JP6754653B2 - How to make checker bricks for hot air ovens - Google Patents

How to make checker bricks for hot air ovens Download PDF

Info

Publication number
JP6754653B2
JP6754653B2 JP2016191694A JP2016191694A JP6754653B2 JP 6754653 B2 JP6754653 B2 JP 6754653B2 JP 2016191694 A JP2016191694 A JP 2016191694A JP 2016191694 A JP2016191694 A JP 2016191694A JP 6754653 B2 JP6754653 B2 JP 6754653B2
Authority
JP
Japan
Prior art keywords
mass
raw material
brick
hot air
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016191694A
Other languages
Japanese (ja)
Other versions
JP2018052776A (en
Inventor
博文 酒井
博文 酒井
吉隆 小出石
吉隆 小出石
倫 中村
倫 中村
佳洋 田村
佳洋 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2016191694A priority Critical patent/JP6754653B2/en
Publication of JP2018052776A publication Critical patent/JP2018052776A/en
Application granted granted Critical
Publication of JP6754653B2 publication Critical patent/JP6754653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、熱風炉の蓄熱室内に組み込まれる熱風炉用チェッカーれんが(以下、単に「チェッカーれんが」ともいう。)の製造方法に関する。 The present invention relates to a method for manufacturing a checker brick for a hot air furnace (hereinafter, also simply referred to as “checker brick”) incorporated in a heat storage chamber of the hot air furnace.

製銑用の高炉への熱風供給を行うために、熱風炉が用いられている。熱風炉の蓄熱室内には、蓄熱材として、外形が六角柱形状をしたチェッカーれんが(ギッターれんがともいう。)が多数配列され、複数層に重ねて築造されている。チェッカーれんがは、耐火れんが材で形成された六角柱形状の本体を有する。本体の上面及び下面は平行とされている。本体には、断面形状が丸形又は六角形のガス流路が複数、鉛直方向に貫通形成されており、各々は本体の上下面に開口されている。 A hot air furnace is used to supply hot air to a blast furnace for iron making. In the heat storage chamber of the hot air furnace, a large number of checkered bricks (also called gigter bricks) having a hexagonal columnar outer shape are arranged as heat storage materials, and are constructed by stacking them in multiple layers. The checkered brick has a hexagonal columnar body made of refractory brick material. The upper and lower surfaces of the main body are parallel. A plurality of gas flow paths having a round or hexagonal cross section are formed through the main body in the vertical direction, and each is opened on the upper and lower surfaces of the main body.

このようなチェッカーれんがでは、ガス流路に高温の燃焼ガスを通過させることで、本体のガス流路以外の耐火れんが材が詰まった部分(壁)に熱を蓄熱することができる。一方、蓄熱した状態でガス流路に冷風を通過させて熱交換させることで、高温の熱風を生成し、高炉に供給することができる。このとき、チェッカーれんがの寸法形状が、ガスと耐火れんが材との熱交換効率に大きな影響を与える。このため、近年では、ガス流路の形状及び壁の厚み等に関する最適化が行われ、孔の数を増やし壁の厚みが小さいものが開発されている。 In such a checkered brick, heat can be stored in a portion (wall) filled with refractory brick material other than the gas flow path of the main body by passing a high-temperature combustion gas through the gas flow path. On the other hand, by passing cold air through the gas flow path in a stored heat state to exchange heat, high-temperature hot air can be generated and supplied to the blast furnace. At this time, the size and shape of the checkered brick have a great influence on the heat exchange efficiency between the gas and the refractory brick material. For this reason, in recent years, optimization has been performed on the shape of the gas flow path, the wall thickness, and the like, and those with an increased number of holes and a small wall thickness have been developed.

例えば特許文献1には、19個のガス流路を有し、壁の厚みが15mmのチェッカーれんがが開示されている。しかしながら、壁の厚みを薄くすると、従来の製造方法では成形中に成形体に亀裂が生じやすい問題、及び製品の強度が不十分となる問題が生じてくる。 For example, Patent Document 1 discloses a checkered brick having 19 gas channels and a wall thickness of 15 mm. However, if the wall thickness is reduced, the conventional manufacturing method causes a problem that the molded body is liable to crack during molding and a problem that the strength of the product becomes insufficient.

また、特許文献2には、コークス炉の蓄熱れんがであるが、スリットタイプで壁の厚みが11mmのものが開示されている。この蓄熱れんがの製造方法として、その段落0043に「ボールミルで粉砕したムライトとコランダムを主材としてAl量75wt%のハイアルミナ質蓄熱レンガを製作した。原料配合構成は粗粒(1.5〜0.8mm)、中粒(0.8〜0.08mm)、細粒(<0.08mm)を1:2:2の比率としたもので、別にフリントクレイ3wt%、水分4wt%を添加したもので、350トンのフリクションプレスにて成形した」ことが記載されている。 Further, Patent Document 2 discloses a heat storage brick of a coke oven, which is a slit type and has a wall thickness of 11 mm. As a method for producing the heat storage brick, it was fabricated amount of Al 2 O 3 75 wt% of high alumina heat storage bricks mullite and corundum trituration with "ball in its paragraph 0043 as main material. Raw material compounding configuration coarse (1. 5 to 0.8 mm), medium grain (0.8 to 0.08 mm), fine grain (<0.08 mm) in a ratio of 1: 2: 2, and separately flint clay 3 wt% and moisture 4 wt%. It was added and molded with a 350 ton friction press. "

しかしながら、特許文献2の原料配合構成で特許文献1のチェッカーれんがを製造しようとすると、成形時に成形体に亀裂が生じる問題や焼成後の強度が不十分な問題がある。すなわち、チェッカーれんがの製造方法では成形時に孔を形成するために六角柱又は円柱の芯棒を使用することになるが、壁の厚みが薄いため成形後にこれらの芯棒を成形体から抜く際に壁が崩れたり、あるいは亀裂が生じたりする問題がある。また、特許文献2の蓄熱れんがは厚み14.5〜18mmの長方形の枠を有しており、この枠によって強度が維持できるが、特許文献1のチェッカーれんがの場合には、全ての壁の厚みが15mmと薄いため、ハンドリング時の欠け等の破損が生じやすく、製品自体の強度を高める必要もある。 However, when an attempt is made to manufacture the checkered brick of Patent Document 1 with the raw material compounding composition of Patent Document 2, there is a problem that the molded body is cracked during molding and there is a problem that the strength after firing is insufficient. That is, in the checker brick manufacturing method, hexagonal column or cylindrical core rods are used to form holes at the time of molding, but since the wall thickness is thin, when these core rods are pulled out from the molded body after molding. There is a problem that the wall collapses or cracks occur. Further, the heat storage brick of Patent Document 2 has a rectangular frame having a thickness of 14.5 to 18 mm, and the strength can be maintained by this frame, but in the case of the checkered brick of Patent Document 1, the thickness of all the walls. Since the thickness is as thin as 15 mm, damage such as chipping during handling is likely to occur, and it is necessary to increase the strength of the product itself.

特開2014−118614号公報Japanese Unexamined Patent Publication No. 2014-118614 特開平7−172940号公報Japanese Unexamined Patent Publication No. 7-172940

本発明が解決しようとする課題は、成形時の亀裂が発生することなく、しかも製品の強度が十分な熱風炉用チェッカーれんがの製造方法を提供することにある。 An object to be solved by the present invention is to provide a method for producing a checkered brick for a hot air furnace, which does not cause cracks during molding and has sufficient product strength.

成形時の強度を向上するためには耐火原料配合物への粘土の使用が有効であるが、その反面、焼成収縮が大きくなり亀裂が入る問題がある。本発明者らはシリマナイト族鉱物を併用することで焼成中の亀裂が防止できることを知見した。その結果、壁の厚みが薄くても成形時の亀裂の発生がなく、しかも製品の強度が十分あるチェッカーれんがの製造方法に想到した。 It is effective to use clay in the fire-resistant raw material formulation in order to improve the strength at the time of molding, but on the other hand, there is a problem that the firing shrinkage becomes large and cracks occur. The present inventors have found that cracks during calcination can be prevented by using a sillimanite group mineral in combination. As a result, we came up with a method for manufacturing checkered bricks, which does not cause cracks during molding even if the wall thickness is thin and has sufficient product strength.

すなわち、本発明の熱風炉用チェッカーれんがの製造方法は、ムライト原料10〜50質量%、コランダム含有原料20〜60質量%、シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上10〜30質量%、及び粘土3〜20質量%からなり、ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料が5〜20質量%である耐火原料配合物を混練後、成形し、乾燥、焼成するもので、特に耐火原料配合物の構成に特徴がある。以下、本発明による耐火原料配合物の構成について詳しく説明する。 That is, the method for producing a checkered brick for a hot air furnace of the present invention comprises 10 to 50% by mass of a mullite raw material, 20 to 60% by mass of a corundum-containing raw material, and one or two of andalusite, caianite, and sillimanite as sillimanite group minerals. It is composed of 10 to 30% by mass and 3 to 20% by mass of clay, and 5 to 20% by mass of raw materials having a particle size of 0.2 mm or less among mullite raw materials, corundum-containing raw materials, andalusite, caianite, and / or silimanite. A certain fire-resistant raw material compound is kneaded, then molded, dried, and fired. The composition of the fire-resistant raw material compound is particularly characteristic. Hereinafter, the constitution of the fireproof raw material compound according to the present invention will be described in detail.

コランダム含有原料は耐クリープ性向上及び強度発現のために20〜60質量%で使用する。コランダム含有原料が20質量%未満では耐クリープ及び強度が不十分となり、60質量%を超えると耐スポーリング性が低下する。 The corundum-containing raw material is used in an amount of 20 to 60% by mass for improving creep resistance and developing strength. If the corundum-containing raw material is less than 20% by mass, the creep resistance and strength are insufficient, and if it exceeds 60% by mass, the spalling resistance is lowered.

ムライト原料は、耐クリープ性及び耐スポーリング性向上のために10〜50質量%で使用する。ムライト原料が10質量%未満では耐クリープ性及び耐スポーリング性が不十分となり、50質量%を超えると耐スポーリング性の向上効果は変わらず逆に原料費のコストアップとなる。 The mullite raw material is used in an amount of 10 to 50% by mass for improving creep resistance and spalling resistance. If the mullite raw material is less than 10% by mass, the creep resistance and spalling resistance are insufficient, and if it exceeds 50% by mass, the effect of improving the spalling resistance does not change, and conversely, the raw material cost increases.

ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料は成形時の充填性を高めることで組織を緻密化し焼成後のれんがのボロツキや欠けを防止するために5〜20質量%使用する。この粒径0.2mm以下の原料が5質量%未満では、焼成後に壁部のエッジ部のボロツキや欠けが発生し、20質量%を超えると組織が緻密になりすぎて耐スポーリング性が低下する。 Of the mullite raw materials, corundum-containing raw materials, andalsite, caianite, and / or sillimanite, the raw materials having a particle size of 0.2 mm or less improve the filling property at the time of molding to densify the structure and prevent the rags and chips of the bricks after firing. 5 to 20% by mass is used. If the amount of the raw material having a particle size of 0.2 mm or less is less than 5% by mass, the edge portion of the wall portion may be raged or chipped after firing, and if it exceeds 20% by mass, the structure becomes too dense and the spalling resistance is lowered. To do.

シリマナイト族鉱物としてアンダルサイト、カイアナイト、あるいはシリマナイトは、それ自身が焼成中に膨張することから、粘土の使用による焼成中のれんがの収縮を抑制することで焼成収縮による亀裂の発生を抑制する効果がある。シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上は10〜30質量%で使用する。これらのシリマナイト族鉱物が10質量%未満では焼成亀裂の抑制効果が不十分であり、30質量%を超えると熱膨張率が高くなり過ぎて耐スポーリング性が不十分となる。 Andalusite, kyanite, or sillimanite as a sillimanite group mineral expands during calcination, so it has the effect of suppressing the shrinkage of bricks during calcination due to the use of clay, thereby suppressing the occurrence of cracks due to calcination shrinkage. is there. As a sillimanite group mineral, one or more of andalusite, kyanite, and sillimanite are used in an amount of 10 to 30% by mass. If these sillimanite group minerals are less than 10% by mass, the effect of suppressing calcination cracks is insufficient, and if they exceed 30% by mass, the coefficient of thermal expansion becomes too high and the spalling resistance becomes insufficient.

粘土は成形時に成形体の強度を高め亀裂を防止するためと焼成後の強度発現のために3〜20質量%使用する。粘土が3質量%未満では成形体の強度が不十分なため成形体に亀裂が発生し、20質量%を超えると焼成収縮が大きくなり焼成時に亀裂が発生する。焼成後の強度をさらに高くしたい場合、粘土は10質量%以上、すなわち10〜20質量%使用することが好ましい。 Clay is used in an amount of 3 to 20% by mass in order to increase the strength of the molded product during molding to prevent cracks and to develop the strength after firing. If the clay content is less than 3% by mass, the strength of the molded product is insufficient and cracks occur in the molded product. If the clay content exceeds 20% by mass, the firing shrinkage becomes large and cracks occur during firing. When it is desired to further increase the strength after firing, it is preferable to use clay in an amount of 10% by mass or more, that is, 10 to 20% by mass.

さらに本発明においては、粘土の多量使用による過焼結を防止するために、耐火原料配合物中のFeを1.5質量%以下、及びNaOを1.0質量%以下とすることが好ましい。 Further, in the present invention, in order to prevent oversintering due to the large use of clay, Fe 2 O 3 in the fireproof raw material formulation is set to 1.5% by mass or less, and Na 2 O is set to 1.0% by mass or less. It is preferable to do so.

本発明によれば、成形時の亀裂が発生することなく、しかも製品の強度が十分な熱風炉用チェッカーれんがを製造することができる。 According to the present invention, it is possible to manufacture a checkered brick for a hot air furnace in which cracks do not occur during molding and the strength of the product is sufficient.

本発明により製造するチェッカーれんがの一例を示す斜視図である。It is a perspective view which shows an example of the checkered brick manufactured by this invention. 図1のチェッカーれんがから切り出すサンプルの形状を示す図である。It is a figure which shows the shape of the sample cut out from the checker brick of FIG.

本発明において耐火原料配合物に使用するコランダム含有原料としては、コランダムを50質量%以上含有する原料のうち1種以上を使用することができる。例えば電融アルミナ、焼結アルミナ、ボーキサイト、焼バンケツ、仮焼アルミナ及びれんが屑のうち1種以上を使用することができる。 As the corundum-containing raw material used in the fire-resistant raw material formulation in the present invention, one or more of the raw materials containing 50% by mass or more of corundum can be used. For example, one or more of fused alumina, sintered alumina, bauxite, baked banquet, calcined alumina and brick waste can be used.

ムライト原料としては、通常の耐火物の原料として市販されているものを使用することができ、例えば合成ムライト、電融ムライト、あるいは焼結ムライトなどを使用することができる。ムライトは、不純物としてコランダムあるいはクリストバライトを含むことがあり、ムライト純度が85%以上のものを使用することが好ましい。 As the mullite raw material, commercially available raw materials for ordinary refractories can be used, and for example, synthetic mullite, fused mullite, sintered mullite, or the like can be used. The mullite may contain corundum or cristobalite as impurities, and it is preferable to use a mullite having a mullite purity of 85% or more.

粘土としては、通常の耐火物の原料として市販されているものを使用することができ、例えばSiO含有量が40〜70質量%、Al含有量が20〜30質量%のものなどを使用することができる。 As the clay, commercially available clay can be used as a raw material for ordinary refractories. For example, clay having a SiO 2 content of 40 to 70% by mass and an Al 2 O 3 content of 20 to 30% by mass can be used. Can be used.

シリマナイト族鉱物としては、シリマナイト、アンダルサイト及びカイアナイトのうち1種又は2種以上を使用する。これらのシリマナイト族鉱物の熱膨張率はいずれも、ムライト、シャモット、及びアルミナの熱膨張率より大きいので、粘土の使用による焼成中のれんがの収縮を抑制することで焼成収縮による亀裂の発生を抑制する効果がある。これらの原料は、天然から採掘される鉱物であり、それらを精製して使用することができる。より耐クリープ性を確保したい場合には、不純物としての酸化鉄(Fe)が約2質量%以下、好ましくは1質量%以下とすることもできる。 As the sillimanite group mineral, one or more of sillimanite, andalusite and kyanite are used. Since the coefficient of thermal expansion of all of these silimanite minerals is larger than the coefficient of thermal expansion of mullite, chamotte, and alumina, the occurrence of cracks due to calcination shrinkage is suppressed by suppressing the shrinkage of bricks during calcination due to the use of clay. Has the effect of These raw materials are minerals mined from nature, and they can be purified and used. When it is desired to secure more creep resistance, iron oxide (Fe 2 O 3 ) as an impurity can be contained in an amount of about 2% by mass or less, preferably 1% by mass or less.

なお、上記以外の原料でも悪影響を及ぼさない範囲で耐火原料配合物に使用することができ、例えばろう石、珪石、溶融シリカ、シャモット等は10質量%以下、好ましくは5質量%以下で使用可能である。 It should be noted that raw materials other than the above can be used in refractory raw material formulations as long as they do not adversely affect them. For example, pyrophyllite, silica stone, molten silica, chamotte and the like can be used in an amount of 10% by mass or less, preferably 5% by mass or less. Is.

本発明のチェッカーれんがの製造方法では、以上の構成を有する耐火原料配合物を使用し、後は一般的なチェッカーれんがの製造方法を採用することができる。すなわち、耐火原料配合物にバインダーを添加して混練、成形、乾燥後、1300〜1600℃で焼成することができる。 In the checkered brick manufacturing method of the present invention, a fireproof raw material compound having the above constitution can be used, and then a general checkered brick manufacturing method can be adopted. That is, a binder can be added to the fire-resistant raw material compound, kneaded, molded, dried, and then fired at 1300 to 1600 ° C.

そして本発明によれば、熱風炉で使用されている公知形状のチェッカーれんがのほか、より熱交換効率に優れる薄壁のチェッカーれんが、例えば壁の厚みが10mm以上15mm未満で、孔の数が7〜37個程度のチェッカーれんがを問題なく製造することができる。 According to the present invention, in addition to the checker bricks of known shapes used in hot air furnaces, thin-walled checker bricks having more excellent heat exchange efficiency, for example, have a wall thickness of 10 mm or more and less than 15 mm and a number of holes of 7. About 37 checker bricks can be manufactured without any problem.

表1及び表2に示す耐火原料配合物に水系のバインダーを添加して混練し、プレス機で図1に示すチェッカーれんがを成形し、乾燥後、1400℃で焼成した。図1のチェッカーれんがは、壁の厚みTが11mm、れんがの高さHが130mm、れんがの1辺(六角形状の外形の1辺)の長さLが130mm、孔の数が19個である。 A water-based binder was added to the fire-resistant raw material formulations shown in Tables 1 and 2, and the mixture was kneaded. The checkered brick shown in FIG. 1 was formed by a press machine, dried, and then fired at 1400 ° C. The checkered brick of FIG. 1 has a wall thickness T of 11 mm, a brick height H of 130 mm, a brick side (one side of a hexagonal outer shape) length L of 130 mm, and a number of holes of 19. ..

Figure 0006754653
Figure 0006754653

Figure 0006754653
Figure 0006754653

コランダム含有原料として使用した焼バンケツは、コランダムが80質量%のものを使用した。同じくコランダム含有原料として使用したれんが屑は、コランダムが50質量%、鉱物相としてのムライトが40質量%のものを使用した。ムライト原料として使用した合成ムライトは、鉱物としてのムライトが92質量%のものを使用した。シリマナイト族鉱物としてのアンダルサイトはAl含有量が60質量%、SiO含有量が37質量%のものを、カイアナイトはAl含有量が58質量%、SiO含有量が39質量%のものを、シリマナイトはAl含有量が75質量%、SiO含有量が20質量%のものを使用した。粘土は、Al含有量が25質量%、SiO含有量が55質量%のものを使用した。 As the baked banquet used as the corundum-containing raw material, one having 80% by mass of corundum was used. Similarly, as the brick waste used as the raw material containing corundum, 50% by mass of corundum and 40% by mass of mullite as the mineral phase were used. As the synthetic mullite used as a raw material for mullite, one having 92% by mass of mullite as a mineral was used. Andalsite as a sillimanite group mineral has an Al 2 O 3 content of 60% by mass and a SiO 2 content of 37% by mass, and kyanite has an Al 2 O 3 content of 58% by mass and a SiO 2 content of 39% by mass. As for silimanite, one having an Al 2 O 3 content of 75% by mass and one having a SiO 2 content of 20% by mass was used. The clay used had an Al 2 O 3 content of 25% by mass and a SiO 2 content of 55% by mass.

上述のとおり表1及び表2に示す耐火原料配合物に水系のバインダーを添加して混練し、プレス機で図1に示すチェッカーれんがを成形し、乾燥後、1400℃で焼成したが、この際、成形時の亀裂と焼成後の外観を評価した。
成形時の亀裂は、10個成形した後の表面の状態を目視で観察し1個でも亀裂があれば×とし、亀裂がないものを○とした。
焼成後の外観は、前記の10個成形したれんがを焼成した後の表面の状態を目視で観察し1個でも亀裂又は壁部のボロツキがあれば×とし、亀裂又は壁部のボロツキがないものを○とした。
As described above, a water-based binder was added to the fire-resistant raw material formulations shown in Tables 1 and 2, kneaded, the checkered brick shown in FIG. 1 was formed by a press, dried, and then fired at 1400 ° C. , Cracks during molding and appearance after firing were evaluated.
As for the cracks at the time of molding, the state of the surface after molding 10 pieces was visually observed, and if there was even one crack, it was evaluated as x, and the one without cracks was evaluated as ◯.
The appearance after firing shall be marked as x if there is any crack or rags on the wall by visually observing the state of the surface after firing the above 10 molded bricks, and there is no crack or rags on the wall. Was marked as ○.

また、焼成後の図1のチェッカーれんがから図2のサンプルを切り出し、圧縮強さを測定するとともに、クリープ試験及びスポーリング試験を行った。図2のサンプルの寸法は、A、B及びCが74mmで、高さが60mmである。
圧縮強さはJIS−R2206に従い測定した。
クリープ試験はJIS−R2658に従い1300℃で5時間、0.2MPaの条件で実施し、クリープ値が1%以下のものを○とし、1%を超えるものを×とした。
スポーリング試験はJIS−R2657に従い800℃加熱後の水冷法により、20回実施し、20回後でも剥落がないものを○、20回までに剥落のあったものを×とした。
なお、焼成後に亀裂が入った比較例では、亀裂が入っていないれんがの圧縮強さのみを測定し、スポーリング試験とクリープ試験は行っていない。
Further, the sample of FIG. 2 was cut out from the checkered brick of FIG. 1 after firing, the compressive strength was measured, and a creep test and a spalling test were performed. The dimensions of the sample in FIG. 2 are 74 mm for A, B and C and 60 mm in height.
Compressive strength was measured according to JIS-R2206.
The creep test was carried out at 1300 ° C. for 5 hours under the condition of 0.2 MPa according to JIS-R2658, and those having a creep value of 1% or less were evaluated as ◯, and those exceeding 1% were evaluated as x.
The spalling test was carried out 20 times by a water cooling method after heating at 800 ° C. according to JIS-R2657. Those that did not peel off even after 20 times were marked with ◯, and those that had peeled off by 20 times were marked with x.
In the comparative example in which cracks were formed after firing, only the compressive strength of the bricks without cracks was measured, and the spalling test and the creep test were not performed.

実施例1から実施例3はアンダルサイトの使用量が異なる場合であるがいずれも良好であった。これに対して比較例1はアンダルサイトの使用量が5質量%と本発明の下限値を下回っており、焼成後に10個中5個のれんがに亀裂が発生した。また、比較例2はアンダルサイトの使用量が35質量%と本発明の上限値を超えておりスポーリング試験では17回で剥落し、耐スポーリング性に問題があった。 In Examples 1 to 3, the amount of andal site used was different, but all were good. On the other hand, in Comparative Example 1, the amount of andalusite used was 5% by mass, which was lower than the lower limit of the present invention, and 5 out of 10 bricks were cracked after firing. Further, in Comparative Example 2, the amount of andalusite used was 35% by mass, which exceeded the upper limit of the present invention, and was peeled off after 17 times in the spalling test, and there was a problem in spalling resistance.

実施例4から実施例7は粘土の使用量が異なる場合であるがいずれも良好であった。なお、実施例4は成形時及び焼成後の亀裂は発生しなかったが成形中に亀裂が入らないように成形中の取り扱いに注意が必要であった。また、実施例4の焼成後の強度は実用上問題ないレベルではあるがやや低くなった。これに対して、比較例3は粘土の使用量が1質量%と本発明の下限値を下回っており、成形時の強度不足のため成形後に10個中4個のれんがに亀裂が発生し、焼成後には10個中6個のれんがに亀裂が発生した。また、亀裂のないれんがの圧縮強さを測定したところ30MPaと低強度で実用上問題のあるレベルであった。一方、比較例4は粘土の使用量が25質量%と本発明の上限を超えており、焼成収縮が大きすぎるため焼成後に10個中3個のれんがに亀裂が発生した。 Although the amounts of clay used in Examples 4 to 7 were different, they were all good. In Example 4, cracks did not occur during molding and after firing, but care must be taken in handling during molding so that cracks do not occur during molding. In addition, the strength of Example 4 after firing was slightly low, although it was at a level where there was no problem in practical use. On the other hand, in Comparative Example 3, the amount of clay used was 1% by mass, which was lower than the lower limit of the present invention, and 4 out of 10 bricks cracked after molding due to insufficient strength during molding. After firing, 6 out of 10 bricks cracked. Moreover, when the compressive strength of the brick without cracks was measured, it was as low as 30 MPa, which was a practically problematic level. On the other hand, in Comparative Example 4, the amount of clay used was 25% by mass, which exceeded the upper limit of the present invention, and the firing shrinkage was too large, so that 3 out of 10 bricks cracked after firing.

実施例8から実施例10は粒径0.2mm以下のムライト原料の使用量が異なる場合であるがいずれも良好な結果となった。これに対して、比較例5は粒径0.2mm以下のムライト原料を使用しない場合であり、焼成後の圧縮強さは十分あるが、焼成後のれんがの10個中5個に壁部のエッジ部にボロツキや欠けが発生した。また、比較例6は粒径0.2mm以下のムライト原料の使用量が25質量%と本発明の上限を超えており、組織が緻密になりすぎてスポーリング試験では18回で剥落し耐スポーリン性に問題があった。 In Examples 8 to 10, the amounts of mullite raw materials having a particle size of 0.2 mm or less were different, but all of them gave good results. On the other hand, Comparative Example 5 is a case where a mullite raw material having a particle size of 0.2 mm or less is not used, and although the compressive strength after firing is sufficient, 5 out of 10 bricks after firing have wall portions. Brick or chipping occurred on the edge. Further, in Comparative Example 6, the amount of the mullite raw material having a particle size of 0.2 mm or less used was 25% by mass, which exceeded the upper limit of the present invention, and the structure became too dense to be peeled off in 18 times in the spalling test to withstand spallin. There was a problem with sex.

実施例11はシリマナイト族鉱物としてカイヤナイトを、実施例12はシリマナイト族鉱物としてシリマナイトをそれぞれ使用した場合であるが、アンダルサイトを使用した場合と同様に良好な結果となった。 Example 11 was a case where cayanite was used as a sillimanite group mineral, and Example 12 was a case where sillimanite was used as a sillimanite group mineral. However, good results were obtained as in the case of using andalusite.

実施例13と実施例14は粒径0.2mm以下のコランダム含有原料として焼バンケツを使用した場合、実施例15は粒径0.2mm以下の原料として焼バンケツと合成ムライトとを、実施例16は粒径0.2mm以下の原料として焼バンケツと合成ムライトとアンダリュサイトを、併用した場合であるが、いずれも粒径0.2mm以下のムライト原料を単独で使用した場合と同様に、組織が緻密になり焼成後のれんがのボロツキや欠けもなく良好であった。 In Examples 13 and 14, when a baked banquet was used as a corundum-containing raw material having a particle size of 0.2 mm or less, in Example 15, a baked banquet and synthetic mullite were used as a raw material having a particle size of 0.2 mm or less, and Example 16 Is a case where a baked banquet, synthetic mullite, and andalusite are used in combination as raw materials having a particle size of 0.2 mm or less, but in each case, the structure is the same as when a mullite raw material having a particle size of 0.2 mm or less is used alone. It became dense and the bricks after firing were good without any rags or chips.

次に、実施例4及び実施例7と同じ耐火原料配合物を使用して図1において壁の厚みが15mm及び10mmのチェッカーれんがの製造を行ったところ、成形後及び焼成後の亀裂はなく良好であった。 Next, when the checkered bricks having wall thicknesses of 15 mm and 10 mm in FIG. 1 were produced using the same fire-resistant raw material formulations as in Examples 4 and 7, there were no cracks after molding and firing, which was good. Met.

Claims (3)

ムライト原料10〜50質量%、コランダム含有原料20〜60質量%、シリマナイト族鉱物としてアンダルサイト、カイアナイト、及びシリマナイトのうち1種又は2種以上10〜30質量%、及び粘土3〜20質量%からなり、ムライト原料、コランダム含有原料、アンダルサイト、カイアナイト、及び/又はシリマナイトのうち粒径0.2mm以下の原料が5〜20質量%である耐火原料配合物を混練後、成形し、乾燥、焼成する熱風炉用チェッカーれんがの製造方法。 From 10 to 50% by mass of mullite raw material, 20 to 60% by mass of corundum-containing raw material, 10 to 30% by mass of one or more of andalusite, caianite, and andalusite as silimanite minerals, and 3 to 20% by mass of clay. A mullite raw material, a corundum-containing raw material, andalusite, caianite, and / or a fire-resistant raw material mixture in which a raw material having a particle size of 0.2 mm or less is 5 to 20% by mass is kneaded, molded, dried, and baked. How to make checkered bricks for hot air furnaces. 前記粘土が10〜20質量%である請求項1に記載の熱風炉用チェッカーれんがの製造方法。 The method for producing a checkered brick for a hot air oven according to claim 1, wherein the clay is 10 to 20% by mass. 前記耐火原料配合物中のFeが1.5質量%以下、及びNaOが1.0質量%以下である請求項1又は請求項2に記載の熱風炉用チェッカーれんがの製造方法。 The method for producing a checkered brick for a hot air furnace according to claim 1 or 2, wherein Fe 2 O 3 in the fireproof raw material formulation is 1.5% by mass or less and Na 2 O is 1.0% by mass or less. ..
JP2016191694A 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens Active JP6754653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191694A JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191694A JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Publications (2)

Publication Number Publication Date
JP2018052776A JP2018052776A (en) 2018-04-05
JP6754653B2 true JP6754653B2 (en) 2020-09-16

Family

ID=61833756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191694A Active JP6754653B2 (en) 2016-09-29 2016-09-29 How to make checker bricks for hot air ovens

Country Status (1)

Country Link
JP (1) JP6754653B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236073B2 (en) * 2018-12-12 2023-03-09 株式会社ジェイテクトサーモシステム Refractory manufacturing method
CN111689766B (en) * 2020-06-16 2022-04-01 郑州市科源耐火材料有限公司 High-strength 310 lower nozzle brick and preparation method thereof
CN111747736A (en) * 2020-07-13 2020-10-09 马鞍山钢铁股份有限公司 Preparation method of complex-phase oxidation-resistant quenching-resistant chute support brick
CN112341177A (en) * 2020-09-28 2021-02-09 山东耐材集团鲁耐窑业有限公司 Corrosion-resistant compact lattice brick for upper part of coke oven regenerator and preparation method thereof
CN113105255A (en) * 2021-03-29 2021-07-13 北京金隅通达耐火技术有限公司 Preparation method of mullite heat-insulating refractory material with low heat conductivity
CN114524677A (en) * 2022-02-11 2022-05-24 上海皕涛耐火材料有限公司 Preparation method of high-alumina lightweight brick with high fire resistance, corrosion resistance and purity
CN116924781B (en) * 2023-08-14 2024-06-21 山东淄博沈淄耐火材料有限公司 High-temperature tin bath bottom brick for float glass production and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838619B2 (en) * 2006-04-04 2011-12-14 黒崎播磨株式会社 Alumina-silica brick for CDQ
CN102101780A (en) * 2010-12-30 2011-06-22 郑州市瑞沃耐火材料有限公司 Tough mullite bricks for warm air ducts
CN103373856B (en) * 2012-04-26 2015-05-20 郑州安耐克实业有限公司 High-stress-strain low-creepage high-thermal-shock-resistance refractory brick and manufacturing method thereof
JP6541535B2 (en) * 2015-09-29 2019-07-10 黒崎播磨株式会社 Alumina-silica brick

Also Published As

Publication number Publication date
JP2018052776A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6754653B2 (en) How to make checker bricks for hot air ovens
KR101552717B1 (en) Refractory composition for glass melting furnaces
JP2017065956A (en) Alumina-silica-based brick
JP2007277349A (en) Alumina-silica brick for cdq
US20140024520A1 (en) Shaped or unshaped refractory or kiln furniture composition
CN110028316B (en) Cordierite kiln furniture sagger and preparation method thereof
KR20100017174A (en) Refractory product for a checker work element of a glass furnace regenerator
CN102249655B (en) Ductile mullite brick for pipelines of hot blast stoves and manufacturing method thereof
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
CN107892581A (en) A kind of high-strength anti-rotten fused alumina zirconia honeycomb ceramic body and preparation method thereof
JP5608561B2 (en) Fireproof ceramic mixture, fireproof ceramic molded body formed by the mixture and use thereof
JP2013234092A (en) Cast refractory
JP2011057536A (en) Spinel refractory
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP4787310B2 (en) Lifter
JP4612331B2 (en) Refractory material for float bath and float bath
JP6266968B2 (en) Blast furnace hearth lining structure
CN104692628B (en) A kind of AZC checker brick and its preparation method and the regenerative chamber using checker brick arrangement
JP6215111B2 (en) Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace
JP3620058B2 (en) Thermal storage refractory brick for coke oven thermal storage room
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JP6752027B2 (en) Chamotte quality brick and its manufacturing method
Zhang et al. Research on application of kyanite in plastic refractory
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250