JP6752027B2 - Chamotte quality brick and its manufacturing method - Google Patents

Chamotte quality brick and its manufacturing method Download PDF

Info

Publication number
JP6752027B2
JP6752027B2 JP2016034660A JP2016034660A JP6752027B2 JP 6752027 B2 JP6752027 B2 JP 6752027B2 JP 2016034660 A JP2016034660 A JP 2016034660A JP 2016034660 A JP2016034660 A JP 2016034660A JP 6752027 B2 JP6752027 B2 JP 6752027B2
Authority
JP
Japan
Prior art keywords
chamotte
mass
peak intensity
brick
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016034660A
Other languages
Japanese (ja)
Other versions
JP2017149617A (en
Inventor
雄也 冨田
雄也 冨田
翔 鈴木
翔 鈴木
田中 雅人
雅人 田中
初男 平
初男 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2016034660A priority Critical patent/JP6752027B2/en
Publication of JP2017149617A publication Critical patent/JP2017149617A/en
Application granted granted Critical
Publication of JP6752027B2 publication Critical patent/JP6752027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種窯炉、工業炉に使用されるアルミナ−シリカ系の耐火れんが、すなわちシャモット質れんがに関する。 The present invention relates to alumina-silica refractory bricks used in various kilns and industrial furnaces, that is, chamotte-quality bricks.

シャモット質れんがは、焼成された耐火粘土を原料とするれんがで粘土質れんがとも言われ、一般に化学組成としてAlを20〜50質量%程度、SiOを50〜80質量%程度含有し、鉱物組成はムライト、クリストバライト及びガラス相である。また、JIS R 2304では品質によって12種類に区分されている。 Chamotte bricks are bricks made from fire-resistant clay that has been fired and are also called clay bricks. Generally, they contain about 20 to 50% by mass of Al 2 O 3 and about 50 to 80% by mass of SiO 2 as chemical compositions. , Mineral composition is mullite, critobarite and glass phase. Moreover, in JIS R 2304, it is classified into 12 types according to quality.

このシャモット質れんがは安価であることから、熱風炉、焼却炉、カーボンブラック炉、塩化炉などの各種窯炉、工業炉に広く使用されている。ところが、シャモット質れんがは安価である反面、見掛け気孔率が15〜26%程度と高く、またSiOを約50質量%以上含有することから耐用性が低い場合もあり、改善も検討されている。 Since this chamotte brick is inexpensive, it is widely used in various kilns such as hot air furnaces, incinerators, carbon black furnaces, and chloride furnaces, and industrial furnaces. However, while chamotte bricks are inexpensive, they have a high apparent porosity of about 15 to 26%, and because they contain about 50% by mass or more of SiO 2 , their durability may be low, and improvement is also being considered. ..

例えば特許文献1には、板ガラスの製造法の一つである大型の錫又は錫合金浴によるフロート法に用いられるフロートバス底部用耐火れんが(シャモット質れんが)の課題として、「板ガラス中に含まれるアルカリ(NaOとKO)はフロートバス底部用耐火れんがに作用して耐火れんがの表面を変質させ、れんがの性能の一つである耐火度を低下させる。ガラスの品質向上のための、操業温度の上昇に伴なう熱負荷により、耐火れんがの表面を発泡させる溶損現象がしばしば観察される。さらに、耐火れんがの表面を一定の厚みで剥離させるフレーキング現象も同時に見られる。」と記載されている(特許文献1の段落0005参照)。そして、この課題を解決するための手段として特許文献1には、「本質的にAlを35〜50重量%含有し、NaOとKOの合量が1重量%以下であるSiO−Al系耐火れんがからなるフロートバス底部用耐火れんがにおいて、粒径90μm以下の微粉領域におけるNaOとKOの合量が1重量%以下である配合物を混練、成形、焼成してなることを特徴とするフロートバス底部用耐火れんが。」が開示されている。この特許文献1によると、マトリックス部のアルカリ量が少ないため、ガラス中のNaO成分が耐火れんがに浸透した際に、通常使用されているれんがと比べてれんが中のアルカリ量が少ないため、溶損現象を防止する働きがあるとされている。 For example, Patent Document 1 states that "refractory bricks for the bottom of float baths (chamot quality bricks) used in the float method using a large tin or tin alloy bath, which is one of the methods for producing flat glass, are included in the flat glass. Alkali (Na 2 O and K 2 O) act on the refractory bricks for the bottom of the float bath to change the surface of the refractory bricks and reduce the fire resistance, which is one of the performances of the bricks. For improving the quality of glass. The melting damage phenomenon that foams the surface of the refractory brick due to the heat load accompanying the rise in the operating temperature is often observed. Furthermore, the flaking phenomenon that peels off the surface of the refractory brick to a certain thickness is also observed at the same time. (See paragraph 0005 of Patent Document 1). As a means for solving this problem, Patent Document 1 states that "essentially, Al 2 O 3 is contained in an amount of 35 to 50% by weight, and the total amount of Na 2 O and K 2 O is 1% by weight or less. In a refractory brick for the bottom of a float bath made of a certain SiO 2- Al 2 O 3 refractory brick, a compound in which the total amount of Na 2 O and K 2 O in a fine powder region having a particle size of 90 μm or less is 1% by weight or less is kneaded. , A refractory brick for the bottom of a float bath, characterized by being molded and fired. " According to this Patent Document 1, since the amount of alkali in the matrix portion is small, when the Na 2 O component in the glass permeates into the refractory brick, the amount of alkali in the brick is smaller than that in the commonly used brick. It is said to have a function to prevent the erosion phenomenon.

しかし、この特許文献1の手段によりある程度の改善効果は得られるものの、特許文献1のフロートバス底部用耐火れんが(シャモット質れんが)は見掛け気孔率が約16〜20質量%もあるため(特許文献1の表3参照)、れんが組織中へのアルカリ成分の浸透による溶損やフレーキング現象は依然として未解決のままで、れんがの損耗の主要因となっているのが実状である。 However, although some improvement effect can be obtained by the means of Patent Document 1, the fire-resistant brick (chamotte-quality brick) for the bottom of the float bath of Patent Document 1 has an apparent porosity of about 16 to 20% by mass (Patent Document). (See Table 3 in 1), the melting damage and flaking phenomenon due to the permeation of the alkaline component into the brick tissue remain unsolved, and the actual situation is that it is the main cause of the wear of the brick.

また特許文献2には、従来の技術として、塩化炉においてシャモット質れんが又は溶融シリカ質れんがが使用されているが、見掛け気孔率が10〜15%であるため、気孔に沿って塩素ガスがれんが内に侵入し組織脆弱化を起したり、内張耐火物と炉内反応生成物との摩耗を生じ、れんがの損傷が大きく、短命となる旨が記載されている。これに対して、特許文献2ではSiO99.0%以上の溶融シリカ質れんがの改善が提案されているが、そもそも溶融シリカ質れんがはシャモット質れんがに比べ高価であるため、シャモット質れんがの改善が望まれている。 Further, in Patent Document 2, as a conventional technique, chamotte brick or molten silica brick is used in a chlorination furnace, but since the apparent porosity is 10 to 15%, chlorine gas brick is used along the pores. It is stated that it invades the inside and causes tissue weakening, wears the refractory lining and the reaction product in the furnace, and causes great damage to the bricks, resulting in a short life. On the other hand, Patent Document 2 proposes an improvement of SiO 2 99.0% or more of molten silica brick, but since molten silica brick is more expensive than chamotte brick in the first place, chamotte brick is used. Improvement is desired.

また、熱風炉やコークス炉の蓄熱れんがとしてもシャモット質れんがが使用されているが、近年、伝熱面積の大きな蓄熱れんがの製造のために壁の厚みの薄いれんがが要望されており、この点からもシャモット質れんがの改善、すなわちシャモット質れんがの耐用性向上が望まれている。 Chamotte bricks are also used as heat storage bricks in hot air furnaces and coke furnaces. In recent years, there has been a demand for bricks with thin walls for the production of heat storage bricks with a large heat transfer area. Therefore, improvement of chamotte-quality bricks, that is, improvement of durability of chamotte-quality bricks is desired.

特開2003−277134号公報Japanese Unexamined Patent Publication No. 2003-277134 特公平5−47503号公報Tokusei No. 5-47503

本発明が解決しようとする課題は、シャモット質れんがの耐用性を向上することにある。 An object to be solved by the present invention is to improve the durability of chamotte bricks.

本発明者らは、シャモット質れんがの耐用性を向上するためには、組織を緻密化すなわち見掛け気孔率を小さくすることが有効と考えて種々検討した結果、焼成後のれんが中のムライトとクリストバライトの量比を適正範囲とすることで見掛け気孔率が大幅に低くなり、耐用性が格段に向上することを知見した。 The present inventors considered that it is effective to densify the structure, that is, reduce the apparent porosity, in order to improve the durability of chamotte bricks. As a result of various studies, mullite and cristobalite in the bricks after firing It was found that the apparent porosity was significantly reduced and the durability was significantly improved by setting the amount ratio of the above to the appropriate range.

すなわち、本発明によれば以下のシャモット質れんが及びその製造方法が提供される。
1.
Al41.7〜48質量%、SiOを50〜58.3質量%含有し、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8で、見掛け気孔率が10%以下であるシャモット質れんが。
2.
Al を34〜48質量%、SiO を50〜53.7質量%含有し、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8で、見掛け気孔率が10%以下であるシャモット質れんが。
3.
シャモットを85質量%以上97質量%以下及び粘土を3質量%以上15質量%以下含有する耐火原料配合物を混練し、成形後、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8となる条件で焼成する、シャモット質れんがの製造方法。
4.
シャモットは、Al とSiO の合量が92質量%以上、かつFe 、Na O及びK Oの合量が2質量%以下のものを使用する、前記3に記載のシャモット質れんがの製造方法。
5.
耐火原料配合物の、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が1.0以上である、前記3又は4に記載のシャモット質れんがの製造方法。
That is, according to the present invention, the following chamotte bricks and a method for producing the same are provided.
1. 1.
It contains 41.7 to 48% by mass of Al 2 O 3 and 50 to 58.3 % by mass of SiO 2, and has the (110) plane peak intensity of cristobalite with respect to the (210) plane peak intensity of mullite in powder X-ray diffraction. Chamotte bricks with a ratio of 0.01 to 0.8 and an apparent porosity of 10% or less.
2. 2.
It contains 34 to 48 % by mass of Al 2 O 3 and 50 to 53.7% by mass of SiO 2, and the ratio of the (110) plane peak intensity of cristobalite to the (210) plane peak intensity of mullite in powder X-ray diffraction is Chamotte bricks with an apparent porosity of 10% or less between 0.01 and 0.8.
3.
A fire-resistant raw material compound containing 85% by mass or more and 97% by mass or less of chamotte and 3% by mass or more and 15% by mass or less of clay is kneaded, and after molding, cristobalite with respect to the (210) plane peak intensity of mullite in powder X-ray diffraction. A method for producing chamotte-quality bricks, which is fired under the condition that the ratio of (110) plane peak intensities is 0.01 to 0.8.
4.
The chamotte is described in 3 above, wherein the total amount of Al 2 O 3 and SiO 2 is 92% by mass or more, and the total amount of Fe 2 O 3 , Na 2 O and K 2 O is 2% by mass or less. How to make chamotte quality bricks.
5.
The chamotte brick according to 3 or 4 above, wherein the ratio of the (110) plane peak intensity of cristobalite to the (110) plane peak intensity of mullite in powder X-ray diffraction of the fireproof raw material compound is 1.0 or more. Production method.

以下、本発明の技術的特徴を詳しく説明する。 Hereinafter, the technical features of the present invention will be described in detail.

シャモット質れんがの原料であるシャモットは、粘土鉱物を主な造岩鉱物とするカオリンなどの鉱石を焼成することで得られ、ムライト、クリストバライトが主な構成鉱物であり、微量のガラスを含んでいる。本発明は、このクリストバライト及び元々含まれるガラスが焼成時に溶融することでガラス相を生成し、開放気孔を密閉化してれんがを緻密化するという新たな知見に基づくものである。 Chamotte The chamotte, which is the raw material for bricks, is obtained by firing ores such as kaolin, whose main rock-forming mineral is clay mineral. Mullite and cristobalite are the main constituent minerals, and it contains a small amount of glass. .. The present invention is based on a new finding that the cristobalite and the originally contained glass melt during firing to form a glass phase, which seals open pores and densifies bricks.

クリストバライトがガラス化すると粉末X線回析におけるピーク強度は低くなる。一方、ムライトの融点は約1850℃と高く、シャモット質れんがの焼成温度範囲ではガラス化することはないので、粉末X線回析におけるピーク強度はほぼ変化しない。したがって、クリストバライトのガラス化の進行度はこれら鉱物のピーク強度比で表現できる。そこで本発明では、両鉱物において最も強いピーク強度を示す、ムライトの(210)面、クリストバライトの(110)面のピーク強度比(「クリストバライトの(110)面ピーク強度/ムライトの(210)面ピーク強度」)をもってクリストバライトのガラス化の程度を表した。 When cristobalite is vitrified, the peak intensity in powder X-ray diffraction decreases. On the other hand, since the melting point of mullite is as high as about 1850 ° C. and vitrification does not occur in the firing temperature range of chamotte bricks, the peak intensity in powder X-ray diffraction does not change. Therefore, the progress of vitrification of cristobalite can be expressed by the peak intensity ratio of these minerals. Therefore, in the present invention, the peak intensity ratio of the (210) plane of mullite and the (110) plane of cristobalite, which shows the strongest peak intensities in both minerals (“Cristobalite (110) plane peak intensity / mullite (210) plane peak” "Strength") indicates the degree of vitrification of cristobalite.

この粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比(「クリストバライトの(110)面ピーク強度/ムライトの(210)面ピーク強度」、以下、単に「ピーク強度比」という。)は、シャモット質れんがを緻密化して耐用性を向上するには、焼成後において0.01〜0.8の範囲とする必要がある。すなわち、ピーク強度比が0.8を超えると見掛け気孔率が高くなり耐用性の向上効果が小さくなる。一方、ピーク強度比が0.01を下回ると、焼成して生成したガラス相が発泡し、れんがの表面性状が悪化するだけでなく、寸法精度が悪く製品歩留りが大幅に低下する。さらに見掛け気孔率も上昇傾向となる。なお、焼成によって緻密化するためには焼成前の耐火原料配合物のピーク強度比が小さすぎると緻密化が不十分となるため、耐火原料配合物のピーク強度比は1.0以上とすることができる。 The ratio of the (110) plane peak intensity of cristobalite to the (210) plane peak intensity of mullite in this powder X-ray diffraction (“Cristobalite (110) plane peak intensity / mullite (210) plane peak intensity”, hereinafter simply The “peak intensity ratio”) needs to be in the range of 0.01 to 0.8 after firing in order to densify the chamotte-quality bricks and improve their durability. That is, when the peak intensity ratio exceeds 0.8, the apparent porosity becomes high and the effect of improving the durability becomes small. On the other hand, when the peak intensity ratio is less than 0.01, the glass phase produced by firing foams, and not only the surface texture of the brick is deteriorated, but also the dimensional accuracy is poor and the product yield is significantly lowered. Furthermore, the apparent porosity also tends to increase. If the peak intensity ratio of the fire-resistant raw material compound before firing is too small for densification by firing, the densification will be insufficient. Therefore, the peak intensity ratio of the fire-resistant raw material compound should be 1.0 or more. Can be done.

ここで、クリストバライトのガラス化を進行させる方法としては、焼成温度の上昇や焼成時間の延長が考えられるが、従来は過度な焼成は焼成収縮が進行するため望ましくないと言われてきた。しかし、本発明のシャモット質れんがでは現行よりも焼成収縮が著しく進行するような現象は認められず、逆に焼成収縮が小さくなる現象も認められた。これは鉱物相が溶融してガラス相になり体積が増大した効果と推定している。いずれにしても、焼成温度の上昇や焼成時間の延長によって焼成収縮が著しく進行するような現象は認められず、逆に焼成収縮が小さくなるという現象は、従来の技術常識からは予想できない現象である。 Here, as a method for advancing the vitrification of cristobalite, an increase in the calcination temperature or an extension of the calcination time can be considered, but it has been conventionally said that excessive calcination is not desirable because the calcination shrinks. However, in the chamotte brick of the present invention, the phenomenon that the calcination shrinkage progresses more significantly than the present one is not observed, and conversely, the phenomenon that the calcination shrinkage becomes smaller is also observed. It is estimated that this is the effect of melting the mineral phase into a glass phase and increasing the volume. In any case, the phenomenon that the firing shrinkage progresses remarkably due to the rise in the firing temperature or the extension of the firing time is not observed, and conversely, the phenomenon that the firing shrinkage becomes smaller is a phenomenon that cannot be predicted from the conventional common general knowledge. is there.

すなわち、本発明はクリストバライトのガラス化を適度に進行させて緻密化を図るという新たな技術的思想のもと、見掛け気孔率が10%以下という緻密なシャモット質れんがを提供するものであり、これにより、シャモット質れんがの耐アルカリ浸食性などの耐用性を大幅に向上することができる。 That is, the present invention provides a fine chamotte-quality brick having an apparent porosity of 10% or less, based on a new technical idea of appropriately advancing the vitrification of cristobalite to achieve densification. As a result, the durability of chamotte bricks such as alkali erosion resistance can be significantly improved.

また、本発明のシャモット質れんがは、基本的な化学組成として、Alを34〜48質量%、SiOを50〜65質量%含有する。Alが34質量%未満では耐アルカリ浸食性などの耐用性が不十分となり、48質量%を超えるとれんがの熱膨張が大きくなり過ぎる。また、SiOが55質量%未満では相対的にAlが多くなり過ぎれんがの熱膨張が大きくなり、SiOが65質量%を超えると耐アルカリ浸食性などの耐用性が不十分となる。なお、AlとSiOの含有量の合計は90〜99質量%であることが好ましい。 Further, the chamotte brick of the present invention contains 34 to 48% by mass of Al 2 O 3 and 50 to 65% by mass of SiO 2 as a basic chemical composition. If Al 2 O 3 is less than 34% by mass, durability such as alkali erosion resistance becomes insufficient, and if it exceeds 48% by mass, the thermal expansion of brick becomes too large. Further, when SiO 2 is less than 55% by mass, Al 2 O 3 is relatively excessive and the thermal expansion of bricks becomes large, and when SiO 2 exceeds 65% by mass, durability such as alkali erosion resistance is insufficient. Become. The total content of Al 2 O 3 and SiO 2 is preferably 90 to 99% by mass.

次に、本発明のシャモット質れんがの製造方法を説明する。 Next, the method for producing the chamotte brick of the present invention will be described.

本発明のシャモット質れんがの製造方法において、主原料としてはシャモットを使用するが、具体的にシャモットは耐火原料配合物中に85質量%以上97質量%以下とすることができる。85質量%未満では緻密な組織が得られ難くなり、97質量%を超えると結合が不十分となり十分な強度が得られ難くなる。シャモットは、耐アルカリ侵食性等でより高い耐用性を確保するためには、AlとSiOの合量が92質量%以上、かつFe、NaO及びKOの合量が2質量%以下のものを使用することが好ましい。 In the method for producing chamotte-quality brick of the present invention, chamotte is used as the main raw material. Specifically, the chamotte can be 85% by mass or more and 97% by mass or less in the fireproof raw material formulation. If it is less than 85% by mass, it becomes difficult to obtain a dense structure, and if it exceeds 97% by mass, the bond becomes insufficient and it becomes difficult to obtain sufficient strength. In order to ensure higher durability such as alkali erosion resistance, the chamotte has a total amount of Al 2 O 3 and SiO 2 of 92% by mass or more, and Fe 2 O 3 , Na 2 O and K 2 O. It is preferable to use one having a total amount of 2% by mass or less.

このほかに、ろう石、アンダリュサイト、シリマナイト、カイヤナイト等の各種SiO−Al系原料を10質量%以下(0を含む)で使用できる。結合剤としては粘土である、木節粘土、蛇目粘土、カオリン、ろう石、タルク等が使用でき、3質量%以上15質量%以下とすることができる。また、増粘剤としてリグニンスルホン酸塩などを少量併用してもよい。従来不純物とみなされるシャモットや粘土中のアルカリ酸化物や鉄分なども、前述のガラス生成を助長する効果があるため、本発明ではこれらの含有量を制限する必要はない。 Besides this, pyrophyllite, can be used in the under Ryu site, sillimanite, various SiO 2, such as kyanite -Al 2 O 3 based material and 10 mass% or less (including 0). As the binder, clays such as wood knot clay, serpentine clay, kaolin, pyrophyllite, and talc can be used, and the content can be 3% by mass or more and 15% by mass or less. In addition, a small amount of lignin sulfonate or the like may be used in combination as a thickener. Alkaline oxides and iron in chamotte and clay, which are conventionally regarded as impurities, also have the effect of promoting the above-mentioned glass formation, and therefore, it is not necessary to limit their contents in the present invention.

本発明のシャモット質れんがは、上記の原料からなる耐火原料配合物に水分を添加して混練し、成形後、焼成することで製造される。混練及び成形については通常のシャモット質れんがの製造方法に準じて行えばよいが、焼成については、前述のピーク強度比が0.01〜0.8の範囲になるように、昇温速度、焼成温度、及び焼成時間をコントールする。具体的には、焼成温度は1400〜1650℃の範囲、焼成時間は5〜10時間の範囲とすることができる。 The chamotte brick of the present invention is produced by adding water to a fire-resistant raw material compound made of the above-mentioned raw materials, kneading the brick, molding the brick, and firing the brick. Kneading and molding may be carried out according to a normal method for producing chamotte bricks, but for firing, the temperature rise rate and firing so that the above-mentioned peak intensity ratio is in the range of 0.01 to 0.8. Control the temperature and firing time. Specifically, the firing temperature can be in the range of 1400 to 1650 ° C., and the firing time can be in the range of 5 to 10 hours.

本発明のシャモット質れんがは、見掛け気孔率が10%以下と緻密であることから、耐アルカリ浸食性などの耐用性を向上することができる。例えば、前述のフロートバス等の耐アルカリ浸食性が要求される容器の耐用性向上に貢献できる。さらに、ガラス溶解炉、焼却炉、塩化炉等のようなガスや液体の侵入による浸食が損傷要因である場合にも各段に高い耐用性を示す。また、組織が緻密で強度が高いことから熱風炉やコークス炉の蓄熱用れんがとしても耐用性を改善できる。 Since the chamotte brick of the present invention has an apparent porosity of 10% or less, it is possible to improve durability such as alkali erosion resistance. For example, it can contribute to improving the durability of a container such as the above-mentioned float bath, which is required to have alkali erosion resistance. Furthermore, even when erosion due to intrusion of gas or liquid such as a glass melting furnace, an incinerator, a chlorination furnace, etc. is a damage factor, it exhibits high durability in each stage. In addition, since the structure is dense and the strength is high, the durability can be improved even as a heat storage brick in a hot air furnace or a coke oven.

以下、実施例に基づき本発明の実施の形態を説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described based on examples. The present invention is not limited to these examples.

表1に示す耐火原料配合物に水を適量添加して混練し、オイルプレスによって230mm×114mm×100mmの形状に成形後、最高温度110℃で5時間保持の熱処理(乾燥処理)を施した後に、シャトルキルンで焼成して試料を得た。これから物性測定用試料を切り出して見掛け気孔率及び圧縮強さを測定した。さらに、耐アルカリ浸食性を評価した。使用した原料の化学組成は表2のとおりである。 An appropriate amount of water is added to the fire-resistant raw material formulation shown in Table 1, kneaded, molded into a shape of 230 mm × 114 mm × 100 mm by an oil press, and then heat-treated (drying) at a maximum temperature of 110 ° C. for 5 hours. , A sample was obtained by firing in a shuttle kiln. From this, a sample for measuring physical properties was cut out and the apparent porosity and compressive strength were measured. Furthermore, the alkali erosion resistance was evaluated. The chemical composition of the raw materials used is shown in Table 2.

Figure 0006752027
Figure 0006752027

Figure 0006752027
Figure 0006752027

見掛け気孔率は、形状50×50×50mmの試料を用い、溶媒を白灯油としJIS R 2205に準拠して測定した。この見掛け気孔率が低いほど、れんがは緻密であり、耐用性向上に有効と判断される。 The apparent porosity was measured in accordance with JIS R 2205 using a sample having a shape of 50 × 50 × 50 mm and using white kerosene as a solvent. The lower the apparent porosity, the denser the brick, and it is judged that it is effective in improving the durability.

圧縮強さは、形状50×50×50mmの試料を用い、JIS R 2206に準拠して測定した。一応の目安として100MPa以上を達成することを目標とした。 The compressive strength was measured according to JIS R 2206 using a sample having a shape of 50 × 50 × 50 mm. As a tentative guide, we aimed to achieve 100 MPa or more.

耐アルカリ浸食性は、形状114×114×65mmの試料を用い、水酸化ナトリウム30%水溶液を10mL添加したアルカリ溶液に試料を浸漬し、1100℃で24時間加熱した後、試料の変質層の厚みを測定し評価した。結果は表1の「比較例1」の変質層厚みの逆数を100とする指数で表示した。この指数は数値が大きいほど耐アルカリ浸食性が優れていることを示す。 For alkali erosion resistance, a sample having a shape of 114 × 114 × 65 mm was used, the sample was immersed in an alkaline solution containing 10 mL of a 30% aqueous solution of sodium hydroxide, heated at 1100 ° C. for 24 hours, and then the thickness of the altered layer of the sample. Was measured and evaluated. The results are shown as an index with the reciprocal of the altered layer thickness of "Comparative Example 1" in Table 1 as 100. The larger the value of this index, the better the alkali erosion resistance.

また、焼成を完了した各例のれんがを適量微粉砕し、粉末X線回折法によりムライトの(210)面ピーク強度とクリストバライトの(110)面ピーク強度を計測して、ピーク強度比を算出した。X線源はCuKα線を用い、管電圧は45kV、管電流は200mAとした。 In addition, the bricks of each example after firing were finely pulverized in an appropriate amount, and the (210) plane peak intensity of mullite and the (110) plane peak intensity of cristobalite were measured by powder X-ray diffraction method to calculate the peak intensity ratio. .. CuKα rays were used as the X-ray source, the tube voltage was 45 kV, and the tube current was 200 mA.

表1中、比較例1、2は焼成温度(焼成の最高温度)を1380℃、焼成時間(保持時間)を5時間、10時間として焼成したものであり、ピーク強度比は1.3前後の高い値を示し、見掛け気孔率は14.8%、14.1%と高くなった。 In Table 1, Comparative Examples 1 and 2 were fired with the firing temperature (maximum firing temperature) at 1380 ° C. and the firing time (holding time) at 5 hours and 10 hours, with a peak intensity ratio of around 1.3. It showed a high value, and the apparent porosity was as high as 14.8% and 14.1%.

一方、実施例1〜7は、比較例1と同じ配合割合において焼成温度、焼成時間を変化させたものである。実施例1は1400℃で10時間保持したものであるが、ピーク強度比が0.79と低くなり、見掛け気孔率が大幅に低減され9.8%を達成し、耐アルカリ浸食性も向上した。実施例2、3、5、6、は焼成温度を上昇させ、焼成時間を5時間としたものであるが、ピーク強度比は一層小さい値を示し、焼成温度を上げるに伴い見掛け気孔率が低減されて耐アルカリ浸食性も向上していくことが確認された。 On the other hand, in Examples 1 to 7, the firing temperature and the firing time were changed at the same blending ratio as in Comparative Example 1. In Example 1, the temperature was maintained at 1400 ° C. for 10 hours, but the peak intensity ratio was as low as 0.79, the apparent porosity was significantly reduced, achieved 9.8%, and the alkali erosion resistance was also improved. .. In Examples 2, 3, 5, and 6, the firing temperature was raised and the firing time was set to 5 hours, but the peak intensity ratio showed a smaller value, and the apparent porosity decreased as the firing temperature was raised. It was confirmed that the alkali erosion resistance was also improved.

実施例4、7は各焼成温度で焼成時間を10時間としたものであるが、それぞれ実施例3、6と比較してピーク強度比が小さく、見掛け気孔率が低減されることが認められた。ガラス生成による緻密化がより一層進行した効果と推定される。 In Examples 4 and 7, the firing time was set to 10 hours at each firing temperature, but it was confirmed that the peak intensity ratio was smaller and the apparent porosity was reduced as compared with Examples 3 and 6, respectively. .. It is presumed that the effect of densification due to glass formation is further advanced.

実施例8は粘土が多いタイプ、実施例9は粘土が少ないタイプであるが、それぞれ緻密な組織となり耐アルカリ浸食性も良好だった。 Example 8 is a type with a large amount of clay, and Example 9 is a type with a small amount of clay, but each has a dense structure and good alkali erosion resistance.

実施例10はAl含有量とSiO含有量の合量が低く、アルカリ酸化物、酸化鉄の含有量が高い原料(シャモットB)を使用したものであるが、焼成条件が同じである実施例5と比較してピーク強度比が小さく、見掛け気孔率が低く、耐アルカリ浸食性も向上した。これらから本発明の効果は化学組成が本発明の範囲内にあれば十分に発現されると言える。 Example 10 uses a raw material (chamot B) having a low sum of Al 2 O 3 content and SiO 2 content and a high content of alkali oxide and iron oxide, but the firing conditions are the same. Compared with a certain Example 5, the peak intensity ratio was small, the apparent porosity was low, and the alkali erosion resistance was also improved. From these, it can be said that the effect of the present invention is sufficiently exhibited if the chemical composition is within the range of the present invention.

比較例3は1700℃で10時間焼成したものであるが、ピーク強度比が0となっており、焼成中に生成したガラス相が発泡し、れんがの表面に突起物が生成し、しかもれんがが膨張した。このようにピーク強度比が0になると、寸法精度が悪くなり製品歩留りが大幅に低下するので、実用性がない。また見掛け気孔率は低いものの、1650℃焼成(実施例7)と比較すると高くなっている。 Comparative Example 3 was fired at 1700 ° C. for 10 hours, but the peak intensity ratio was 0, the glass phase formed during firing was foamed, protrusions were formed on the surface of the brick, and the brick was Inflated. When the peak intensity ratio becomes 0 in this way, the dimensional accuracy is deteriorated and the product yield is significantly lowered, which is not practical. Although the apparent porosity is low, it is higher than that of firing at 1650 ° C. (Example 7).

Claims (5)

Al41.7〜48質量%、SiOを50〜58.3質量%含有し、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8で、見掛け気孔率が10%以下であるシャモット質れんが。 It contains 41.7 to 48% by mass of Al 2 O 3 and 50 to 58.3 % by mass of SiO 2, and has the (110) plane peak intensity of cristobalite with respect to the (210) plane peak intensity of mullite in powder X-ray diffraction. Chamotte bricks with a ratio of 0.01 to 0.8 and an apparent porosity of 10% or less. Alを34〜48質量%、SiOを50〜53.7質量%含有し、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8で、見掛け気孔率が10%以下であるシャモット質れんが。 It contains 34 to 48% by mass of Al 2 O 3 and 50 to 53.7 % by mass of SiO 2, and the ratio of the (110) plane peak intensity of cristobalite to the (210) plane peak intensity of mullite in powder X-ray diffraction is Chamotte bricks with an apparent porosity of 10% or less between 0.01 and 0.8. シャモットを85質量%以上97質量%以下及び粘土を3質量%以上15質量%以下含有する耐火原料配合物を混練し、成形後、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が0.01〜0.8となる条件で焼成する、シャモット質れんがの製造方法。 A fire-resistant raw material compound containing 85% by mass or more and 97% by mass or less of chamotte and 3% by mass or more and 15% by mass or less of clay is kneaded, and after molding, cristobalite with respect to the (210) plane peak intensity of mullite in powder X-ray diffraction. A method for producing chamotte-quality bricks, which is fired under the condition that the ratio of (110) plane peak intensities is 0.01 to 0.8. シャモットは、Al Chamotte is Al Two O Three とSiOAnd SiO Two の合量が92質量%以上、かつFeThe total amount of is 92% by mass or more and Fe Two O Three 、Na, Na Two O及びKO and K Two Oの合量が2質量%以下のものを使用する、請求項3に記載のシャモット質れんがの製造方法。The method for producing chamotte brick according to claim 3, wherein a brick having a total amount of O of 2% by mass or less is used. 耐火原料配合物の、粉末X線回析におけるムライトの(210)面ピーク強度に対するクリストバライトの(110)面ピーク強度の比が1.0以上である、請求項3又は4に記載のシャモット質れんがの製造方法。 The chamotte brick according to claim 3 or 4, wherein the ratio of the (110) plane peak intensity of cristobalite to the (110) plane peak intensity of mullite in powder X-ray diffraction of the fireproof raw material compound is 1.0 or more. Manufacturing method.
JP2016034660A 2016-02-25 2016-02-25 Chamotte quality brick and its manufacturing method Active JP6752027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034660A JP6752027B2 (en) 2016-02-25 2016-02-25 Chamotte quality brick and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034660A JP6752027B2 (en) 2016-02-25 2016-02-25 Chamotte quality brick and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017149617A JP2017149617A (en) 2017-08-31
JP6752027B2 true JP6752027B2 (en) 2020-09-09

Family

ID=59739392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034660A Active JP6752027B2 (en) 2016-02-25 2016-02-25 Chamotte quality brick and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6752027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230141B (en) * 2021-12-29 2023-08-15 江苏诺明高温材料股份有限公司 High erosion resistance lip brick for glass kiln and preparation method thereof

Also Published As

Publication number Publication date
JP2017149617A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
KR101552717B1 (en) Refractory composition for glass melting furnaces
JP6754653B2 (en) How to make checker bricks for hot air ovens
JP5850571B2 (en) Basic brick
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
WO1995015932A1 (en) Chromium-free brick
JP6386801B2 (en) Alumina fusion cast refractory and method for producing the same
JP6752027B2 (en) Chamotte quality brick and its manufacturing method
JP5608561B2 (en) Fireproof ceramic mixture, fireproof ceramic molded body formed by the mixture and use thereof
JP6624133B2 (en) Manufacturing method of magnesia-spinel fired brick
CN102992788A (en) Baking-free refractory brick specially for lined heat-insulating layer of rotary kiln and method for preparing same
US3262795A (en) Basic fused refractory
WO2020008653A1 (en) Chromia-based brick
JPH04310570A (en) Production of refractory for blast furnace
JP2017206414A (en) Method for producing alumina-chromia fired brick
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JPH07300361A (en) Refractory bricks
US2062962A (en) Insulating casting
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP6412646B2 (en) Brick for hearth of hot metal production furnace
JP4960541B2 (en) Magnesia-alumina-titania brick
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JP2015067457A (en) Magnesia-based brick
JP2015193510A (en) MgO-TiO2-NiO CLINKER AND BURNT BASIC BRICK USING THE SAME
JPH0741358A (en) Magnesia-dolomite brick and production thereof
JP6354807B2 (en) Cast refractories for blast furnace main slag line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250