JP3274027B2 - Method for manufacturing aluminum titanate honeycomb body - Google Patents

Method for manufacturing aluminum titanate honeycomb body

Info

Publication number
JP3274027B2
JP3274027B2 JP21397294A JP21397294A JP3274027B2 JP 3274027 B2 JP3274027 B2 JP 3274027B2 JP 21397294 A JP21397294 A JP 21397294A JP 21397294 A JP21397294 A JP 21397294A JP 3274027 B2 JP3274027 B2 JP 3274027B2
Authority
JP
Japan
Prior art keywords
aluminum titanate
powder
die
granulated
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21397294A
Other languages
Japanese (ja)
Other versions
JPH0872038A (en
Inventor
洋一郎 河合
純生 神谷
友彦 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP21397294A priority Critical patent/JP3274027B2/en
Publication of JPH0872038A publication Critical patent/JPH0872038A/en
Application granted granted Critical
Publication of JP3274027B2 publication Critical patent/JP3274027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は触媒担体又はディーゼル
パティキュレートフィルタ(以下DPFという)などに
用いられるハニカム体の製造方法に関し、詳しくはチタ
ン酸アルミニウム製ハニカム体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a honeycomb body used for a catalyst carrier or a diesel particulate filter (hereinafter referred to as DPF), and more particularly to a method for manufacturing an aluminum titanate honeycomb body.

【0002】[0002]

【従来の技術】DPFは、耐熱性のハニカム体のセルの
両側開口を互い違いに塞いで形成され、セル内に流入し
た排気ガス中のパティキュレートを捕集する。そして捕
集されたパティキュレートを燃焼により除去することで
DPFは再生され、再びパティキュレートを捕集する。
2. Description of the Related Art A DPF is formed by alternately closing both side openings of cells of a heat-resistant honeycomb body, and collects particulates in exhaust gas flowing into the cells. Then, the DPF is regenerated by removing the collected particulates by combustion, and the particulates are collected again.

【0003】ここで、捕集されたパティキュレートを燃
焼する際にDPFには過大な熱応力が作用するため、D
PFには1000℃以上の耐熱性と、高い耐熱衝撃性が
必須となり、従来は低熱膨張性のコージェライトの利用
が検討されていた。しかしコージェライトでもDPFに
作用する過大な熱応力によるクラックの発生が懸念さ
れ、さらに耐熱衝撃性に優れた材料の開発が課題となっ
ている。
Here, when the collected particulates are burned, excessive thermal stress acts on the DPF.
Heat resistance of 1000 ° C. or higher and high thermal shock resistance are essential for PF, and the use of cordierite having low thermal expansion has been studied conventionally. However, even in cordierite, there is a concern that cracks may be generated due to excessive thermal stress acting on the DPF, and development of a material having excellent thermal shock resistance has been an issue.

【0004】そこで例えば特開平1−167282号公
報には、チタン酸アルミニウムを材料としたDPFが開
示されている。チタン酸アルミニウムは耐熱性に優れる
とともに熱膨張率がきわめて小さいため、高い耐熱衝撃
性を示しDPFの材質として有望視されている。チタン
酸アルミニウムの結晶は熱異方性が大きく、a軸とb軸
は正の熱膨張係数をもつがc軸は負の熱膨張係数を有す
る。そのため焼成後の高温から室温への冷却時には、結
晶軸の熱異方性によって粒内あるいは粒界にマイクロク
ラックが導入される。
[0004] For example, Japanese Patent Application Laid-Open No. 1-167282 discloses a DPF using aluminum titanate as a material. Aluminum titanate is excellent in heat resistance and has a very small coefficient of thermal expansion, so that it exhibits high thermal shock resistance and is considered promising as a material for DPF. Aluminum titanate crystals have a large thermal anisotropy, and the a-axis and the b-axis have positive thermal expansion coefficients, while the c-axis has a negative thermal expansion coefficient. Therefore, at the time of cooling from high temperature to room temperature after sintering, microcracks are introduced into grains or grain boundaries due to thermal anisotropy of crystal axes.

【0005】このようなマイクロクラックをもつチタン
酸アルミニウム焼結体が加熱されると、結晶粒子が熱膨
張してもその膨張はマイクロクラックの開閉で吸収さ
れ、見掛け上熱膨張係数が小さくなるのである。そして
一般に熱衝撃抵抗(R)は次式で表され、熱膨張係数
(α)を小さくすれば熱衝撃抵抗(R)が増大するので
ある。
[0005] When the aluminum titanate sintered body having such microcracks is heated, even if the crystal grains thermally expand, the expansion is absorbed by opening and closing of the microcracks, so that the apparent thermal expansion coefficient decreases. is there. Generally, the thermal shock resistance (R) is expressed by the following equation. The thermal shock resistance (R) increases as the coefficient of thermal expansion (α) decreases.

【0006】R=σ(1−ν)/Eα (σ:強度、ν:ポアッソン比、E:ヤング率) すなわちマイクロクラックの発生量を最適に制御するこ
とにより、熱膨張係数が極めて小さなチタン酸アルミニ
ウム焼結体とすることができ、再生時の急激な温度上昇
に対してもクラックの発生が防止された高耐久性のDP
Fを製造することが可能となる。
R = σ (1−ν) / Eα (σ: strength, ν: Poisson's ratio, E: Young's modulus) That is, by optimally controlling the amount of microcracks generated, titanic acid having a very small thermal expansion coefficient A highly durable DP that can be made of an aluminum sintered body and is free from cracks even when the temperature rises rapidly during regeneration
F can be manufactured.

【0007】[0007]

【発明が解決しようとする課題】チタン酸アルミニウム
焼結体にマイクロクラックを生成させるためには、結晶
の上記a軸及びb軸の熱膨張とc軸の熱膨張との差を大
きくする必要があり、チタン酸アルミニウム粉末の粒径
を適度な大きさとする必要がある。しかしながら、チタ
ン酸アルミニウム結晶は柱状粒子であり、粒径の大きな
粒子ほど押出成形時に押出方向に沿う配向が生じ、その
状態で焼結されることが明らかとなった。
In order to generate microcracks in the aluminum titanate sintered body, it is necessary to increase the difference between the thermal expansion of the a-axis and the b-axis and the thermal expansion of the c-axis of the crystal. Therefore, it is necessary to make the particle size of the aluminum titanate powder appropriate. However, aluminum titanate crystals are columnar particles, and it has been clarified that the larger the particle size, the more the orientation along the extrusion direction occurs during extrusion molding, and sintering is performed in that state.

【0008】ハニカム体の押出成形時には、図5及び図
6に示すようなダイが用いられる。このダイは供給孔1
00と、供給孔100と連通する交差スリット101と
を有し、押出材は供給孔100から交差スリット101
へ供給され、交差スリット101から押し出されること
でハニカム体が成形されるのである。ここで従来のダイ
では供給孔100の中心は交差スリット101の交差部
102の中心と一致し、交差部102から押し出される
部分では、チタン酸アルミニウム粒子は供給孔100か
ら供給されたままの状態であり配向していない。しかし
供給孔100の隔壁に対向する交差スリット101で
は、隣接する供給孔100からの流れどうしが衝突し合
流して流れるため、その部分で柱状のチタン酸アルミニ
ウム粒子は押出方向に沿って配向しようとする。
When extruding a honeycomb body, a die as shown in FIGS. 5 and 6 is used. This die has feed hole 1
00, and an intersecting slit 101 communicating with the supply hole 100, and the extruded material passes through the intersecting slit 101 from the supply hole 100.
And is extruded from the intersection slit 101 to form a honeycomb body. Here, in the conventional die, the center of the supply hole 100 coincides with the center of the intersection 102 of the intersection slit 101, and in the portion extruded from the intersection 102, the aluminum titanate particles remain supplied from the supply hole 100. Yes, not oriented. However, in the cross slit 101 facing the partition wall of the supply hole 100, the flows from the adjacent supply holes 100 collide with each other and flow together, so that the columnar aluminum titanate particles try to orient in the extrusion direction at that portion. I do.

【0009】そのため上記のように大きな柱状粒子を含
むチタン酸アルミニウム粉末を用いてDPFを形成する
と、大きな柱状粒子は特にハニカムセルの長手方向(押
出方向)に沿って配向し易いため、焼成時においては長
手方向の熱膨張率は小さいものの径方向(長手方向と直
角方向)の熱膨張率が大きくなり、熱膨張率に異方性が
生じて熱応力によるクラックの原因となるという問題が
ある。
Therefore, when the DPF is formed using the aluminum titanate powder containing the large columnar particles as described above, the large columnar particles are easily oriented particularly along the longitudinal direction (extrusion direction) of the honeycomb cell. Although the thermal expansion coefficient in the longitudinal direction is small, the thermal expansion coefficient in the radial direction (perpendicular to the longitudinal direction) increases, and the thermal expansion coefficient becomes anisotropic, which causes cracks due to thermal stress.

【0010】本発明はこのような事情に鑑みてなされた
ものであり、ハニカム体の製造において、押出成形時の
チタン酸アルミニウム粒子の配向を防止することを目的
とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to prevent the orientation of aluminum titanate particles during extrusion in the production of a honeycomb body.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
のチタン酸アルミニウム製ハニカム体の製造方法は、
チタン酸アルミニウム粉末を造粒し、加熱により造粒体
中のチタン酸アルミニウム粉末どうしを融合して造粒粉
体を形成する造粒工程と、供給孔と供給孔と連通する交
差スリットとをもち、供給孔の開口ピッチ及び開口径の
少なくとも一方は交差スリットの交差部のピッチより大
きいダイを用い、造粒粉体よりなる押出材料を供給孔か
ら供給し交差スリットより押し出すことでハニカム形状
に押出成形して押出体とする成形工程と、押出体を焼結
する焼成工程と、を順次行うことを特徴とする。
In order to achieve the object of the present onset to solve the above problems
The manufacturing method of the honeycomb body made of bright aluminum titanate,
Aluminum titanate powder was granulated and the granulation process and, communicates with the supply hole and the supply holes fused aluminum titanate powder each other in granule form a granulated powder by heating exchange
With a difference slit, the opening pitch and opening diameter of the supply hole
At least one is greater than the pitch of the intersection of the intersection slits
Using a die, feed the extruded material consisting of granulated powder
The extruded body is extruded into a honeycomb shape by being supplied from the intersection slit and extruded from the cross slit to form an extruded body, and a firing step of sintering the extruded body is sequentially performed.

【0012】[0012]

【0013】[0013]

【作用】本発明の製造方法では、チタン酸アルミニウム
粉末は造粒され、さらに加熱により粉末どうしが融合し
た状態の造粒粉体とされている。造粒により、チタン酸
アルミニウム粉末がランダムに凝集した粉体が形成さ
れ、さらに、粉末どうしは融合して保持されるため、造
粒粉体内ではチタン酸アルミニウム粉末の配向は無く、
この造粒粉体はダイから押し出されても変形しないので
チタン酸アルミニウム粉末の配向は生じない。したがっ
て成形体中ではチタン酸アルミニウム粉末の配向が生じ
ないので、焼結体においても配向が無く熱膨張率の異方
性の無いハニカム体を製造することができる。
According to the production method of the present invention, the aluminum titanate powder is granulated, and is further made into a granulated powder in which the powders are fused by heating. By the granulation, a powder in which the aluminum titanate powder is randomly aggregated is formed, and further, since the powders are fused and held, there is no orientation of the aluminum titanate powder in the granulated powder,
Since the granulated powder is not deformed even when extruded from the die, the orientation of the aluminum titanate powder does not occur. Therefore, since the orientation of the aluminum titanate powder does not occur in the compact, a honeycomb body having no orientation and no anisotropy in coefficient of thermal expansion can be produced even in a sintered body.

【0014】また本発明の製造方法では、供給孔の開口
ピッチ及び開口径の少なくとも一方が交差スリットの交
差部のピッチより大きくされたダイが用いられている。
したがって供給孔の開口の数が交差スリットの交差部の
数より少なくなり、供給孔の隔壁に対向する交差スリッ
トで複数の流れが衝突し合流して流れる部位の数が少な
くなるので、チタン酸アルミニウム粉末が配向する部分
も少なくなる。
Further, in the manufacturing method of the present invention , a die is used in which at least one of the opening pitch and the opening diameter of the supply holes is larger than the pitch of the intersection of the intersection slits.
Therefore, the number of openings of the supply holes is smaller than the number of intersections of the intersection slits, and the number of portions where a plurality of flows collide and merge and flow at the intersection slits facing the partition walls of the supply holes is reduced. The portion where the powder is oriented is also reduced.

【0015】[0015]

【実施例】〔発明の具体例〕本発明 において、チタン酸アルミニウム粉末としては粒
径が小さい微細粉末と粒径が大きい粗大粉末を混合して
用いることが望ましいが、その場合、粗大粉末と微細粉
末の混合重量比は9:1〜6:4の範囲が好ましい。粗
大粉末が多すぎると焼結が困難となって強度が不足し、
微細粉末が多すぎると焼結時の収縮が大きくなって寸法
精度が低下する。なお、微細粉末とは平均粒径が0.5
〜5μmの粉末をいい、粗大粉末とは平均粒径が5〜5
0μmの粉末をいう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention , as the aluminum titanate powder, it is desirable to use a mixture of a fine powder having a small particle size and a coarse powder having a large particle size. The mixing weight ratio of the powder is preferably in the range of 9: 1 to 6: 4. If there is too much coarse powder, sintering becomes difficult and strength becomes insufficient,
If the amount of the fine powder is too large, the shrinkage at the time of sintering is increased, and the dimensional accuracy is reduced. In addition, a fine powder has an average particle size of 0.5
Powder having a mean particle size of 5 to 5 μm.
0 μm powder.

【0016】本発明でチタン酸アルミニウム粉末を造粒
するには、スプレードライ法、転動造粒法など公知の方
法を利用できる。この造粒体の粒径は、押出成形時にダ
イの交差スリットを通過できればよく、一般には100
μm以下である。造粒体中のチタン酸アルミニウム粉末
どうしを融合して造粒粉体とするには、仮焼又は火炎溶
融で行うことができる。この融合は成形工程における応
力で破壊されない程度の力で融合していればよい。また
融合時に造粒体どうしの融着を防止するために、ロータ
リーキルンなどで流動させながら仮焼することが好まし
い。
In order to granulate the aluminum titanate powder in the present invention , known methods such as a spray drying method and a tumbling granulation method can be used. The particle size of the granulated product may be any value as long as it can pass through the intersection slit of the die during extrusion molding.
μm or less. In order to fuse the aluminum titanate powders in the granules into a granulated powder, calcining or flame melting can be performed. This fusion only needs to be performed with a force that does not cause breakage due to stress in the molding process. In addition, in order to prevent fusion of the granules during fusion, it is preferable to perform calcination while flowing with a rotary kiln or the like.

【0017】また、もし造粒体どうしの融着が生じた場
合には、得られた造粒粉体を解砕・分級する工程を行う
ことが必要である。この場合、造粒粉体が一次粒子にま
で解砕されるのを防止するため、時間や解砕条件を調節
して行うことが望ましい。造粒粉体は、燃焼性粉末やバ
インダとともに混練され、ダイから押し出されてハニカ
ム形状の成形体とされ、大気雰囲気にて1450〜15
50℃で焼成されることでハニカム体とされる。
If the granules are fused together, it is necessary to perform a step of crushing and classifying the obtained granulated powder. In this case, in order to prevent the granulated powder from being crushed into primary particles, it is desirable to adjust the time and crushing conditions. The granulated powder is kneaded with a combustible powder and a binder, extruded from a die to form a honeycomb-shaped formed body, and 1450 to 15
By firing at 50 ° C., a honeycomb body is obtained.

【0018】なおDPFとするには、成形体のハニカム
セルをチタン酸アルミニウム粉末などの閉塞材を用いて
両端で互い違いに市松状に閉塞し、それを焼結すること
でDPFを製造することができる。また本発明におい
て、供給孔の開口ピッチ又は開口径の上限は、ハニカム
体のセル壁が欠肉等の問題を生じることなく形成できる
範囲であれば特に制限されない。 〔参考例1〕 (造粒工程) 平均粒径20μmの粗大チタン酸アルミニウム粉末と平
均粒径3μmの微細チタン酸アルミニウム粉末を用意
し、重量比で粗大粉末:微細粉末=7:3の比率で混合
して混合粉末を調製した。
In order to obtain a DPF, the honeycomb cells of the molded body are alternately closed in a checkered pattern at both ends using a plugging material such as aluminum titanate powder and sintered to produce a DPF. it can. Further, in the present invention, the upper limit of the opening pitch or the opening diameter of the supply holes is not particularly limited as long as the cell wall of the honeycomb body can be formed without causing a problem such as underfilling. [ Reference Example 1 ] (Granulation step) A coarse aluminum titanate powder having an average particle diameter of 20 µm and a fine aluminum titanate powder having an average particle diameter of 3 µm were prepared, and the weight ratio of coarse powder: fine powder was 7: 3. The mixture was mixed to prepare a mixed powder.

【0019】この混合粉末をスプレードライ法にて粒径
100μm以下に造粒し、その造粒体1を図1に示すホ
ッパ10に投入し、酸素ガスとともに燃焼炉11へ噴出
させた。噴出口周囲からは水素ガスが燃焼炉11に供給
され、噴出口で着火されて化学炎12が形成される。造
粒体1は火炎12にて溶融され、図2に模式的に示すよ
うにチタン酸アルミニウム粉末の一次粒子13どうしが
融合して一体化した造粒粉体14となる。
This mixed powder was granulated to a particle size of 100 μm or less by a spray drying method, and the granulated product 1 was put into a hopper 10 shown in FIG. Hydrogen gas is supplied to the combustion furnace 11 from around the jet port, and is ignited at the jet port to form a chemical flame 12. The granulated body 1 is melted by the flame 12 and becomes a granulated powder 14 in which the primary particles 13 of the aluminum titanate powder are fused and integrated as schematically shown in FIG.

【0020】なお、本参考例では化学炎を用いたが、プ
ラズマ炎などを用いてもよいし、造粒体を角鞘などに入
れて1400〜1500℃で数時間仮焼して融合するこ
ともできる。 (解砕工程) 上記造粒粉体では、造粒体どうしが融着して粒径が10
0μmを超えるものがあったので、ロールミルにて10
0μm未満となるように解砕し分級した。なお、100
μm未満に解砕された粒子を分級除去後、100μm以
上の粒子を再度解砕して100μm未満とし、造粒粉体
が一次粒子まで過度に解砕されることがないように工夫
した。 (成形工程) 解砕された造粒粉体100重量部に対し、平均粒径50
μmのカーボンブラック20重量部と、バインダとして
のメチルセルロースを12重量部混合し、加圧ニーダに
て混練した。
Although a chemical flame is used in this embodiment , a plasma flame or the like may be used. Alternatively, a granulated body may be put in a square sheath or the like and calcined at 1400 to 1500 ° C. for several hours to be fused. Can also. (Crushing step) In the above-mentioned granulated powder, the granules are fused together and the particle size is 10
Some of them exceeded 0 μm.
It was crushed and classified to have a particle size of less than 0 μm. Note that 100
After classifying and removing the particles pulverized to less than μm, particles having a particle size of 100 μm or more were pulverized again to less than 100 μm so that the granulated powder was not excessively pulverized to primary particles. (Molding process) The average particle size is 50 with respect to 100 parts by weight of the crushed granulated powder.
20 parts by weight of carbon black of 12 μm and 12 parts by weight of methyl cellulose as a binder were mixed and kneaded with a pressure kneader.

【0021】この混練物を図5及び図6に示す従来のダ
イを用いて押出成形し、ハニカム形状の成形体を得た。 (焼成工程)得られた成形体を、台上に置かれた成形体
と同程度以上の収縮量とされた材質の板の上に乗せ、板
と成形体の間、及び台と板の間にそれぞれジルコニア粗
粒(平均粒径100μm)を介在させた状態で、大気中
1450〜1550℃で4時間焼成した。ジルコニア粗
粒は摩擦を低減し、板は成形体と同じ収縮率で収縮する
ので、成形体は上端と下端の収縮差が規定値(2mm)
以下となった。
The kneaded material was extruded using a conventional die shown in FIGS. 5 and 6, to obtain a honeycomb-shaped formed body. (Firing step) The obtained compact is placed on a plate of a material whose shrinkage is equal to or greater than that of the compact placed on the table, and between the plate and the compact, and between the plate and the plate, respectively. It was fired at 1450-1550 ° C. for 4 hours in the air with zirconia coarse particles (average particle diameter 100 μm) interposed. Zirconia coarse particles reduce friction, and the plate shrinks at the same shrinkage as the molded body, so the difference in shrinkage between the upper end and the lower end of the molded body is a specified value (2 mm)
It was as follows.

【0022】得られたハニカム体の熱膨張係数を、押出
方向及び押出方向と直交方向の二方向で測定し、結果を
表1に示す。 (参考例2) 図3及び図4に本参考例で用いたダイの模式図を示す。
このダイ2は、供給孔20と交差スリット21をもち、
交差スリット21は図5に示す従来のダイと同様であ
る。しかし供給孔20は、交差スリット21の交差部2
2に対して一つおきに形成され、供給孔20の開口ピッ
チは交差スリットの交差部のピッチの2倍となってい
る。
The coefficient of thermal expansion of the obtained honeycomb body was measured in the extrusion direction and two directions perpendicular to the extrusion direction, and the results are shown in Table 1. Reference Example 2 FIGS. 3 and 4 are schematic diagrams of a die used in this reference example .
This die 2 has a supply hole 20 and a cross slit 21,
The cross slit 21 is similar to the conventional die shown in FIG. However, the supply hole 20 is located at the intersection 2 of the intersection slit 21.
The pitch of the supply holes 20 is twice as large as the pitch of the intersection of the intersection slits.

【0023】そして参考例1と同様の混合粉末100重
量部に対し、平均粒径50μmのカーボンブラック20
重量部と、バインダとしてのメチルセルロースを12重
量部混合し、加圧ニーダにて混練した。この混練物を上
記ダイを用いて押出成形した。混練物は図4に示すよう
に供給孔20から交差スリット21に流入し、供給孔2
0の押出方向前方に位置する交差スリット21を流れる
本流(イ)と、隣接する供給孔20からの流れが衝突し
て生じる合流(ロ)とが交差スリット21から押し出さ
れる。
Then, carbon black 20 having an average particle size of 50 μm was added to 100 parts by weight of the same mixed powder as in Reference Example 1.
12 parts by weight of methyl cellulose as a binder and 12 parts by weight of a binder were mixed and kneaded with a pressure kneader. This kneaded product was extruded using the above die. The kneaded material flows into the intersection slit 21 from the supply hole 20 as shown in FIG.
The main stream (a) flowing through the cross slit 21 located in the front in the extrusion direction of 0 and the merge (b) generated by the collision of the flows from the adjacent supply holes 20 are extruded from the cross slit 21.

【0024】この合流(ロ)中では、押出材中のチタン
酸アルミニウム粉末が配向するが、同一面積範囲で比較
すると合流(ロ)の数は図5及び図6に示す従来のダイ
より少ないから、チタン酸アルミニウム粉末の配向も従
来より少なくなる。得られた成形体は、参考例1と同様
に焼成され、熱膨張係数が同様に測定された。結果を表
1に示す。
In this confluence (b), the aluminum titanate powder in the extruded material is oriented, but when compared in the same area range, the number of confluences (b) is smaller than that of the conventional die shown in FIGS. 5 and 6. Also, the orientation of the aluminum titanate powder becomes smaller than before. The obtained molded body was fired in the same manner as in Reference Example 1, and the coefficient of thermal expansion was measured in the same manner. Table 1 shows the results.

