JP4461414B2 - Method for firing ceramic honeycomb structure - Google Patents

Method for firing ceramic honeycomb structure Download PDF

Info

Publication number
JP4461414B2
JP4461414B2 JP2002217617A JP2002217617A JP4461414B2 JP 4461414 B2 JP4461414 B2 JP 4461414B2 JP 2002217617 A JP2002217617 A JP 2002217617A JP 2002217617 A JP2002217617 A JP 2002217617A JP 4461414 B2 JP4461414 B2 JP 4461414B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
ceramic honeycomb
firing
heat
resistant inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002217617A
Other languages
Japanese (ja)
Other versions
JP2004059353A (en
Inventor
修 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002217617A priority Critical patent/JP4461414B2/en
Publication of JP2004059353A publication Critical patent/JP2004059353A/en
Application granted granted Critical
Publication of JP4461414B2 publication Critical patent/JP4461414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックハニカム構造体の焼成方法に関するものである。
【0002】
【従来の技術】
従来、生素地のセラミックハニカム構造体を焼成してセラミックス製品を製造する方法として、ハニカム構造体のセル壁に生じる割れおよびセラミックハニカム構造体と棚板との付着を防止する方法として、棚板の上にトチと呼ばれる焼成台を乗せ、その上に生素地のセラミックハニカム構造体を載せて焼成する方法が知られている。ここで、トチとは、ハニカム構造体を例えば厚さ20〜30mmになるように径方向に切断したもので、トチのハニカム構造の開口端面に生素地のセラミックハニカム構造体の開口端面が当接するように載置される。
【0003】
以下、トチを用いた従来技術について詳述する。特公平2−40019号公報記載の発明では、生素地セラミックハニカム構造体の両開口端面にトチを当接させる技術が開示されており、生素地セラミックハニカム構造体端面での加熱による温度分布の不均一を原因とする切れの発生を防止でき、温度上昇が早く、温度分布が均一な焼成を可能とし、生産性を高くできるとしている。また特公平1−54636号公報記載の発明では、外縁に面取りを施したトチを生素地のセラミックハニカム構造体に載置させる技術が開示されており、生素地ハニカム構造体の開口下端面の外縁部にトチと接触しない部分を設けることにより、生素地ハニカム構造体トチとの接触面で起こる摩擦抵抗力が軽減され、生素地ハニカム構造体の外縁部に特に多い切れの発生を防止できるとともに、生素地ハニカム構造体を充分均一に加熱することができ、また、昇温速度を高めることができるとしている。ここで、トチは生トチでも万年トチでも良いとされているが、生トチは一度しか使用できないため経済的でない。さらに、特開平7−208873号公報記載の発明では、凸形状のトチを焼成台として採用する技術が開示されており、焼成収縮する際、被焼成体の外縁部分のトチと被焼成体の接触面で摩擦抵抗力を無くすことができることによりクラックのないセラミックハニカム体の焼成が可能となるとともに、被焼成体はグラグラ揺れること無く安定して保持されるので、処理と取扱が容易になるとしている。
【0004】
トチ以外の焼成台としては、特開平5−85834号公報記載の発明では、生素地ハニカム構造体の開口端面を、主成分が耐熱性無機繊維からなり、嵩密度が1.00g/cm以上のセラミック板の上に載せて焼成する方法が開示されており、焼成台の熱変形によるハニカム構造体のリブよれ、端面変形およびこれから発生する端面クラックを減少させ、焼成台の長寿命化を達成でき、ハニカム構造体の寸法上下差を減少することができるとしている。また、特開平6−817972号公報記載の発明では、結晶相の主成分の組成がコージェライト55〜85重量%、ムライト15〜45重量%からなる敷板を焼成台とする方法が開示されており、従来のトチ等の敷板に比べて、耐熱性が向上し、敷板の熱変形やシリカ成分の融出によるハニカム構造体下端面の変形、リブよれや、クラックの発生が抑止でき、さらにハニカム構造体下端面の変色を生じさせずに、生素地セラミックハニカム構造体を焼成することができるとしている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来技術に記載のいずれの焼成台を使用しても、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが発生するという問題が完全には解消できなかった。特に、近年排ガス規制が厳しくなりつつあるディーゼルエンジンの排ガス浄化に用いられる様な、外径200mm以上、長さ200mm以上の大型セラミックハニカム構造体の場合、ハニカム構造体の自重が大きくなることから、ハニカム構造体が焼成収縮する際に、セラミックハニカム構造体と焼成台との当接面に発生する摩擦抵抗力が大きくなるため、セラミックハニカム構造体の開口端面に割れが発生し易いという問題があった。
【0006】
本発明の課題は、セラミックハニカム構造体を焼成するにあたり、セラミックハニカム構造体の開口端面の外径が200mm以上、長さが200mm以上の大型品であっても、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが生じないセラミックハニカム構造体の焼成方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、セラミックハニカム構造体の開口端面と当接する焼成台を種々検討し、セラミックハニカム構造体の開口端面の外径と焼成台との関係について鋭意研究を行った。その結果、焼成台として耐熱性無機粉末を用いることにより、セラミックハニカム構造体の外径が200mm以上、長さが200mm以上の大型品であっても、焼成台との当接面であるセラミックハニカム構造体の開口端面に割れが発生しないセラミックハニカム構造体を得ることができるとの知見を得て、本発明に想到した。
【0008】
具体的には、本発明は、外径が200mm以上、長さが200mm以上のセラミックハニカム構造体を焼成するにあたり、生素地のセラミックハニカム構造体の開口端面を平均粒径が0.12mm〜0.37mmの耐熱性無機粉末により構成される厚さが5mm以上30mm以下である焼成台の上に載せて焼成することを特徴とする。生素地のセラミックハニカム構造体の開口端面を平均粒径が0.12mm〜0.37mmの耐熱性無機粉末により構成される厚さが5mm以上30mm以下である焼成台の上に載せて焼成することにより、ハニカム構造体のセル壁で囲まれる流路の方向が概略重力方向に一致するため、焼成過程に於いてハニカム構造体が軟化してもセル壁の変形が発生しにくくなるのと共に、焼成過程においてセラミックハニカム構造体の膨張収縮が発生した際に、焼成台を構成する耐熱性無機粉末の個々の粒子の移動が可能であることから、セラミックハニカム構造体と耐熱性無機粉末との膨張収縮量の違いがあってもセラミックハニカム構造体当接面の耐熱性無機粉末がセラミックハニカム構造体の膨張収縮に伴い一部移動し、発生する摩擦抵抗力が緩和され、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが発生しにくくなるからである。
【0009】
本発明において耐熱性無機粉末の材質としては、コージェライト、ムライト、アルミナ、シリカ、炭化珪素、窒化珪素等の耐熱性の高い粉末、あるいはこれらの混合粉末が、焼成時の高温に曝されても変形しにくいことから適している。
さらには、耐熱性無機粉末が、焼成して得られるセラミックハニカム構造体と同系統の材質であると、焼成台とセラミックハニカム構造体との熱膨張係数差が小さくなり、焼成台とセラミックハニカム構造体との当接面に生じる摩擦抵抗力の緩和効果が大きくなるため、好ましい。ここで、同系統の材質であるとは、例えば、焼成して得られるセラミックハニカム構造体がコージェライトを主成分とする場合は、耐熱性無機粉末もコージェライトを主成分とすることを意味する。ここで、耐熱性無機粉末は、その全量が焼成して得られるセラミックハニカム構造体と同系統の材質である必要は必ずしもなく、少なくとも10質量%以上が焼成して得られるセラミックハニカム構造体と同系統の材質であれば、焼成台とセラミックハニカム構造体との当接面に生じる摩擦抵抗力が緩和されるため、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが発生しにくくなる。
【0010】
また、本発明において、前記耐熱性無機粉末の平均粒径が0.12mm以上0.37mm以下であることが好ましい。耐熱性無機粉末の平均粒径が0.12mm未満であると、微細な粉末であることから焼成炉内部のガス流により粉末が周囲に拡散してしまうこともあるため、焼成台としての機能を果さなくなる場合もあるからである。一方、耐熱性無機粉末の平均粒径が0.37mmを超える場合、耐熱性無機粉末個々の粒子の移動抵抗が大きくなり焼成台である耐熱性無機粉末とセラミックハニカム構造体との当接面に生じる摩擦抵抗力の緩和が不十分となるため、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れを発生させることもあるからである。耐熱性無機粉末の平均粒径は、上記の理由から、0.12mm以上、0.2mm以下がより好ましい範囲である。 本発明において、焼成台を構成する耐熱性無機粉末の粒子形状が、略球形状のように丸みを帯びていることがより望ましい。粒子形状が、略球形状のように丸みを帯びていることにより、略球形状粉末の転がり作用により、耐熱性無機粉末の個々の粒子の移動がより容易になり、耐熱性無機粉末で構成される焼成台とセラミックハニカム構造体との当接面に生じる摩擦抵抗力をより小さくできるため、焼成台との当接面であるセラミックハニカム構造体の開口端面の割れ防止により有効に作用するからである。
【0011】
また、本発明においては、耐熱性無機粉末で構成される焼成台の厚さを1mm以上、50mm以下とすることが望ましい。焼成台の厚さが1mm未満であると、耐熱性無機粉末の下に敷かれる棚板の種類によっては、耐熱性無機粉末の一部が棚板との界面で化学反応を起こし耐熱性無機粉末が棚板に固着する場合もあるため、セラミックハニカム構造体と耐熱性無機粉末との当接面に生じる摩擦抵抗力の緩和が不十分となり、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に割れが発生する場合もあるからである。一方、焼成台の厚さが50mmを超えると、セラミックハニカム構造体の長さに対する焼成台の厚さが無視できなくなり、生素地セラミックハニカム構造体の焼成炉内への搭載量が減少するため製造コストが上昇するという悪影響が発生するからである。なお、耐熱性無機粉末で構成される焼成台の厚さは、上記の理由から、5mm以上30mm以下がより好ましい範囲である。
【0012】
【発明の実施の形態】
以下、本発明を実施の形態により説明する。
予めコージェライト組成に配合したセラミック原料粉末、成形助剤、および添加剤を混合、混練、押出成形、乾燥して生素地のハニカム構造体を得た。一方、別途焼成台を構成するための耐熱性無機粉末として、平均粒径が0.4mm、0.37mm、0.2mm、0.12mm、0.02mm、0.008mm、0.005mmのコージェライト粉末、および平均粒径が0.12mmのムライト粉末、平均粒径が0.12mmのアルミナ粉末、平均粒径が0.12mmのシリカ粉末をそれぞれ用意した。また、平均粒径0.12mmのコージェライト粉末、平均粒径0.12mmのムライト粉末、平均粒径0.12mmのアルミナ粉末を表2に示す配合比で混合して、これらが混合された耐熱性無機粉末を準備した。そして、図1及び図2に示すように、これら各耐熱性無機粉末5をハニカム構造体の焼成棚板4上に載せてヘラ等で平坦に一定厚さ6とした焼成台2の上に前記生素地のハニカム構造体1を載せ、バッチ式焼成炉による焼成を行った。一方、本発明に対する比較例の焼成台として、コージェライト生素地のハニカム構造体からなる厚さ10mmのトチ、焼成済みのコージェライト質のハニカム構造体からなる厚さ10mmのトチ、シリカ・アルミナ質の耐熱性無機繊維板をそれぞれ用意し、これら焼成台の上に前記生素地のハニカム構造成形体の開口端面を載せて配置し、バッチ式焼成炉による焼成を行った。焼成は1400℃で行い、セル壁の厚さが0.3mm、セルピッチが1.46mmのセル構造を有する直径φ300mm、長さ400mmのコージェライト質セラミックハニカム構造体を得た。焼成後、セラミックハニカム構造体の焼成台に接触している開口端面について割れの目視検査を実施し、セルが2ヶ所以上連続して切断しているものを割れと判定した。開口端面の割れ発生率は、焼成台との当接面であるセラミックハニカム構造体の開口端面について割れが認められた焼成体数の、同条件で試験を実施した焼成体数に対する比率として求めた。
【0013】
焼成台の種類と割れ発生率との関係を、表1および表2に示す。
【0014】
【表1】

Figure 0004461414
【0015】
【表2】
Figure 0004461414
【0016】
表1から、焼成台としてトチ、および耐熱性無機繊維板を用いた比較例1〜3対し、耐熱性無機粉末を用いた実施例1〜では割れ発生率が実使用上問題無い範囲である20%以下であることがわかる。割れ発生率は、耐熱性無機粉末の厚さが1mm以上50mm以下であるとさらに低く、さらには耐熱性無機粉末の厚さが5mm以上であるとより低いことが判る。また、耐熱性無機粉末の平均粒径が0.008mm以上0.37mm以下であると割れ発生率が低く、さらには耐熱性無機粉末の平均粒径が0.02mm以上0.2mm以下であるとより低いことが判る。また、耐熱性無機粉末の材質については、実施例1〜4においてコージェライト、ムライト、アルミナ、シリカのいずれを用いた場合でも割れ発生率は、0〜2.5%であったが、なかでもセラミックハニカム構造体と同系統の材質の粉末であるコージェライトを用いた実施例では、割れ発生率が最も低いことがわかる。さらには、表2から、耐熱性無機粉末を混合して作成した焼成台の場合では、セラミックハニカム構造体と同系統の材質の粉末であるコージェライトを10質量%以上含む焼成台を用いることが、割れの低減に有効であることが判る。
【0017】
以上の結果より、生素地のセラミックハニカム構造体の開口端面を耐熱性無機粉末の上に載せる焼成方法は、焼成台とセラミックハニカム構造体との当接面であるハニカム構造体の開口端面に発生する割れの低減に有効であることが判る。
【0018】
以上、本発明につき、実施の形態をもとに説明したが、本発明はこれに限定されず、技術思想の範囲で応用可能である。
【0019】
【発明の効果】
以上詳細に説明のとおり、本発明のセラミックハニカム構造体の焼成方法は、耐熱性無機粉末を焼成台として用いることにより、焼成台とセラミックハニカム構造体との当接面であるセラミックハニカム構造体の開口端面に生じる摩擦抵抗力が緩和され、大型のセラミックハニカム構造体であっても、ハニカム構造体の開口端面に割れを発生させることなく良品を得ることができる。
【図面の簡単な説明】
【図1】本発明に係わるセラミックハニカム構造体の開口端面を耐熱性無機粉末に載せた焼成方法を示す図である。
【図2】本発明に係わる耐熱性無機粉末により構成される焼成台を示す図である。
【符号の説明】
1 セラミックハニカム構造体
2 焼成台
3 当接面
4 棚板
5 耐熱性無機粉末
6 耐熱性無機粉末の厚さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for firing a ceramic honeycomb structure.
[0002]
[Prior art]
Conventionally, as a method for producing a ceramic product by firing a ceramic honeycomb structure of a green body, as a method for preventing cracks generated on the cell walls of the honeycomb structure and adhesion between the ceramic honeycomb structure and the shelf, There is known a method in which a firing base called a torch is placed on top and a ceramic honeycomb structure as a raw material is placed thereon and fired. Here, the torch is a honeycomb structure obtained by cutting the honeycomb structure in a radial direction so as to have a thickness of 20 to 30 mm, for example, and the opening end face of the raw ceramic honeycomb structure abuts on the opening end face of the honeycomb structure. Is placed as follows.
[0003]
Hereinafter, the prior art using the torch will be described in detail. In the invention described in Japanese Patent Publication No. 2-40019, a technique is disclosed in which a torch is brought into contact with both opening end faces of a green ceramic honeycomb structure, and temperature distribution due to heating at the end face of the green ceramic honeycomb structure is not disclosed. It is said that the occurrence of cutting due to uniformity can be prevented, the temperature rises quickly, baking with a uniform temperature distribution is possible, and productivity can be increased. In addition, in the invention described in Japanese Patent Publication No. 1-54636, a technique is disclosed in which a torch having a chamfered outer edge is placed on a ceramic honeycomb structure of the green body, and the outer edge of the lower end surface of the opening of the green body honeycomb structure is disclosed. By providing a portion that does not come into contact with the torch, the frictional resistance generated at the contact surface with the green honeycomb structure torch is reduced, and the occurrence of particularly many cuts at the outer edge of the green honeycomb structure can be prevented, It is said that the green substrate honeycomb structure can be heated sufficiently uniformly and the rate of temperature rise can be increased. Here, it is said that the tochi can be a raw tochi or a perennial tochi, but the raw tochi can only be used once and is not economical. Furthermore, in the invention described in Japanese Patent Application Laid-Open No. 7-208873, a technique is disclosed in which a convex torch is used as a firing table. When firing shrinkage, the contact between the torch of the outer edge portion of the fired body and the fired body is disclosed. By eliminating the frictional resistance on the surface, it becomes possible to fire the ceramic honeycomb body without cracks, and because the fired body is stably held without shaking, the processing and handling are easy. .
[0004]
As a firing table other than the torch, in the invention described in JP-A-5-85834, the open end face of the green body honeycomb structure is mainly composed of heat-resistant inorganic fibers, and the bulk density is 1.00 g / cm 3 or more. A method of firing on a ceramic plate is disclosed, and the ribs of the honeycomb structure due to thermal deformation of the firing table, end surface deformation and end surface cracks generated therefrom are reduced, and the life of the firing table is extended. In other words, the difference in size of the honeycomb structure can be reduced. Further, in the invention described in Japanese Patent Laid-Open No. 6-817972, a method is disclosed in which a base plate comprising 55 to 85% by weight of cordierite and 15 to 45% by weight of mullite is used as a firing table. Compared with conventional floor plates such as tochi, heat resistance is improved, deformation of the bottom surface of the honeycomb structure due to thermal deformation of the floor plate and melting of the silica component, rib twisting, and generation of cracks can be suppressed. The raw ceramic honeycomb structure can be fired without causing discoloration of the lower end surface of the body.
[0005]
[Problems to be solved by the invention]
However, even if any of the firing tables described in the above-mentioned prior art is used, there is a problem that cracks occur at the opening end surface of the ceramic honeycomb structure, which is a contact surface between the firing table and the ceramic honeycomb structure. Could not be resolved. In particular, in the case of a large ceramic honeycomb structure having an outer diameter of 200 mm or more and a length of 200 mm or more, as used for exhaust gas purification of diesel engines whose exhaust gas regulations are becoming stricter in recent years, the self-weight of the honeycomb structure is increased, When the honeycomb structure is fired and contracted, the frictional resistance generated on the contact surface between the ceramic honeycomb structure and the firing table is increased, so that there is a problem that the opening end face of the ceramic honeycomb structure is likely to be cracked. It was.
[0006]
An object of the present invention is to sinter a ceramic honeycomb structure, even if the ceramic honeycomb structure has a large size having an opening end face of 200 mm or more and a length of 200 mm or more. Another object of the present invention is to provide a method for firing a ceramic honeycomb structure in which cracks are not generated in the opening end face of the ceramic honeycomb structure, which is a contact surface of the ceramic honeycomb structure.
[0007]
[Means for Solving the Problems]
The present inventor has studied various firing tables that come into contact with the opening end face of the ceramic honeycomb structure, and conducted intensive research on the relationship between the outer diameter of the opening end face of the ceramic honeycomb structure and the firing table. As a result, by using a heat-resistant inorganic powder as a firing table, even if the ceramic honeycomb structure has a large outer diameter of 200 mm or more and a length of 200 mm or more, the ceramic honeycomb that is a contact surface with the firing table The inventors have obtained the knowledge that a ceramic honeycomb structure in which cracks are not generated on the opening end face of the structure can be obtained, and have arrived at the present invention.
[0008]
Specifically, in the present invention, when firing a ceramic honeycomb structure having an outer diameter of 200 mm or more and a length of 200 mm or more , the average particle diameter of the open end face of the raw ceramic honeycomb structure is 0.12 mm to 0 mm. It is characterized by being mounted on a baking table having a thickness of 5 mm or more and 30 mm or less, which is composed of a 37 mm heat-resistant inorganic powder, and baking. The opening end face of the ceramic honeycomb structure of the green body is placed on a firing table having a thickness of 5 mm or more and 30 mm or less and composed of a heat-resistant inorganic powder having an average particle size of 0.12 mm to 0.37 mm and firing. As a result, the direction of the flow path surrounded by the cell walls of the honeycomb structure coincides approximately with the direction of gravity, so that even if the honeycomb structure softens during the firing process, the cell wall is less likely to be deformed and fired. When expansion and contraction of the ceramic honeycomb structure occurs during the process, the individual particles of the heat-resistant inorganic powder constituting the firing table can be moved, so the expansion and contraction of the ceramic honeycomb structure and the heat-resistant inorganic powder Even if there is a difference in the amount, the heat-resistant inorganic powder on the ceramic honeycomb structure contact surface partly moves as the ceramic honeycomb structure expands and contracts, and the generated frictional resistance is relaxed. It is, because cracks firing table and the opening end face of the ceramic honeycomb structure which is the contact surface of the ceramic honeycomb structure is less likely to occur.
[0009]
In the present invention, as the material of the heat-resistant inorganic powder, a highly heat-resistant powder such as cordierite, mullite, alumina, silica, silicon carbide, silicon nitride, or a mixed powder thereof may be exposed to a high temperature during firing. Suitable because it is difficult to deform.
Furthermore, when the heat-resistant inorganic powder is made of the same material as the ceramic honeycomb structure obtained by firing, the difference in thermal expansion coefficient between the firing table and the ceramic honeycomb structure is reduced, and the firing table and the ceramic honeycomb structure are reduced. This is preferable because the effect of alleviating the frictional resistance generated on the contact surface with the body is increased. Here, the material of the same system means that, for example, when the ceramic honeycomb structure obtained by firing has cordierite as a main component, the heat-resistant inorganic powder also has cordierite as a main component. . Here, the heat-resistant inorganic powder is not necessarily made of the same material as the ceramic honeycomb structure obtained by firing, and at least 10% by mass or more is the same as the ceramic honeycomb structure obtained by firing. If the material of the system is used, the frictional resistance generated on the contact surface between the firing table and the ceramic honeycomb structure is relieved, so the opening of the ceramic honeycomb structure that is the contact surface between the firing table and the ceramic honeycomb structure is reduced. Cracks are less likely to occur on the end face.
[0010]
Moreover, in this invention, it is preferable that the average particle diameter of the said heat resistant inorganic powder is 0.12 mm or more and 0.37 mm or less. If the average particle size of the heat-resistant inorganic powder is less than 0.12 mm , the powder may diffuse to the surroundings due to the gas flow inside the firing furnace because it is a fine powder. This is because there are cases where it will not be completed. On the other hand, when the average particle size of the heat-resistant inorganic powder exceeds 0.37 mm, the movement resistance of the individual particles of the heat-resistant inorganic powder increases, and the contact surface between the heat-resistant inorganic powder that is the firing table and the ceramic honeycomb structure is increased. This is because relaxation of the generated frictional resistance is insufficient, and cracks may occur in the opening end surface of the ceramic honeycomb structure, which is the contact surface between the firing table and the ceramic honeycomb structure. The average particle size of the heat-resistant inorganic powder is more preferably 0.12 mm or more and 0.2 mm or less for the above reason. In the present invention, it is more desirable that the particle shape of the heat-resistant inorganic powder constituting the firing table is round like a substantially spherical shape. Due to the round shape of the particles, such as a substantially spherical shape, the rolling action of the substantially spherical powder facilitates the movement of individual particles of the heat-resistant inorganic powder, and is composed of the heat-resistant inorganic powder. Because the frictional resistance generated on the contact surface between the firing table and the ceramic honeycomb structure can be reduced, it effectively works to prevent cracking of the opening end surface of the ceramic honeycomb structure that is the contact surface with the firing table. is there.
[0011]
Moreover, in this invention, it is desirable that the thickness of the baking stand comprised with a heat resistant inorganic powder shall be 1 mm or more and 50 mm or less. When the thickness of the baking table is less than 1 mm, depending on the type of shelf plate laid under the heat-resistant inorganic powder, a part of the heat-resistant inorganic powder causes a chemical reaction at the interface with the shelf plate. May adhere to the shelf board, so that the frictional resistance generated on the contact surface between the ceramic honeycomb structure and the heat-resistant inorganic powder is not sufficiently relaxed, and the contact surface between the firing table and the ceramic honeycomb structure is insufficient. This is because cracks may occur on the opening end face of a certain ceramic honeycomb structure. On the other hand, if the thickness of the firing table exceeds 50 mm, the thickness of the firing table relative to the length of the ceramic honeycomb structure cannot be ignored, and the amount of green ceramic honeycomb structure mounted in the firing furnace is reduced. This is because the adverse effect of increasing costs occurs. In addition, the thickness of the baking stand comprised with a heat resistant inorganic powder is a range with more preferable 5 mm or more and 30 mm or less from said reason.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to embodiments.
The raw material honeycomb structure was obtained by mixing, kneading, extrusion molding, and drying ceramic raw material powder, molding aid, and additive previously blended in the cordierite composition. On the other hand, cordierite having an average particle size of 0.4 mm, 0.37 mm, 0.2 mm, 0.12 mm, 0.02 mm, 0.008 mm, and 0.005 mm as a heat-resistant inorganic powder for separately constituting a firing table. A powder, a mullite powder having an average particle diameter of 0.12 mm, an alumina powder having an average particle diameter of 0.12 mm, and a silica powder having an average particle diameter of 0.12 mm were prepared. Further, a cordierite powder having an average particle size of 0.12 mm, a mullite powder having an average particle size of 0.12 mm, and an alumina powder having an average particle size of 0.12 mm were mixed at a blending ratio shown in Table 2, and the heat resistance was mixed. Inorganic powder was prepared. Then, as shown in FIGS. 1 and 2, each of these heat-resistant inorganic powders 5 is placed on a firing shelf board 4 of the honeycomb structure, and flat on the firing table 2 having a constant thickness 6 with a spatula or the like. The raw honeycomb structure 1 was placed and fired in a batch-type firing furnace. On the other hand, as a firing table of a comparative example for the present invention, a 10 mm thick torch composed of a cordierite raw honeycomb structure, a 10 mm thick torch composed of a fired cordierite honeycomb structure, silica-alumina Each of the heat-resistant inorganic fiber boards was prepared, and the open end face of the green body honeycomb structure formed body was placed on the firing table and fired in a batch-type firing furnace. Firing was performed at 1400 ° C. to obtain a cordierite ceramic honeycomb structure having a cell structure with a cell wall thickness of 0.3 mm and a cell pitch of 1.46 mm and a diameter of 300 mm and a length of 400 mm. After firing, the open end face of the ceramic honeycomb structure in contact with the firing table was visually inspected for cracks, and those in which the cells were continuously cut at two or more locations were determined to be cracks. The crack occurrence rate of the open end face was determined as a ratio of the number of fired bodies in which cracks were observed on the open end face of the ceramic honeycomb structure, which is the contact surface with the firing stand, to the number of fired bodies that were tested under the same conditions. .
[0013]
Tables 1 and 2 show the relationship between the type of firing table and the crack generation rate.
[0014]
[Table 1]
Figure 0004461414
[0015]
[Table 2]
Figure 0004461414
[0016]
From Table 1, as compared with Comparative Examples 1 to 3 using a torch and a heat resistant inorganic fiber board as a firing table, in Examples 1 to 9 using a heat resistant inorganic powder, the crack occurrence rate is in a range where there is no problem in actual use. It turns out that it is 20% or less. It can be seen that the crack generation rate is lower when the thickness of the heat-resistant inorganic powder is 1 mm or more and 50 mm or less, and is further lower when the thickness of the heat-resistant inorganic powder is 5 mm or more. When the average particle size of the heat-resistant inorganic powder is 0.008 mm or more and 0.37 mm or less, the crack occurrence rate is low, and further, the average particle size of the heat-resistant inorganic powder is 0.02 mm or more and 0.2 mm or less. It turns out that it is lower. As for the material of the heat-resistant inorganic powder, the crack occurrence rate was 0 to 2.5% regardless of whether cordierite, mullite, alumina, or silica was used in Examples 1-4 . In Example 1 using cordierite, which is a powder of the same material as the ceramic honeycomb structure, it can be seen that the crack occurrence rate is the lowest. Furthermore, from Table 2, in the case of a firing table prepared by mixing heat-resistant inorganic powder, a firing table containing 10% by mass or more of cordierite, which is a powder of the same material as the ceramic honeycomb structure, is used. It can be seen that this is effective in reducing cracks.
[0017]
Based on the above results, the firing method of placing the open end face of the raw ceramic honeycomb structure on the heat-resistant inorganic powder occurs on the open end face of the honeycomb structure, which is the contact surface between the firing stand and the ceramic honeycomb structure. It can be seen that this is effective in reducing cracking.
[0018]
As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to this, It can apply in the range of technical thought.
[0019]
【The invention's effect】
As described above in detail, the method for firing a ceramic honeycomb structure of the present invention uses a heat-resistant inorganic powder as a firing table, thereby allowing the ceramic honeycomb structure to be a contact surface between the firing table and the ceramic honeycomb structure. The frictional resistance generated on the opening end face is alleviated, and even a large ceramic honeycomb structure can be obtained without causing cracks on the opening end face of the honeycomb structure.
[Brief description of the drawings]
FIG. 1 is a view showing a firing method in which an opening end face of a ceramic honeycomb structure according to the present invention is placed on a heat-resistant inorganic powder.
FIG. 2 is a view showing a firing table composed of a heat-resistant inorganic powder according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic honeycomb structure 2 Firing stand 3 Contact surface 4 Shelf board 5 Heat resistant inorganic powder 6 Thickness of heat resistant inorganic powder

Claims (2)

外径が200mm以上、長さが200mm以上のセラミックハニカム構造体を焼成するにあたり、生素地のセラミックハニカム構造体の開口端面を平均粒径が0.12mm〜0.37mmの耐熱性無機粉末により構成される厚さが5mm以上30mm以下である焼成台の上に載せて焼成することを特徴とするセラミックハニカム構造体の焼成方法。 When firing a ceramic honeycomb structure having an outer diameter of 200 mm or more and a length of 200 mm or more, the open end face of the raw ceramic honeycomb structure is composed of a heat-resistant inorganic powder having an average particle diameter of 0.12 mm to 0.37 mm A method for firing a ceramic honeycomb structure, comprising firing on a firing table having a thickness of 5 mm to 30 mm . 耐熱性無機粉末が、少なくとも10質量%以上が焼成して得られるセラミックハニカム構造体と同系統の材質であることを特徴とする請求項1記載のセラミックハニカム構造体の焼成方法。2. The method for firing a ceramic honeycomb structure according to claim 1, wherein the heat-resistant inorganic powder is made of the same material as the ceramic honeycomb structure obtained by firing at least 10% by mass or more .
JP2002217617A 2002-07-26 2002-07-26 Method for firing ceramic honeycomb structure Expired - Fee Related JP4461414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217617A JP4461414B2 (en) 2002-07-26 2002-07-26 Method for firing ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217617A JP4461414B2 (en) 2002-07-26 2002-07-26 Method for firing ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2004059353A JP2004059353A (en) 2004-02-26
JP4461414B2 true JP4461414B2 (en) 2010-05-12

Family

ID=31939023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217617A Expired - Fee Related JP4461414B2 (en) 2002-07-26 2002-07-26 Method for firing ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP4461414B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836006B2 (en) * 2007-09-28 2011-12-14 日立金属株式会社 Method for firing ceramic honeycomb structure
JP5294057B2 (en) * 2008-10-02 2013-09-18 日立金属株式会社 Method for manufacturing aluminum titanate ceramic honeycomb structure
JP2011051846A (en) * 2009-09-02 2011-03-17 Sumitomo Chemical Co Ltd Method for manufacturing ceramic sintered compact

Also Published As

Publication number Publication date
JP2004059353A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP1647790B1 (en) Method of manufacturing porous ceramic body
US4786542A (en) Setters and firing of ceramic honeycomb structural bodies by using the same
JP5338317B2 (en) Cordierite ceramic honeycomb filter manufacturing method
EP0535871A1 (en) A process for producing ceramic honeycomb structural bodies
KR20110127705A (en) Large refractory article and method for making
CN103910535B (en) Porous ceramics fin and preparation method
JP2018168047A (en) Manufacturing method of silicon carbide sintered body
JPH0628947B2 (en) Double-layer heat-resistant plate for tool bricks
JP4461414B2 (en) Method for firing ceramic honeycomb structure
JP2014228237A (en) Heat treatment vessel
WO1994017972A1 (en) Planking for firing and method of firing ceramic products by using the same
JP4836006B2 (en) Method for firing ceramic honeycomb structure
JP2006183972A (en) Baking fixture for electronic component
JP6203809B2 (en) Carbon fiber heat insulating tile and method for manufacturing the same
JP4441059B2 (en) Honeycomb compact and manufacturing method thereof
JP3606744B2 (en) Heat resistant material and method for producing the same
JP5294057B2 (en) Method for manufacturing aluminum titanate ceramic honeycomb structure
JP2538744B2 (en) Fire resistant shelf
JP2017165598A (en) Burning tool
CN115650741B (en) High-temperature-resistant material for laser cutting equipment and preparation method thereof
JP4366685B2 (en) Method for firing ceramic honeycomb structure
JP5718780B2 (en) Silicon carbide joined body and manufacturing method thereof
JPH037628B2 (en)
JPH04302992A (en) Refractory material for burning ceramics
JPH10218671A (en) Baking base for ceramic honeycomb and baking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4461414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees