JP4366685B2 - Method for firing ceramic honeycomb structure - Google Patents

Method for firing ceramic honeycomb structure Download PDF

Info

Publication number
JP4366685B2
JP4366685B2 JP2003353425A JP2003353425A JP4366685B2 JP 4366685 B2 JP4366685 B2 JP 4366685B2 JP 2003353425 A JP2003353425 A JP 2003353425A JP 2003353425 A JP2003353425 A JP 2003353425A JP 4366685 B2 JP4366685 B2 JP 4366685B2
Authority
JP
Japan
Prior art keywords
honeycomb structure
molded body
firing
shelf
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003353425A
Other languages
Japanese (ja)
Other versions
JP2005119886A (en
Inventor
靖彦 大坪
博久 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003353425A priority Critical patent/JP4366685B2/en
Publication of JP2005119886A publication Critical patent/JP2005119886A/en
Application granted granted Critical
Publication of JP4366685B2 publication Critical patent/JP4366685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)

Description

本発明は、セラミックハニカム構造体を焼成するのに好適な焼成方法に関するものである。   The present invention relates to a firing method suitable for firing a ceramic honeycomb structure.

従来、コーディエライト化原料粉末と成形助剤及び/または造孔剤とを混合して得たセラミック坏土を押出してハニカム構造のセラミック成形体を作製した後、所定温度下で単独炉、或いは、連続炉などの焼成炉で焼成してセラミックハニカム構造体を得ていた。上記焼成において、特許文献1に記載された方法では、セラミックハニカム構造体の割れと付着を防止するため、成形体を棚板の上に直接のせず、トチと呼ばれるハニカム構造体を薄切りした敷板の上に載せて焼成する方法が記載されている。また、トチ以外にも、耐熱性繊維等の焼成板の上に載せて焼成する方法も知られている。また、一度の焼成で多数のハニカム構造セラミック成形体が焼成できるよう、特許文献2、3に記載された方法では、セラミック成形体の流路方向が概略重力方向となるよう棚板上に成形体を多数個載置し、支柱を介して棚板を積み重ねることにより、成形体を焼成炉内に効率良く配置して焼成する方法が開示されている。   Conventionally, after a ceramic clay obtained by mixing a cordierite forming raw material powder with a molding aid and / or a pore former is extruded to produce a honeycomb shaped ceramic molded body, a single furnace at a predetermined temperature, or The ceramic honeycomb structure was obtained by firing in a firing furnace such as a continuous furnace. In the above-mentioned firing, the method described in Patent Document 1 does not directly apply the formed body on the shelf board to prevent cracking and adhesion of the ceramic honeycomb structure. A method of placing on top and firing is described. In addition to the torch, a method of firing on a fired plate such as a heat resistant fiber is also known. In addition, in order to be able to fire a large number of honeycomb structured ceramic molded bodies in a single firing, the methods described in Patent Documents 2 and 3 form the molded body on the shelf so that the flow path direction of the ceramic molded body is approximately the direction of gravity. A method is disclosed in which a large number of slabs are placed, and a shelf is stacked via struts so that the compact is efficiently placed in a firing furnace and fired.

特開昭62−202870号公報JP-A-62-202870 特開平1−246179号公報JP-A-1-246179 特開平1−215765号公報JP-A-1-215765

ハニカム構造の成形体を焼成する際の棚板については、上記特許文献に記載されていないが、ハニカム構造のセラミック成形体が焼成されている間、高温にさらされ成形体を保持する必要があることから、耐熱性のあるアルミナ、マグネシア、ムライト、炭化珪素等を主成分とする耐火物が適宜選定され用いられている。中でも、炭化珪素は、高温の強度が高いことから耐久性が高いのと共に、熱伝導率が高いことから、昇温や冷却が速やかに行え、焼成時間が短縮できるという利点が期待される。   The shelf plate for firing the honeycomb structure formed body is not described in the above-mentioned patent document, but it is necessary to hold the formed body by being exposed to high temperature while the honeycomb structure formed ceramic body is being fired. Therefore, a refractory material mainly composed of heat-resistant alumina, magnesia, mullite, silicon carbide or the like is appropriately selected and used. Among these, silicon carbide is expected to be advantageous in that it has high durability at high temperatures and high thermal conductivity, so that temperature rise and cooling can be performed quickly and firing time can be shortened.

そこで、本発明者らが、実際にハニカム構造のセラミック成形体の流路方向が概略重力方向となるよう、成形体をトチの上に載せた後に、この成形体とトチを、炭化珪素を主成分とする棚板上に載置し、更に、棚板を積み重ねることによって焼成炉内に成形体を配置して、バーナーからの燃焼熱により焼成した。昇温過程において、成形体と同時に各棚板も加熱され、生素地のセラミック成形体よりも熱伝導率の高い炭化珪素を主成分とする棚板の方が、早く温度が上昇することから、棚板からの輻射熱で成形体の上側端面付近が他の部分より局部的に過熱される。しかしながら、成形体の下側端面は、トチを介していることから、上側端面よりも温度が上昇しにくく、局部的に加熱された成形体の上側端面に割れが発生していた。この割れは、セラミックハニカム構造体の外径が150mm以上の大型品になるほど顕著になるため、製造できるセラミックハニカム構造体の寸法に限界があった。   Therefore, the inventors put the molded body and the torch mainly on silicon carbide after placing the molded body on the torch so that the flow path direction of the ceramic molded body having the honeycomb structure is substantially the direction of gravity. It mounted on the shelf board used as a component, and also, the molded body was arrange | positioned in a baking furnace by stacking a shelf board, and it baked with the combustion heat from a burner. In the temperature raising process, each shelf board is also heated simultaneously with the molded body, and the shelf board mainly composed of silicon carbide having a higher thermal conductivity than the green body ceramic molded body, the temperature rises faster, The vicinity of the upper end surface of the molded body is locally heated from other portions by the radiant heat from the shelf board. However, since the lower end surface of the molded body is provided with a torch, the temperature is less likely to rise than the upper end surface, and cracks have occurred on the upper end surface of the locally heated molded body. This crack becomes more prominent as the outer diameter of the ceramic honeycomb structure becomes larger than 150 mm, so that there is a limit to the size of the ceramic honeycomb structure that can be manufactured.

本発明の目的は、焼成炉内に、炭化珪素を主成分とする棚板を使用して、ハニカム構造のセラミック成形体を配置して焼成した場合であっても、ハニカム構造体の上側端面の割れを発生しにくくした焼成方法を提供することにある。   An object of the present invention is to use a shelf board mainly composed of silicon carbide in a firing furnace, and arrange and fire a honeycomb structure ceramic molded body. It is in providing the baking method which made it hard to generate | occur | produce a crack.

前記目的を達成するため、本発明に係わるセラミックハニカム構造体の焼成方法は、ハニカム構造のセラミック成形体を多段の各棚板上に載置して焼成する方法であって、前記棚板が炭化珪素を主成分とし、前記棚板の熱伝導率が10W/m・K以上であり、前記セラミック成形体と該セラミック成形体の上方に位置する前記棚板との空間が10〜200mmであることを特徴とする。   In order to achieve the above object, a method for firing a ceramic honeycomb structure according to the present invention is a method in which a ceramic molded body having a honeycomb structure is placed on each of the multistage shelf boards and fired, and the shelf boards are carbonized. Silicon is the main component, the thermal conductivity of the shelf board is 10 W / m · K or more, and the space between the ceramic molded body and the shelf board located above the ceramic molded body is 10 to 200 mm. It is characterized by.

本発明において、前記棚板が炭化珪素を主成分としていることから棚板を長期にわたり使用できるのと共に、棚板の熱伝導率を10W/m・K以上としていることから、焼成時の昇温、冷却時の時間を短縮することができるにも係わらず、さらには、前記炭化珪素を主成分とする棚板を使用しても、成形体とこの成形体の上方に位置する棚板との空間を10〜200mmとしていることから、ハニカム構造の成形体の割れ発生を防止し、焼成炉内への搭載数量を大きくとれ、焼成能力を向上させることができる。   In the present invention, since the shelf board is mainly composed of silicon carbide, the shelf board can be used for a long time, and the thermal conductivity of the shelf board is set to 10 W / m · K or more. Although the cooling time can be shortened, the molded body and the shelf positioned above the molded body can be used even if the shelf board mainly composed of silicon carbide is used. Since the space is set to 10 to 200 mm, it is possible to prevent cracks in the formed body of the honeycomb structure, to increase the number of pieces mounted in the firing furnace, and to improve the firing ability.

ここで、棚板の熱伝導率を10W/m・K以上としているのは、バーナーからの燃焼熱を速やかにセラミック成形体に伝え、焼成に係わる時間を短くするためである。また、成形体とこの成形体の上方に位置する棚板との空間を10〜200mmとするのは、10mm未満では、成形体上の棚板からの輻射熱で成形体の上面が局部的に過熱され、成形体上面と他の部分との温度差が大きくなり、焼成後のハニカム構造体の上面に割れが発生するからである。一方、成形体とこの成形体の上方に位置する棚板との空間が200mmを超えると、焼成炉内への成形体の載置数量が少なくなって焼成能力が低下するからである。
上記観点から、成形体とこの成形体の上方に位置する棚板との空間は20〜80mmが好ましい。
Here, the reason why the thermal conductivity of the shelf board is set to 10 W / m · K or more is to quickly transmit the combustion heat from the burner to the ceramic molded body, thereby shortening the time for firing. In addition, the space between the molded body and the shelf positioned above the molded body is 10 to 200 mm. If the space is less than 10 mm, the upper surface of the molded body is locally overheated by radiant heat from the shelf on the molded body. This is because the temperature difference between the upper surface of the formed body and other portions becomes large, and cracks occur on the upper surface of the honeycomb structure after firing. On the other hand, if the space between the molded body and the shelf located above the molded body exceeds 200 mm, the number of molded bodies placed in the firing furnace is reduced and the firing ability is reduced.
From the above viewpoint, the space between the molded body and the shelf plate located above the molded body is preferably 20 to 80 mm.

本発明において、前記棚板の1400℃における4点曲げ強度が30MPa以上であることが好ましい。一般に、コーディエライト質セラミックハニカム構造体の焼成は1380〜1430℃で行われることから、1400℃での4点曲げ強度が30MPa以上あれば、焼成時の棚板の変形を極力低減し、長期にわたり使用することができるからである。   In this invention, it is preferable that the 4-point bending strength in 1400 degreeC of the said shelf board is 30 Mpa or more. In general, since the cordierite ceramic honeycomb structure is fired at 1380 to 1430 ° C., if the four-point bending strength at 1400 ° C. is 30 MPa or more, the deformation of the shelf board during firing is reduced as much as possible. It is because it can be used over.

本発明において、セラミックハニカム構造体は、外径が150mm以上の大型ハニカム構造体であることが好ましい。これは次の理由による。セラミックハニカム構造体の外径が150mm以上の大型ハニカム構造体である場合、ハニカム構造体全体の温度を上昇させることが難しく、上側端面の割れが発生しやすくなる。しかしながら、本発明の焼成方法を採用することにより、外径が150mm以上の大型ハニカム構造体であっても、ハニカム構造体の上側端面の割れの発生を抑制する効果が大きいからである。同様の理由で、気孔率が60%以上の高気孔率ハニカム構造体であるほどハニカム構造体の上側端面の割れの発生を抑制する効果が大きい。   In the present invention, the ceramic honeycomb structure is preferably a large honeycomb structure having an outer diameter of 150 mm or more. This is due to the following reason. When the ceramic honeycomb structure is a large honeycomb structure having an outer diameter of 150 mm or more, it is difficult to raise the temperature of the entire honeycomb structure, and cracks on the upper end face are likely to occur. However, by adopting the firing method of the present invention, a large honeycomb structure having an outer diameter of 150 mm or more has a great effect of suppressing the occurrence of cracks on the upper end face of the honeycomb structure. For the same reason, the higher the porosity of the honeycomb structure having a porosity of 60% or more, the greater the effect of suppressing the occurrence of cracks on the upper end face of the honeycomb structure.

本発明のハニカム構造体の焼成方法によれば、成形体上の棚板からの輻射熱による成形体の上面の局部的な過熱を少なくし、成形体の上側端面付近と他の部分との温度差を小さくして、焼成後、ハニカム構造体の上側端面の割れや変形を少なくできるのと共に、焼成能力を向上できる。   According to the method for firing the honeycomb structure of the present invention, local overheating of the upper surface of the molded body due to radiant heat from the shelf on the molded body is reduced, and the temperature difference between the vicinity of the upper end surface of the molded body and other portions. Thus, after firing, cracking and deformation of the upper end face of the honeycomb structure can be reduced, and firing ability can be improved.

次に、実施の形態を詳細に説明する。
図1は、実施の形態における焼成炉30を示し、(a)はその模式断面図、(b)は(a)での矢視A拡大図である。図1(a)(b)で、焼成炉30は、炉体31と、この炉体31内に装入される複数の台車32と、各台車32間を挟み上下に千鳥状に配置された燃焼バーナー33a、33bとを有する。燃焼バーナー33a(二重丸の内丸に黒塗り印)は、台車より奥側の炉体31に取り付けられて火炎を手前方向に吹き出し、燃焼バーナー33a(丸内に×印)は、台車より手前側の炉体31に取り付けられて火炎を奥方向に吹き出している。千鳥状に配置された燃焼バーナー33a、33bにより、直接バーナー炎が成形体1に当たらないようにすることで、バーナー直火防止壁を配置することなくして、焼成炉30内への成形体1の装填数量を多くしている。各台車32上には、複数枚の棚板21と、各棚板21を支持する支柱22で構成した棚組20を設けている。図2に示すように、ハニカム構造のセラミック成形体1は、棚板21の間に成形体と同一素地のものをスライスした厚さ10mmのトチ23を介在している。尚、棚板21は、炭化珪素を90質量%以上含有するセラミックスからなり、熱伝導率が17W/m・K、1400℃における4点曲げ強度が30MPaとし、気孔率10%、厚さが20mmのものを使用した。そして、成形体1の上面1aと、成形体1の上方に位置する棚板21には空間(H)を設けている。また、棚板を積み重ねるための支柱22は、棚板と同様の炭化珪素を890質量%以上含有するセラミックスで構成した。
Next, embodiments will be described in detail.
1A and 1B show a firing furnace 30 in the embodiment, in which FIG. 1A is a schematic cross-sectional view thereof, and FIG. 1 (a) and 1 (b), the firing furnace 30 is arranged in a zigzag manner up and down with a furnace body 31, a plurality of carriages 32 inserted into the furnace body 31, and between the carriages 32. Combustion burners 33a and 33b. The combustion burner 33a (black mark on the inner circle of the double circle) is attached to the furnace body 31 on the back side of the carriage and blows out flames toward the front, and the combustion burner 33a (marked in Marunouchi) is on the front side of the carriage. It is attached to the furnace body 31 and the flame is blown out in the back direction. By preventing the burner flame from directly hitting the molded body 1 by the combustion burners 33a and 33b arranged in a staggered manner, the molded body 1 into the firing furnace 30 without arranging a burner direct fire prevention wall. The loading quantity is increased. On each carriage 32, a shelf set 20 including a plurality of shelf boards 21 and support posts 22 that support each shelf board 21 is provided. As shown in FIG. 2, the ceramic structure 1 having a honeycomb structure has a torch 23 having a thickness of 10 mm that is obtained by slicing the same base material as the formed body between the shelf boards 21. The shelf board 21 is made of ceramics containing 90% by mass or more of silicon carbide, has a thermal conductivity of 17 W / m · K, a 4-point bending strength at 1400 ° C. of 30 MPa, a porosity of 10%, and a thickness of 20 mm. I used one. A space (H) is provided in the upper surface 1 a of the molded body 1 and the shelf plate 21 positioned above the molded body 1. Moreover, the support | pillar 22 for stacking a shelf board was comprised with the ceramic containing 890 mass% or more of silicon carbide similar to a shelf board.

図1の焼成炉30を用い、図2に示す成形体1を複数個、各棚21上に載置して1400℃まで昇温し、合計焼成時間196時間の焼成を行った。なお、成形体1は、カオリン、タルク、シリカ、アルミナ等のコーディエライト化原料に、成形助剤、造孔剤、水などを混合、混練したセラミック坏土を押出成形後、乾燥したもので、外径が290mm、全長が350mmであった。焼成後のハニカム構造体は、隔壁の厚さが0.32mm、隔壁のピッチが1.62mm、気孔率が65%であった。   A plurality of compacts 1 shown in FIG. 2 were placed on each shelf 21 using the firing furnace 30 in FIG. 1, heated to 1400 ° C., and fired for a total firing time of 196 hours. The molded body 1 is obtained by extruding and drying a ceramic clay obtained by mixing and kneading a molding aid, a pore-forming agent, water and the like with a cordierite forming raw material such as kaolin, talc, silica, and alumina. The outer diameter was 290 mm and the total length was 350 mm. The fired honeycomb structure had a partition wall thickness of 0.32 mm, a partition wall pitch of 1.62 mm, and a porosity of 65%.

この焼成において、成形体1とこの成形体1の上方に位置する棚板21との空間(H)を変え、焼成後のハニカム構造体10の上面10aに発生した割れと、棚組20への成形体1の装填段数から焼成能力とを評価した。なお、焼成後のハニカム構造10の上面10aに発生した割れは、1ロットあたり5%未満を(◎)、1ロットあたり5〜10%を(○)、1ロットあたり10%超を不具合(×)として評価した。また、成形体1の焼成能力は、炉内有効高さ2350mmにおける1台車あたりの棚組20に載置できる成形体1の段数が5段を(◎)、4段を(○)、3段を(×)として評価した。ここで、段組の高さは以下の計算式で求めることができる。段組高さ=(成形体長さ350mm+トチの厚さ10mm+空間H)×段数+(棚板の厚さ20mm)×(段数+1)。その結果を表1に示す。   In this firing, the space (H) between the molded body 1 and the shelf plate 21 positioned above the molded body 1 is changed, cracks generated on the upper surface 10a of the honeycomb structure 10 after firing, The firing ability was evaluated from the number of loading stages of the compact 1. In addition, the crack which generate | occur | produced in the upper surface 10a of the honeycomb structure 10 after baking is less than 5% per lot ((double-circle)), 5-10% (1) per lot ((circle)), and more than 10% per 1 lot (*) ). Moreover, the firing capacity of the molded body 1 is that the number of stages of the molded body 1 that can be placed on the shelf assembly 20 per carriage at an effective height in the furnace of 2350 mm is 5 (段), 4 is (◯), 3 Was evaluated as (×). Here, the height of the column can be obtained by the following calculation formula. Column height = (molded body length 350 mm + thickness 10 mm + space H) × stage number + (shelf thickness 20 mm) × (stage number + 1). The results are shown in Table 1.

Figure 0004366685
Figure 0004366685

表1から、成形体1とこの成形体1の上方に位置する棚板21との空間(H)を10〜200mmとした本発明例では、焼成後のハニカム構造体10の上面10aの割れ発生を少なくでき、また、焼成能力も確保されていることがわかる。また、成形体1とこの成形体1の上方に位置する棚板21との空間(H)を20〜80mmとすれば、割れ発生、焼成能力の評価とも(◎)となり、より優れていることがわかる。   From Table 1, in the example of the present invention in which the space (H) between the formed body 1 and the shelf board 21 positioned above the formed body 1 is 10 to 200 mm, cracking of the upper surface 10a of the honeycomb structure 10 after firing is generated. As can be seen from the figure, the firing ability is also ensured. Moreover, if the space (H) between the molded body 1 and the shelf plate 21 located above the molded body 1 is 20 to 80 mm, both crack generation and evaluation of the firing ability are (◎), which is more excellent. I understand.

一方、比較例としてムライトを主成分とする厚さ20mmの棚板を用いて、同様の実験を行った。ムライトを主成分とする棚板の、熱伝導率は1.6W/m・K、1400℃の4点曲げ強度が10MPa、気孔率は15%であった。この棚板を用い、実施例と同様に、外径が290mm、長さ350mmのハニカム構造の成形体を用い、成形体1とこの成形体1の上方に位置する棚板21との空間(H)を40mmとして同様の実験を行った。この比較例では、熱伝導率が小さいムライト板を用いていることから、焼成時間が長くなり、240時間必要であった。   On the other hand, as a comparative example, a similar experiment was performed using a shelf plate having a thickness of 20 mm mainly composed of mullite. The shelf board mainly composed of mullite had a thermal conductivity of 1.6 W / m · K, a 1400 ° C. four-point bending strength of 10 MPa, and a porosity of 15%. Using this shelf board, similarly to the example, a honeycomb structure formed body having an outer diameter of 290 mm and a length of 350 mm was used, and a space (H between the formed body 1 and the shelf board 21 positioned above the formed body 1 (H ) Was 40 mm, and the same experiment was conducted. In this comparative example, since a mullite plate having a low thermal conductivity was used, the firing time was long and 240 hours were required.

本発明の実施の形態における焼成炉30を示し、(a)はその模式断面図、(b)は(a)での矢視A拡大図である。The baking furnace 30 in embodiment of this invention is shown, (a) is the schematic cross section, (b) is the arrow A enlarged view in (a). 本発明の実施の形態における、棚板21を数枚組み合わせた棚組20に成形体1を載置している側面図である。In embodiment of this invention, it is the side view which has mounted the molded object 1 in the shelf group 20 which combined several shelf boards 21. FIG.

符号の説明Explanation of symbols

1:生素地の成形体(成形体)
10:セラミックハニカム構造体(ハニカム構造体)
1a、10a:上面
1b、10b:下面
20:棚組
21:棚板
22:支柱
23:トチ
30:焼成炉
31:炉体
32:台車
33a、33b:燃焼バーナー
H:空間
1: green body (molded body)
10: Ceramic honeycomb structure (honeycomb structure)
DESCRIPTION OF SYMBOLS 1a, 10a: Upper surface 1b, 10b: Lower surface 20: Shelf set 21: Shelf board 22: Strut 23: Tochi 30: Firing furnace 31: Furnace body 32: Carriage 33a, 33b: Combustion burner H: Space

Claims (2)

ハニカム構造のセラミック成形体を多段の各棚板上に載置して焼成する方法であって、前記棚板が炭化珪素を主成分とし、前記棚板の熱伝導率が10W/m・K以上であり、前記セラミック成形体と該セラミック成形体の上方に位置する前記棚板との空間が10〜200mmであることを特徴とするセラミックハニカム構造体の焼成方法。 A method of firing a ceramic molded body having a honeycomb structure on each of a plurality of shelves, wherein the shelves are composed mainly of silicon carbide, and the thermal conductivity of the shelves is 10 W / m · K or more. A method for firing a ceramic honeycomb structure, wherein a space between the ceramic molded body and the shelf plate located above the ceramic molded body is 10 to 200 mm. 前記棚板の1400℃における4点曲げ強度が30MPa以上であることを特徴とする請求項1に記載のセラミックハニカム構造体の焼成方法。
The method for firing a ceramic honeycomb structure according to claim 1, wherein the four-point bending strength at 1400 ° C of the shelf board is 30 MPa or more.
JP2003353425A 2003-10-14 2003-10-14 Method for firing ceramic honeycomb structure Expired - Lifetime JP4366685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353425A JP4366685B2 (en) 2003-10-14 2003-10-14 Method for firing ceramic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353425A JP4366685B2 (en) 2003-10-14 2003-10-14 Method for firing ceramic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2005119886A JP2005119886A (en) 2005-05-12
JP4366685B2 true JP4366685B2 (en) 2009-11-18

Family

ID=34611716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353425A Expired - Lifetime JP4366685B2 (en) 2003-10-14 2003-10-14 Method for firing ceramic honeycomb structure

Country Status (1)

Country Link
JP (1) JP4366685B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1826517T3 (en) * 2006-02-28 2009-01-30 Ibiden Co Ltd Drying jig, drying method of honeycomb molded body, and manufacturing method of honeycomb structured body
JP2008111630A (en) * 2006-10-31 2008-05-15 Denso Corp Method of manufacturing honeycomb structure
JP2011068517A (en) * 2009-09-25 2011-04-07 Sumitomo Chemical Co Ltd Method for producing ceramic fired article

Also Published As

Publication number Publication date
JP2005119886A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP5412421B2 (en) Ceramic kiln tool plate
JP6754653B2 (en) How to make checker bricks for hot air ovens
JP4826439B2 (en) Method for firing ceramic honeycomb formed body
JP3173375U (en) Multi-layer heating furnace
JP4366685B2 (en) Method for firing ceramic honeycomb structure
JP5134375B2 (en) Heater support structure
JP2014228237A (en) Heat treatment vessel
CN213657484U (en) Stable kiln car transports
JP6413794B2 (en) heating furnace
JP2007247929A (en) Jig for baking, and oxidation atmosphere electric furnace using the same
JP2010139100A (en) Refractory material for heat treatment furnace
JP2008045816A (en) Baking furnace body structure
JPH05157458A (en) Heat storage chamber
JP2010236797A (en) Roller hearth kiln
JP3602245B2 (en) Burner tile crack prevention method
JP3943282B2 (en) Ceramic tube and induction heating furnace using the same
CN211233939U (en) Refractory brick for electric heating furnace
JP7488875B2 (en) heating furnace
JP5857358B2 (en) rack
JP2007101064A (en) Furnace wall structure for industrial furnace
JP6489440B2 (en) Glass article manufacturing equipment
JPH07172940A (en) Refractory brick for heat-storing chamber of coke furnace
JP2000329473A (en) Burning method
JP3896610B2 (en) Thin-wall jig for firing electronic parts and method for manufacturing the same
JPH0814770A (en) Shelf assembly of baking bogie

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090813

R150 Certificate of patent or registration of utility model

Ref document number: 4366685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

EXPY Cancellation because of completion of term