to a maximum temperature of 1650 to 1700 ° C.

また、特許文献3には、既存の材料の欠点を持たない自動車排ガス制御システムなどの高温用途に適したセラミック製品として次のことが記載されている。すなわち、u(Al23・TiO2)+v(R)+w(3Al23・2SiO2)+x(Al23)+y(SiO2)+z(1.1SrO・1.5Al23・13.6SiO2・TiO2)+a(Fe23・TiO2)+b(MgO・2TiO2)を有してなる組成であって、RがSrO・Al23・2SiO2または11.2SrO・10.9Al23・24.1SiO2・TiO2であり、u,v,w,x,y,z,aおよびbが、u+v+w+x+y+z+a+b=1、0.5<u≦0.95、0.01<v≦0.5、0.01<w≦0.5、0<x≦0.5、0<y≦0.1、0<z≦0.5、0<a≦0.3、および0<b≦0.3となるような各成分の重量分画である組成を有するチタン酸アルミニウムベースのセラミック製品が記載されている。そして、その実施例には、4時間に亘る1200℃の第一の保持温度、および6時間に亘る1500℃の第二の保持温度で、様々な温度間隔に亘り20℃/時〜40℃/時に及ぶ比率で焼成することが開示されている。 Patent Document 3 describes the following as a ceramic product suitable for high-temperature applications such as an automobile exhaust gas control system that does not have the disadvantages of existing materials. That is, u (Al 2 O 3 · TiO 2 ) + v (R) + w (3Al 2 O 3 · 2SiO 2 ) + x (Al 2 O 3 ) + y (SiO 2 ) + z (1.1SrO · 1.5Al 2 O 3 13.6SiO 2 · TiO 2 ) + a (Fe 2 O 3 · TiO 2 ) + b (MgO · 2TiO 2 ), where R is SrO · Al 2 O 3 · 2SiO 2 or 11. 2SrO · 10.9Al 2 O 3 · 24.1SiO 2 · TiO 2 , and u, v, w, x, y, z, a and b are u + v + w + x + y + z + a + b = 1, 0.5 <u ≦ 0.95, 0.01 <v ≦ 0.5, 0.01 <w ≦ 0.5, 0 <x ≦ 0.5, 0 <y ≦ 0.1, 0 <z ≦ 0.5, 0 <a ≦ 0. 3. An aluminum titanate-based ceramic having a composition that is a weight fraction of each component such that 3 and 0 <b ≦ 0.3 Click products have been described. And the examples include a first holding temperature of 1200 ° C. for 4 hours and a second holding temperature of 1500 ° C. for 6 hours, with 20 ° C./hour to 40 ° C./hour over various temperature intervals. It is disclosed to fire at a ratio that sometimes spans.

また、特許文献4には、ハニカム焼成体に割れの原因となるクラックの発生を抑えるハニカム成形体の焼成方法として、次のことが記載されている。すなわち、チタン酸アルミニウム質ハニカム成形体が多孔面を上下に向けて載置されたセラミック製容器にセラミック粉末を充填して、ハニカム成形体を埋設し、セラミック粉末で埋設されたハニカム成形体の上端の多孔面と前記セラミック粉末の上部が略面一になるようにセラミック容器の貯留部からセラミック粉末を補充しながら焼成することが記載されている。   Patent Document 4 describes the following as a method for firing a honeycomb formed body that suppresses the generation of cracks that cause cracks in the honeycomb fired body. That is, an aluminum titanate honeycomb molded body is filled with ceramic powder in a ceramic container placed with a porous surface facing up and down, the honeycomb molded body is embedded, and the upper end of the honeycomb molded body embedded with the ceramic powder It is described that firing is performed while replenishing the ceramic powder from the storage portion of the ceramic container so that the porous surface of the ceramic and the upper part of the ceramic powder are substantially flush with each other.

また、特許文献5には、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが生じないセラミックハニカム構造体の焼成方法として、生素地のセラミックハニカム構造体の開口端面を耐熱性無機質粉末の上に載せて焼成する方法が記載されている。   Further, in Patent Document 5, as a method for firing a ceramic honeycomb structure in which cracks do not occur in the opening end face of the ceramic honeycomb structure, which is a contact surface between the firing table and the ceramic honeycomb structure, a green ceramic honeycomb structure is provided. A method is described in which the open end face of is placed on a heat-resistant inorganic powder and fired.

また、特許文献6には、焼成時の温度分布の不均一から生じるハニカム端面の割れや付着の問題から、生ハニカム構造体と同じ材質のセラミックスのトチを使用して焼成する方法が記載されている。   Further, Patent Document 6 describes a method of firing using a ceramic torch made of the same material as that of the raw honeycomb structure due to problems of cracking and adhesion of the honeycomb end face resulting from uneven temperature distribution during firing. Yes.

特表2005−519834号公報Special Table 2005-519834 特表2005−534474号公報JP 2005-534474 A 特表2005−534597号公報JP 2005-534597 A 特開平11−147773号公報JP-A-11-147773 特開2004−59353号公報JP 2004-59353 A 特公平2−40019号公報Japanese Patent Publication No.2-40019

しかしながら、特許文献1、特許文献2、特許文献3に記載される焼成条件でチタン酸アルミニウム質セラミックハニカム構造体を焼成しても、チタン酸アルミニウムが熱収縮する温度域や、液相反応が進む温度域においてハニカム構造体に大きな収縮が生じる。そのため、その大きな収縮により発生した応力を受けて、ハニカム構造体に生じるワレを回避することが難しかった。   However, even if the aluminum titanate ceramic honeycomb structure is fired under the firing conditions described in Patent Literature 1, Patent Literature 2, and Patent Literature 3, the temperature range in which aluminum titanate thermally shrinks and the liquid phase reaction proceeds. Large shrinkage occurs in the honeycomb structure in the temperature range. For this reason, it has been difficult to avoid cracks generated in the honeycomb structure due to the stress generated by the large shrinkage.

また、特許文献4や特許文献5、特許文献6に記載される焼成方法では、チタン酸アルミニウム質セラミックハニカム構造体の焼成時には、収縮が大きいことから、焼成台やトチと当接するハニカム構造体端面部では、焼成台やトチとの摩擦抵抗のために、収縮が阻害されてしまう。そのため、焼成台やトチと当接するハニカム構造体端面部側の外径が、他方の端面部側と比べて大きくなり、その端面部側にワレが生じるという問題があった。   Further, in the firing methods described in Patent Literature 4, Patent Literature 5, and Patent Literature 6, since the shrinkage is large when firing the aluminum titanate ceramic honeycomb structure, the end face of the honeycomb structure that comes into contact with the firing table or the torch In the part, the shrinkage is hindered due to the frictional resistance with the firing table and the torch. Therefore, there has been a problem that the outer diameter of the end face part of the honeycomb structure in contact with the firing table or the torch is larger than that of the other end face part, and cracking occurs on the end face part side.

したがって、本発明の課題は、焼成時に生じる収縮を緩和し、ワレの生じ難いチタン酸アルミニウム質セラミックハニカム構造体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing an aluminum titanate ceramic honeycomb structure that relaxes shrinkage that occurs during firing and is difficult to crack.

すなわち本発明は、少なくともチタニア粉末とアルミナ粉末、シリカ粉末、マグネシア粉末とを含むセラミック原料とバインダー、造孔材とを含む材料を混合、成形し、乾燥してハニカム乾燥体とし、前記ハニカム乾燥体の焼成を行なう、チタン酸アルミニウム質セラミックハニカム構造体の製造方法であって、前記焼成において、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末上に、前記ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、前記ハニカム形状焼成台の上面に前記ハニカム乾燥体を載せ、ハニカム構造体の主にチタニア粉末およびアルミナ粉末による収縮温度域での昇温速度V1が1〜50℃/hr、主にチタン酸アルミニウムの合成反応が進む温度域での昇温速度V2が10〜80℃/hr、主にチタン酸アルミニウムの焼成反応が進む温度域での昇温速度V3が1〜50℃/hrであり、V1<V2、かつ、V2>V3として焼成することを特徴とする。
That is, the present invention provides a honeycomb dried body obtained by mixing, forming and drying a ceramic raw material containing at least titania powder, alumina powder , silica powder, and magnesia powder , a binder , and a pore former. A method of manufacturing an aluminum titanate ceramic honeycomb structure , wherein the honeycomb dried body and the titania powder, alumina powder, and silica powder are mixed and sintered in the firing, placing a honeycomb-shaped fired base made of the same material, it placed the honeycomb dried body on the upper surface of the honeycomb-shaped fired stand, primarily titania powder and heating rate V1 at shrinkage temperature ranges by alumina powder of the honeycomb structure 1 to 50 ° C. / hr, mainly heating rate in the temperature range in which the synthesis reaction of aluminum titanate progresses V2 is 10 to 80 ° C. / hr, mainly Al titanate A heating rate V3 is 1 to 50 ° C. / hr in the temperature range where sintering reaction of bromide proceeds, V1 <V2, and, V2> and firing as V3.

また、本発明において、前記造孔材が発泡済み発泡樹脂であることことが好ましい。   In the present invention, the pore former is preferably a foamed foamed resin.

次に、本発明の作用効果について説明する。
本発明のチタン酸アルミニウム質セラミックハニカム構造体の製造方法において、少なくともチタニア粉末とアルミナ粉末、シリカ粉末、マグネシア粉末とを含むセラミック原料とバインダー、造孔材とを含む材料を混合、成形し、乾燥してハニカム乾燥体とし、前記ハニカム乾燥体の焼成を行なう、チタン酸アルミニウム質セラミックハニカム構造体の製造方法であって、前記焼成において、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末上に、前記ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、前記ハニカム形状焼成台の上面に前記ハニカム乾燥体を載せ、ハニカム構造体の主にチタニア粉末およびアルミナ粉末による収縮温度域での昇温速度V1が1〜50℃/hr、主にチタン酸アルミニウムの合成反応が進む温度域での昇温速度V2が10〜80℃/hr、主にチタン酸アルミニウムの焼成反応が進む温度域での昇温速度V3が1〜50℃/hrであり、V1<V2、かつ、V2>V3として焼成することで、次のような作用効果を有する。すなわち、ハニカム構造体の主にチタニア粉末およびアルミナ粉末による収縮温度域(約900〜約1300℃)では、チタニア(TiO2)が収縮を生じ、さらに、主にチタン酸アルミニウムの焼成反応が進む温度域(約1400℃以上)では、合成されたチタン酸アルミニウムが収縮を生じるので、これらの収縮が生じる温度域では、昇温速度が速すぎるとワレを発生し易い。そのため、この温度域での昇温速度V1、V3は遅くすることで、ワレの発生を抑えることができるのである。そして、主にチタン酸アルミニウムの合成反応が進む温度域(約1300〜約1400℃)では、収縮は生じずワレは生じ難いため、この温度域の昇温速度V2は早くすることができるのである。
Next, the function and effect of the present invention will be described.
In the method for producing an aluminum titanate ceramic honeycomb structure of the present invention, a ceramic raw material including at least titania powder, alumina powder , silica powder, and magnesia powder , a binder , and a material including a pore former are mixed, molded, and dried. A honeycomb dried body, and firing the honeycomb dried body, a method for producing an aluminum titanate ceramic honeycomb structure, wherein in the firing, titania powder, alumina powder, silica powder are mixed and sintered, A honeycomb-shaped firing table made of the same material as the honeycomb dried body is placed on the pulverized powder, the honeycomb dried body is placed on the upper surface of the honeycomb-shaped firing table, and the honeycomb structure is mainly composed of titania powder and alumina powder. heating rate V1 at shrinkage temperature range is 1 to 50 ° C. / hr, mainly aluminum titanate synthesis Proceeds temperature range in the heating rate V2 is 10 to 80 ° C. / hr, mainly a heating rate V3 is 1 to 50 ° C. / hr in the temperature range where sintering reaction of aluminum titanate progresses, V1 <V2, and , Firing as V2> V3 has the following effects. That is, in the shrinkage temperature range (about 900 to about 1300 ° C) mainly due to the titania powder and alumina powder of the honeycomb structure, the titania (TiO 2 ) shrinks, and the temperature at which the firing reaction of the aluminum titanate mainly proceeds In the region (about 1400 ° C. or higher), the synthesized aluminum titanate shrinks, and in the temperature region where these shrinkage occurs, cracking tends to occur if the rate of temperature rise is too fast. Therefore, the generation of cracks can be suppressed by slowing the heating rates V1 and V3 in this temperature range. In the temperature range (about 1300 to about 1400 ° C.) where the synthesis reaction of aluminum titanate proceeds mainly, shrinkage does not occur and cracking is unlikely to occur, so the temperature increase rate V2 in this temperature range can be increased. .

ここで、ハニカム構造体の主にチタニア粉末およびアルミナ粉末による収縮温度域での昇温速度V1が1〜50℃/hr、主にチタン酸アルミニウムの合成反応が進む温度域での昇温速度V2が10〜80℃/hr、主にチタン酸アルミニウムの焼成反応が進む温度域での昇温速度V3は1〜50℃/hrである。
主にチタニア粉末およびアルミナ粉末による収縮温度域(約900〜約1300℃)での昇温速度V1が1℃/hr未満である場合、焼成に要する時間が長くなり、生産性が低下するため好ましくない。一方、50℃/hrを超えると昇温速度が速くなり過ぎて、ワレが生じやすくなるため好ましくない。好ましくは、5〜40℃/hrである。
また、主にチタン酸アルミニウムの合成反応が進む温度域(約1300〜約1400℃)での昇温速度V2が、10℃/hr未満である場合、焼成に要する時間が長くなり、生産性が低下するため好ましくない。一方、80℃/hrを超えると昇温速度が速くなり過ぎて、液相反応でのチタン酸アルミニウムの晶出が不十分となるため好ましくない。好ましくは、20〜70℃/hrである。
また、主にチタン酸アルミニウムの焼成反応が進む温度域(約1400℃以上)での昇温速度V3が1℃/hr未満である場合、焼成に要する時間が長くなり、生産性が低下するため好ましくない。一方、50℃/hrを超えると昇温速度が速くなり過ぎて、ワレが生じやすくなるため好ましくない。好ましくは、5〜40℃/hrである。
Here, the heating rate V1 in the shrinkage temperature region mainly of the titania powder and the alumina powder of the honeycomb structure is 1 to 50 ° C./hr, and the heating rate V2 in the temperature region where the synthesis reaction of aluminum titanate mainly proceeds. Is 10 to 80 ° C./hr, and the rate of temperature rise V3 in the temperature range where the firing reaction of aluminum titanate proceeds mainly is 1 to 50 ° C./hr.
When the heating rate V1 in the shrinkage temperature range (about 900 to about 1300 ° C) mainly with titania powder and alumina powder is less than 1 ° C / hr, it is preferable because the time required for firing becomes longer and the productivity decreases. Absent. On the other hand, if it exceeds 50 ° C./hr, the rate of temperature rise becomes too fast, and cracking tends to occur, which is not preferable. Preferably, it is 5-40 degreeC / hr.
In addition, when the temperature increase rate V2 in the temperature range (about 1300 to about 1400 ° C.) where the synthesis reaction of aluminum titanate proceeds is less than 10 ° C./hr, the time required for firing becomes longer and the productivity is increased. Since it falls, it is not preferable. On the other hand, if it exceeds 80 ° C./hr, the rate of temperature rise becomes too fast, and crystallization of aluminum titanate in the liquid phase reaction becomes insufficient, which is not preferable. Preferably, it is 20-70 degreeC / hr.
In addition, when the temperature increase rate V3 in the temperature range (about 1400 ° C. or higher) where the firing reaction of aluminum titanate proceeds is less than 1 ° C./hr, the time required for firing becomes longer and the productivity is lowered. It is not preferable. On the other hand, if it exceeds 50 ° C./hr, the rate of temperature rise becomes too fast, and cracking tends to occur, which is not preferable. Preferably, it is 5-40 degreeC / hr.

尚、本発明において、チタン酸アルミニウム質セラミックハニカム構造体を構成するためのセラミック原料としては、高融点、低熱膨張係数を有する範囲において、少なくともチタニア粉末、アルミナ粉末、シリカ粉末、マグネシア粉末とを含むことができる。   In the present invention, the ceramic raw material for constituting the aluminum titanate ceramic honeycomb structure includes at least titania powder, alumina powder, silica powder, and magnesia powder in a range having a high melting point and a low thermal expansion coefficient. be able to.

また、本発明のチタン酸アルミニウム質セラミックハニカム構造体の製造方法において、焼成において、前記ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、前記ハニカム形状焼成台の上面に前記ハニカム乾燥体を載せて焼成を行なうことで、次の作用効果を有する。つまり、チタン酸アルミニウム質セラミックハニカム構造体の焼成時には、収縮が大きいことから、焼成台と当接するハニカム構造体端面部では、焼成台との摩擦抵抗のために、収縮が阻害され、焼成台やトチと当接するハニカム構造体端面部側の外径が、他方の端面部側と比べて大きくなり、その端面部側にワレが生じる。しかし、焼成棚の上に、ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、ハニカム形状焼成台の上面にハニカム乾燥体を載せることで、ハニカム構造体が収縮した際、ハニカム形状焼成台とハニカム構造体が一体となって収縮する。そして、焼成棚との摩擦によりハニカム形状焼成台の下面では収縮が阻害されるが、ハニカム形状焼成台の上面では収縮が阻害されないため、ハニカム形状焼成台の上面に載置されているハニカム乾燥体も収縮が阻害されずにハニカム乾燥体の上面と下面の収縮がほぼ均一となり、ワレが生じ難くなるのである。尚、ハニカム形状焼成台がハニカム乾燥体と同材質であることで、焼成時にハニカム乾燥体とハニカム形状焼成台が一体となって収縮するので、ハニカム構造体端面部側の外径が、他方の端面部側と比べて大きくなり難く、その端面部側にワレが生じ難くなる。   Further, in the method for producing an aluminum titanate ceramic honeycomb structure of the present invention, in firing, a honeycomb-shaped firing table made of the same material as the honeycomb dried body is placed, and the honeycomb dried body is placed on the upper surface of the honeycomb-shaped firing table. By carrying out baking with the following effects are obtained. That is, since the shrinkage is large during firing of the aluminum titanate ceramic honeycomb structure, the shrinkage is hindered at the end face of the honeycomb structure contacting the firing table due to frictional resistance with the firing table. The outer diameter of the end face part of the honeycomb structure in contact with the torch is larger than that of the other end face part, and cracking occurs on the end face part side. However, when the honeycomb structure is contracted by placing the honeycomb-shaped firing table made of the same material as the honeycomb dried body on the firing shelf and placing the honeycomb dried body on the upper surface of the honeycomb-shaped firing table, The base and the honeycomb structure shrink together. The shrinkage is inhibited on the lower surface of the honeycomb-shaped firing table due to friction with the firing shelf, but the shrinkage is not inhibited on the upper surface of the honeycomb-shaped firing table, so the honeycomb dried body placed on the upper surface of the honeycomb-shaped firing table However, the shrinkage is not hindered, and the shrinkage of the upper surface and the lower surface of the dried honeycomb body becomes almost uniform, so that cracking hardly occurs. Since the honeycomb-shaped firing table is made of the same material as the honeycomb dried body, the honeycomb dried body and the honeycomb-shaped firing table shrink together as a result of firing. Compared to the end surface portion side, it is difficult to be large, and cracks are unlikely to occur on the end surface portion side.

また、本発明のチタン酸アルミニウム質セラミックハニカム構造体の製造方法において、焼成において、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末上に、前記ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、前記ハニカム形状焼成台の上面に前記ハニカム乾燥体を載せて焼成を行なうことで、次の作用効果を有する。つまり、チタン酸アルミニウム質セラミックハニカム構造体の焼成時には、収縮が大きいことから、焼成台と当接するハニカム構造体端面部では、焼成台との摩擦抵抗のために、収縮が阻害され、焼成台やトチと当接するハニカム構造体端面部側の外径が、他方の端面部側と比べて大きくなり、その端面部側にワレが生じる。しかし、焼成棚の上に、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末を敷き、その上にハニカム乾燥体と同材質のハニカム形状焼成台を載置し、ハニカム形状焼成台の上面にハニカム乾燥体を載せることで、ハニカム構造体が収縮した際、ハニカム形状焼成台とハニカム構造体が一体となって収縮し、さらに、ハニカム形状焼成台の下にある粉末により、ハニカム形状焼成台は、収縮の摩擦抵抗が小さくなるのでハニカム形状焼成台の収縮が阻害され難くなり、結果として、ハニカム形状焼成台の上に載せたハニカム乾燥体は、その上面と下面の収縮が均一となり、端面部のワレが生じ難くなるのである。   Further, in the method for manufacturing an aluminum titanate ceramic honeycomb structure of the present invention, in firing, titania powder, alumina powder, and silica powder are mixed and sintered, and the pulverized powder is made of the same material as the honeycomb dried body. By placing the honeycomb-shaped firing table and firing the honeycomb dried body on the upper surface of the honeycomb-shaped firing table, the following effects are obtained. That is, since the shrinkage is large during firing of the aluminum titanate ceramic honeycomb structure, the shrinkage is hindered at the end face of the honeycomb structure contacting the firing table due to frictional resistance with the firing table. The outer diameter of the end face part of the honeycomb structure in contact with the torch is larger than that of the other end face part, and cracking occurs on the end face part side. However, on the firing shelf, titania powder, alumina powder, and silica powder are mixed and sintered, and the pulverized powder is laid, and a honeycomb-shaped firing table made of the same material as the dried honeycomb body is placed on the firing shelf. By placing the honeycomb dried body on the upper surface of the firing table, when the honeycomb structure shrinks, the honeycomb shaped firing table and the honeycomb structure shrink as a whole, and further, the powder under the honeycomb shaped firing table, In the honeycomb-shaped firing table, the shrinkage frictional resistance becomes small, so that the shrinkage of the honeycomb-shaped firing table is difficult to be inhibited. As a result, the honeycomb dried body placed on the honeycomb-shaped firing table has shrinkage on the upper surface and the lower surface. It becomes uniform and the crack of the end face portion is less likely to occur.

ここで、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末を用いるのは、この粉末の上に載置されるハニカム形状焼成台が、焼成時に収縮する時にコロの役割を果たして、摩擦抵抗を抑える効果があるからである。この粉末が未焼結のものである場合、焼成時にこの粉末とハニカム形状焼成台が固着して、粉末がコロの役割を果たさなくなり、摩擦抵抗を抑える効果が小さくなるので好ましくない。   Here, titania powder, alumina powder, and silica powder are mixed and sintered, and the pulverized powder is used for the role of the roller when the honeycomb-shaped firing table placed on this powder shrinks during firing. This is because there is an effect of suppressing frictional resistance. If this powder is unsintered, this powder and the honeycomb-shaped firing table are fixed at the time of firing, so that the powder does not play a role of a roller and the effect of suppressing the frictional resistance is reduced, which is not preferable.

また、ハニカム形状焼成台がハニカム乾燥体と同材質であることで、焼成時にハニカム乾燥体とハニカム形状焼成台が一体となって収縮するので、ハニカム構造体端面部側の外径が、他方の端面部側と比べて大きくなり難く、その端面部側にワレが生じ難くなる。   In addition, since the honeycomb-shaped firing table is made of the same material as the honeycomb dried body, the honeycomb dried body and the honeycomb-shaped firing table shrink together as a result of firing. Compared to the end surface portion side, it is difficult to be large, and cracks are unlikely to occur on the end surface portion side.

また、本発明のセラミックハニカム成形体の製造方法において、セラミック原料に造孔材を含むことで、ハニカム構造体の隔壁の細孔容積が多くなり、ハニカムフィルタとして使用された際に圧力損失が小さくなるので好ましい。尚、造孔材が発泡済み発泡樹脂であることで、焼成時で発泡樹脂が焼失する際に、ハニカム乾燥体を膨張させることがなく、ワレが生じ難くなるので好ましい。   Further, in the method for manufacturing a ceramic honeycomb formed body of the present invention, the pore volume of the partition walls of the honeycomb structure is increased by including the pore former in the ceramic raw material, and the pressure loss is small when used as a honeycomb filter. This is preferable. In addition, it is preferable that the pore former is a foamed foamed resin, because when the foamed resin is burned off during firing, the dried honeycomb body does not expand, and cracking hardly occurs.

本発明のチタン酸アルミニウム質セラミックハニカム構造体の製造方法によれば、焼成時に生じる収縮を緩和し、ワレの生じ難いチタン酸アルミニウム質セラミックハニカム構造体の製造方法を得ることができる。   According to the method for manufacturing an aluminum titanate ceramic honeycomb structure of the present invention, it is possible to obtain a method for manufacturing an aluminum titanate ceramic honeycomb structure in which shrinkage generated during firing is reduced and cracking is unlikely to occur.

次に、本発明を実施の形態に基づき説明する。
チタン酸アルミニウム組成となるように、セラミックス原料粉末として、チタニア粉末、アルミナ粉末、シリカ粉末、マグネシア粉末、成形助剤、及び添加材を混合、混練、押出成形、乾燥して、外径50mm、長さ90mm、隔壁厚さ0.25mm、隔壁ピッチ1.4mmの生素地の図1に示すハニカム構造体1を得た。
また、ハニカム形状焼成台として、上記した生素地ハニカム構造体と同様に外径70mmで押出し成形し、長さ30mmのハニカム形状焼成台2を作製した。
一方、焼成台を構成する粉末3として、コーディエライト、アルミナ、ムライト、シリカ、チタン酸アルミニウム合成粉末(AT合成粉末)、チタン酸アルミニウム生素地粉(AT生素地粉)をそれぞれ用意した。チタン酸アルミニウム合成粉末及び、チタン酸アルミニウム生素地粉末の原料にはチタニア、アルミナ、シリカを混合したものを用いた。チタン酸アルミニウム合成粉末は同配合の材料をハニカム状に成形し、バッチ式焼成炉により焼成し、ボールミルにて粉砕して得た。これら各粉末を焼成棚の上に敷き、その上にハニカム形状焼成台を載せ、さらにその上に生素地のハニカム乾燥体を載せ、バッチ式焼成炉による焼成を行った。焼成は900℃まで15℃/hrの昇温速度で昇温し、900℃以上は表1に示す昇温速度で、最高温度1600℃で行った。そして、焼成後、セラミックスハニカム構造体の開口端面について割れの目視検査を実施し、セルが2ヶ所以上連続して切断しているものを割れと判断して、同条件で作製した全焼成体のうち、割れが発生した焼成体の数割合が1%未満であったものを(◎)、1%以上3%未満であったものを(○)、3%以上5%未満であったものを(△)、5%以上であったものを(×)として評価した。
Next, the present invention will be described based on embodiments.
Mixing, kneading, extruding, drying, titania powder, alumina powder, silica powder, magnesia powder, molding aid, and additive as ceramic raw material powder to make aluminum titanate composition, outer diameter 50mm, long A honeycomb structure 1 shown in FIG. 1 having a green body having a thickness of 90 mm, a partition wall thickness of 0.25 mm, and a partition wall pitch of 1.4 mm was obtained.
Further, as a honeycomb-shaped firing table, the honeycomb-shaped firing table 2 having a length of 30 mm was manufactured by extrusion molding with an outer diameter of 70 mm in the same manner as the above-described raw material honeycomb structure.
On the other hand, cordierite, alumina, mullite, silica, aluminum titanate synthetic powder (AT synthetic powder), and aluminum titanate raw powder (AT raw powder) were prepared as powders 3 constituting the firing table. A mixture of titania, alumina, and silica was used as a raw material for the aluminum titanate synthetic powder and the aluminum titanate raw powder. The aluminum titanate synthetic powder was obtained by forming the material of the same composition into a honeycomb shape, firing it in a batch-type firing furnace, and pulverizing it with a ball mill. Each of these powders was laid on a firing shelf, a honeycomb-shaped firing table was placed thereon, a green honeycomb dried body was placed thereon, and firing was performed in a batch-type firing furnace. The firing was performed at a temperature increase rate of 15 ° C./hr up to 900 ° C., and 900 ° C. or higher was performed at the maximum temperature of 1600 ° C. at the temperature increase rate shown in Table 1. Then, after firing, a visual inspection for cracks was performed on the opening end face of the ceramic honeycomb structure, and it was judged that the cells were continuously cut at two or more locations as cracks. , The number ratio of the fired body in which cracking occurred was less than 1% (◎), 1% or more and less than 3% (◯), 3% or more and less than 5% ( (Triangle | delta)) What was 5% or more was evaluated as (x).

Figure 0005294057
Figure 0005294057

表1に示すように、実施例1〜のセラミックハニカム構造体の製造方法は、割れを生じ難いセラミックハニカム構造体の製造方法を得ることができるのである。一方、比較例1〜3のセラミックハニカム構造体の製造方法は、割れを生じており、問題があることがわかる。 As shown in Table 1, the method for manufacturing the ceramic honeycomb structures of Examples 1 to 9 can provide a method for manufacturing a ceramic honeycomb structure that is difficult to cause cracks. On the other hand, it can be seen that the methods for manufacturing the ceramic honeycomb structures of Comparative Examples 1 to 3 have cracks and have problems.

本発明に係るセラミックハニカム構造体の焼成を示した模式図である。It is a schematic diagram showing firing of a ceramic honeycomb structure according to the present invention.

符号の説明Explanation of symbols

1:セラミックハニカム構造体
2:ハニカム形状焼成台
3:焼成台を構成する粉末
4:焼成棚
1: Ceramic honeycomb structure 2: Honeycomb-shaped firing table 3: Powder constituting the firing table 4: Firing shelf

Claims (2)

少なくともチタニア粉末とアルミナ粉末、シリカ粉末、マグネシア粉末とを含むセラミック原料とバインダー、造孔材とを含む材料を混合、成形し、乾燥してハニカム乾燥体とし、前記ハニカム乾燥体の焼成を行なう、チタン酸アルミニウム質セラミックハニカム構造体の製造方法であって、
前記焼成において、チタニア粉末、アルミナ粉末、シリカ粉末とを混合焼結し、粉砕した粉末上に、前記ハニカム乾燥体と同材質のハニカム形状焼成台を載置し、前記ハニカム形状焼成台の上面に前記ハニカム乾燥体を載せ、
ハニカム構造体の主にチタニア粉末およびアルミナ粉末による収縮温度域での昇温速度V1が1〜50℃/hr
主にチタン酸アルミニウムの合成反応が進む温度域での昇温速度V2が10〜80℃/hr
主にチタン酸アルミニウムの焼成反応が進む温度域での昇温速度V3が1〜50℃/hrであり
V1<V2、かつ、V2>V3として焼成することを特徴とするチタン酸アルミニウム質セラミックハニカム構造体の製造方法。
A ceramic raw material containing at least titania powder, alumina powder , silica powder, and magnesia powder , a binder , and a material containing a pore former are mixed, formed, dried to obtain a honeycomb dried body, and the honeycomb dried body is fired. A method for producing an aluminum titanate ceramic honeycomb structure,
In the firing, titania powder, alumina powder, and silica powder are mixed and sintered, and a honeycomb-shaped firing table made of the same material as the dried honeycomb body is placed on the pulverized powder, and the upper surface of the honeycomb-shaped firing table is placed. Place the honeycomb dried body,
The heating rate V1 in the shrinkage temperature region mainly of titania powder and alumina powder of the honeycomb structure is 1 to 50 ° C./hr ,
The temperature rise rate V2 in the temperature range where the synthesis reaction of aluminum titanate proceeds mainly is 10-80 ° C / hr .
The temperature rise rate V3 in the temperature range where the firing reaction of aluminum titanate proceeds mainly is 1 to 50 ° C / hr ,
A method of manufacturing an aluminum titanate ceramic honeycomb structure, wherein firing is performed with V1 <V2 and V2> V3.
前記造孔材が発泡済み発泡樹脂であることを特徴とする請求項に記載のセラミックハニカム構造体の製造方法。
The method for manufacturing a ceramic honeycomb structure according to claim 1 , wherein the pore former is a foamed foamed resin.
JP2008257726A 2008-10-02 2008-10-02 Method for manufacturing aluminum titanate ceramic honeycomb structure Expired - Fee Related JP5294057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257726A JP5294057B2 (en) 2008-10-02 2008-10-02 Method for manufacturing aluminum titanate ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257726A JP5294057B2 (en) 2008-10-02 2008-10-02 Method for manufacturing aluminum titanate ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2010083738A JP2010083738A (en) 2010-04-15
JP5294057B2 true JP5294057B2 (en) 2013-09-18

Family

ID=42248067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257726A Expired - Fee Related JP5294057B2 (en) 2008-10-02 2008-10-02 Method for manufacturing aluminum titanate ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP5294057B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068517A (en) * 2009-09-25 2011-04-07 Sumitomo Chemical Co Ltd Method for producing ceramic fired article
JP5860633B2 (en) * 2011-08-19 2016-02-16 住友化学株式会社 Manufacturing method of honeycomb structure
WO2014138015A1 (en) * 2013-03-08 2014-09-12 Corning Incorporated Fast firing method for ceramics

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286534A (en) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk Manufacture of thermal expansion microcapsule
JPH04265277A (en) * 1991-02-20 1992-09-21 Fujitsu General Ltd Device for calcination with atmosphere
JPH07237975A (en) * 1994-02-28 1995-09-12 Tokin Corp Method for burning ceramics
JP3620662B2 (en) * 1994-10-24 2005-02-16 株式会社日本自動車部品総合研究所 Method for firing ceramic honeycomb structure
JP2000211976A (en) * 1999-01-20 2000-08-02 Matsushita Electric Ind Co Ltd Burning of electronic ceramic parts
JP4394329B2 (en) * 2001-03-01 2010-01-06 日本碍子株式会社 Manufacturing method of ceramic structure
JP4266103B2 (en) * 2001-12-07 2009-05-20 日本碍子株式会社 Method for producing porous ceramic body
US6620751B1 (en) * 2002-03-14 2003-09-16 Corning Incorporated Strontium feldspar aluminum titanate for high temperature applications
JP4461414B2 (en) * 2002-07-26 2010-05-12 日立金属株式会社 Method for firing ceramic honeycomb structure
WO2004011386A1 (en) * 2002-07-31 2004-02-05 Corning Incorporated Aluminum titanate-based ceramic article
JP4222600B2 (en) * 2003-01-07 2009-02-12 日本碍子株式会社 Method for firing ceramic honeycomb structure
WO2005105704A1 (en) * 2004-04-28 2005-11-10 Ohcera Co., Ltd. Magnesium aluminum titanate crystal structure and method for producing same
WO2006035674A1 (en) * 2004-09-27 2006-04-06 Ngk Insulators, Ltd. Support plate for use in firing and firing method for producing honeycomb formed article using the same
JP2008545612A (en) * 2005-05-31 2008-12-18 コーニング インコーポレイテッド Aluminum titanate ceramic forming batch mixture and green body containing a combination of pore formers, and production and firing method of the mixture and green body
EP1911732B1 (en) * 2005-08-01 2012-02-15 Hitachi Metals, Ltd. Process for producing ceramic honeycomb structure
US8394167B2 (en) * 2006-06-30 2013-03-12 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
PL2098493T3 (en) * 2006-12-27 2017-03-31 Hitachi Metals, Ltd. Process for producing aluminum-titanate-based ceramic honeycomb structure
JP5142569B2 (en) * 2007-03-27 2013-02-13 京セラ株式会社 Heat-resistant ceramic material

Also Published As

Publication number Publication date
JP2010083738A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5478259B2 (en) Silicon carbide based porous material
JP4094830B2 (en) Porous honeycomb filter and manufacturing method thereof
US20040029707A1 (en) Magnesium aluminum silicate structures for DPF applications
JP2011523616A (en) Porous structure containing aluminum titanate
JP5722869B2 (en) Method and substrate for curing a honeycomb structure
JP2007001836A (en) Method of manufacturing honeycomb structure
JP2003212672A (en) Process for manufacturing porous ceramic structure
JP2011526576A (en) Aluminum titanate type porous structure
JP2012254441A (en) Honeycomb filter
JP2013522020A (en) Filter material with occlusive material
JP2017178721A (en) Porous material, manufacturing method of porous material and honeycomb structure
JP2007021483A (en) Honeycomb structure
JP2011520605A (en) Composite SiC-glass ceramic filter
JP5294057B2 (en) Method for manufacturing aluminum titanate ceramic honeycomb structure
JP2006096634A (en) Porous ceramic body
JP5188436B2 (en) Honeycomb structure
JP5491500B2 (en) Particle mixture for producing an aluminum titanate type porous structure
KR20110114542A (en) Filtration structure having inlet and outlet surfaces with a different plugging material
JP6906468B2 (en) Ceramic porous body and its manufacturing method, and dust collection filter
WO2012157420A1 (en) Honeycomb filter
JPH10299454A (en) Exhaust gas filter and manufacture thereof, and sealant for exhaust gas filter used therein
JP2022128501A (en) Ceramics madreporite and manufacturing method thereof, and filter for dust collection
JP2011524247A (en) Catalytic filter or substrate comprising silicon carbide and aluminum titanate
WO2012157422A1 (en) Honeycomb filter
JP4997090B2 (en) Porous fired body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5294057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees