JP2000211976A - Burning of electronic ceramic parts - Google Patents

Burning of electronic ceramic parts

Info

Publication number
JP2000211976A
JP2000211976A JP11011812A JP1181299A JP2000211976A JP 2000211976 A JP2000211976 A JP 2000211976A JP 11011812 A JP11011812 A JP 11011812A JP 1181299 A JP1181299 A JP 1181299A JP 2000211976 A JP2000211976 A JP 2000211976A
Authority
JP
Japan
Prior art keywords
ceramic
firing
powder
zirconia
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011812A
Other languages
Japanese (ja)
Inventor
Eisuke Kurokawa
英輔 黒川
Kazuto Sakaguchi
和人 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11011812A priority Critical patent/JP2000211976A/en
Publication of JP2000211976A publication Critical patent/JP2000211976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To homogeneously sinter a large-scaled ceramic compact by scattering reaction-preventing powder such as alumina, beryllia, magnesia or zirconia on a waste plate formed with the same materials as an object to be burnt and subjected to cleaning, and then by burning the object to be burnt in a mounted state on the plate. SOLUTION: The method comprises: (1) subjecting a waste plate 4 pressure- formed with materials for a ceramic resonator to cleaning at ca. 900 deg.C for 5 h.; (2) scattering zirconia powder, having ca. 50 μm average particle diameter, as a reaction-preventing powder 3 so as to be about 3 mm thick on the inside bottom of a burning sheath 2; (3) placing the waste plate 4 on the powder layer and then scattering zirconia powder as a reaction-preventing powder 3 so as to be about 15 mm thick; (4) putting a ceramic resonator element as an object 1 to be burnt on them and subjecting it to cleaning at ca. 900 deg.C for 5 h., followed by sintering it in a retained state at ca. 1,350 deg.C for 5 h. Thus, an excellent sintered compact free from uneven burnt portion in its exterior too is produced without deformation and a crack.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミック電子部品
のなかで基地局用フィルタ等の大型のセラミックを均質
に焼結するためのセラミック電子部品の焼成方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing ceramic electronic components for homogeneously sintering large ceramics such as base station filters among ceramic electronic components.

【0002】[0002]

【従来の技術】近年、基地局用フィルタとして性能面か
ら、セラミックを使用した空洞共振器フィルタが盛んに
使用されるようになり、その中でも数百MHzの周波数
帯域ではその材料特性から大型素子の要求が増加してい
る。
2. Description of the Related Art In recent years, cavity resonator filters using ceramics have been actively used as filters for base stations from the viewpoint of performance. Among them, in a frequency band of several hundred MHz, the material characteristics of large-sized elements have been increasing. Demand is increasing.

【0003】これら大型素子の焼成は、図3に示すよう
に焼成サヤ2に被焼成物1との反応防止材として被焼成
物1の成形体と同材質等の粉末3を散布し、この上に被
焼成物1の成形体を載せて焼成する方法が一般に行わ
れ、特に被焼成物1が大型セラミックの場合、脱バイを
完全に行うため、非常に長い時間かけて脱バイを行う
か、または焼成カーブを緩やかにして長時間かけて焼成
を行っていた。
As shown in FIG. 3, a powder 3 of the same material as that of the compact of the object 1 is sprayed on a firing sheath 2 as a material for preventing the reaction with the object 1, as shown in FIG. In general, a method of placing a molded body of the object to be fired 1 and firing it is performed. In particular, when the object to be fired 1 is a large ceramic, in order to completely perform the de-buying, it is necessary to perform the de-buying over a very long time, Alternatively, the firing was performed for a long time with a gentle firing curve.

【0004】[0004]

【発明が解決しようとする課題】基地局用に用いられる
これら大型セラミック素子は高いQ値(Q=1/tan
δ)が要求され、そのためには均質、高密度のセラミッ
クが必要となる。大型セラミック素子では、特に焼成工
程で完全に脱バイすることが難しく脱バイが不完全な場
合、得られたセラミックの密度が低下すると共に、焼結
体にクラックが発生する原因となる。
These large ceramic elements used for base stations have high Q values (Q = 1 / tan).
δ) is required, which requires a homogeneous and high-density ceramic. In the case of a large-sized ceramic element, in particular, when it is difficult to completely remove the binder in the firing step, and when the removal is incomplete, the density of the obtained ceramic is reduced, and a crack is generated in the sintered body.

【0005】しかしながら形状が大きく、重量物のセラ
ミックの場合には、被焼成体1の成形体に含まれるバイ
ンダの絶対量が多く、またその焼成収縮率も大きい。従
って焼成工程でバインダを完全に被焼成物1から系外に
引き出し分解燃焼させると共に、焼結過程で被焼成物1
を均一に収縮させることが大きな課題となっていた。
[0005] However, in the case of a large-sized and heavy ceramic, the absolute amount of the binder contained in the molded body of the fired body 1 is large, and the firing shrinkage is also large. Accordingly, in the firing step, the binder is completely drawn out of the object 1 to be burned out of the system, and is decomposed and burned.
Has been a major challenge to shrink uniformly.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
本発明は、大型セラミックの焼成において、被焼成物と
同材質の材料を成形、脱バイした捨板の上に、アルミ
ナ、ベリリア、マグネシアまたはジルコニアの何れかを
反応防止用粉末として散布し、その上に被焼成物を載せ
て焼成を行うか、または同材質の捨板に替えてアルミ
ナ、ベリリア、マグネシアまたはジルコニアの何れかの
多孔質セラミック台板を用いて焼成することで比較的短
時間で容易に脱バイを行い、均質に収縮させ所期の目的
を達成することができるものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method for firing large-sized ceramics, which comprises forming a material of the same material as the material to be fired on a discarded plate, removing alumina, beryllia, and magnesia. Or, spray one of zirconia as a reaction-preventing powder, and place the object to be fired on it and fire it, or replace it with a discarded plate of the same material and use any of alumina, beryllia, magnesia or zirconia porous By firing using a ceramic base plate, de-buying can be easily performed in a relatively short time, and uniform shrinkage can be achieved to achieve an intended purpose.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、大型のセラミックの焼成に際して、前記セラミック
と同材質の材料を成形、脱バイした捨板の上に、アルミ
ナ、ベリリア、マグネシアまたはジルコニアの何れかを
反応防止用粉末として散布し、その上に大型セラミック
成形体を載せて焼成するセラミック電子部品の焼成方法
であり、同材質の捨板を用いることで、被焼成体と捨板
は焼成収縮挙動が同じであるため、被焼成体の焼結にお
いて収縮歪みを与えることがなくなると共に、捨板が脱
バイ済みであるため被焼成体の脱バイに影響を与えるこ
とはなく、また反応防止用粉末は何れも溶融温度が高
く、被焼成物との反応活性度が低いため、被焼成物と融
着することなく焼結過程の収縮時にコロの働きで被焼成
物を均質に収縮させる作用を有するものである。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, when firing a large-sized ceramic, a material of the same material as that of the ceramic is formed, and alumina, beryllia, magnesia, Alternatively, a ceramic electronic component is fired by spraying either zirconia as a reaction-preventing powder, placing a large ceramic compact thereon, and firing the ceramic electronic component. Since the plate has the same firing shrinkage behavior, it does not give shrinkage distortion in the sintering of the object to be fired, and does not affect the debuying of the object to be fired because the discarded plate has been removed. In addition, since the reaction preventing powder has a high melting temperature and a low activity for reacting with the material to be fired, the material to be fired is homogenized by the action of rollers during shrinkage during the sintering process without fusing with the material to be fired. Shrink And it has a use.

【0008】本発明の請求項2に記載の発明は、大型の
セラミックの焼成に際して、多孔質セラミック台板の上
にアルミナ、ベリリア、マグネシアまたはジルコニアの
何れかを反応防止用粉末として散布し、その上に大型セ
ラミック成形体を載せて焼成するセラミック電子部品の
焼成方法であり、多孔質セラミック台板を用いることで
焼成過程で脱バイされたガスが被焼成体底面から多孔質
セラミック台板を経由して流れ出し全体として均等に脱
バイを行うことができ、反応防止材は粉末であるため脱
バイを妨げることなく、また前記と同様コロの働きで被
焼成体を均質に収縮させる作用を有する。
According to a second aspect of the present invention, when firing a large-sized ceramic, any one of alumina, beryllia, magnesia and zirconia is sprayed as a reaction-preventing powder on a porous ceramic base plate. A ceramic electronic component firing method in which a large ceramic molded body is placed on top and fired. By using a porous ceramic base plate, the gas removed in the firing process passes through the porous ceramic base plate from the bottom surface of the fired body As a result, the reaction preventive material has a function of uniformly shrinking the object to be fired by the action of the roller as described above, since the reaction preventing material is a powder and does not hinder the de-buying.

【0009】本発明の請求項3に記載の発明は、多孔質
セラミック台板の材質にアルミナ、ベリリア、マグネシ
アまたはジルコニアの何れかを用いる請求項2に記載の
セラミック電子部品の焼成方法であり、被焼成物の焼結
に悪影響を与えない台板の材質を規定したものである。
According to a third aspect of the present invention, there is provided the method for firing a ceramic electronic component according to the second aspect, wherein any one of alumina, beryllia, magnesia and zirconia is used as the material of the porous ceramic base plate. This defines the material of the base plate that does not adversely affect the sintering of the object to be fired.

【0010】本発明の請求項4に記載の発明は、空孔率
が60〜75%の多孔質セラミック台板を用いる請求項
3に記載のセラミック電子部品の焼成方法であり、大型
セラミック被焼成物の荷重に対し十分な機械的強度を有
し、かつ脱バイガスを被焼成物の底面からスムーズに移
動させることができるものである。
According to a fourth aspect of the present invention, there is provided the method for firing a ceramic electronic component according to the third aspect, wherein a porous ceramic base plate having a porosity of 60 to 75% is used. It has sufficient mechanical strength against the load of the object, and can smoothly move the degassing gas from the bottom surface of the object to be fired.

【0011】以下、本発明の一実施の形態について、セ
ラミック電子部品に基地局用の空洞型セラミック共振素
子(以降セラミック共振素子と称する)を用いて説明す
る。
Hereinafter, an embodiment of the present invention will be described using a hollow ceramic resonator for a base station (hereinafter referred to as a ceramic resonator) as a ceramic electronic component.

【0012】(実施の形態1)図1に本発明の被焼成物
1の焼成サヤ2詰めの状態を示した。
(Embodiment 1) FIG. 1 shows a state in which an object to be fired 1 according to the present invention is packed with a sinter 2.

【0013】初め、セラミック共振器用材料を、ジルコ
ニア(ZRO2)、酸化チタン(TiO2)、酸化マグネ
シウム(MgO)、酸化ニオブ(Nb25)と微量の添
加物をそれぞれ規定量秤量した後、公知の窯業的手法に
したがって作成した。
First, a specified amount of a ceramic resonator material was weighed using zirconia (ZRO 2 ), titanium oxide (TiO 2 ), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ) and a small amount of additives. , According to known ceramic techniques.

【0014】先ず、得られた材料を用い250φ×15
mmの捨板4を1ton/cm2の圧力で成形した後、90
0℃の温度で5時間脱バイを行った。
First, using the obtained material, 250φ × 15
After forming a disc 4 mm with a pressure of 1 ton / cm 2 , 90
Debuying was performed at a temperature of 0 ° C. for 5 hours.

【0015】次に、セラミック共振用素子として、ドー
ナツ形状の240φ×φ85×120mm素子を1ton
/cm2の圧力で成形を行った。
Next, as a ceramic resonance element, a doughnut-shaped 240 φ × 85 × 120 mm element is used for 1 ton.
The molding was performed at a pressure of / cm 2 .

【0016】次いで、図1に示すようにアルミナ製の焼
成サヤ3の底に反応防止用粉末3として、平均粒径50
μmのジルコニア粉末を約3mmの厚さに散布し、その上
に前記捨板4、さらにその上に反応防止用粉末3として
前記ジルコニア粉末を約15mmの厚さに散布した後、被
焼成物1のセラミック共振用素子を載せ、900℃の温
度で5時間脱バイ後、1350℃の温度で5時間保持す
る焼成条件で焼結を行った。得られた焼結体の焼結状態
を(表1)に示す。尚、比較例として、図3に示した従
来の焼成方法で作成した焼結体の結果も併せて示した。
Next, as shown in FIG. 1, a reaction-preventing powder 3 having an average particle diameter of 50 was formed on the bottom of the calcined sheath 3 made of alumina.
μm of zirconia powder is sprinkled to a thickness of about 3 mm, the trash plate 4 is further sprinkled thereon, and the zirconia powder is sprinkled thereon as a reaction preventing powder 3 to a thickness of about 15 mm. Was mounted at a temperature of 900 ° C. for 5 hours, and then sintered at a temperature of 1350 ° C. for 5 hours. The sintering state of the obtained sintered body is shown in (Table 1). As a comparative example, the results of a sintered body prepared by the conventional firing method shown in FIG. 3 are also shown.

【0017】[0017]

【表1】 [Table 1]

【0018】(表1)に示したように、従来の焼成方法
では焼結体密度が低く、しかも得られた焼結体が楕円ド
ーナツ形状に変形したり、またヒビ割れが発生したが、
本発明の方法によれば外観的にも焼成ムラのない良好な
焼結体が得られることが分かる。しかしながら、被焼成
物1と捨板4との間の反応防止材3のジルコニア粉が少
ない場合には、ヒビ割れが発生する例がみられた。従っ
て反応防止材3として約15mm程度の厚さ散布すること
が望ましい。
As shown in Table 1, in the conventional firing method, the density of the sintered body was low, and the obtained sintered body was deformed into an elliptical donut shape and cracks occurred.
It can be seen that according to the method of the present invention, a good sintered body having no firing unevenness can be obtained in appearance. However, when the amount of the zirconia powder of the reaction preventing material 3 between the material 1 to be fired and the discarded plate 4 was small, cracks occurred in some cases. Therefore, it is desirable to spray the reaction preventive material 3 with a thickness of about 15 mm.

【0019】本実施の形態において平均粒径50μmの
ジルコニア粉末を用いたが特にこれに拘るものではない
が、1〜5μmの粉末を使用すると被焼成物1の重さに
対しコロの作用が小さくなると共に、ジルコニア粉末の
固化が激しく、再使用に際して粉砕工程が必要となり好
ましくない。また、ジルコニア粉末に替えて、アルミ
ナ、ベリリア、マグネシアについても同様な効果がある
ことは確認している。しかしながら、これら粉末の材質
は被焼成物1の組成を考慮して使用する必要があること
は言うまでもない。また更に捨板4の下に反応防止材用
粉末3を適量散布することは捨板4を含み、被焼成物1
を焼成サヤ2の底面との摩擦を軽減し均質な収縮を行う
ことができる有効な方法と言える。
In the present embodiment, zirconia powder having an average particle size of 50 μm is used, but is not particularly limited thereto. However, when powder having a size of 1 to 5 μm is used, the effect of the roller on the weight of the object 1 is small. At the same time, the zirconia powder solidifies intensely, and a pulverizing step is required when reused, which is not preferable. Also, it has been confirmed that alumina, beryllia, and magnesia have similar effects in place of zirconia powder. However, it is needless to say that these powder materials need to be used in consideration of the composition of the material 1 to be fired. Further, spraying a suitable amount of the reaction preventing material powder 3 under the waste plate 4 includes the waste plate 4,
It can be said that this is an effective method capable of reducing friction with the bottom surface of the firing sheath 2 and performing uniform shrinkage.

【0020】(実施の形態2)図2に、実施の形態1の
捨板4に替えて多孔質セラミック台板5を用いた焼成サ
ヤ3詰めの状態を示した。
(Embodiment 2) FIG. 2 shows a state in which a fired sheath 3 is packed by using a porous ceramic base plate 5 instead of the sacrificial plate 4 of Embodiment 1.

【0021】(表2)に示す空孔率のジルコニア製の多
孔質セラミック台板5を捨板4に替えて用いた以外の、
サヤ詰め条件、焼成条件を同条件にし焼成を行いその結
果を(表2)に示した。
A porous ceramic base plate 5 made of zirconia having a porosity shown in (Table 2) was used instead of the discard plate 4.
The sintering was performed under the same conditions as the sheath filling conditions and the sintering conditions, and the results were shown in (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】(表2)に示すように、本発明の範囲の6
0〜75%空孔率の多孔質セラミック台板5では外観的
に焼結ムラによるヒビ割れや変形はなかったが、空孔率
50%では多孔質セラミック台板5を通して被焼成物1
からの脱バイが不十分によるものと思われるヒビ割れが
確認され、また焼結密度も低い。これに対し空孔率85
%の場合は、多孔質セラミック台板5が被焼成物1の荷
重に耐えられずにソリが発生し、これによる焼結体の変
形が認められた。
As shown in (Table 2), 6 of the scope of the present invention
In the case of the porous ceramic base plate 5 having a porosity of 0 to 75%, no cracks or deformation due to uneven sintering were observed, but when the porosity was 50%, the material 1 to be fired passed through the porous ceramic base plate 5.
Cracks, which are considered to be due to insufficient de-buying from the steel, were observed, and the sintered density was low. On the other hand, porosity of 85
In the case of%, the porous ceramic base plate 5 could not withstand the load of the material 1 to be fired, causing warpage, and deformation of the sintered body due to this was observed.

【0024】尚、ジルコニア粉末に替えて、アルミナ、
ベリリア、マグネシア製の多孔質セラミック台板5にお
いても同様な効果があることは確認済みである。
In place of the zirconia powder, alumina,
It has been confirmed that the same effect can be obtained with the porous ceramic base plate 5 made of beryllia and magnesia.

【0025】[0025]

【発明の効果】以上本発明によれば、大型セラミック成
形体を焼成する場合、被焼成物と同材質の脱バイ済み捨
板或いは多孔質セラミック台板の上に反応防止材用の粉
末を比較的多目に散布し、その上に被焼成物を載せ焼成
することにより、脱バイが容易となり、得られた焼結体
はバインダー残留物の炭化物によるヒビ割れ、焼成ムラ
がなく、しかも均質に収縮した良質のセラミックを得る
ことができる。特に基地局用大型セラミック共振器のよ
うに均質性が要求されるセラミックには最適な焼成方法
であることが分かる。
As described above, according to the present invention, when firing a large-sized ceramic molded body, the powder for the reaction preventing material is compared with the debris-removed discarded or porous ceramic base plate of the same material as the object to be fired. It is easy to remove the de-built by sintering the target and placing the object to be baked on it and firing it, and the obtained sintered body is free from cracks and uneven firing due to carbides of the binder residue, and is homogeneous Good quality shrunk ceramic can be obtained. In particular, it can be seen that this is an optimal firing method for ceramics that require homogeneity, such as large ceramic resonators for base stations.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態のサヤ詰め方法を示
す断面図
FIG. 1 is a cross-sectional view showing a sheath filling method according to a first embodiment of the present invention.

【図2】同、第二の実施の形態のサヤ詰め方法を示す断
面図
FIG. 2 is a cross-sectional view showing a sheath filling method according to the second embodiment.

【図3】従来のサヤ詰め方法を示す断面図FIG. 3 is a sectional view showing a conventional sheath filling method.

【符号の説明】[Explanation of symbols]

1 被焼成物 2 焼成サヤ 3 反応防止用粉末 4 捨板 5 多孔質セラミック台板 REFERENCE SIGNS LIST 1 object to be fired 2 fired sheath 3 reaction preventing powder 4 discarded plate 5 porous ceramic base plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 大型のセラミックの焼成に際して、前記
セラミックと同材質の材料を成形、脱バイした捨板の上
に、アルミナ、ベリリア、マグネシアまたはジルコニア
の何れかを反応防止用粉末として散布し、その上に大型
セラミック成形体を載せて焼成するセラミック電子部品
の焼成方法。
At the time of firing a large-sized ceramic, any one of alumina, beryllia, magnesia or zirconia is sprayed as a reaction-preventing powder on a discarded plate formed of the same material as that of the ceramic and de-built, A method for firing a ceramic electronic component in which a large ceramic compact is placed thereon and fired.
【請求項2】 大型のセラミックの焼成に際して、多孔
質セラミック台板の上にアルミナ、ベリリア、マグネシ
アまたはジルコニアの何れかを反応防止用粉末として散
布し、その上に大型セラミック成形体を載せて焼成する
セラミック電子部品の焼成方法。
2. When firing a large ceramic, alumina, beryllia, magnesia or zirconia is sprayed as a reaction-preventing powder on a porous ceramic base plate, and a large ceramic molded body is placed thereon and fired. Firing method for ceramic electronic components.
【請求項3】 多孔質セラミック台板の材質にアルミ
ナ、ベリリア、マグネシアまたはジルコニアの何れかを
用いる請求項2に記載のセラミック電子部品の焼成方
法。
3. The firing method for a ceramic electronic component according to claim 2, wherein any one of alumina, beryllia, magnesia, and zirconia is used as a material of the porous ceramic base plate.
【請求項4】 空孔率が60〜75%の多孔質セラミッ
ク台板を用いる請求項3に記載のセラミック電子部品の
焼成方法。
4. The method for firing a ceramic electronic component according to claim 3, wherein a porous ceramic base plate having a porosity of 60 to 75% is used.
JP11011812A 1999-01-20 1999-01-20 Burning of electronic ceramic parts Pending JP2000211976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011812A JP2000211976A (en) 1999-01-20 1999-01-20 Burning of electronic ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011812A JP2000211976A (en) 1999-01-20 1999-01-20 Burning of electronic ceramic parts

Publications (1)

Publication Number Publication Date
JP2000211976A true JP2000211976A (en) 2000-08-02

Family

ID=11788236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011812A Pending JP2000211976A (en) 1999-01-20 1999-01-20 Burning of electronic ceramic parts

Country Status (1)

Country Link
JP (1) JP2000211976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198243A (en) * 2000-12-26 2002-07-12 Murata Mfg Co Ltd Method for manufacturing laminated ceramic electronic component
JP2008110906A (en) * 2006-10-31 2008-05-15 Denso Corp Method for manufacturing honeycomb structure
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
CN108847353A (en) * 2018-05-30 2018-11-20 广东风华高新科技股份有限公司 A kind of multilayer ceramic capacitor and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198243A (en) * 2000-12-26 2002-07-12 Murata Mfg Co Ltd Method for manufacturing laminated ceramic electronic component
JP2008110906A (en) * 2006-10-31 2008-05-15 Denso Corp Method for manufacturing honeycomb structure
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
CN108847353A (en) * 2018-05-30 2018-11-20 广东风华高新科技股份有限公司 A kind of multilayer ceramic capacitor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6540863B2 (en) Thermal spray formed body
JP2000211976A (en) Burning of electronic ceramic parts
JPH0770610A (en) Method for sintering injection-molded product
JPH046159A (en) Production of silicon nitride-based ceramics sintered body
JP4460815B2 (en) Setter for firing
JP2002333282A (en) Sintering setter and its producing method
JP5002087B2 (en) CHROMIA SINTERED BODY AND ITS MANUFACTURING METHOD
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
JPH07207305A (en) Setter for sintering rare earth magnet
JP2002210717A (en) Method for manufacturing ceramic molding
JPH03197367A (en) Preparation of aluminum nitride sintered product
US20010053739A1 (en) High thermal conductivity aln for microwave tube applications
US20230219853A1 (en) Functionally graded firing setters and process for manufacturing these setters
JPH0323273A (en) Method for degreasing powder compact
WO2021192554A1 (en) Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
JP2942212B2 (en) Manufacturing method of ceramics
JP2005035154A (en) Cast molding method of yag
JP2980029B2 (en) Method for firing ceramic molded body
JP2000281453A (en) Firing of green sheet laminate
JPH0860203A (en) Production of compacted and sintered body of high melting point metal powder
JP2005263597A (en) Setter for firing dielectric substrate and method of manufacturing the same
JP2004250241A (en) Setter for firing and method for firing
JPS58182883A (en) Manufacture of high density piezoelectric ceramics
Suzuki et al. Micrwave Sintering of Alumina Made by High-Speed Centrifugal Compaction Process
CN117510198A (en) Lead-based piezoelectric ceramic and preparation method thereof