【0025】なお、本参考例で用いたダイ2の供給孔2
0は、図5に示す従来のダイの供給孔100を一つおき
に塞いだものに相当するが、図7のように二つおきに塞
いだもの、あるいは図8のように三つおきに塞いだもの
に相当するダイを用いることもできる。図7及び図8で
は、塞いだことに相当する供給孔100を黒く塗りつぶ
して示している。 (参考例3) 図9に本参考例で用いたダイの模式図を示す。このダイ
3は、楕円形状の供給孔30をもち、供給孔30の長径
は交差スリット31の交差部32を二つ含んで余りある
大きさであること以外は参考例2と同様である。
The supply hole 2 of the die 2 used in the present embodiment is
0 corresponds to the conventional die shown in FIG. 5 in which every other supply hole 100 is closed, but every three holes as shown in FIG. 7 or every three holes as shown in FIG. A die corresponding to the plugged one can also be used. 7 and 8, the supply holes 100 corresponding to closing are shown in black. Reference Example 3 FIG. 9 shows a schematic view of a die used in this reference example . The die 3 has an elliptical supply hole 30, and is the same as the reference example 2 except that the major diameter of the supply hole 30 is more than two including the intersections 32 of the intersection slits 31.

【0026】このダイ3を用いて参考例2と同様に押出
成形した。このダイ3を用いて成形すれば、従来のダイ
に比べて合流(ロ)が少なくなり、チタン酸アルミニウ
ム粉末の配向も少なくなる。得られた成形体は、参考例
と同様に焼成され、熱膨張係数が同様に測定された。
結果を表1に示す。
Using this die 3, extrusion molding was performed in the same manner as in Reference Example 2 . Molding using this die 3 reduces the confluence (b) and the orientation of the aluminum titanate powder as compared with the conventional die. The obtained molded body is a reference example
It was fired in the same manner as in Example 1, and the coefficient of thermal expansion was measured in the same manner.
Table 1 shows the results.

【0027】なお、図10のように供給孔30の密度を
さらに減らしたダイ、図11及び図12のように図9の
ダイ3の供給孔30を一つおき又は二つおきに塞いだも
のに相当するダイを用いることもできる。 (実施例) 図3及び図4に示す参考例2で用いたダイを用いたこと
以外は参考例1と同様である。つまり造粒粉体を図3の
ダイを用いて押出成形し、同様に焼成してハニカム体を
形成した。その熱膨張係数を表1に示す。 (従来例) 図5及び図6に示す従来のダイを用い、参考例2と同様
に押出成形した。そして得られた成形体は参考例1と同
様に焼成され、熱膨張係数が同様に測定された。結果を
表1に示す。
A die in which the density of the supply holes 30 is further reduced as shown in FIG. 10, and a die in which the supply holes 30 of the die 3 in FIG. 9 are closed every other or every two as shown in FIGS. 11 and 12. Can be used. ( Example ) The same as Reference Example 1 except that the die used in Reference Example 2 shown in FIGS. 3 and 4 was used. That is, the granulated powder was extruded using the die of FIG. 3 and fired similarly to form a honeycomb body. The thermal expansion coefficient is shown in Table 1. (Conventional Example) Extrusion molding was performed in the same manner as in Reference Example 2 using the conventional die shown in FIGS. 5 and 6. The obtained molded body was fired in the same manner as in Reference Example 1, and the coefficient of thermal expansion was measured in the same manner. Table 1 shows the results.

【0028】[0028]

【表1】 (評価) 表1より、参考例の製造方法で得られたハニカム体は、
従来例に比べて熱膨張係数の押出方向と直交方向の差が
小さいことが明らかである。そして実施例のように造粒
粉体を形成するのと図3のダイを用いて押出成形する
方を同時に行えば、差がゼロとなり熱膨張係数の異方性
が解消されていることがわかる。
[Table 1] (Evaluation) From Table 1, the honeycomb body obtained by the manufacturing method of Reference Example was
It is clear that the difference in the coefficient of thermal expansion between the extrusion direction and the orthogonal direction is smaller than in the conventional example. And granulation as in the example
If both the formation of the powder and the extrusion molding using the die of FIG. 3 are performed at the same time, the difference becomes zero, indicating that the anisotropy of the coefficient of thermal expansion has been eliminated.

【0029】[0029]

【発明の効果】すなわち本発明のチタン酸アルミニウム
製ハニカム体の製造方法によれば、押出成形時にチタン
酸アルミニウム粉末が押出方向に配向するのが防止され
るので、熱膨張係数の異方性が防止され、耐熱衝撃性に
優れたハニカム体を製造することができる。
According to the method for manufacturing a honeycomb body made of aluminum titanate of the present invention, since the aluminum titanate powder is prevented from being oriented in the extrusion direction during extrusion molding, the anisotropy of the coefficient of thermal expansion is reduced. It is possible to manufacture a honeycomb body which is prevented and has excellent thermal shock resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例で用いた造粒粉体の製造装置
の模式的構成説明図である。
FIG. 1 is a schematic structural explanatory view of an apparatus for producing granulated powder used in one embodiment of the present invention.

【図2】本発明の一実施例における造粒体の一次粒子が
融合して造粒粉体に変化するのを説明する説明図であ
る。
FIG. 2 is an explanatory diagram for explaining that primary particles of a granulated body are fused to change into a granulated powder in one embodiment of the present invention.

【図3】本発明の一実施例で用いたダイの要部平面図で
ある。
FIG. 3 is a plan view of a main part of a die used in one embodiment of the present invention.

【図4】図3のA−A断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】従来例で用いたダイの要部平面図である。FIG. 5 is a plan view of a main part of a die used in a conventional example.

【図6】図5のB−B断面図である。FIG. 6 is a sectional view taken along line BB of FIG. 5;

【図7】本発明の実施例例で用いたダイの他の態様を示
し、そのダイの要部平面図である。
FIG. 7 is a plan view of a main part of the die, showing another mode of the die used in the example of the present invention.

【図8】本発明の実施例で用いたダイの他の態様を示
し、そのダイの要部平面図である。
FIG. 8 is a plan view of a relevant part of another embodiment of the die used in the embodiment of the present invention.

【図9】本発明の参考例で用いたダイを示し、そのダイ
の要部平面図である。
FIG. 9 shows a die used in a reference example of the present invention, and is a plan view of a main part of the die.

【図10】本発明の参考例で用いたダイの他の態様を示
し、そのダイの要部平面図である。
FIG. 10 is a plan view of a main part of the die, showing another mode of the die used in the reference example of the present invention.

【図11】本発明の参考例で用いたダイの他の態様を示
し、そのダイの要部平面図である。
FIG. 11 is a plan view of a relevant part of another embodiment of the die used in the reference example of the present invention.

【図12】本発明の参考例で用いたダイの他の態様を示
し、そのダイの要部平面図である。
FIG. 12 shows another embodiment of the die used in the reference example of the present invention, and is a plan view of a main part of the die.

【符号の説明】[Explanation of symbols]

1:造粒体 13:一次粒子 1
4:造粒粉体 2・3:ダイ 20・30:供給孔 21・
31:交差スリット 22・32:交差部
1: Granulated body 13: Primary particle 1
4: Granulated powder 2.3: Die 20/30: Supply hole 21
31: Intersection slit 22 ・ 32: Intersection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 友彦 愛知県西尾市下羽角町岩谷14番地 株式 会社日本自動車部品総合研究所内 (56)参考文献 特開 平3−271151(JP,A) 特開 平1−167282(JP,A) 特開 昭49−113789(JP,A) (58)調査した分野(Int.Cl.7,DB名) B28B 3/00 - 5/12 B01J 35/04 301 B01J 32/00 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tomohiko Nakanishi 14 Iwatani, Shimowasumi-cho, Nishio-shi, Aichi, Japan Inside the Automobile Parts Research Institute, Inc. (56) References JP-A-3-271151 (JP, A) JP-A Heisei 1-167282 (JP, A) JP-A-49-113789 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B28B 3/00-5/12 B01J 35/04 301 B01J 32 / 00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン酸アルミニウム粉末を造粒し、加熱
により造粒体中のチタン酸アルミニウム粉末どうしを融
合して造粒粉体を形成する造粒工程と、供給孔と該供給孔と連通する交差スリットとをもち、該
供給孔の開口ピッチ及び開口径の少なくとも一方は該交
差スリットの交差部のピッチより大きいダイを用い、該
造粒粉体よりなる押出材料を該供給孔から供給し該交差
スリットより押し出すことで ハニカム形状に押出成形し
て押出体とする成形工程と、 該押出体を焼結する焼成工程と、を順次行うことを特徴
とするチタン酸アルミニウム製ハニカム体の製造方法。
1. A granulating step of granulating aluminum titanate powder and fusing the aluminum titanate powder in the granulated body by heating to form a granulated powder; and supplying holes and communicating with the supply holes. With an intersecting slit
At least one of the opening pitch and the opening diameter of the supply holes is determined by the
Using a die larger than the pitch of the intersection of the difference slit,
Extruded material consisting of granulated powder is supplied from the supply hole and
A method for manufacturing a honeycomb body made of aluminum titanate, comprising sequentially performing a forming step of extruding a honeycomb shape by extruding through a slit to form an extruded body, and a firing step of sintering the extruded body.
JP21397294A 1994-09-07 1994-09-07 Method for manufacturing aluminum titanate honeycomb body Expired - Fee Related JP3274027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21397294A JP3274027B2 (en) 1994-09-07 1994-09-07 Method for manufacturing aluminum titanate honeycomb body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21397294A JP3274027B2 (en) 1994-09-07 1994-09-07 Method for manufacturing aluminum titanate honeycomb body

Publications (2)

Publication Number Publication Date
JPH0872038A JPH0872038A (en) 1996-03-19
JP3274027B2 true JP3274027B2 (en) 2002-04-15

Family

ID=16648118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21397294A Expired - Fee Related JP3274027B2 (en) 1994-09-07 1994-09-07 Method for manufacturing aluminum titanate honeycomb body

Country Status (1)

Country Link
JP (1) JP3274027B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189817A1 (en) * 2013-05-20 2014-11-27 Corning Incorporated Porous ceramic article and method of manufacturing the same
US10252441B2 (en) 2013-08-28 2019-04-09 Corning Incorporated System and method for cutting a wet green ceramic article
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276654A (en) * 1996-04-11 1997-10-28 Matsushita Electric Ind Co Ltd Exhaust gas filter and manufacture thereof
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
FR2933399B1 (en) * 2008-07-04 2011-02-18 Saint Gobain Ct Recherches GRAIN MIXTURE FOR THE SYNTHESIS OF A POROUS STRUCTURE OF THE ALUMINUM TITANATE TYPE
JP5495545B2 (en) * 2008-08-28 2014-05-21 京セラ株式会社 Porous ceramic member, method for producing the same, and filter
JP5445997B2 (en) * 2009-06-25 2014-03-19 大塚化学株式会社 Honeycomb filter
US9623360B2 (en) 2013-05-20 2017-04-18 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9376347B2 (en) * 2013-05-20 2016-06-28 Corning Incorporated Porous ceramic article and method of manufacturing the same
JP2016175789A (en) * 2015-03-19 2016-10-06 日本碍子株式会社 Honeycomb structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189817A1 (en) * 2013-05-20 2014-11-27 Corning Incorporated Porous ceramic article and method of manufacturing the same
US9908260B2 (en) 2013-05-20 2018-03-06 Corning Incorporated Porous ceramic article and method of manufacturing the same
EP3632875A1 (en) * 2013-05-20 2020-04-08 Corning Incorporated Porous ceramic article and method of manufacturing the same
US10252441B2 (en) 2013-08-28 2019-04-09 Corning Incorporated System and method for cutting a wet green ceramic article
US11229902B2 (en) 2016-05-31 2022-01-25 Corning Incorporated Porous article and method of manufacturing the same
US11447422B2 (en) 2017-10-31 2022-09-20 Corning Incorporated Batch compositions comprising spheroidal pre-reacted inorganic particles and spheroidal pore-formers and methods of manufacture of honeycomb bodies therefrom
US11591265B2 (en) 2017-10-31 2023-02-28 Corning Incorporated Batch compositions comprising pre-reacted inorganic particles and methods of manufacture of green bodies therefrom

Also Published As

Publication number Publication date
JPH0872038A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3274027B2 (en) Method for manufacturing aluminum titanate honeycomb body
EP1316686B1 (en) Ceramic honeycomb filter
US4632683A (en) Exhaust gas purifying filter and production of the same
JP5402638B2 (en) Cordierite ceramic honeycomb filter and manufacturing method thereof
KR101949299B1 (en) Ceramic honeycomb filter and its production method
JP5835395B2 (en) Method for manufacturing ceramic honeycomb structure
EP1484482B1 (en) Exhaust gas purifying filter
US6716512B2 (en) Honeycomb structure and process for production thereof
EP1628929B1 (en) Cordierite ceramic body and method
EP1798209B1 (en) Method for producing cordierite-based honeycomb structure
EP1911732B1 (en) Process for producing ceramic honeycomb structure
JP6004150B1 (en) Ceramic honeycomb structure and manufacturing method thereof
JPS6064613A (en) Particle filtering apparatus
JPH0252015A (en) Porous ceramic honeycomb filter and its manufacture
JPS602270B2 (en) Cordierite ceramic honeycomb and its manufacturing method
WO2005021463A1 (en) Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure
JP2004510676A (en) Lithium aluminosilicate ceramic
JP2009262125A (en) Porous honeycomb structure and method for manufacturing the same
JP4455786B2 (en) Method for producing porous material and method for producing hollow granules used therefor
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
CN115867522A (en) Ceramic articles made from ceramic beads of specific open porosity
JP2003119080A (en) Method of producing ceramic element
JP3477940B2 (en) Method of manufacturing exhaust gas filter
CN115916728A (en) High filtration efficiency particulate filter with bimodal pore size distribution made from beads having open porosity
JP2019063789A (en) Manufacturing method of ceramic honeycomb filter and ceramic honeycomb filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees