JP5491500B2 - Particle mixture for producing an aluminum titanate type porous structure - Google Patents

Particle mixture for producing an aluminum titanate type porous structure Download PDF

Info

Publication number
JP5491500B2
JP5491500B2 JP2011515575A JP2011515575A JP5491500B2 JP 5491500 B2 JP5491500 B2 JP 5491500B2 JP 2011515575 A JP2011515575 A JP 2011515575A JP 2011515575 A JP2011515575 A JP 2011515575A JP 5491500 B2 JP5491500 B2 JP 5491500B2
Authority
JP
Japan
Prior art keywords
median diameter
coarse
particle
particle mixture
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011515575A
Other languages
Japanese (ja)
Other versions
JP2011526573A (en
Inventor
ディエンバラトー,カリーヌ
シューマン,マティアス
Original Assignee
サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン filed Critical サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン
Publication of JP2011526573A publication Critical patent/JP2011526573A/en
Application granted granted Critical
Publication of JP5491500B2 publication Critical patent/JP5491500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B2003/203Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded for multi-channelled structures, e.g. honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、粒子混合物、及びその混合物を用いて多孔質構造体、例えば触媒担体又は粒子フィルターを製造する方法に関する。そのフィルター部及び/又は活性部を構成する材料は、チタン酸アルミニウムに基づいている。本発明によるセラミックフィルター又はセラミック担体の主成分を形成するセラミック材料は、主にチタン酸アルミニウムAlTiO(擬板チタン石(Pseudobrookite))型の形態のAl元素及びTi元素の酸化物から、主に形成される。また、本発明は、そのような方法から得られるハニカム多孔質構造体、特に触媒担体又は粒子フィルター、特にディーゼル型内燃機関の排気ラインで用いられる触媒担体又は粒子フィルターに関する。これらの特性は改良されている。 The present invention relates to a particle mixture and a method for producing a porous structure such as a catalyst support or a particle filter using the mixture. The material constituting the filter part and / or the active part is based on aluminum titanate. The ceramic material forming the main component of the ceramic filter or ceramic carrier according to the present invention is mainly composed of oxides of Al and Ti elements in the form of aluminum titanate Al 2 TiO 5 (Pseudobrookite) type. Mainly formed. The invention also relates to a honeycomb porous structure obtained from such a method, in particular a catalyst carrier or particle filter, in particular a catalyst carrier or particle filter used in the exhaust line of a diesel internal combustion engine. These properties are improved.

以下の記載では、ガソリン内燃機関又はディーゼル内燃機関からの排気ガスに含まれる汚染物質を除去するためのフィルター又は触媒担体の特定の分野(本発明が関連する分野)における用途及び利点が述べられる。現時点では、排気ガスを浄化する構造体は、全て一般的にハニカム構造を有する。   In the following description, the use and advantages of a filter or catalyst carrier in a particular field (the field to which the present invention relates) for removing pollutants contained in exhaust gas from a gasoline internal combustion engine or a diesel internal combustion engine will be described. At present, all structures for purifying exhaust gas generally have a honeycomb structure.

周知のように、粒子フィルターは、その使用中に、一連のろ過段階(ススの蓄積)と、再生段階(ススの除去)とにさらされる。ろ過段階の間に、エンジンから放出されるスス粒子は、フィルター内に保持され、そして堆積される。再生段階の間には、ろ過特性を回復させるために、スス粒子をフィルター内で燃焼させる。それゆえ、フィルターを構成する材料の低温と高温の両方の機械的強度特性が、この用途に関して最重要である。同様に、この材料は、特に再生段階が制御不十分な場合には、局所的に1000℃を優に超えて上昇することがある温度に、特に装備する車両の全耐用期間にわたって耐えるために、十分に安定且つ耐久性がある構造を有する必要がある。   As is well known, a particle filter is exposed to a series of filtration stages (soot accumulation) and regeneration stages (soot removal) during its use. During the filtration phase, soot particles emitted from the engine are retained and deposited in the filter. During the regeneration phase, soot particles are combusted in the filter to restore filtration characteristics. Therefore, both the low temperature and high temperature mechanical strength properties of the materials making up the filter are paramount for this application. Similarly, this material can withstand temperatures that can rise well above 1000 ° C., especially if the regeneration phase is under-controlled, especially over the entire life of the equipped vehicle. It is necessary to have a structure that is sufficiently stable and durable.

現時点では、フィルター及び担体は、多孔質セラミック材料、特に炭化ケイ素又はコージライトで主に作られる。炭化ケイ素フィルターは、例えば特許文献1〜5に記載されている。このようなフィルターは、優れた熱伝導性を有し、且つ内燃機関からのススをろ過する用途に関して理想的である気孔率特性(特に平均気孔径及び気孔径の分布)を有する化学的に不活性なフィルター構造を得ることを可能とする。しかし、この材料に特有のいくつかの欠点が、未だ存在している:第一の欠点は、大きな一体の(monolithic)フィルターを製造することを不可能にする、SiCのいくぶん高い熱膨張率(3×10−6−1超)に起因している。これは、フィルターを複数のハニカム部品に分けて、接着剤によって共に接合することを頻繁に必要とする(例えば、特許文献3に記載されている)。第二の欠点は、経済的な性質であり、典型的には2100℃超となる、極めて高い焼成温度に起因する。この焼結は、ハニカム構造体の十分な熱力学的強度を、特にフィルターの継続的な再生段階の間に保証する。そのような温度は、特別な装置の導入を必要とし、これは、最終的に得られるフィルターのコストをかなり増加させる。 At present, the filters and carriers are mainly made of porous ceramic materials, in particular silicon carbide or cordierite. Silicon carbide filters are described in, for example, Patent Documents 1 to 5. Such filters have excellent thermal conductivity and are chemically poor with porosity characteristics (especially average pore size and pore size distribution) that are ideal for applications that filter soot from internal combustion engines. It is possible to obtain an active filter structure. However, several disadvantages specific to this material still exist: the first disadvantage is the somewhat higher coefficient of thermal expansion of SiC (which makes it impossible to produce large monolithic filters ( 3 × 10 −6 K −1 ). This often necessitates dividing the filter into a plurality of honeycomb parts and joining them together with an adhesive (for example, as described in Patent Document 3). The second drawback is the economic nature, due to the extremely high firing temperature, typically above 2100 ° C. This sintering ensures sufficient thermodynamic strength of the honeycomb structure, especially during the continuous regeneration phase of the filter. Such temperatures require the introduction of special equipment, which significantly increases the cost of the final filter obtained.

他の一観点から、コージライトフィルターが知られており、また、その低いコストにより、長い間用いられてきた。しかしながら、特にフィルターがコージライトの融点よりも高い温度に局所的にさらされる場合がある制御不十分な再生サイクルの間に、その構造体に問題が発生する場合があることが現在知られている。これらのホットスポット(hot spot)の結果は、フィルターの効率の一部のロスから、最も深刻な場合でその完全な破壊にまで至る場合がある。その上、コージライトの化学的不活性は、継続的な再生サイクルの間に達する温度で不十分であり、結果的に、フィルター段階の間に構造体中に蓄積した塩基及び他の金属と反応する傾向があり、且つこれらによって侵食される傾向がある。この現象は、その構造体の特性の急速な悪化の原因となる場合がある。   From another perspective, cordierite filters are known and have been used for a long time due to their low cost. However, it is currently known that problems may occur with the structure, especially during under-controlled regeneration cycles where the filter may be locally exposed to temperatures above the melting point of cordierite. . The results of these hot spots can range from some loss of filter efficiency to the most severe case of its complete destruction. Moreover, the chemical inertness of cordierite is inadequate at the temperature reached during the continuous regeneration cycle, resulting in reaction with bases and other metals accumulated in the structure during the filter stage. And tend to be eroded by these. This phenomenon may cause a rapid deterioration of the properties of the structure.

例えば、そのような欠点は、特許文献6に記載されており、これは、それら欠点を改善するために、ムライト(10〜40wt%)によって補強された、チタン酸アルミニウム(60〜90wt%)に基づくフィルターを提案している。このフィルターの耐久性は、改良されている。   For example, such disadvantages are described in US Pat. No. 6,057,096, which is based on aluminum titanate (60-90 wt%) reinforced with mullite (10-40 wt%) to remedy those defects. Based on the proposed filter. The durability of this filter has been improved.

しかし、出願人によって行われた実験は、自動車排気ライン中の触媒担体又は粒子フィルターとしての用途で直接的に有用とするのに適切な熱安定性、機械的強度特性、及び熱力学的強度特性を保証しながら、チタン酸アルミニウム型の多孔質材料に基づくそのような構造体の性能を保証すること、特に最終的に得られる多孔質フィルター材料の気孔率の水準を制御することが、現時点で難しいことを示した。   However, experiments conducted by the applicant have shown that the thermal stability, mechanical strength properties, and thermodynamic strength properties appropriate to be useful directly in applications as catalyst supports or particle filters in automobile exhaust lines. Guaranteeing the performance of such structures based on aluminum titanate type porous materials, in particular, controlling the level of porosity of the finally obtained porous filter material. It was difficult.

欧州特許出願公開第816065号European Patent Application Publication No. 816065 欧州特許出願公開第1142619号European Patent Application No. 1142619 欧州特許出願公開第1455923号European Patent Application Publication No. 1455923 国際公開WO2004/090294号International Publication WO 2004/090294 国際公開WO2004/065088号International Publication WO 2004/065088 国際公開WO2004/01124号International Publication No. WO2004 / 01124

それゆえ、本発明の目的は、制御された気孔率を有し、且つフィルターのフィルター部又は触媒担体の活性部のための主材料として用いることが可能な材料、及びその製造方法を提供することである。   Therefore, an object of the present invention is to provide a material having a controlled porosity and which can be used as a main material for the filter part of the filter or the active part of the catalyst carrier, and a method for producing the same. It is.

その材料は、チタン酸アルミニウム型の酸化物材料を主に含み、又はこの酸化物材料からなる。そして、自動車の排気ラインで現在用いられている触媒担体又は粒子フィルター型のハニカム多孔質構造体の分野で、有利に用いられることが可能な上述したような特性を有する。   The material mainly contains or consists of an aluminum titanate type oxide material. And it has the above-mentioned characteristics that can be advantageously used in the field of catalyst carriers or particulate filter type honeycomb porous structures currently used in automobile exhaust lines.

最も一般的な形態では、本発明は、少なくともチタン及びアルミニウムを含有する擬板チタン石型の酸化物相を主に含む粒子混合物、又はこの酸化物相からなる粒子混合物に関連する。この混合物は、次の少なくとも二つの粒径部分から得られる:
−メジアン径d50が12μm超である、粗大粒径部分;及び
−メジアン径d50が0.5〜3μmである、微細粒径部分。
ここで粗大部分の、微細部分に対する質量比は、1.5以上20以下であり、粗大部分のメジアン径の、微細部分のメジアン径に対する比は、12超である。
In its most general form, the invention relates to a particle mixture mainly comprising a pseudo-plate titanite type oxide phase containing at least titanium and aluminum, or a particle mixture consisting of this oxide phase. This mixture is obtained from at least two particle size parts:
A coarse particle size portion where the median diameter d 50 is greater than 12 μm; and a fine particle size portion where the median diameter d 50 is 0.5 to 3 μm.
Here, the mass ratio of the coarse portion to the fine portion is 1.5 or more and 20 or less, and the ratio of the median diameter of the coarse portion to the median diameter of the fine portion is more than 12.

例えば、その粒子混合物において、少なくともいくつかの粒子は、少なくともチタン及びアルミニウムを含有する擬板チタン石型の酸化物相からなる主相、並びに少なくとも一つの第二相(secondary phase)を有し、その第二相は、ガラス状相及び/又は酸化チタンTiOから本質的になる相である。 For example, in the particle mixture, at least some of the particles have a main phase composed of a pseudo-plate titanite type oxide phase containing at least titanium and aluminum, and at least one secondary phase. The second phase is a phase consisting essentially of a glassy phase and / or titanium oxide TiO 2 .

その擬板チタン石型の酸化物相は、チタン酸アルミニウム型の相が次の式をおおよそ満たすような割合で、チタン、アルミニウム、並びに任意的にマグネシウム及び/又はジルコニウムを含有することができる:
(AlTiO(MgTi(MgTiZrO
(ここで、0.1≦x<1;0<y≦0.9;及びz=1−x−yである)。
The pseudo-plate titanite type oxide phase can contain titanium, aluminum, and optionally magnesium and / or zirconium, in proportions such that the aluminum titanate type phase approximately satisfies the following formula:
(Al 2 TiO 5 ) x (MgTi 2 O 5 ) y (MgTiZrO 5 ) z
(Where 0.1 ≦ x <1; 0 <y ≦ 0.9; and z = 1−xy).

典型的には、この式において:0.70≦x<1、且つ0<y≦0.3、好ましくは0.80≦x<1、且つ0<y≦0.2である。   Typically in this formula: 0.70 ≦ x <1, and 0 <y ≦ 0.3, preferably 0.80 ≦ x <1, and 0 <y ≦ 0.2.

一つの有利な実施態様によると、粗大粒径部分は、15μm超のメジアン径d50を有する。 According to one advantageous embodiment, the coarse particle size portion has a median diameter d 50 of greater than 15 μm.

例えば、粗大粒径部分は、100μm未満、好ましくは80μm未満、さらに好ましくは50μm未満、さらには40μm未満、さらには38μm未満、さらには35μm未満のメジアン径d50を有する。 For example, the coarse particle size portion has a median diameter d 50 of less than 100 μm, preferably less than 80 μm, more preferably less than 50 μm, even less than 40 μm, even less than 38 μm, and even less than 35 μm.

好ましい実施態様によると、粗大部分の微細部分に対する質量比は、1.5〜5、特には1.5〜4である。   According to a preferred embodiment, the mass ratio of the coarse part to the fine part is 1.5-5, in particular 1.5-4.

粗大部分のメジアン径の、微細部分のメジアン径に対する比は、例えば15超である。特に、粗大部分のメジアン径の、微細部分のメジアン径に対する比が、50未満、またさらには45未満、またさらには40未満である場合に、良好な結果が得られた。例えば、この比は、20以上25以下とすることができる。   The ratio of the median diameter of the coarse part to the median diameter of the fine part is, for example, more than 15. In particular, good results have been obtained when the ratio of the median diameter of the coarse part to the median diameter of the fine part is less than 50, or even less than 45, or even less than 40. For example, this ratio can be 20 or more and 25 or less.

本明細書が不必要に負担とならないように、上述したような、本発明による粒子部分及びその混合物を特徴とする様々な好ましい実施態様の間の、本発明による全ての可能な組み合わせは、報告しない。しかし、上述したような初期の、且つ/又は好ましい範囲及び値の全ての可能な組み合わせは想定することができ、且つ本明細書の文脈の範囲内に出願人によって記載されていると解釈されなければならないことが明らかである(特に2、3又はそれよりも多くの組み合わせ)。   All possible combinations according to the invention between the various preferred embodiments featuring the particle parts according to the invention and mixtures thereof as described above are reported so that the description is not unnecessarily burdensome. do not do. However, all possible combinations of initial and / or preferred ranges and values as described above can be envisioned and should be construed as described by the applicant within the context of this specification. It is clear that this must be done (especially a few, three or more combinations).

また、本発明は、触媒担体又はハニカム粒子フィルターを、上述したような粒子混合物から製造する方法にも関連し、これは次の主なステップを有する:
a)粗大部分及び微細部分を、共に混合するステップ;
b)その粒子混合物を、メチルセルロース型の有機バインダー及び任意的に気孔形成剤、並びにステップc)を実行するための可塑性を得るのに十分な量の水の存在下で、混合するステップ
c)ダイを通じて未焼成ハニカム構造体を押し出すステップ;及び
d)1300℃〜1800℃の温度で上記構造体を焼成するステップ。
The invention also relates to a method for producing a catalyst support or honeycomb particle filter from a particle mixture as described above, which has the following main steps:
a) mixing the coarse and fine portions together;
b) mixing the particle mixture in the presence of a methylcellulose-type organic binder and optionally a pore-former, and an amount of water sufficient to obtain the plasticity to perform step c) c) die Extruding the unfired honeycomb structure through; and d) firing the structure at a temperature between 1300 ° C and 1800 ° C.

また、本発明は、上述したような方法によって得ることができ、少なくともチタン及びアルミニウムを含む擬板チタン石型の酸化物相を主に含む又はこの酸化物相からなる触媒担体に関する。   The present invention also relates to a catalyst support which can be obtained by the method as described above, and which mainly contains or consists of a pseudo-plate titanium stone type oxide phase containing at least titanium and aluminum.

最終的に、本発明は、上述したような方法により得られ、そのフィルター部が、少なくともチタン及びアルミニウムを含む擬板チタン石型の酸化物相を主に含む、又はこの酸化物相からなる粒子フィルター、又は触媒性粒子フィルターに関する。   Finally, the present invention is obtained by the method as described above, and the filter part mainly includes or consists of a pseudo-plate titanite type oxide phase containing at least titanium and aluminum. The present invention relates to a filter or a catalytic particle filter.

本発明の第一の実施態様によると、その多孔質材料は、単純酸化物であるAl、TiO、及び擬板チタン石構造AlTiOを形成することができる他の元素の酸化物、例えば固溶体の形の酸化物から得られる。そのような材料は、典型的には酸化マグネシウム、酸化ケイ素、酸化ジルコニウム、酸化鉄、又は他の元素の酸化物である。この混合物を焼結する。すなわちAlTiO型の構造を有する少なくとも一つの主相を含む焼結された粒子を形成するようにして単純酸化物を反応させることができる温度に、この混合物を加熱する。 According to the first embodiment of the present invention, the porous material is composed of simple oxides of Al 2 O 3 , TiO 2 , and other elements capable of forming the pseudo-plate titanite structure Al 2 TiO 5 . It is obtained from an oxide, for example an oxide in the form of a solid solution. Such materials are typically magnesium oxide, silicon oxide, zirconium oxide, iron oxide, or oxides of other elements. This mixture is sintered. That is, the mixture is heated to a temperature at which simple oxides can react to form sintered particles containing at least one main phase having an Al 2 TiO 5 type structure.

あるいは、本発明によると、前記単純酸化物の代わりに、前記酸化物のあらゆる前駆体を、例えば炭酸塩、水酸化物、又は上記元素の他の有機金属の形態で使用することもできる。用語「前駆体」は、熱処理、すなわち典型的には1000℃未満、800℃未満、さらに500℃未満の加熱温度での熱処理のたいてい前の段階に対応する単純酸化物に分解する材料を意味すると理解される。上述したように、前駆体の混合物を焼結する。すなわち、AlTiO型の構造を有する少なくとも一つの主相を有する粒子を形成するように前駆体が反応できる温度に、この混合物を加熱する。 Alternatively, according to the invention, instead of the simple oxide, any precursor of the oxide can also be used, for example in the form of carbonates, hydroxides or other organometallics of the above elements. The term “precursor” means a material that decomposes into a simple oxide corresponding to the most previous stage of heat treatment, ie heat treatment typically at temperatures below 1000 ° C., below 800 ° C., and even below 500 ° C. Understood. As described above, the precursor mixture is sintered. That is, the mixture is heated to a temperature at which the precursor can react so as to form particles having at least one main phase having an Al 2 TiO 5 type structure.

本発明の他の一つの可能な実施態様によると、本発明による材料は、酸化物であるAl、TiO、及び任意的にMgO、ZrO、SiO又は他の酸化物(又はこれらの前駆体)の事前溶融により得られる粒子から合成される。 According to another possible embodiment of the invention, the material according to the invention comprises the oxides Al 2 O 3 , TiO 2 and optionally MgO, ZrO 2 , SiO 2 or other oxides (or These precursors) are synthesized from particles obtained by pre-melting.

例えば、本発明によると、粒子は、溶融キャスト法(fused casting method)によって得られ、これは、高い収率及び非常に良好な価格/性能比で大量生産を可能とする。   For example, according to the present invention, the particles are obtained by a fused casting method, which allows mass production with high yield and very good price / performance ratio.

粒子の製造のための連続的な溶融キャストステップは、例えば次の通りである:
a)開始分量を形成するために原料を混合するステップ;
b)溶融液を得るために開始分量を溶融するステップ;
c)溶融液を冷却して、それにより溶融液を完全に固化するステップ(この冷却は、例えば三分未満で素早く行うことができる);及び
d)任意的に、その固形体を、粒子混合物を得るために粉砕するステップ。
A continuous melt casting step for the production of particles is for example as follows:
a) mixing the raw materials to form a starting quantity;
b) melting the starting amount to obtain a melt;
c) cooling the melt, thereby completely solidifying the melt (this cooling can be done quickly, for example in less than 3 minutes); and d) optionally, the solids are mixed with the particle mixture Crushing step to get.

もちろん、本発明の範囲から離れることなく、開始分量の組成が、本発明の粒子の組成に一致する組成を有する粒子を得ることを可能とするならば、溶融キャスト粒子を製造するための任意の他の従来の、又は公知の方法を、使用することができる。   Of course, without departing from the scope of the present invention, any composition for producing molten cast particles can be used, provided that the composition of the starting amount allows obtaining particles having a composition that matches the composition of the particles of the present invention. Other conventional or known methods can be used.

ステップb)において、電気アーク炉が好ましくは用いられるが、開始分量を完全に溶融するならば、任意の公知の炉、例えば誘導炉、プラズマ炉を想定することができる。焼成は、好ましくは不活性条件下、例えばアルゴン下、又は酸化条件下において、好ましくは大気圧で行われる。   In step b), an electric arc furnace is preferably used, but any known furnace, such as an induction furnace, a plasma furnace, can be envisaged if the starting quantity is completely melted. Calcination is preferably carried out under inert conditions, for example under argon or oxidizing conditions, preferably at atmospheric pressure.

ステップc)において、冷却は、必要ではないが好ましくは、素早く、すなわち溶融液体が3分未満で完全に固化されるような方法で行う。好ましくは、冷却は、米国特許第3993119号に記載されたようなCSモールド中でのキャストから、又は急冷操作によって行われる。   In step c), cooling is not necessary but is preferably carried out quickly, ie in such a way that the molten liquid is completely solidified in less than 3 minutes. Preferably, the cooling is done from a cast in a CS mold as described in US Pat. No. 3,993,119 or by a quenching operation.

ステップd)において、固形体は、従来技術を用いて、本発明の粒子径が得られるまで粉砕される。   In step d), the solid is ground using conventional techniques until the particle size of the present invention is obtained.

本発明の初期粒子混合物から上記の構造体を製造する一つの方法は、一般的に次のとおりである:
第一に、上述したような焼結又は溶融キャストにより得られる粒子を混合する。本発明では、溶融キャスト粒子を、本発明の意味内において適切な粒径を有するように粉砕していた。本分野で周知の方法で、この製造方法は、典型的には、初期粒子混合物と、メチルセルロース型の有機バインダー、及び気孔形成剤(例えば、でんぷん、グラファイト、ポリエチレン、PMMA等)とを混合するステップ、並びにハニカム構造体を押し出すステップを可能とするのに必要な可塑性が得られるまで、水を段階的に添加するステップを含む。
One method for producing the above structure from the initial particle mixture of the present invention is generally as follows:
First, the particles obtained by sintering or melt casting as described above are mixed. In the present invention, the molten cast particles have been pulverized to have an appropriate particle size within the meaning of the present invention. In a manner well known in the art, this process typically involves mixing an initial particle mixture with a methylcellulose type organic binder and a pore former (eg, starch, graphite, polyethylene, PMMA, etc.). And stepwise adding water until the necessary plasticity is obtained to allow the step of extruding the honeycomb structure.

例えば、第一ステップの間に、粒子混同物を、所望の気孔径により選択される1〜30wt%の少なくとも一種の気孔形成剤と混合し、そして少なくとも一種の有機可塑剤、及び/又は有機バインダー、並びに水を添加する。   For example, during the first step, the particle mixture is mixed with 1-30 wt% of at least one pore former selected according to the desired pore size, and at least one organic plasticizer and / or organic binder As well as water.

混合は、ペーストの形態の均質生成物をもたらす。適切な形状のダイを通じてこの生成物を押し出すステップは、周知の技術を使用して、ハニカム形状のモノリス(monolith)を得ることを可能とする。例えば、この方法は、得られたモノリスを乾燥させるステップを含むことができる。乾燥ステップの間、得られた未焼成セラミックモノリスは、典型的には、マイクロ波乾燥、又は熱乾燥によって、化学的に結合していない水の含有量を1wt%未満とするのに十分な時間で乾燥させることができる。粒子フィルターを得ることを望む場合、この方法は、さらにモノリスの各端部で一つおきの流路を塞ぐステップをさらに含むことができる。   Mixing results in a homogeneous product in the form of a paste. Extruding this product through a suitably shaped die makes it possible to obtain a honeycomb shaped monolith using well known techniques. For example, the method can include drying the resulting monolith. During the drying step, the resulting green ceramic monolith is typically subjected to sufficient time to reduce the content of chemically unbound water to less than 1 wt% by microwave drying or heat drying. Can be dried. If it is desired to obtain a particle filter, the method may further include the step of plugging every other flow path at each end of the monolith.

フィルター部がチタン酸アルミニウムに基づくモノリスを焼成するステップは、原則的には、1300℃超であるが1800℃を超えない温度、好ましくは1750℃を超えない温度で実行される。この温度は、特に多孔質材料中に存在する他の相、及び/又は酸化物によって、調整される。通常は、焼成ステップの間に、モノリス構造体は、酸素又は不活性ガスを有する雰囲気で、1300℃〜1600℃の間の温度に加熱される。   The step of firing the monolith on which the filter part is based on aluminum titanate is in principle carried out at a temperature above 1300 ° C. but not exceeding 1800 ° C., preferably not exceeding 1750 ° C. This temperature is adjusted in particular by other phases and / or oxides present in the porous material. Typically, during the firing step, the monolith structure is heated to a temperature between 1300 ° C. and 1600 ° C. in an atmosphere having oxygen or an inert gas.

本発明の利点の一つは、SiCフィルター(上述したようなもの)とは異なり、分割の必要性がなく非常に大きなサイズのモノリス構造体を得る可能性にある。ただし、好ましくはないが、一つの実施態様では、この方法は、周知の技術、例えば欧州特許出願公開第816065号に記載された技術を用いて組み立てられるフィルター構造に、モノリスを組み立てるステップを任意的に含む場合がある。   One advantage of the present invention is that unlike SiC filters (as described above), there is no need for segmentation and the possibility of obtaining a very large size monolith structure. However, although not preferred, in one embodiment, the method optionally includes the step of assembling the monolith into a filter structure that is assembled using known techniques, such as those described in EP-A-816065. May be included.

本発明によるフィルター構造、又は多孔質セラミック材料製の構造体は、好ましくはハニカム型のものである。これは、一般的に20〜65%、好ましくは30〜50%の適切な気孔率を有し、この平均気孔径は、理想的には10〜20μmである。   The filter structure according to the invention or the structure made of porous ceramic material is preferably of the honeycomb type. This generally has a suitable porosity of 20 to 65%, preferably 30 to 50%, and this average pore diameter is ideally 10 to 20 μm.

このようなフィルター構造体は、典型的には、多孔質材料によって形成された壁によって隔てられた、相互に平行な軸を有する多くの隣接した導管又は流路を有する。   Such filter structures typically have many adjacent conduits or channels with mutually parallel axes separated by a wall formed by a porous material.

粒子フィルターにおいて、導管は、流入面に開いた入口チャンバーを画定し、且つ流出面に開いた出口チャンバーを画定するように、その端部の一方又は他方で、栓によって閉じられ、このようにしてガスが多孔質の壁を通り抜けるようにされている。   In a particle filter, the conduit is closed by a plug at one or the other end so as to define an inlet chamber open to the inlet surface and an outlet chamber open to the outlet surface, thus Gas is allowed to pass through the porous wall.

また、本発明は、上述したような構造体から、担持された又は好ましくは担持されない少なくとも一つの活性触媒相を堆積させること(好ましくは含浸させること)によって得られるフィルター又は触媒担体に関する。その活性触媒相は、典型的には、少なくとも一つの貴金属、例えばPt、Rh、及び/又はPd、並びに任意的に酸化物、例えばCeO、ZrO、CeO−ZrOを有する。触媒担体も、ハニカム構造を有するが、導管は、栓によって塞がれず、且つ触媒は、流路の気孔に堆積されている。 The invention also relates to a filter or catalyst support obtained by depositing (preferably impregnating) at least one active catalyst phase which is supported or preferably not supported from a structure as described above. Its active catalyst phase typically comprises at least one noble metal, for example Pt, Rh, and / or Pd, and optionally oxides, such as CeO 2, ZrO 2, CeO 2 -ZrO 2. The catalyst carrier also has a honeycomb structure, but the conduit is not blocked by plugs and the catalyst is deposited in the pores of the flow path.

本発明及びその利点は、次の非限定的な実施例を読むことでより一層理解されるであろう。この実施例において、言及されない限り、全てのパーセントは、重量%で与えられる。   The invention and its advantages will be better understood by reading the following non-limiting examples. In this example, all percentages are given in weight percent unless otherwise noted.

全ての実施例において、パーセントは、全てwt%で与えられる。試験片を、次の原料から調整した:
−99.5%超の純度、及び90μmのメジアン径d50を有する約40wt%のアルミナ(AR75(商標)、Pechiney社により販売されている);
−95wt%超のTiO及び約1%のジルコニアを含有し、且つ約120μmのメジアン径d50を有する、約50wt%のルチル形のTiO(Europe Minerals社により販売されている);
−99.5%超の純度、及び208μmのメジアン径d50を有する約5wt%のSiO(SIFRACO社により販売されている);及び
−98%超の純度を有し、且つ80%超の粒子が0.25〜1mmの直径を有する約4wt%のMgO(Nedmag社により販売されている)。
In all examples, all percentages are given in wt%. Test specimens were prepared from the following ingredients:
About 40 wt% alumina (AR75 ™, marketed by Pechiney) with a purity greater than 99.5% and a median diameter d 50 of 90 μm;
About 50 wt% rutile TiO 2 (sold by Europ Minerals) containing> 95 wt% TiO 2 and about 1% zirconia and having a median diameter d 50 of about 120 μm;
About 5 wt% SiO 2 (sold by SIFRACO) having a purity of greater than 99.5% and a median diameter d 50 of 208 μm; and a purity of greater than 98% and greater than 80% About 4 wt% MgO (sold by Nedmag) where the particles have a diameter of 0.25 to 1 mm.

初期反応性酸化物の混合物を、大気中で、酸化電気条件(oxidizing electrical condition)において、電気アーク炉で溶融した。溶融した混合物を、素早く冷却させるためにCSモールドにキャストした。その得られた生成体を、粉砕して、様々な粒径部分を有する粉体を得るために篩分けした。より正確には、粉砕及び篩分けを、4つの粒径部分、すなわち下記の粒径部分を最終的に得るための条件下で実行した:
−本発明において用語「粗大部分」で示される、約30μmのメジアン径d50によって特徴付けられる粒径部分;
−本発明において用語「粗大部分」で示される、約16μmのメジアン径d50によって特徴付けられる粒径部分;
−本発明において用語「微細部分」で示される、約1.5μmのメジアン径d50によって特徴付けられる粒径部分;及び
−本発明において用語「微細部分」で示される、約0.7μmのメジアン径d50によって特徴付けられる粒径部分。
The mixture of initial reactive oxides was melted in an electric arc furnace in the atmosphere at oxidizing electrical conditions. The molten mixture was cast into a CS mold for quick cooling. The resulting product was crushed and sieved to obtain powders with various particle size portions. More precisely, grinding and sieving were carried out under conditions to finally obtain four particle size parts, ie the following particle size parts:
A particle size portion characterized by a median diameter d 50 of about 30 μm, denoted by the term “coarse portion” in the present invention;
A particle size portion characterized by a median diameter d 50 of about 16 μm, denoted by the term “coarse portion” in the present invention;
A particle size portion characterized by a median diameter d 50 of about 1.5 μm, denoted by the term “fine portion” in the present invention; and Part of the particle size characterized by the diameter d 50 .

この記載の文脈の範囲で、メジアン径d50は、液相沈降法(セディグラフィ:sedigraphy)で測定された粒子の直径であって、これより小さい粒子が母集団の体積で50%存在する直径を意味する。 Within the context of this description, the median diameter d 50 is the diameter of a particle measured by liquid phase sedimentation (sedigraphy), where the smaller particle is present at 50% of the population volume. Means.

マイクロプローブ解析は、そうして得られた溶融した相の全ての粒子が、酸化物の重量%で、次の組成を有していたことを示した。   Microprobe analysis showed that all particles of the molten phase thus obtained had the following composition at the oxide weight percent.

Figure 0005491500
Figure 0005491500

粒子内に存在する相の組成及び性質も解析し、その解析の結果を表2に示した。これらの結果に基づくと、各相の重量%を計算によって推算することが可能であった。得られたデータに基づくと、主相AMTZに関して、特に元素Mg及びZrを組み込むAlTiO型の固溶体の形態である、擬板チタン石(AlTiO(MgTi(MgTiZrO構造の一般式に対応するx及びyの値を決定することもできる。 The composition and properties of the phase present in the particles were also analyzed, and the results of the analysis are shown in Table 2. Based on these results, it was possible to estimate the weight percent of each phase by calculation. Based on the data obtained, pseudoplate titanite (Al 2 TiO 5 ) x (MgTi 2 O 5 ) y , which is in the form of an Al 2 TiO 5 type solid solution incorporating the elements Mg and Zr, in particular for the main phase AMTZ. The values of x and y corresponding to the general formula of (MgTiZrO 5 ) z structure can also be determined.

Figure 0005491500
Figure 0005491500

表2において:
1)耐火性生成物中に存在する結晶相を、X線回折によって特徴付けた。表2において、AMTZは、(AlTiO(MgTi(MgTiZrO型の固溶体を示し(ここで、Z=1−x−y)、P2は、二番目の副相に相当し、Psは、追加のケイ酸塩相の存在を示す。
2)酸化物に基づく重量%で示した、様々な相の化学的組成を、蛍光X線によって測定した。
In Table 2:
1) The crystalline phase present in the refractory product was characterized by X-ray diffraction. In Table 2, AMTZ represents (Al 2 TiO 5 ) x (MgTi 2 O 5 ) y (MgTiZrO 5 ) z- type solid solution (where Z = 1−xy), P2 is the second Corresponding to the subphase, Ps indicates the presence of an additional silicate phase.
2) The chemical composition of the various phases, expressed as% by weight based on the oxide, was measured by X-ray fluorescence.

触媒担体及び/又は粒子フィルターとしての用途における、本発明の方法によって得られる材料に基づく多孔質構造体の特性及び利点を研究するために、またそれらを上述したもの、及び/又は本発明の基準を満たさないものと比較するために、様々な試験片を、得られた溶融粒子部分から調製した。   In order to study the properties and advantages of porous structures based on the materials obtained by the method of the invention in application as catalyst supports and / or particle filters, those mentioned above and / or criteria of the invention Various test specimens were prepared from the resulting molten particle portions for comparison with those not satisfying.

多孔質セラミック材料の棒を、典型的には次の方法で得た:一以上の粒径部分を、4wt%のメチルセルロース型の有機バインダー、及び15wt%の気孔形成剤と混合した。水を、断面8mm×6mm及び長さ70mmの棒の形態で試験片を押し出すことを可能とする可塑性を有する均質ペーストが得られるまで、水を添加し、混合した。この棒を、その後4時間1450℃で焼結した。   A rod of porous ceramic material was typically obtained in the following manner: One or more particle size portions were mixed with 4 wt% methylcellulose type organic binder and 15 wt% pore former. Water was added and mixed until a homogenous paste with plasticity was obtained that would allow the specimen to be extruded in the form of a 8 mm x 6 mm cross section and 70 mm long rod. The bar was then sintered at 1450 ° C. for 4 hours.

これらの試験片について、「粒子フィルター」用途における多孔質材料の値を推算するために、曲げ破壊係数MOR(modulus of rupture)、多孔質特性、及び焼結時の収縮を、そうして得られた多孔質の棒について測定した。   For these specimens, in order to estimate the value of the porous material in the “particle filter” application, the bending failure modulus MOR (modulus of rupture), the porous properties and the shrinkage during sintering are thus obtained. Measurements were made on porous rods.

典型的な気孔率の特性化(全体の開孔気孔率及びメジアン気孔径)は、9500ポロシメーター(Micromeritics社製)を用いて周知技術である高圧水銀圧入法(high−pressure mercury porosimetry)によって測定した。   Typical porosity characterization (total open porosity and median pore diameter) was measured by a well-known technique, high-pressure mercury porosimetry, using a 9500 porosimeter (Micromeritics). .

焼結時の収縮は、1450℃での焼結後の試験片の寸法変化を表す。より正確には、本発明において、用語「焼結時の収縮」は、低温まで、すなわち400℃未満の温度まで、特に室温まで持続する、材料の断面の2つの寸法のそれぞれに沿った、平均の減少を意味すると理解される。表4において示した収縮の値は、その各寸法に対して、焼結前の棒の初期寸法のパーセントとして表わされた、2つの寸法に対する平均の収縮に相当する。この特性は、多孔質構造体の製造方法の実現可能性を評価するために、極めて重要である。特に、大きな焼結時の収縮は、産業的なスケールアップ時に、特に許容可能な再現性で得ることに関して、この材料から形成されたハニカムが、大きな困難にさらされるであろうことを意味する。これは、特に自動車の排気ラインにおいて、それら材料をあらゆる困難がなく用いることを可能とするように十分な精密性を保証することができる寸法特性を持つ構造体では、特に困難となる。   The shrinkage during sintering represents the dimensional change of the test piece after sintering at 1450 ° C. More precisely, in the present invention, the term “shrinkage during sintering” means the average along each of the two dimensions of the cross section of the material, which lasts to a low temperature, ie to a temperature below 400 ° C., in particular to room temperature. Is understood to mean a decrease in The shrinkage values shown in Table 4 correspond to the average shrinkage for the two dimensions, expressed as a percentage of the initial dimension of the bar before sintering for each of its dimensions. This property is extremely important in order to evaluate the feasibility of the manufacturing method of the porous structure. In particular, large sintering shrinkage means that honeycombs formed from this material will be subject to great difficulty, especially with respect to obtaining with acceptable reproducibility during industrial scale-up. This is particularly difficult for structures with dimensional characteristics that can guarantee sufficient precision to allow the materials to be used without any difficulty, especially in the exhaust lines of automobiles.

曲げ破壊係数(MOR)を、前もって得られた60mm×6mm×8mmの多孔質棒についての3点曲げ試験において、室温で測定した。   The flexural failure factor (MOR) was measured at room temperature in a three-point bending test on a previously obtained porous rod of 60 mm × 6 mm × 8 mm.

得られた全ての結果を、表4に与える。   All the results obtained are given in Table 4.

また、粒径部分の同じ混合物を用いて、ダイを通じた押し出しによってハニカムのモノリスを得た。そのモノリスの寸法を、表3に与える。   In addition, a honeycomb monolith was obtained by extrusion through a die using the same mixture of particle size portions. The dimensions of the monolith are given in Table 3.

Figure 0005491500
Figure 0005491500

ハニカム押し出し構造体内の材料の分布の均一性をチェックする目的で、得られた未焼成モノリスを切断し、そして試験した。   The resulting green monolith was cut and tested in order to check the uniformity of material distribution within the honeycomb extruded structure.

また、押し出しの容易性を、その材料の直径2mmのスパゲッティのダイを通す押し出しに必要とする流れ圧力を測定することによって評価した。   The ease of extrusion was also evaluated by measuring the flow pressure required for extrusion through a 2 mm diameter spaghetti die of the material.

上記二つのパラメーター(すなわち、ハニカム押し出し構造体内の材料の分布の均一性、及びスパゲッティを押し出すための流れ圧力)に依存して、粒子混合物を押し出すことの可能性(又は不可能性)を求めた。混合物の「押し出し性」解析の結果を、表4に与える。   Depending on the above two parameters (ie uniformity of material distribution within the honeycomb extrusion structure and flow pressure to extrude spaghetti), the possibility (or impossibility) of extruding the particle mixture was determined. . The results of the “pushability” analysis of the mixture are given in Table 4.

Figure 0005491500
Figure 0005491500

表4において、例1及び2は、比較のために与えた。これら二つの例では、材料を、粗大部分の初期混合物によってのみ与えた。そのような場合に、表4に示したように、多孔質ハニカム構造体を許容可能には押し出すことができなかった。さらに、その棒について得られたMOR値は低い。   In Table 4, Examples 1 and 2 are given for comparison. In these two examples, the material was provided only by the coarse initial mixture. In such a case, as shown in Table 4, the porous honeycomb structure could not be extruded acceptably. Furthermore, the MOR values obtained for the bars are low.

また比較のために与えた例7は、粗大部分及び微細部分の2つの部分を用いるが、その粗大部分と微細部分のメジアン径の比が12未満である場合には、形成の問題、そして特に押し出しの問題が起こることを示している。   Example 7 given for comparison uses two parts, a coarse part and a fine part. If the ratio of the median diameter of the coarse part and the fine part is less than 12, there is a problem of formation, and particularly Indicates that extrusion problems will occur.

表3に与えた結果は、本発明による実施例3〜6が、排気ライン中の多孔質触媒構造体及び/又はフィルターとしての用途に関して、材料をそのような用途で使用困難に又は使用不能にさせない程度に、その本質的な特性のいずれもが劣化しない材料及び生成物をもたらすことを示す。   The results given in Table 3 show that Examples 3-6 according to the present invention make the material difficult or unusable in such applications for use as a porous catalyst structure and / or filter in the exhaust line. To the extent that it does not, it indicates that none of its essential properties results in materials and products that do not degrade.

例8は、3つの粒径部分を用いた実施態様を例証する(本発明による粗大部分及び微細部分に中間サイズ部分を添加したもの)。特に、表4は、請求項に定義されたような本発明による粒子混合物のみが、次の材料を得ることを可能とすることを示している:
1)上記用途向けに簡単に形成することができる材料、すなわちハニカム構造に簡単に押し出すことができる材料;及び
2)機械的強度、気孔率、及び上記用途に適合する安定性(収縮)特性を兼ね備えた材料。
Example 8 illustrates an embodiment using three particle size parts (medium size part plus medium size part according to the invention). In particular, Table 4 shows that only the particle mixture according to the invention as defined in the claims makes it possible to obtain the following materials:
1) a material that can be easily formed for the above applications, i.e. a material that can be easily extruded into a honeycomb structure; and 2) mechanical strength, porosity, and stability (shrinkage) properties suitable for the above applications. Material that combines.

Claims (9)

少なくともチタン及びアルミニウムを含有する擬板チタン石型の酸化物相を主に含む又は前記酸化物相からなる粒子混合物であって、次の少なくとも二つの粒径部分から得られ:
−メジアン径d50が12μm超である、粗大粒径部分;及び
−メジアン径d50が0.5〜3μmである、微細粒径部分;
(ここで、前記粗大部分の、前記微細部分に対する質量比は、1.5以上20以下であり、且つ前記粗大部分のメジアン径の、前記微細部分のメジアン径に対する比は、12超である)、かつ
前記擬板チタン石型の酸化物相は、チタン酸アルミニウム型の相が次の式をおおよそ満たすような割合で、チタン、アルミニウム、並びにマグネシウム及び/又はジルコニウムを含有する、粒子混合物:
(Al TiO (MgTi (MgTiZrO 1−x−y
(ここで、0.1≦x<1;0<y≦0.9;及びz=1−x−yである)。
The oxide phase of pseudobrookite titanite type containing at least titanium and aluminum to a particle mixture consisting mainly containing or the oxide phase, Re obtained et the following at least two grain diameter portion:
A coarse particle size portion where the median diameter d 50 is greater than 12 μm; and a fine particle size portion where the median diameter d 50 is 0.5 to 3 μm;
(Here, the mass ratio of the coarse portion to the fine portion is 1.5 or more and 20 or less, and the ratio of the median diameter of the coarse portion to the median diameter of the fine portion is more than 12) ,And
The pseudoplate titanite type oxide phase contains titanium, aluminum, and magnesium and / or zirconium in a proportion such that the aluminum titanate type phase approximately satisfies the following formula:
(Al 2 TiO 5 ) x (MgTi 2 O 5 ) y (MgTiZrO 5 ) 1-xy
(Where 0.1 ≦ x <1; 0 <y ≦ 0.9; and z = 1−xy).
前記粗大粒径部分が、15μm超のメジアン径d50を有する、請求項1に記載の粒子混合物。 The particle mixture of claim 1, wherein the coarse particle size portion has a median diameter d 50 of greater than 15 μm. 前記粗大粒径部分が、100μm未満、好ましくは80μm未満、さらに好ましくは50μm未満のメジアン径d50を有する、請求項1又は2に記載の粒子混合物。 3. The particle mixture according to claim 1, wherein the coarse particle size portion has a median diameter d 50 of less than 100 μm, preferably less than 80 μm, more preferably less than 50 μm. 前記粗大部分の、前記微細部分に対する質量比が、1.5〜5である、請求項1〜のいずれか一項に記載の粒子混合物。 The particle mixture as described in any one of Claims 1-3 whose mass ratio with respect to the said fine part of the said coarse part is 1.5-5. 前記粗大部分のメジアン径の、微細部分のメジアン径に対する比が、15超、好ましくは20以上25以下である、請求項1〜のいずれか一項に記載の粒子混合物。 The particle mixture according to any one of claims 1 to 4 , wherein the ratio of the median diameter of the coarse part to the median diameter of the fine part is more than 15, preferably 20 or more and 25 or less. 触媒担体又はハニカム粒子フィルターを、請求項1〜のいずれか一項に記載の粒子混合物から製造する方法であって、次の主なステップを含む方法:
a)前記粗大部分及び前記微細部分を、共に混合するステップ;
b)前記粒子混合物を、メチルセルロース型の有機バインダー及び任意的に気孔形成剤、並びにステップc)を実行するための可塑性を得るのに十分な量の水の存在下で混合するステップ
c)ダイを通じて未焼成ハニカム構造体を押し出すステップ;及び
d)1300℃〜1800℃の温度で前記構造体を焼成するステップ。
A method for producing a catalyst support or honeycomb particle filter from the particle mixture according to any one of claims 1 to 5 , comprising the following main steps:
a) mixing the coarse portion and the fine portion together;
b) mixing the particle mixture in the presence of a methylcellulose-type organic binder and optionally a pore-former, and an amount of water sufficient to obtain the plasticity to perform step c) c) through a die Extruding the unfired honeycomb structure; and d) firing the structure at a temperature of 1300 ° C to 1800 ° C.
求項に記載の方法によって得ることができる触媒担体。 Catalyst support obtainable by the process according to Motomeko 6. 求項に記載の方法によって得ることができる粒子フィルター。 Particulate filter can be obtained by the method described in Motomeko 6. 請求項6に記載の方法によって得ることができる触媒性粒子フィルター。A catalytic particle filter obtainable by the method according to claim 6.
JP2011515575A 2008-07-04 2009-07-02 Particle mixture for producing an aluminum titanate type porous structure Expired - Fee Related JP5491500B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0854581 2008-07-04
FR0854581A FR2933399B1 (en) 2008-07-04 2008-07-04 GRAIN MIXTURE FOR THE SYNTHESIS OF A POROUS STRUCTURE OF THE ALUMINUM TITANATE TYPE
PCT/FR2009/051292 WO2010001062A2 (en) 2008-07-04 2009-07-02 Particle blend for synthesizing a porous structure of the aluminium titanate type

Publications (2)

Publication Number Publication Date
JP2011526573A JP2011526573A (en) 2011-10-13
JP5491500B2 true JP5491500B2 (en) 2014-05-14

Family

ID=40221336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011515575A Expired - Fee Related JP5491500B2 (en) 2008-07-04 2009-07-02 Particle mixture for producing an aluminum titanate type porous structure

Country Status (6)

Country Link
US (1) US8399376B2 (en)
EP (1) EP2303797A2 (en)
JP (1) JP5491500B2 (en)
KR (1) KR20110028332A (en)
FR (1) FR2933399B1 (en)
WO (1) WO2010001062A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933401B1 (en) * 2008-07-04 2010-07-30 Saint Gobain Ct Recherches POROUS STRUCTURE OF ALUMINA TITANATE TYPE
US9464004B2 (en) * 2011-02-28 2016-10-11 Corning Incorporated Method for manufacturing ceramic honeycombs with reduced shrinkage
CN111362771A (en) * 2013-11-20 2020-07-03 鲁姆斯科技公司 Olefin double bond isomerization catalyst with high toxicity resistance
JP6502495B2 (en) 2014-11-19 2019-04-17 コーニング インコーポレイテッド Ceramic powder with controlled size distribution
CN107794393B (en) * 2016-09-05 2019-08-27 中南大学 A kind of preparation method of micron-sized low porosity porous Al alloy
JP2019147701A (en) * 2018-02-26 2019-09-05 イビデン株式会社 Method for producing honeycomb structure

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517069A (en) * 1982-07-09 1985-05-14 Eltech Systems Corporation Titanium and titanium hydride reticulates and method for making
FR2672283B1 (en) * 1991-02-04 1993-05-07 Onera (Off Nat Aerospatiale) CERAMIC COMPOSITE MATERIAL FIBER MULTI-LAYERED MATRIX AND METHOD FOR THE PRODUCTION THEREOF.
JP3192700B2 (en) * 1991-09-30 2001-07-30 日本碍子株式会社 Aluminum titanate ceramics and method for producing the same
JP3274027B2 (en) * 1994-09-07 2002-04-15 トヨタ自動車株式会社 Method for manufacturing aluminum titanate honeycomb body
US5830420A (en) * 1995-11-21 1998-11-03 Qit-Fer Et Titane Inc. Method to upgrade titania slag and resulting product
DE19962056A1 (en) * 1999-12-22 2001-07-12 Walter Ag Cutting tool with multi-layer, wear-resistant coating
WO2002081054A1 (en) * 2001-04-09 2002-10-17 Corning Incorporated Porous filter body and method
US6849181B2 (en) 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
KR100995642B1 (en) * 2002-11-01 2010-11-19 오세라 가부시키가이샤 Method for producing aluminum magnesium titanate sintered product
JP4950492B2 (en) * 2003-07-11 2012-06-13 オーセラ株式会社 Manufacturing method of honeycomb filter for exhaust gas purification
US8557216B2 (en) * 2004-04-28 2013-10-15 Ohcera Co., Ltd. Magnesium aluminum titanate crystal structure and method for producing same
UA99445C2 (en) * 2005-01-27 2012-08-27 Перук (Пропрайетери) Лимитед Process for the preparation of titanium powder (variants) and titanium powder, produced by the process
JP4851760B2 (en) * 2005-09-16 2012-01-11 日本碍子株式会社 Method for producing porous body
JP5000873B2 (en) * 2005-09-21 2012-08-15 日本碍子株式会社 Method for producing porous body
WO2008005249A2 (en) * 2006-06-30 2008-01-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US7803456B2 (en) * 2006-08-29 2010-09-28 Corning Incorporated Glass bonded ceramic structures
US8119234B2 (en) * 2008-02-29 2012-02-21 Corning Incorporated Anisotropic porous ceramic article and manufacture thereof
EP2261192A4 (en) * 2008-03-31 2011-08-31 Ibiden Co Ltd Process for producing honeycomb structure
WO2009122536A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Process for producing honeycomb structure
WO2009122532A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Honeycomb structure
WO2009122539A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Honeycomb structure
WO2009122537A1 (en) * 2008-03-31 2009-10-08 イビデン株式会社 Process for producing honeycomb structure

Also Published As

Publication number Publication date
EP2303797A2 (en) 2011-04-06
FR2933399B1 (en) 2011-02-18
WO2010001062A3 (en) 2010-03-18
US8399376B2 (en) 2013-03-19
KR20110028332A (en) 2011-03-17
US20110190120A1 (en) 2011-08-04
WO2010001062A2 (en) 2010-01-07
FR2933399A1 (en) 2010-01-08
JP2011526573A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5406286B2 (en) Aluminum titanate type porous structure
JP5563568B2 (en) Molten oxide particles containing Al, Ti, Mg and Zr and ceramic materials containing such particles
US7001861B2 (en) Aluminum titanate-based ceramic article
JP5175212B2 (en) High porosity cordierite ceramic honeycomb articles and methods
US20130210608A1 (en) Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US20110176972A1 (en) Cellular structure containing aluminium titanate
JP2002201082A (en) Honeycomb structured body and method of manufacturing the same
JP5491500B2 (en) Particle mixture for producing an aluminum titanate type porous structure
ZA200403481B (en) Composite cordierite filters.
ZA200406908B (en) Strontium feldspar aluminum titanate for high temperature applications
JP5543604B2 (en) Alumina titanate porous structure
JP2013522020A (en) Filter material with occlusive material
JP2012530679A (en) Fused particles of oxide containing Al, Ti and Si and ceramic products containing the particles
KR20120012781A (en) Method and substrate for curing a honeycomb structure
JP5632369B2 (en) Fused particles of oxides containing Al, Ti and Mg and ceramic products containing such particles
JP4960453B2 (en) Improved diesel particulate filter
JP2006096634A (en) Porous ceramic body
JP5543603B2 (en) Alumina titanate porous structure
JP2012513555A (en) Filtration structure having an inlet face and an outlet face with different filling materials
US20110143928A1 (en) Catalytic filter or substrate containing silicon carbide and aluminum titanate
WO2009122537A1 (en) Process for producing honeycomb structure
JPH11114336A (en) Exhaust gas filter and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130805

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees