JP2010139100A - Refractory material for heat treatment furnace - Google Patents

Refractory material for heat treatment furnace Download PDF

Info

Publication number
JP2010139100A
JP2010139100A JP2008313324A JP2008313324A JP2010139100A JP 2010139100 A JP2010139100 A JP 2010139100A JP 2008313324 A JP2008313324 A JP 2008313324A JP 2008313324 A JP2008313324 A JP 2008313324A JP 2010139100 A JP2010139100 A JP 2010139100A
Authority
JP
Japan
Prior art keywords
refractory
lifter
rotary kiln
sic
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008313324A
Other languages
Japanese (ja)
Other versions
JP4787310B2 (en
Inventor
Toshiharu Kinoshita
寿治 木下
Tsuneo Komiyama
常夫 古宮山
Masaaki Hasegawa
雅章 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2008313324A priority Critical patent/JP4787310B2/en
Publication of JP2010139100A publication Critical patent/JP2010139100A/en
Application granted granted Critical
Publication of JP4787310B2 publication Critical patent/JP4787310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refractory material for a heat treatment furnace having proper heat conductivity and strength to be disposed near outer flame of a burner. <P>SOLUTION: This refractory material for the heat treatment furnace composed of a refractory 4 including SiC by 50% or more, and having a ratio of a longitudinal length (A) of a rotary kiln and a centrally-directed length (a) of the rotary kiln of a/A=0.5 or more, has a bulldozing structure formed by continuously disposing the plurality of refractory pieces in the longitudinal direction of the rotary kiln. Preferably, two or more arrays of the plurality of refractory pieces continuously arranged, are disposed in parallel with each other, and the refractory preferably has any of the circular cylindrical shape, triangular cylindrical shape, quadrangular cylindrical shape, pentagonal cylindrical shape and hexagonal cylindrical shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は熱処理炉用耐火材に関するものである。   The present invention relates to a refractory material for a heat treatment furnace.

セメント工場やパルプ工場で熱処理用に使用される従来のロータリーキルンにおいては、円筒状のシェルの内面に耐火壁を内張すると共に、内周面に沿ってリフターと呼ばれる突起状の構造部材を設け、炉内に投入された被焼成物を回転させながら燃焼バーナーによって加熱する処理を行っている。ロータリーキルンにリフターを設けることにより、攪拌効率が上昇し、熱効率が改善する等の有利な効果を得ることができる。   In a conventional rotary kiln used for heat treatment in a cement factory or a pulp factory, a fireproof wall is lined on the inner surface of a cylindrical shell, and a protruding structural member called a lifter is provided along the inner peripheral surface. A process of heating the object to be fired put in the furnace with a combustion burner while rotating it is performed. By providing a lifter in the rotary kiln, advantageous effects such as an increase in stirring efficiency and an improvement in thermal efficiency can be obtained.

特に、パルプ工場で熱処理用に使用されるロータリーキルンは、炉内で炭酸カルシウムを900度以上に加熱して消石灰を得る以下の熱分解反応を促進させることを目的として用いられるものであり、熱分解反応効率を高めるためにリフターを設けることが一般に行われている。   In particular, rotary kilns used for heat treatment in pulp mills are used for the purpose of accelerating the following thermal decomposition reaction to obtain slaked lime by heating calcium carbonate to 900 ° C or higher in a furnace. In order to increase reaction efficiency, a lifter is generally provided.

本願出願人は、このような900度以上の高温環境で使用されるリフターの摩耗率や損傷率を低下させるための技術として、熱伝導率が30W/(m/K)以上、強度が50MPa以上、ヤング率が200GPa以上、見かけ気孔率が10%以下のセラミック材料からなるリフターを開示している(特許文献1)。   As a technique for reducing the wear rate and damage rate of a lifter used in such a high temperature environment of 900 degrees or higher, the applicant of the present application has a thermal conductivity of 30 W / (m / K) or more and a strength of 50 MPa or more. Discloses a lifter made of a ceramic material having a Young's modulus of 200 GPa or more and an apparent porosity of 10% or less (Patent Document 1).

近年、二酸化炭素排出量が厳しく制限される中、使用エネルギー量の削減のために、熱分解反応効率の更なる改善が求められている。熱分解反応効率の観点からは、リフターの設置位置をロータリーキルン内の最高温領域である燃焼バーナー直下付近とすることが好ましい。具体的にはロータリーキルンの被焼成物投入口付近にあるバーナーの外炎が有する高エネルギーを効率よく利用するために、リフターの設置位置をバーナーの外炎付近とすることが好ましい。しかし、従来のリフターが有する熱伝導率や強度のレベルでは、リフターの設置位置をバーナーの外炎付近とした場合、熱応力によりリフターが損傷してしまう問題があった。
特開2008−94661号公報
In recent years, while carbon dioxide emissions are severely restricted, further improvement in thermal decomposition reaction efficiency is required to reduce the amount of energy used. From the viewpoint of thermal decomposition reaction efficiency, it is preferable that the lifter is installed at a position near the combustion burner, which is the highest temperature region in the rotary kiln. Specifically, in order to efficiently use the high energy of the burner outer flame in the vicinity of the object to be fired in the rotary kiln, it is preferable that the lifter is installed near the burner outer flame. However, at the level of thermal conductivity and strength of the conventional lifter, there is a problem that the lifter is damaged due to thermal stress when the lifter is installed near the flame of the burner.
JP 2008-94661 A

本発明の目的は前記課題を解決し、バーナーの外炎付近に設置可能な熱処理炉用耐火材を提供することである。   An object of the present invention is to solve the above-mentioned problems and to provide a refractory material for a heat treatment furnace that can be installed in the vicinity of an external flame of a burner.

上記課題を解決するためになされた本発明の熱処理炉用耐火材は、SiCを50%以上含有し、かつ、ロータリーキルン長手方向長さ(A)と、ロータリーキルン中心方向長さ(a)との比がa/A=0.5以上の耐火物から構成される熱処理炉用耐火材であって、該耐火物をロータリーキルン長手方向に複数連続配置させた小割構造を有することを特徴とするものである。   The refractory material for a heat treatment furnace of the present invention, which has been made to solve the above-mentioned problems, contains 50% or more of SiC, and the ratio between the length in the longitudinal direction of the rotary kiln (A) and the length in the central direction of the rotary kiln (a). Is a refractory material for a heat treatment furnace composed of a refractory having a / A = 0.5 or more, and has a split structure in which a plurality of the refractories are continuously arranged in the longitudinal direction of the rotary kiln. is there.

請求項2に係る発明は、請求項1記載のロータリーキルン用リフターリフターにおいて前記耐火物を複数連続配置した列が、2列以上並列配置されていることを特徴とするものである。   The invention according to claim 2 is characterized in that, in the lifter lifter for rotary kiln according to claim 1, two or more rows in which a plurality of the refractories are continuously arranged are arranged in parallel.

請求項3に係る発明は、請求項1または2記載のロータリーキルン用リフターリフターにおいて、前記耐火物が円柱形状、三角柱形状、四角柱形状、五角柱形状、六角柱形状の何れかであることを特徴とするものである。   The invention according to claim 3 is the lifter lifter for rotary kiln according to claim 1 or 2, wherein the refractory is any one of a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a pentagonal prism shape, and a hexagonal prism shape. It is what.

請求項4に係る発明は、請求項1〜3の何れかに記載のロータリーキルン用リフターにおいて、前記耐火物の熱伝導率が30〜150W/(m/K)、強度が50〜600MPaであることを特徴とするものである。   The invention according to claim 4 is the lifter for a rotary kiln according to any one of claims 1 to 3, wherein the refractory has a thermal conductivity of 30 to 150 W / (m / K) and a strength of 50 to 600 MPa. It is characterized by.

請求項5に係る発明は、請求項1〜4の何れかに記載のロータリーキルン用リフターにおいて、前記耐火物が中空構造を有することを特徴とするものである。   The invention according to claim 5 is the lift for a rotary kiln according to any one of claims 1 to 4, wherein the refractory has a hollow structure.

請求項6に係る発明は、請求項1〜5の何れかに記載のロータリーキルン用リフターにおいて、前記耐火物がSi−SiC質焼結体であることを特徴とするものである。   The invention according to claim 6 is the lift for a rotary kiln according to any one of claims 1 to 5, characterized in that the refractory is a Si-SiC sintered body.

請求項7に係る発明は、請求項1〜5の何れかに記載のロータリーキルン用リフターにおいて、前記耐火物がSiO結合―SiC質焼結体、Si結合―SiC質焼結体、再結晶SiC質焼結体の何れかであることを特徴とするものである。 The invention according to claim 7 is the lift for a rotary kiln according to any one of claims 1 to 5, wherein the refractory is a SiO 2 bond-SiC sintered body, a Si 3 N 4 bond-SiC sintered body, It is any one of recrystallized SiC sintered bodies.

請求項8に係る発明は、請求項1〜5の何れかに記載のロータリーキルン用リフターにおいて、前記耐火物が気孔率1%以下の緻密質SiCからなることを特徴とするものである。   The invention according to claim 8 is the lift for a rotary kiln according to any one of claims 1 to 5, wherein the refractory is made of dense SiC having a porosity of 1% or less.

本発明では、SiCを50%以上含有する耐火物の形状を、ロータリーキルン長手方向長さ(A)と、ロータリーキルン中心方向長さ(a)との比がa/A=0.5以上となるように形成し、該耐火物をロータリーキルン長手方向に複数連続配置させて、小割構造のリフターとしている。リフターを当該構造とすることにより、バーナー外炎付近に設置した場合であっても、熱応力が分散緩和され、熱衝撃に対する耐性を向上させることが可能となる。該リフターをバーナー外炎付近に設置可能とする熱応力の分散緩和は、熱伝導性に優れる「SiCを50%以上含有する耐火物」の物性と、リフターを小割構造とし、リフターを構成する個々のリフター構成用耐火物のロータリーキルン長手方向長さ(A)をa/A=0.5以上の条件を満足する長さに制限することによって、個々のリフター構成用耐火物においてロータリーキルン長手方向に温度差が生じにくくしたことの相乗効果により得られる効果である。これにより、本発明に係る熱処理炉用耐火材で構成するロータリーキルン用リフターの設置位置は、ロータリーキルン内の最高温領域である燃焼バーナー直下付近とすることでき、ロータリーキルン内における熱分解反応効率を改善し、使用エネルギー量の削減及びそれに伴う二酸化炭素排出量の削減が可能となる。   In the present invention, the shape of the refractory containing 50% or more of SiC is such that the ratio of the length in the longitudinal direction of the rotary kiln (A) to the length in the central direction of the rotary kiln (a) is a / A = 0.5 or more. A plurality of the refractories are continuously arranged in the longitudinal direction of the rotary kiln to form a lift structure having a split structure. With the lifter having this structure, even when the lifter is installed in the vicinity of the burner flame, the thermal stress is dispersed and relaxed, and the resistance to thermal shock can be improved. Dispersion relaxation of thermal stress that makes it possible to install the lifter in the vicinity of the burner flame, the physical properties of “refractory containing 50% or more of SiC” with excellent thermal conductivity, and the lifter in a split structure constitute the lifter. By restricting the longitudinal kiln longitudinal length (A) of the individual lifter constituting refractories to a length satisfying the condition of a / A = 0.5 or more, the individual lifter constituting refractories are arranged in the longitudinal direction of the rotary kiln. This is an effect obtained by a synergistic effect of making the temperature difference difficult to occur. Thereby, the installation position of the lifter for the rotary kiln composed of the refractory material for the heat treatment furnace according to the present invention can be set near the combustion burner, which is the highest temperature region in the rotary kiln, and the thermal decomposition reaction efficiency in the rotary kiln is improved. It is possible to reduce the amount of energy used and the carbon dioxide emissions associated therewith.

請求項2記載の発明によれば、前記耐火物を複数連続配置した列を2列以上並列配置することにより、ロータリーキルンの使用時に、被焼成物がリフター衝突することにより生じる応力に対しての耐性向上が図られ、リフター寿命が延長される。   According to the second aspect of the present invention, by arranging two or more rows in which a plurality of the refractories are continuously arranged in parallel, resistance to stress caused by the object to be fired when the rotary kiln is used in a lifter collision. Improvements are made and the lifter life is extended.

請求項3記載の発明によれば、前記耐火物は円柱形状、三角柱形状、四角柱形状、五角柱形状、六角柱形状の何れでも良いため、窯道具としての汎用性に富む利点もある。   According to the invention described in claim 3, since the refractory may be any one of a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a pentagonal prism shape, and a hexagonal prism shape, there is an advantage that it is rich in versatility as a kiln tool.

請求項5記載の発明によれば、前記耐火物を中空構造とすることにより、リフター構成用耐火物内部に温度差が生じにくくなり、熱応力を小さくすることが可能となる。   According to the invention described in claim 5, by making the refractory into a hollow structure, it becomes difficult to cause a temperature difference inside the refractory for the lifter structure, and the thermal stress can be reduced.

請求項6記載の発明によれば、前記耐火物をSi−SiC質焼結体とすることにより、熱伝導率が熱伝導率が150W/(m/K)、強度が300MPaの特性を有するリフター構成用耐火物を得ることができる。   According to the invention of claim 6, by using the refractory as a Si-SiC sintered body, the lifter has characteristics of thermal conductivity of 150 W / (m / K) and strength of 300 MPa. A refractory for construction can be obtained.

請求項8記載の発明によれば、前記耐火物を気孔率を1%以下に制御した緻密質で実質SiC単身からなるSiC質焼結体とすることにより、熱伝導率が30W/(m/K)以上、強度が600MPaの特性を有するリフター構成用耐火物を得ることができる。   According to an eighth aspect of the present invention, when the refractory is a dense and substantially SiC single sintered body having a porosity controlled to 1% or less, the thermal conductivity is 30 W / (m / K) As described above, a refractory for a lifter structure having a strength of 600 MPa can be obtained.

図1は、本発明の耐火材から構成されるロータリーキルン用リフターを備えたロータリーキルン1の側面断面図であり、図2は、従来のロータリーキルン用リフターを備えたロータリーキルン1の側面断面図である。図2に示すように、従来は、熱応力によるリフターの破損を防止する為にリフターの設置位置をバーナー3の外炎から離すことが必要であり、熱効率が悪い問題があった。これに対し本発明に係るロータリーキルン用リフターは、ロータリーキルン1の加熱用バーナー3の外炎付近に設置可能な耐熱衝撃性を備えたことを特徴とするものである。   FIG. 1 is a side sectional view of a rotary kiln 1 equipped with a lifter for a rotary kiln composed of the refractory material of the present invention, and FIG. 2 is a side sectional view of a rotary kiln 1 equipped with a conventional lifter for a rotary kiln. As shown in FIG. 2, conventionally, in order to prevent damage to the lifter due to thermal stress, it is necessary to separate the lifter installation position from the external flame of the burner 3, which has a problem of poor thermal efficiency. On the other hand, the lifter for a rotary kiln according to the present invention is characterized by having a thermal shock resistance that can be installed in the vicinity of the outer flame of the heating burner 3 of the rotary kiln 1.

図3には本発明の耐火材から構成されるロータリーキルン用リフターの上面図、図4には本発明の耐火材から構成されるロータリーキルン用リフターの長手方向側面図、図5には本発明の耐火材から構成されるロータリーキルン用リフターの前面断面図、図6には本発明の耐火材から構成されるロータリーキルン用リフターの構成単位ブロック図を各々示している。本発明の耐火材から構成されるロータリーキルン用リフターは図3に示すように、複数のリフター構成用耐火物4をロータリーキルン長手方向に連続配置させた小割構造を有している。図3に示す実施例においては、本発明に係るリフター2は、リフター構成用耐火物4を、リフター長手方向に3個及びリフター内周方向に2個ずつ、合計6個配置したリフター構成用単位ブロック5を、ロータリーキルン長手方向に4ブロック配置することにより構成されている。図6―(イ)に示すリフター構成用単位ブロック5は、図5に示すように、リフター構成用耐火物4の先端を耐火キャスタブル中に埋め込んで固定して形成したものである。リフター構成用単位ブロック5を、図6―(イ)に示すようにブロック状に形成することにより、リフター構成用耐火物4単体をキルン内へそれぞれ別個に設置するよりもリフター設置作業が効率的となる。   3 is a top view of a lifter for a rotary kiln composed of the refractory material of the present invention, FIG. 4 is a longitudinal side view of a lifter for a rotary kiln composed of the refractory material of the present invention, and FIG. FIG. 6 is a front sectional view of a lifter for a rotary kiln made of a material, and FIG. 6 shows a block diagram of a structural unit of the lifter for a rotary kiln made of a refractory material of the present invention. As shown in FIG. 3, the lifter for a rotary kiln composed of the refractory material of the present invention has a split structure in which a plurality of refractories for lifter configuration 4 are continuously arranged in the longitudinal direction of the rotary kiln. In the embodiment shown in FIG. 3, the lifter 2 according to the present invention is a lifter constituting unit in which six lifter constituting refractories 4 are arranged in the lifter longitudinal direction and two in the lifter inner circumferential direction. 4 blocks are arranged in the longitudinal direction of the rotary kiln. The lifter constituting unit block 5 shown in FIG. 6- (a) is formed by embedding and fixing the tip of the lifter constituting refractory 4 in a fireproof castable as shown in FIG. Lifter construction unit block 5 is formed in a block shape as shown in FIG. 6- (a), so that the lifter installation work is more efficient than separately installing the lifter construction refractories 4 individually in the kiln. It becomes.

前記リフター構成用耐火物4の形状は、図4に示すようにロータリーキルン長手方向長さ(A)と、ロータリーキルン中心方向長さ(a)との比がa/A=0.5以上であることを特徴とするものであるが、リフター構成用耐火物4の断面形状は、図7に示す三角柱形状、図8に示す円柱形状、図9または図10に示す板状形状や、その他五角柱形状、六角柱形状等から任意の形状を選択可能である。リフター構成用耐火物4の形状を、a/A=0.5以上とすることにより、熱応力が分散緩和されやすくなり、熱衝撃に対する耐性が向上するという効果が得られる。   As shown in FIG. 4, the shape of the refractory 4 for the lifter configuration is such that the ratio of the length in the longitudinal direction (A) of the rotary kiln and the length in the central direction (a) of the rotary kiln is a / A = 0.5 or more. However, the cross-sectional shape of the refractory 4 for the lifter structure is a triangular prism shape shown in FIG. 7, a cylindrical shape shown in FIG. 8, a plate shape shown in FIG. 9 or FIG. 10, and other pentagonal prism shapes. An arbitrary shape can be selected from a hexagonal column shape or the like. By making the shape of the refractory material 4 for lifter configuration to be a / A = 0.5 or more, thermal stress is easily dispersed and relaxed, and the effect of improving resistance to thermal shock is obtained.

また、リフター構成用単位ブロック5は、a/A=0.5以上のリフター構成用耐火物4を複数配置して構成する小割構造とすればよく、例えば図8に示すように、リフター構成用耐火物4をリフター長手方向に3個及びリフター内周方向に3個ずつ、合計9個配置した構造等とすることも可能である。ただし、攪拌効率の観点から、リフター構成用単位ブロック5に配置される各リフター構成用耐火物4は、お互いに接し合うことが好ましく、各リフター構成用耐火物4の間隔はできる限り小さくすることが好ましい。しかしながら、リフターを使用する過程において被焼成物がリフター上に堆積してゆき、各リフター構成用耐火物4の間隔が埋まっていく。したがって、当該間隔は、特に運転初期において影響するものであって、使用後1ヶ月以降においてはある程度許容される。   Further, the lifter-constituting unit block 5 may have a split structure in which a plurality of lifter-constituting refractories 4 with a / A = 0.5 or more are arranged. For example, as shown in FIG. It is also possible to adopt a structure in which nine refractories 4 for use are arranged in total, three in the lifter longitudinal direction and three in the lifter inner circumferential direction. However, from the viewpoint of stirring efficiency, the lifter constituting refractories 4 arranged in the lifter constituting unit block 5 are preferably in contact with each other, and the interval between the lifter constituting refractories 4 should be as small as possible. Is preferred. However, in the process of using the lifter, the object to be fired accumulates on the lifter, and the intervals between the refractories 4 for constituting the lifter are filled. Accordingly, the interval affects in particular at the initial stage of operation and is allowed to some extent after one month after use.

図6―(イ)に示した構成単位ブロックは設置の効率化からブロック化されているため、リフター構成用耐火物4の周囲には、埋め込まれる耐火キャスブルブロック6への「固定しろ」となる距離が必要となる。図6−(ロ)に示すように、この距離は設置時リフター構成用耐火物4が存在しない歯抜け空間(c)を形成することになる。しかし、この空間が生じたとしても上記説明の通り被焼成物が堆積し埋まるため使用の過程で影響はなくなる。この空間距離は100mm以下が好ましく、さらには70mm以下が好ましい。 また、構成単位ブロックの形状は設置作業の効率化から大きいほうが良いが手作業で設置作業を行うことが多いため幅(w)200mm、奥行(b)200mmが一般的であり、高さ(h)は処理物の種類や断熱特性に左右されるが200mmが一般的である。なお、ロータリーキルン用リフターのロータリーキルン中心方向長さ(a)は、炉径に関係なく200〜300mmである。リフターは炉径が大きくなるに従い炉長さに平行に通常4列から8列を選択して設置されることが一般的である。   Since the structural unit block shown in FIG. 6- (a) is blocked due to the efficiency of the installation, the “fixing margin” to the fireproof castable block 6 embedded around the refractory material 4 for the lifter structure is A distance is required. As shown in FIG. 6- (b), this distance forms a tooth removal space (c) in which the refractor 4 for lifter configuration does not exist at the time of installation. However, even if this space is generated, since the object to be fired is deposited and buried as described above, there is no influence in the process of use. This spatial distance is preferably 100 mm or less, and more preferably 70 mm or less. The shape of the structural unit block is preferably larger in view of the efficiency of the installation work, but since the installation work is often performed manually, the width (w) is 200 mm and the depth (b) is 200 mm, and the height (h ) Is generally 200 mm, although it depends on the type of processed material and the heat insulating properties. The length (a) of the rotary kiln lifter in the center direction of the rotary kiln is 200 to 300 mm regardless of the furnace diameter. In general, the lifter is usually installed in four to eight rows in parallel with the furnace length as the furnace diameter increases.

図11には、リフター構成用耐火物4の内部構造説明図を示し、図11−(イ)は中実構造、図11−(ロ)は中空構造を示している。図11に示すように、リフター構成用耐火物4は、中実構造、中空構造の何れであっても良いが、嵩比重の観点からは図11−(ロ)に示すような中空構造とすることが好ましい。すなわち、中空構造とすることにより、リフター重量の軽減化が図られ、ロータリーキルンの運転エネルギ―削減が可能となる効果が得られる。また、中空構造の耐火物は、中実構造の耐火物よりも耐火物全体の温度差が生じ難く、熱衝撃に対する耐性が向上するという効果も得られる。強度の観点からは、中実構造、中空構造の何れであっても違いはないが、中空構造を採用した場合には、図5に示すように、中空内部に耐熱ファイバー8をつめ、断熱キャスタブル9で蓋をする構造とすることが好ましい。これにより、中空構造のリフター構成用耐火物4が折れた場合であっても、ロータリーキルン内の熱によりロータリーキルンのシェル7が損傷されることを防止することができる。   FIG. 11 is an explanatory diagram of the internal structure of the refractory 4 for lifter configuration, FIG. 11- (a) shows a solid structure, and FIG. 11- (b) shows a hollow structure. As shown in FIG. 11, the refractory material 4 for lifter configuration may be either a solid structure or a hollow structure, but from the viewpoint of bulk specific gravity, it has a hollow structure as shown in FIG. It is preferable. That is, by using a hollow structure, the weight of the lifter can be reduced, and the operation energy of the rotary kiln can be reduced. Further, the refractory having a hollow structure is less likely to cause a temperature difference of the entire refractory than the refractory having a solid structure, and an effect of improving resistance to thermal shock can be obtained. From the viewpoint of strength, there is no difference between a solid structure and a hollow structure. However, when a hollow structure is adopted, as shown in FIG. It is preferable to have a structure in which the lid is covered with 9. Thereby, even if it is a case where the refractory material 4 for a lifter structure of a hollow structure breaks, it can prevent that the shell 7 of a rotary kiln is damaged with the heat | fever in a rotary kiln.

ただし、中空構造の場合、肉厚(t)に留意する必要がある。リフター構成用耐火物4は使用中に被焼成物と擦れあうため磨耗による減肉厚現象が生じる。肉厚(t)が約2mm以下まで減肉した場合、リフター構成用耐火物4は被焼成物を攪拌する際に生じる荷重に耐え切れなくなり折損する。よって、寿命延長には肉厚(t)を厚くすればいいことになる。しかしながら、肉厚化はコストアップとなることから実際にはコスト、使用環境に合わせた適切な設計が必要となることから、肉厚(t)は5mmから15mmの範囲で設計することが好ましい。   However, in the case of a hollow structure, it is necessary to pay attention to the wall thickness (t). Since the refractory material 4 for lifter construction rubs against the object to be fired during use, a thickness reduction phenomenon due to wear occurs. When the wall thickness (t) is reduced to about 2 mm or less, the refractory material 4 for lifter configuration cannot withstand the load generated when the object to be fired is stirred and breaks. Therefore, it is sufficient to increase the wall thickness (t) for extending the life. However, since thickening increases the cost, it is actually necessary to design appropriately according to the cost and use environment. Therefore, the thickness (t) is preferably designed in the range of 5 mm to 15 mm.

前記形状を有するリフター構成用耐火物4はSiCを50%以上含有するSiC焼結体から形成される。SiCを50%以上含有するSiC焼結体としては、例えば、Si−SiC質焼結体、SiO結合―SiC質焼結体、Si結合―SiC質焼結体、再結晶SiC質焼結体、緻密質SiCを採用することができるが、特に、熱伝導率及び強度の観点から、SiCの気孔に金属シリコンを含浸させたSi−SiC質焼結体を採用することが好ましい。また、被焼成物に酸化鉄が含まれる場合は、酸化鉄とSi−SiC材質が反応し磨耗速度が早まり寿命が短くなる。この様な場合は、熱伝導率は低下するが緻密質SiCを採用することが好ましい。 The lifter-constituting refractory 4 having the shape is formed from a SiC sintered body containing 50% or more of SiC. Examples of SiC sintered bodies containing 50% or more of SiC include Si-SiC sintered bodies, SiO 2 bonded-SiC sintered bodies, Si 3 N 4 bonded-SiC sintered bodies, and recrystallized SiC sintered bodies. Although a sintered body and dense SiC can be employed, it is particularly preferable to employ a Si—SiC based sintered body in which SiC pores are impregnated with metallic silicon from the viewpoint of thermal conductivity and strength. Moreover, when iron oxide is contained in the material to be fired, the iron oxide and the Si—SiC material react to increase the wear rate and shorten the life. In such a case, it is preferable to use dense SiC although the thermal conductivity is lowered.

一般に、熱処理用に使用されるロータリーキルン用リフターの耐熱衝撃性は、リフター構成用耐火物4内の温度分布が小さくなるため熱伝導率が高いほうが有利となる。従来のリフター材質の熱伝導率は15W/(m/K)を超えるものはないのに対し、本願のSiC質焼結体は約2倍以上の熱伝導率30W/(m/K)を有している。特にSi−SiC質焼結体は従来耐火物の約10倍の熱伝導率(150W/(m/K))を有しており、耐火物内部の温度差をより小さく抑えることができる。また、ロータリーキルン用リフターの耐熱衝撃性は高強度のほうが有利となる。従来のリフター材質は20MPa程度なのに対し、Si−SiC質焼結体は従来耐火物の約15倍の室温強度(300MPa)を、緻密質SiC焼結体では約30倍の室温強度(600MPa)を有している。なお、本発明における「熱伝導率」はレーザーフラッシュ法(JIS R1611準拠)によって測定された値であり、「強度」は、オートグラフによる抗折曲げ強度(JIS R1601準拠)によって測定された値である。   In general, the thermal shock resistance of a rotary kiln lifter used for heat treatment is advantageous when the thermal conductivity is high because the temperature distribution in the refractory material 4 for the lifter structure is small. The conventional lifter material has no thermal conductivity exceeding 15 W / (m / K), whereas the SiC sintered body of the present application has a thermal conductivity of 30 W / (m / K) which is about twice or more. is doing. In particular, the Si-SiC sintered body has a thermal conductivity (150 W / (m / K)) that is about 10 times that of a conventional refractory, and the temperature difference inside the refractory can be further reduced. Moreover, the thermal shock resistance of the rotary kiln lifter is more advantageous when it is high in strength. The conventional lifter material is about 20 MPa, while the Si-SiC sintered body has about 15 times the room temperature strength (300 MPa) of the conventional refractory, and the dense SiC sintered body has about 30 times the room temperature strength (600 MPa). Have. The “thermal conductivity” in the present invention is a value measured by a laser flash method (based on JIS R1611), and the “strength” is a value measured by an anti-bending strength (based on JIS R1601). is there.

また、耐酸化性の観点から、ロータリーキルン用リフターの見かけ気孔率は10%以下であることが求められるが、緻密質SiCやSiCの気孔に金属シリコンを含浸させたSi−SiC質焼結体は緻密質であるため、耐酸化性の観点からも緻密質SiC、Si−SiC質焼結体を採用することが好ましい。また、SiO結合―SiC質焼結体、Si結合―SiC質焼結体、再結晶SiC質焼結体においても気孔率を10%以下に制御すれば採用できる。 In addition, from the viewpoint of oxidation resistance, the apparent porosity of the rotary kiln lifter is required to be 10% or less, but the Si—SiC sintered body obtained by impregnating metallic silicon into dense SiC or SiC pores is Since it is dense, it is preferable to employ a dense SiC or Si—SiC sintered body from the viewpoint of oxidation resistance. Further, the SiO 2 bond-SiC sintered body, the Si 3 N 4 bond-SiC sintered body, and the recrystallized SiC sintered body can also be employed if the porosity is controlled to 10% or less.

上記の物性により、従来耐火物と比較して熱応力に由来する破損が生じにくいSi−SiC質焼結体からなるリフター構成用耐火物4は、炭化ケイ素粉末を50%以上含む原料を、プレス成形、鋳込み成形等の各種成形法にて所定形状に成形し、得られた成形体、又はこの成形体を焼成して得られた焼成体に、金属ケイ素を載置した状態で不活性雰囲気にて、金属ケイ素の溶融温度以上の温度で焼成し、金属ケイ素を前記成形体又は焼成体に溶浸させて焼結させることにより製造することができる。   Due to the above physical properties, the refractory 4 for lifter structure made of a Si-SiC sintered body, which is less likely to be damaged due to thermal stress compared to conventional refractories, is made by pressing a raw material containing 50% or more of silicon carbide powder. Molded into a predetermined shape by various molding methods such as molding, cast molding, etc., in an inert atmosphere with metal silicon placed on the resulting molded body or the fired body obtained by firing this molded body Then, it can be produced by firing at a temperature equal to or higher than the melting temperature of metal silicon, infiltrating the metal silicon into the molded body or fired body, and sintering it.

本発明では、上記物性を有するリフター構成用耐火物4を、上記a/A比として形成することにより、従来よりも大きな熱応力が負荷された場合であっても、熱応力に由来する破損を防止することが可能なリフター構成用耐火物4を得ることができ、これらのリフター構成用耐火物4をロータリーキルン長手方向に複数連続配置させて構成されているロータリーキルン用リフター2をバーナー3外炎直下に配置することが可能となった。   In the present invention, the lifter constituting refractory 4 having the above physical properties is formed as the above-mentioned a / A ratio, so that even if a larger thermal stress is applied than before, damage caused by the thermal stress is caused. The refractory material 4 for the lifter that can be prevented can be obtained, and the lifter 2 for the rotary kiln that is configured by continuously arranging a plurality of these refractory materials 4 for the lifter in the longitudinal direction of the rotary kiln is directly below the burner 3 outer flame. It became possible to arrange in.

平均粒径100μmのSiC粒子50重量%と、平均粒径1μmのSiC粒子49重量%と、平均粒径1μmのカーボン粉末1重量%とを混合した粉末に対し、外配でポリカルボン酸系分散剤0.5重量%、アクリル系エマルジョン0.1重量%及びイオン交換水15重量%を添加してポットミルにて混合しスラリーを得た後、石膏鋳込み成形で所定の形状に成形した成形体を、40℃の乾燥機中で1晩乾燥した後、気孔を埋めるに十分なSi粉末を成形体上に載せてAr雰囲気で1600℃で1時間焼成して熱伝導率150W/(m/K)、室温強度300MPaの物性を具備するSi−SiC質焼結体からなるリフター構成用耐火物Aを得た。   Dispersion of polycarboxylic acid based on externally mixed powder of 50% by weight of SiC particles having an average particle size of 100 μm, 49% by weight of SiC particles having an average particle size of 1 μm, and 1% by weight of carbon powder having an average particle size of 1 μm After adding 0.5% by weight of an agent, 0.1% by weight of an acrylic emulsion and 15% by weight of ion-exchanged water and mixing with a pot mill to obtain a slurry, a molded product formed into a predetermined shape by gypsum casting After drying overnight in a dryer at 40 ° C., a sufficient amount of Si powder to fill the pores was placed on the compact and fired at 1600 ° C. for 1 hour in an Ar atmosphere to have a thermal conductivity of 150 W / (m / K). Then, a refractory A for lifter configuration comprising a Si—SiC sintered body having physical properties of room temperature strength of 300 MPa was obtained.

次に、粒径5〜20mmのSiCの塊を粉砕し、粒径を0.5〜3mmに篩い分けしたSiC粒子40重量%と、平均粒径300μmのSiC粒子30重量%と、平均粒径50μmのSiC粒子30重量%とを混合した粉末に対し、外配でポリエチレングリコール0.5重量%、アクリル系エマルジョン0.1重量%及びイオン交換水5重量%を添加してフレットにて混練し所定の形状にランマー成形した成形体を、40℃の乾燥機中で1晩乾燥した後、気孔を埋めるに十分なSi粉末を成形体上に載せてAr雰囲気で1600℃で1時間焼成して熱伝導率100W/(m/K)、室温強度100MPaの物性を具備するSi−SiC質焼結体からなるリフター構成用耐火物Bを得た。   Next, SiC particles having a particle diameter of 5 to 20 mm are crushed and sieved to a particle diameter of 0.5 to 3 mm, 40 wt%, SiC particles having an average particle diameter of 300 μm, 30 wt%, and an average particle diameter To the powder mixed with 30% by weight of 50 μm SiC particles, 0.5% by weight of polyethylene glycol, 0.1% by weight of acrylic emulsion and 5% by weight of ion-exchanged water are added externally and kneaded with frets. After the molded body that has been subjected to the Rammer molding to a predetermined shape is dried overnight in a dryer at 40 ° C., sufficient Si powder to fill the pores is placed on the molded body and fired at 1600 ° C. for 1 hour in an Ar atmosphere. A refractory B for lifter structure comprising a Si—SiC sintered body having physical properties of thermal conductivity of 100 W / (m / K) and room temperature strength of 100 MPa was obtained.

また、平均粒径100μmのSiC粒子50質量%と、平均粒径1μmのSiC粒子50質量%とを混合した粉末に、ポリカルボン酸系分散剤、アクリル系エマルジョン及びイオン交換水を添加しスラリーを得た後、石膏鋳込み成形で所定の形状に成形した成形体を、40℃の乾燥機中で1晩乾燥した後、Ar雰囲気にて2000℃で1時間焼成し熱伝導率80W/(m/K)、室温強度80MPaの物性を具備する再結晶SiC質焼結体からなるリフター構成用耐火物Cを得た。   In addition, to a powder obtained by mixing 50% by mass of SiC particles having an average particle size of 100 μm and 50% by mass of SiC particles having an average particle size of 1 μm, a polycarboxylic acid-based dispersant, an acrylic emulsion and ion-exchanged water are added to form a slurry. After being obtained, the molded body formed into a predetermined shape by gypsum casting is dried overnight in a dryer at 40 ° C., and then fired at 2000 ° C. for 1 hour in an Ar atmosphere to have a thermal conductivity of 80 W / (m / K), a refractory C for lifter construction comprising a recrystallized SiC sintered body having physical properties of room temperature strength of 80 MPa was obtained.

さらに、均粒径100μmのSiC粒子45重量%と、平均粒径1μmのSiC粒子45重量%と、蛙目粘土10重量%とを混合した粉末に、外配でポリカルボン酸系分散剤0.5重量%、アクリル系エマルジョン0.1重量%及びイオン交換水15重量%を添加してポットミルにて混合しスラリーを得た後、石膏鋳込み成形で所定の形状に成形した成形体を、40℃の乾燥機中で1晩乾燥した後、大気雰囲気で1400℃で1時間焼成して熱伝導率30W/(m/K)、室温強度150MPaの物性を具備するSiO結合―SiC質焼結体からなるリフター構成用耐火物Dを得た。 Further, a powder of a mixture of 45% by weight of SiC particles having an average particle diameter of 100 μm, 45% by weight of SiC particles having an average particle diameter of 1 μm, and 10% by weight of clay, and a polycarboxylic acid dispersant 0. After adding 5% by weight, 0.1% by weight of acrylic emulsion and 15% by weight of ion-exchanged water and mixing with a pot mill to obtain a slurry, a molded body formed into a predetermined shape by gypsum casting is obtained at 40 ° C. After drying overnight in a dryer, the SiO 2 bond-SiC sintered body having physical properties of a thermal conductivity of 30 W / (m / K) and room temperature strength of 150 MPa by firing at 1400 ° C. for 1 hour in an air atmosphere A refractory material D for lifter construction was obtained.

また、平均粒径100μmのSiC粒子45重量%と、平均粒径1μmのSiC粒子35重量%と、平均粒径2μmの金属Si粒子20重量%とを混合した粉末に、外配でポリカルボン酸系分散剤0.5重量%、アクリル系エマルジョン0.1重量%及びイオン交換水15重量%を添加してポットミルにて混合しスラリーを得た後、石膏鋳込み成形で所定の形状に成形した成形体を、40℃の乾燥機中で1晩乾燥した後、大気雰囲気で1400℃で1時間焼成して熱伝導率30W/(m/K)、室温強度150MPaの物性を具備するSi結合―SiC質焼結体からなるリフター構成用耐火物Eを得た。 In addition, a powder obtained by mixing 45% by weight of SiC particles having an average particle diameter of 100 μm, 35% by weight of SiC particles having an average particle diameter of 1 μm, and 20% by weight of metal Si particles having an average particle diameter of 2 μm is externally provided with a polycarboxylic acid. Molding of 0.5% by weight of dispersant, 0.1% by weight of acrylic emulsion and 15% by weight of ion-exchanged water, mixing in a pot mill to obtain a slurry, and molding into a predetermined shape by gypsum casting after the body was dried overnight in a 40 ° C. oven, the thermal conductivity was calcined 1 hour at 1400 ° C. in an air atmosphere 30W / (m / K), Si 3 N 4 having a physical property of the room-temperature strength 150MPa A refractory E for lifter construction comprising a bonded-SiC sintered body was obtained.

また、平均粒径0.5μmのβ-SiC粒子97重量%に平均粒径1μmのB4C3重量%を混合した粉末に、外配でポリカルボン酸系分散剤0.5重量%、アクリル系エマルジョン0.1重量%及びイオン交換水15重量%を添加してポットミルにて混合しスラリーを得た後、石膏鋳込み成形で所定の形状に成形した成形体を、40℃の乾燥機中で1晩乾燥した後、アルゴン雰囲気で2200℃で1時間焼成して気孔率1%、熱伝導率100W/(m/K)、室温強度350MPaの物性を具備する緻密質SiC質焼結体からなるリフター構成用耐火物Fを得た。 In addition, a powder obtained by mixing 97% by weight of β-SiC particles having an average particle diameter of 0.5 μm with 3% by weight of B 4 C3 having an average particle diameter of 1 μm, and 0.5% by weight of a polycarboxylic acid dispersant, acrylic After adding 0.1% by weight of emulsion and 15% by weight of ion-exchanged water and mixing with a pot mill to obtain a slurry, a molded product formed into a predetermined shape by gypsum casting is placed in a dryer at 40 ° C. A lifter comprising a dense SiC sintered body having properties of a porosity of 1%, a thermal conductivity of 100 W / (m / K), and a room temperature strength of 350 MPa after being dried overnight and then fired at 2200 ° C. for 1 hour in an argon atmosphere. A refractory F for construction was obtained.

( 実施例1)
前記リフター構成用耐火物Aの形状を、中空の四角柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)100mm×35mm、厚み:5mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を2列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例2)
前記リフター構成用耐火物Aの形状を、中実の四角柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)100mm×35mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を2列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例3)
前記リフター構成用耐火物Aの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×直径50mm、厚み:5mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に27個連続配置して列を形成させ、当該列を3列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例4)
前記リフター構成用耐火物Aの形状を、中実の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×直径50mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に27個連続配置して列を形成させ、当該列を3列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例5)
前記リフター構成用耐火物Aの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み12t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例6)
前記リフター構成用耐火物Bの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み12t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例7)
前記リフター構成用耐火物Cの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み12t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例8)
前記リフター構成用耐火物Dの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み10t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例9)
前記リフター構成用耐火物Eの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み10t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例10)
前記リフター構成用耐火物Fの形状を、中空の円柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)50mm×40mm、厚み5t)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に9個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成し、3ヶ月間試験を実施した。
( 実施例11)
前記リフター構成用耐火物Aの形状を、中実の四角柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)400mm×35mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に1個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成した。
(Example 1)
The shape of the refractory A for lifter configuration is a hollow quadrangular prism structure (dimension: length in the central direction of the rotary kiln (a) 200 mm × longitudinal length in the rotary kiln (A) 100 mm × 35 mm, thickness: 5 mm). After obtaining the product, nine refractories for constituting the lifter are continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the rows are arranged in parallel to form a lifter for the rotary kiln. Carried out.
(Example 2)
The shape of the refractor A for lifter construction is a solid quadrangular prism structure (dimension: length in the center direction of the rotary kiln (a) 200 mm x length in the rotary kiln longitudinal direction (A) 100 mm x 35 mm) to obtain a refractory for lifter construction. Then, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, two rows were arranged in parallel to form a lift for the rotary kiln, and a test was conducted for three months.
(Example 3)
After the shape of the refractory A for lifter configuration is a hollow cylindrical structure (dimensions: length in the center direction of rotary kiln (a) 200 mm × diameter 50 mm, thickness: 5 mm), the refractor for lifter configuration is obtained, and then the lifter configuration 27 refractories were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the rows were arranged in parallel to form a lift for a rotary kiln, and a test was conducted for 3 months.
(Example 4)
After the shape of the refractory for lifter A is a solid cylindrical structure (dimension: length in the center direction of rotary kiln (a) 200 mm × diameter 50 mm), the refractory for lifter configuration is obtained. 27 rows were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the rows were arranged in parallel to form a lifter for a rotary kiln, and a test was conducted for 3 months.
(Example 5)
The shape of the refractory A for lifter configuration is a hollow cylindrical structure (dimension: rotary kiln center direction length (a) 200 mm x rotary kiln longitudinal direction length (A) 50 mm x 40 mm, thickness 12t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 6)
The shape of the lifter constituting refractory B is a hollow cylindrical structure (dimension: rotary kiln central direction length (a) 200 mm × rotary kiln longitudinal direction length (A) 50 mm × 40 mm, thickness 12 t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 7)
The shape of the refractory for lifter structure C is a hollow cylindrical structure (dimension: rotary kiln central direction length (a) 200 mm x rotary kiln longitudinal direction length (A) 50 mm x 40 mm, thickness 12t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 8)
The shape of the refractory for lifter structure D is a hollow cylindrical structure (dimension: rotary kiln central direction length (a) 200 mm x rotary kiln longitudinal direction length (A) 50 mm x 40 mm, thickness 10 t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 9)
The shape of the refractory material for lifter E is a hollow cylindrical structure (dimension: rotary kiln center direction length (a) 200 mm × rotary kiln longitudinal direction length (A) 50 mm × 40 mm, thickness 10 t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 10)
The shape of the refractor for the lifter structure F is a hollow cylindrical structure (dimension: rotary kiln central direction length (a) 200 mm x rotary kiln longitudinal direction length (A) 50 mm x 40 mm, thickness 5t). After being obtained, nine refractories for constituting the lifter were continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lifter for the rotary kiln, and the test was carried out for 3 months. .
(Example 11)
The shape of the refractory A for lifter configuration is a solid quadrangular prism structure (dimension: length in the center direction of the rotary kiln (a) 200 mm × longitudinal length in the rotary kiln (A) 400 mm × 35 mm) to obtain a refractory for lifter configuration. After that, one refractor for constituting the lifter was continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lift for the rotary kiln.

( 比較例1)
前記リフター構成用耐火物Bの形状を、中実の四角柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)500mm×35mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に1個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成した。
( 比較例2)
前記リフター構成用耐火物Bの形状を、中実の四角柱構造(寸法:ロータリーキルン中心方向長さ(a)200mm×ロータリーキルン長手方向長さ(A)600mm×35mm)としてリフター構成用耐火物を得た後、該リフター構成用耐火物をロータリーキルン長手方向に1個連続配置して列を形成させ、当該列を1列並列配置させて、ロータリーキルン用リフターを形成した。
(Comparative Example 1)
The shape of the refractory material for lifter B is a solid quadrangular prism structure (dimensions: length in the center direction of the rotary kiln (a) 200 mm × longitudinal length in the rotary kiln (A) 500 mm × 35 mm) to obtain a refractory material for lifter configuration. After that, one refractor for constituting the lifter was continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lift for the rotary kiln.
(Comparative Example 2)
The shape of the refractory material for lifter B is a solid quadrangular prism structure (dimension: length in the center direction of the rotary kiln (a) 200 mm × length in the rotary kiln length direction (A) 600 mm × 35 mm) to obtain a refractory material for lifter configuration. After that, one refractor for constituting the lifter was continuously arranged in the longitudinal direction of the rotary kiln to form a row, and the row was arranged in parallel to form a lift for the rotary kiln.

実施例1〜5及び比較例1〜2のロータリーキルン用リフターをそれぞれ2.5mφ×60mLのロータリーキルンの排出口から約6m離れたバーナー外炎直下(雰囲気温度約1300℃)に設置して、3ヶ月間使用した際の割れ比率および磨耗量の結果を下記の表1に示す。   The lifters for rotary kilns of Examples 1 to 5 and Comparative Examples 1 and 2 were installed directly under the burner flame (atmospheric temperature of about 1300 ° C.) about 6 m away from the outlet of the rotary kiln of 2.5 mφ × 60 mL for 3 months. The results of the crack ratio and the amount of wear when used for a while are shown in Table 1 below.

表1に示すように、SiCを50%以上含有し、かつ、ロータリーキルン長手方向長さ(A)と、ロータリーキルン中心方向長さ(a)との比がa/A=0.5以上のリフター構成用耐火物をロータリーキルン長手方向に複数連続配置させた小割構造を有する熱処理用に使用されるロータリーキルン用リフターによれば、バーナー外炎直下に設置した場合であっても熱応力によりリフターが損傷することなく使用することができた。   As shown in Table 1, a lifter configuration containing 50% or more of SiC and having a ratio of the length in the longitudinal direction of the rotary kiln (A) to the length in the central direction of the rotary kiln (a) of a / A = 0.5 or more According to the rotary kiln lifter used for heat treatment having a split structure in which a plurality of refractories are continuously arranged in the longitudinal direction of the rotary kiln, the lifter is damaged by thermal stress even when installed directly under the burner flame We were able to use without.

本発明の耐火材から構成されるロータリーキルン用リフターを備えたロータリーキルン1の側面断面図である。It is side surface sectional drawing of the rotary kiln 1 provided with the lifter for rotary kiln comprised from the refractory material of this invention. 従来のロータリーキルン用リフターを備えたロータリーキルンの側面断面図である。It is side surface sectional drawing of the rotary kiln provided with the conventional lifter for rotary kilns. 本発明の耐火材から構成されるロータリーキルン用リフターの上面図である。It is a top view of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの長手方向側面図である。It is a longitudinal direction side view of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの前面断面図である。It is front sectional drawing of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの構成単位ブロック図である。It is a structural unit block diagram of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの他の実施形態の上面図である。It is a top view of other embodiment of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの他の実施形態の上面図である。It is a top view of other embodiment of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの他の実施形態の上面図である。It is a top view of other embodiment of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材から構成されるロータリーキルン用リフターの他の実施形態の上面図である。It is a top view of other embodiment of the lifter for rotary kiln comprised from the refractory material of this invention. 本発明の耐火材の内部構造説明図である。It is internal structure explanatory drawing of the refractory material of this invention.

符号の説明Explanation of symbols

1 ロータリーキルン
2 ロータリーキルン用リフター
3 バーナー
4 リフター構成用耐火物
5 リフター構成用単位ブロック
6 耐火キャスブルブロック
7 シェル
8 耐熱ファイバー
9 断熱キャスタブル
DESCRIPTION OF SYMBOLS 1 Rotary kiln 2 Lifter for rotary kilns 3 Burner 4 Refractory material for lifter configuration 5 Unit block for lifter configuration 6 Fireproof castable block 7 Shell 8 Heat resistant fiber 9 Heat insulation castable

Claims (8)

SiCを50%以上含有し、かつ、ロータリーキルン長手方向長さ(A)と、ロータリーキルン中心方向長さ(a)との比がa/A=0.5以上の耐火物から構成される熱処理炉用耐火材であって、
該耐火物をロータリーキルン長手方向に複数連続配置させた小割構造を有することを特徴とする熱処理炉用耐火材。
For heat treatment furnaces containing SiC of 50% or more and comprising a refractory having a ratio of longitudinal kiln length (A) to rotary kiln center length (a) of a / A = 0.5 or more Refractory material,
A refractory material for a heat treatment furnace having a split structure in which a plurality of the refractories are continuously arranged in the longitudinal direction of the rotary kiln.
前記耐火物を複数連続配置した列が、2列以上並列配置されていることを特徴とする請求項1記載の熱処理炉用耐火材。   2. The refractory material for a heat treatment furnace according to claim 1, wherein two or more rows of the plurality of refractories are continuously arranged in parallel. 前記耐火物が円柱形状、三角柱形状、四角柱形状、五角柱形状、六角柱形状の何れかであることを特徴とする請求項1または2記載の熱処理炉用耐火材。   The refractory material for a heat treatment furnace according to claim 1 or 2, wherein the refractory is any one of a cylindrical shape, a triangular prism shape, a quadrangular prism shape, a pentagonal prism shape, and a hexagonal prism shape. 前記耐火物の熱伝導率が30〜150W/(m/K)、強度が50〜600MPaであることを特徴とする請求項1〜3の何れかに記載の熱処理炉用耐火材。   The heat conductivity of the refractory is 30 to 150 W / (m / K), and the strength is 50 to 600 MPa. 前記耐火物が中空構造を有することを特徴とする請求項1〜4の何れかに記載の熱処理炉用耐火材。   The refractory material for a heat treatment furnace according to any one of claims 1 to 4, wherein the refractory has a hollow structure. 前記耐火物がSi−SiC質焼結体であることを特徴とする請求項1〜5の何れかに記載の熱処理炉用耐火材。   The refractory material for a heat treatment furnace according to any one of claims 1 to 5, wherein the refractory is a Si-SiC sintered material. 前記耐火物がSiO結合―SiC質焼結体、Si結合―SiC質焼結体、再結晶SiC質焼結体の何れかであることを特徴とする請求項1〜5の何れかに記載の熱処理炉用耐火材 The refractory SiO 2 bond -SiC sintered material, Si 3 N 4 binding -SiC sintered material, any of claims 1 to 5, characterized in that either recrystallized SiC sintered material Refractory material for heat treatment furnace 前記耐火物が気孔率1%以下の緻密質SiCからなることを特徴とする請求項1〜5の何れかに記載の熱処理炉用耐火材。   The refractory material for a heat treatment furnace according to any one of claims 1 to 5, wherein the refractory is made of dense SiC having a porosity of 1% or less.
JP2008313324A 2008-12-09 2008-12-09 Lifter Expired - Fee Related JP4787310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313324A JP4787310B2 (en) 2008-12-09 2008-12-09 Lifter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008313324A JP4787310B2 (en) 2008-12-09 2008-12-09 Lifter
CN200910159741A CN101749941A (en) 2008-12-09 2009-07-16 Refractory material for heat treating furnace

Publications (2)

Publication Number Publication Date
JP2010139100A true JP2010139100A (en) 2010-06-24
JP4787310B2 JP4787310B2 (en) 2011-10-05

Family

ID=42349383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313324A Expired - Fee Related JP4787310B2 (en) 2008-12-09 2008-12-09 Lifter

Country Status (2)

Country Link
JP (1) JP4787310B2 (en)
CN (1) CN101749941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353253A (en) * 2011-08-17 2012-02-15 通达耐火技术股份有限公司 Rotary cement kiln
CN104634095A (en) * 2015-02-14 2015-05-20 安徽芜湖海螺建筑安装工程有限责任公司 Refractory material configuration in rotary cement kiln for producing American standard clinker cement

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932431B1 (en) * 1969-08-06 1974-08-30
JPS55162100U (en) * 1979-05-09 1980-11-20
JPS58140589A (en) * 1982-02-16 1983-08-20 Plibrico Japan Co Ltd Lifter for rotary kiln
JPS58140590A (en) * 1982-02-16 1983-08-20 Plibrico Japan Co Ltd Furnace wall for kiln
JPS60200081A (en) * 1984-03-22 1985-10-09 Shinnittetsu Kagaku Firebrick and rotary kiln, on inside thereof firebrick is lined
JPH0331902A (en) * 1989-06-28 1991-02-12 Nippondenso Co Ltd Controller
JPH05138053A (en) * 1991-11-13 1993-06-01 Takuma Co Ltd Apparatus for grinding and drying wet ash
JPH0867568A (en) * 1994-08-30 1996-03-12 Nissan Motor Co Ltd Silicon carbide/silicon nitride composite material and production thereof
JPH08313159A (en) * 1995-05-17 1996-11-29 Shinagawa Refract Co Ltd Lined structure for rotary kiln firing zone
JP2000249475A (en) * 1999-02-26 2000-09-14 Hitachi Zosen Corp Refractory for agitation of rotary furnace, and rotary furnace
WO2007015550A1 (en) * 2005-08-03 2007-02-08 Ibiden Co., Ltd. Jig for silicon carbide firing and method for producing porous silicon carbide body
JP2008094661A (en) * 2006-10-12 2008-04-24 Ngk Insulators Ltd Structural member for ceramic furnace
JP2008094652A (en) * 2006-10-11 2008-04-24 Ngk Insulators Ltd Si-sic sintered compact and its manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932431B1 (en) * 1969-08-06 1974-08-30
JPS55162100U (en) * 1979-05-09 1980-11-20
JPS58140589A (en) * 1982-02-16 1983-08-20 Plibrico Japan Co Ltd Lifter for rotary kiln
JPS58140590A (en) * 1982-02-16 1983-08-20 Plibrico Japan Co Ltd Furnace wall for kiln
JPS60200081A (en) * 1984-03-22 1985-10-09 Shinnittetsu Kagaku Firebrick and rotary kiln, on inside thereof firebrick is lined
JPH0331902A (en) * 1989-06-28 1991-02-12 Nippondenso Co Ltd Controller
JPH05138053A (en) * 1991-11-13 1993-06-01 Takuma Co Ltd Apparatus for grinding and drying wet ash
JPH0867568A (en) * 1994-08-30 1996-03-12 Nissan Motor Co Ltd Silicon carbide/silicon nitride composite material and production thereof
JPH08313159A (en) * 1995-05-17 1996-11-29 Shinagawa Refract Co Ltd Lined structure for rotary kiln firing zone
JP2000249475A (en) * 1999-02-26 2000-09-14 Hitachi Zosen Corp Refractory for agitation of rotary furnace, and rotary furnace
WO2007015550A1 (en) * 2005-08-03 2007-02-08 Ibiden Co., Ltd. Jig for silicon carbide firing and method for producing porous silicon carbide body
JP2008094652A (en) * 2006-10-11 2008-04-24 Ngk Insulators Ltd Si-sic sintered compact and its manufacturing method
JP2008094661A (en) * 2006-10-12 2008-04-24 Ngk Insulators Ltd Structural member for ceramic furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353253A (en) * 2011-08-17 2012-02-15 通达耐火技术股份有限公司 Rotary cement kiln
CN104634095A (en) * 2015-02-14 2015-05-20 安徽芜湖海螺建筑安装工程有限责任公司 Refractory material configuration in rotary cement kiln for producing American standard clinker cement

Also Published As

Publication number Publication date
CN101749941A (en) 2010-06-23
JP4787310B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP2005082451A (en) SILICON NITRIDE-COMBINED SiC REFRACTORY AND ITS PRODUCING METHOD
JP4327190B2 (en) Si-SiC sintered body and manufacturing method thereof
KR100678635B1 (en) Unshrinking high temperature light weight refractory containing metal powder
JP4787310B2 (en) Lifter
JP4800826B2 (en) Tuna wall tuyere structure
JP5907312B2 (en) Method for manufacturing lining structure of molten metal container
RU2570859C2 (en) Ceramic lining of blast furnace hearth
JP6077877B2 (en) Castable refractories for blast furnace firewood
JP6266968B2 (en) Blast furnace hearth lining structure
JP4116922B2 (en) Manufacturing method of stave cooler for blast furnace wall
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JP2016179482A (en) High-temperature container manufacturing method
JP6412646B2 (en) Brick for hearth of hot metal production furnace
JP2003335573A (en) Slit type gas blowing plug
JP2008094661A (en) Structural member for ceramic furnace
JP6775462B2 (en) Anchor brick
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
RU210483U1 (en) THE CENTRAL PART OF THE COVER OF THE ARC STEEL-MELTING FURNACE
JP2016160158A (en) Refractory block formed of silicon carbide
CA2542275A1 (en) Unfired firebrick containing graphite for cement industry kilns and use of same
RU2028364C1 (en) Refractory lining of industrial furnace
JP2001089808A (en) Lining structure in rh vacuum degassing furnace
JP2951430B2 (en) Fired magnesia spinel brick
JP2013231592A (en) Construction method of monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110714

R150 Certificate of patent or registration of utility model

Ref document number: 4787310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees