JPH07237975A - Method for burning ceramics - Google Patents

Method for burning ceramics

Info

Publication number
JPH07237975A
JPH07237975A JP6054969A JP5496994A JPH07237975A JP H07237975 A JPH07237975 A JP H07237975A JP 6054969 A JP6054969 A JP 6054969A JP 5496994 A JP5496994 A JP 5496994A JP H07237975 A JPH07237975 A JP H07237975A
Authority
JP
Japan
Prior art keywords
powder
firing
same composition
floor plate
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6054969A
Other languages
Japanese (ja)
Inventor
Fumihiro Kato
文博 加藤
Yoshio Watanabe
佳男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6054969A priority Critical patent/JPH07237975A/en
Publication of JPH07237975A publication Critical patent/JPH07237975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To a provide a method for burning ceramics by which the deformation can be avoided; the dispersion in shrinkage factor is extremely small and the resultant sintered compacts are excellent in smoothness and good in density thereof and the dispersion in various characteristics is slight without a deviation of composition by arranging a frame provided with a lid placed on a specific plank having many honeycombed through pores, etc., spreading powder for suppressing the fluctuation in the composition on the plank, placing compacts of the ceramics thereon and baking the ceramics. CONSTITUTION:This method for baking ceramics is to use three kinds of planks respectively having many through pores and the many pores assuming a honeycombed form or bottomed pores assuming the honeycombed form or transverse or vertical grooves as a specific plank and powder having a content of ZnO increased from that of the same composition by, e.g. 0-3mol% as powder for suppressing the fluctuation in composition. This figure is one example of the plank having the many through pores. The plank 2 for baking made of zirconia is used and the many through pores 5 are arranged in the honeycombed form. Furthermore, the powder 13 having the same composition as that of an Mn-Zn-based ferrite is piled up on a bed plate 4 made of zirconia and compacts 10 having the same composition are placed thereon. A frame 11 and a lid 12 are placed to bake the ceramics in an atmosphere of oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックの焼成方法に
関する。
FIELD OF THE INVENTION The present invention relates to a method for firing ceramics.

【0002】[0002]

【従来の技術】Mn−Zn系フェライト等のソフトフェ
ライトは、コイルトランス用として通信用コイル各種小
形コイル、アンテナコイル、通信用トランス、中間周波
トランス、ロータリートランス、パルストランス、電源
用としてスイッチングトランス、フライバックトラン
ス、ヘッド用として磁気ヘッド、偏向用として偏向ヨー
ク、振動用として磁歪振動子、センサ用として感温スィ
ッチ等に使用され、その用途は広範囲にわたる。中でも
Mn−Zn系ソフトフェライトは、従来から電子機器用
フェライトコア等に採用される磁性材料であるが、この
Mn−Zn系フェライトはFe23,MnO,ZnOの
各粉末を混合し、これにバインダーを添加し、例えば環
状、E形、I形、コ字形等の形に圧縮成形し、しかる
後、この成形体を焼成炉内で焼成して製造される。上記
Mn−Zn系フェライトの成形体を焼成する場合、高温
に耐える板状のアルミナ(Al23)、マグネシア(M
gO)、ジルコニア(ZrO2)の敷板に載置して、焼
成炉内に挿入するようにしている。しかしながら、上記
の板状の敷板上に載置してZnを含むフェライトを焼成
する方法では、フェライトが上記板状敷板に接触、当接
する部分にフェライト中のZnが上記敷板のアルミナ、
マグネシア、ジルコニア等に固溶し、該フェライト中の
Zn量が減少し、組成ずれを起こし、Znを含むフェラ
イト、例えば、Mn−Mg−Zn系フェライト、Mg−
Cu−Zn系フェライト、Ni−Zn系フェライト、N
i−Cu−Zn系フェライト等、いずれもZnOを含有
しているフェライト材料は、Znの組成がずれやすいと
いえる。その結果、上記Mn−Zn系フェライト、Mn
−Mg−Zn系フェライト、Mg−Cu−Zn系フェラ
イト、Ni−Zn系フェライト、Ni−Cu−Zn系フ
ェライト等の初透磁率、相対損失係数、ヒステリシス損
失係数等の磁気特性が劣化する問題が生ずる。
2. Description of the Related Art Soft ferrites such as Mn-Zn type ferrites are used for coil transformers, various small coils for communication, antenna coils, communication transformers, intermediate frequency transformers, rotary transformers, pulse transformers, switching transformers for power supplies, It is used in flyback transformers, magnetic heads for heads, deflection yokes for deflection, magnetostrictive vibrators for vibration, temperature-sensitive switches for sensors, etc., and its applications are wide-ranging. Of these Mn-Zn system soft ferrite is a magnetic material that is conventionally employed in the electronics ferrite core or the like, the Mn-Zn ferrite is mixed Fe 2 O 3, MnO, the powders of ZnO, which Is added with a binder and compression-molded into, for example, a ring shape, an E-shape, an I-shape, a U-shape, and the like, and then the molded body is fired in a firing furnace. When the molded body of Mn-Zn ferrite is fired, plate-like alumina (Al 2 O 3 ) that withstands high temperatures and magnesia (M
gO) and zirconia (ZrO 2 ) are placed on a floor plate and inserted into the firing furnace. However, in the method of firing the ferrite containing Zn by placing it on the plate-shaped floor plate, the ferrite in the ferrite comes into contact with and abuts the plate-shaped floor plate, and Zn in ferrite is alumina of the floor plate,
Ferrite that forms a solid solution in magnesia, zirconia, etc., reduces the amount of Zn in the ferrite, causes a composition shift, and contains Zn, for example, Mn-Mg-Zn-based ferrite, Mg-
Cu-Zn based ferrite, Ni-Zn based ferrite, N
It can be said that a ferrite material containing ZnO, such as an i-Cu-Zn-based ferrite, is likely to have a different Zn composition. As a result, the above Mn-Zn ferrite, Mn
-Mg-Zn-based ferrite, Mg-Cu-Zn-based ferrite, Ni-Zn-based ferrite, Ni-Cu-Zn-based ferrite and the like have a problem that magnetic properties such as initial magnetic permeability, relative loss coefficient and hysteresis loss coefficient deteriorate. Occurs.

【0003】Znを含むフェライトの従来の焼成方法
は、図7に示すように、幅295×長さ295×厚さ1
5tmmの敷板17上に、2〜3mmの厚さで、例え
ば、Mn−Zn系フェライトと同一組成の粉末13を敷
き詰め、その敷き詰めた前記同一粉末上に、外径φ25
mm×内径φ15mm×厚さ4.5tmmの製品のMn
−Zn系フェライトの成形体10を並べ、更にその成形
体10上を10mm以上も同一組成の粉末13をかぶせ
て埋没し焼成する方法であった。成形体10を埋没する
と、焼成用の粉末を覆う工程を必要とし、又粉末がこの
焼成で付着するので、その付着物をとらなければならな
い。そのため余分の手数がかかり、効率がよくない。更
に埋没しているため、脱有機バインダーに起因するひび
割れが10%以上発生していた。
As shown in FIG. 7, the conventional firing method of ferrite containing Zn is as follows: width 295 × length 295 × thickness 1
For example, a powder 13 having the same composition as Mn—Zn ferrite is spread on a spread plate 17 having a thickness of 5 tmm with a thickness of 2 to 3 mm, and an external diameter φ25 is applied on the spread same powder.
mm × inner diameter φ15mm × thickness of 4.5tmm Mn of the product
This is a method of arranging the Zn-based ferrite compacts 10 and further burying and burying the compacts 10 with a powder 13 having the same composition for 10 mm or more and firing. When the molded body 10 is buried, a step of covering the powder for firing is required, and since the powder adheres during this firing, the deposit must be removed. Therefore, extra work is required and efficiency is low. Further, since it was buried, 10% or more of cracks due to the organic binder were generated.

【0004】一方、セラミックコンデンサは、小型、大
容量化への進歩が著しく、各種民生機器、交換機、電源
等、又圧電セラミックは、超音波振動子、アクチュエー
タ、超音波モータ、セラミックフィルター、圧電ブザー
等、広範囲の用途に適用される。例えば、一例として、
セラミックコンデンサの製法としては、シート成形技
術、押し出し成形技術、ドクターブレード法、あるいは
薄物用成形機等を利用し、セラミックコンデンサのグリ
ーンシートを製作し、更にそのシート上に内部電極を形
成し打ち抜き、その後、積層してチップ状の成形体を作
製する。これを焼成用敷板上に所定数並べて配置し焼成
する方法が一般的である。上記焼成用敷板に関して述べ
れば、当然のことながら、被焼成物成分との親和力が弱
いこと(反応し難いこと)、焼成後の焼成物との剥離性
が良好なこと、不純物が少ないこと等が要求される。従
って、従来の焼成時に使用するこの種の焼成用敷板の材
質としては、上記の諸条件を、ある程度満足するアルミ
ナ(Al23)、ジルコニア(ZrO2)、あるいはマ
グネシア(MgO)等を各々主成分とするセラミック板
が知られている。図12に示すように、例えば、誘電体
のセラミックコンデンサは、板状の敷板15上に図11
のグリーンチップ成形体1を載置して焼成していた。
又、同一粉末上に積載、埋没することもある。しかしな
がら、上記の材質からなる焼成用敷板を用いて、チップ
状セラミックコンデンサの成形体を直接焼成用敷板上に
配し、焼成した場合、焼成用敷板の主成分の純度、緻密
性によって多少異なるが、前記セラミックコンデンサの
成形体と焼成用敷板との接触面部において、一部反応を
起こして溶着したり、セラミックコンデンサの成形体の
焼成過程での収縮が円滑に、かつ均一になされず、その
結果、セラミックコンデンサの焼成体が変形、クラック
等が生じたり、あるいはセラミックコンデンサの焼成体
の寸法のばらつき、組成ずれをおこし、諸特性のばらつ
きが大きくなる等、品質上の不都合が生じる。以上のこ
とから、上記チップ状の誘電体の焼成において、好適な
焼成用敷板が望まれていた。
On the other hand, ceramic capacitors have made remarkable progress toward miniaturization and large capacity, and various consumer appliances, exchanges, power supplies, etc., and piezoelectric ceramics include ultrasonic vibrators, actuators, ultrasonic motors, ceramic filters, and piezoelectric buzzers. It is applied to a wide range of applications. For example, as an example,
As a method for manufacturing a ceramic capacitor, a sheet molding technology, an extrusion molding technology, a doctor blade method, or a molding machine for thin materials is used to manufacture a green sheet of a ceramic capacitor, and then an internal electrode is formed on the sheet and punched, After that, they are laminated to produce a chip-shaped molded body. A common method is to arrange a predetermined number of these on a baking base and fire them. Speaking of the above-mentioned baking base, naturally, it has a weak affinity for the components to be baked (difficult to react), good releasability from the baked product after baking, low impurities, etc. Required. Therefore, as the material of this kind of baking base used for conventional baking, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), etc., which satisfy the above conditions to some extent, are used. A ceramic plate having a main component is known. As shown in FIG. 12, for example, a dielectric ceramic capacitor is provided on a plate-like base plate 15 as shown in FIG.
The green chip molded body 1 was mounted and fired.
Further, they may be loaded and buried on the same powder. However, when the molded product of the chip-shaped ceramic capacitor is directly placed on the baking base plate using the baking base plate made of the above-mentioned material and fired, it may be slightly different depending on the purity and the denseness of the main components of the baking base plate. In the contact surface portion between the molded body of the ceramic capacitor and the firing base plate, a partial reaction is caused to cause welding or shrinkage during the firing process of the molded body of the ceramic capacitor is not made smooth and uniform. However, there is a problem in quality such that the fired body of the ceramic capacitor is deformed or cracked, or the fired body of the ceramic capacitor is varied in size or composition, resulting in large variations in various characteristics. From the above, in firing the above-mentioned chip-shaped dielectric, a suitable firing floor plate has been desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、Znを含む
フェライト及び誘電体の成形体を板状敷板上に載置し焼
成する場合、粉末で覆わない、作業効率のよい、焼成
後、焼成体を前記敷板と焼成用粉末の溶着がなく、変形
も回避でき、収縮率のばらつきも極めて小さく、平滑性
に優れ、組成ずれもなく、焼結体の密度も良好で、諸特
性のばらつきが小さい焼成用敷板を使用したフェライト
及び誘電体の焼成方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION In the present invention, when a ferrite- and dielectric-containing compact containing Zn is placed on a plate and fired, it is not covered with powder, has good working efficiency, and is fired after firing. There is no fusion of the powder for firing with the floor plate, deformation can be avoided, variation in shrinkage is extremely small, smoothness is excellent, composition does not shift, density of sintered body is good, variation in various characteristics An object of the present invention is to provide a method for firing a ferrite and a dielectric material using a small baking sheet.

【0006】[0006]

【課題を解決するための手段】本発明は、敷板がハニカ
ム状の貫通多孔を有し、前記敷板上に蓋を載せた枠を配
し、前記敷板を用いて、組成変動を抑制するための粉末
を敷いて、セラミックの成形体を載置し、該成形体を焼
成することを特徴とするセラミックの焼成方法である。
According to the present invention, a floor plate has a honeycomb-like through-hole, a frame having a lid is placed on the floor plate, and the floor plate is used to suppress composition fluctuation. It is a method of firing a ceramic, which comprises laying a powder, placing a ceramic molded body, and firing the molded body.

【0007】本発明は、敷板がハニカム状の有底多孔を
有し、前記敷板上に蓋を載せた枠を配し、前記敷板を用
いて、組成変動を抑制するための粉末を敷いて、セラミ
ックの成形体を載置し、該成形体を焼成することを特徴
とするセラミックの焼成方法である。
In the present invention, the floor plate has a honeycomb-like bottomed porosity, a frame with a lid is placed on the floor plate, and the floor plate is used to spread powder for suppressing composition fluctuation, A ceramic firing method is characterized in that a ceramic compact is placed and the compact is fired.

【0008】本発明は、敷板が凹状の溝を有し、前記敷
板上に蓋を載せた枠を配し、前記敷板を用いて、組成変
動を抑制するための粉末を敷いて、セラミックの成形体
を載置し、該成形体を焼成することを特徴とするセラミ
ックの焼成方法である。
According to the present invention, a base plate has a concave groove, a frame with a lid is placed on the base plate, and a powder for suppressing composition variation is spread using the base plate to form a ceramic. A ceramic firing method is characterized in that a body is placed and the molded body is fired.

【0009】本発明は、組成変動を抑制するための粉末
として、同一組成より0〜3モル%のZnOを増加させ
た粉末を用いることを特徴とする上述のZnを含むフェ
ライトの焼成方法である。
The present invention is the above-described method for firing ferrite containing Zn, characterized in that a powder containing 0 to 3 mol% of ZnO increased from the same composition is used as the powder for suppressing compositional fluctuation. .

【0010】本発明は、同一組成のフェライトの焼成用
粉末を使用することを特徴とするZnを含むフェライト
の焼成方法である。
The present invention is a method for firing a ferrite containing Zn, characterized in that a ferrite firing powder having the same composition is used.

【0011】本発明は、同一組成のセラミックコンデン
サの焼成用粉末を使用することを特徴とするセラミック
コンデンサの焼成方法である。
The present invention is a method for firing a ceramic capacitor, characterized in that a powder for firing a ceramic capacitor having the same composition is used.

【0012】本発明は、同一組成の圧電セラミックの焼
成用粉末を使用することを特徴とする圧電セラミックの
焼成方法である。
The present invention is a method for firing a piezoelectric ceramic, characterized in that firing powder of the piezoelectric ceramic having the same composition is used.

【0013】[0013]

【作用】焼成用敷板は、フェライト及び誘電体の成形体
を焼成する際、焼成後において前記成形体が焼成されて
焼成体となった時に、該焼成体と焼成用敷板とが溶着し
反応することを回避できることが条件である。焼成時、
焼成体と焼成用敷板との反応が発生すると、前記焼成体
の組成がずれる。そればかりではなく、焼成体の収縮が
円滑、かつ均一にならず、その結果、焼成体に変形、割
れ等が発生し、焼成温度で高温にさらされて変色した
り、諸特性のばらつきが大きくなる。これらの欠陥を回
避するため、下記の三種類の焼成用敷板を用いるもので
ある。本発明の焼成用敷板は板状を形成し、厚さ方向
に貫通する多孔を有し、多孔はハニカム状を形成する。
本発明の焼成用敷板は板状を形成し、厚さ方向に有底
多孔を有し、有底多孔はハニカム状を形成する。本発明
の焼成用敷板は板状を形成し、横又は縦溝を有するも
のである。本発明の敷板は、いずれも貫通多孔、
有底多孔、横又は縦溝を有し、同一組成の粉末を焼成用
粉末として使用し、貫通する多孔、有底多孔、横又は縦
溝に前記焼成用粉末をつめて使用するものである。更
に、敷板上の成形体をカバーするため、敷板と同
一幅、同一長さの枠と蓋を作製してそれを使用し、溶着
及び組成ずれ等、又諸特性の劣化する要因を押さえるも
のである。セラミックにおいては、溶着、組成ずれ、変
形割れ等の品質上の劣化を防止することに効果があるこ
とも判明した。
When the shaped body of ferrite and dielectric is fired, when the shaped body is fired into a fired body after firing, the fired body and the firing base plate react with each other by welding. The condition is that it can be avoided. When firing,
When the reaction between the fired body and the firing base plate occurs, the composition of the fired body shifts. Not only that, the shrinkage of the fired body is not smooth and uniform, and as a result, the fired body is deformed or cracked, which is exposed to high temperatures at the firing temperature to cause discoloration or a large variation in various characteristics. Become. In order to avoid these defects, the following three types of baking sheets are used. The firing floor plate of the present invention has a plate-like shape and has a porosity penetrating in the thickness direction, and the porosity forms a honeycomb shape.
The baking slab of the present invention has a plate-like shape and has bottomed porosity in the thickness direction, and the bottomed porosity forms a honeycomb shape. The baking sheet of the present invention has a plate shape and has horizontal or vertical grooves. The floor plate of the present invention, all through porosity,
A powder having a bottomed porosity and horizontal or vertical grooves and having the same composition is used as a firing powder, and the porosity having a bottom, a bottomed porosity, a horizontal or vertical groove is filled with the firing powder. Further, in order to cover the molded product on the floor plate, a frame and lid having the same width and the same length as the floor plate are manufactured and used to suppress factors such as welding and compositional deviation, and deterioration of various characteristics. is there. It has also been found that ceramics are effective in preventing deterioration in quality such as welding, composition shift, and deformation cracking.

【0014】フェライトの場合、焼成用粉末として同一
組成の粉末を使用したものと、フェライトの焼成中に成
形体の酸化亜鉛含有量が減耗しやすいので、焼成用粉末
として同一組成ではなく、0,1,2,2.5,3,
4,5モル%まで酸化亜鉛量を増加させた7種類の焼成
用粉末を使用する実験を行った。その結果、2.5モル
%酸化亜鉛量を増加させた粉末を使用し、枠と蓋をかぶ
せて焼成する場合が、最も酸化亜鉛減耗量が少ないこと
が判明したので、実施例では同一組成の粉末及び2.5
モル%酸化亜鉛量を増加させた粉末を使用して効果を得
ることができた。フェライト焼成品の酸化亜鉛含有量の
減耗を抑制するために、敷板、敷板、敷板を使用
し、いずれも枠と蓋を使用し、酸化亜鉛量を2.5モル
%増加させた焼成用粉末を使用すると、Znを含むフェ
ライトにおいては酸化亜鉛量の減耗を回避できる。
In the case of ferrite, the one having the same composition as the firing powder and the one having the same composition as the firing powder do not have the same composition as the firing powder because the zinc oxide content of the molded body is easily worn during the firing of the ferrite. 1, 2, 2.5, 3,
Experiments were carried out using seven types of firing powders with the amount of zinc oxide increased to 4,5 mol%. As a result, it was found that the amount of zinc oxide depletion was the smallest in the case where the powder having the increased amount of 2.5 mol% zinc oxide was used and the frame and the lid were covered, and the amount of zinc oxide depletion was the smallest. Powder and 2.5
An effect could be obtained using a powder with an increased amount of mol% zinc oxide. In order to suppress the wear of the zinc oxide content of the fired ferrite product, a laying plate, a laying plate, and a laying plate are used, and in each case, a frame and a lid are used, and a calcination powder in which the amount of zinc oxide is increased by 2.5 mol% is used. When used, the wear of the zinc oxide amount can be avoided in the ferrite containing Zn.

【0015】[0015]

【実施例】以下、本発明がMn−Zn系フェライトであ
る場合の実施例について説明する。図1は、厚さ方向を
貫通したハニカム状の多孔を有し、枠と蓋とを用いた焼
成用敷板を用いたMn−Zn系フェライトの焼成方法
を示す説明図である。図2は、厚さ方向にハニカム状の
有底多孔を有し、枠と蓋とを用いた焼成用敷板を用い
たMn−Zn系フェライトの焼成方法を示す説明図であ
る。図3は、厚さ方向に横溝又は縦溝を有し、枠と蓋と
を用いた焼成用敷板を用いたMn−Zn系フェライト
の焼成方法を示す説明図である。
EXAMPLES Examples of the case where the present invention is a Mn-Zn type ferrite will be described below. FIG. 1 is an explanatory diagram showing a method of firing Mn—Zn-based ferrite using a firing base plate that has a honeycomb-shaped porosity that penetrates in the thickness direction and that uses a frame and a lid. FIG. 2 is an explanatory diagram showing a method for firing Mn—Zn-based ferrite using a firing base plate having a honeycomb-shaped bottomed porosity in the thickness direction and using a frame and a lid. FIG. 3 is an explanatory diagram showing a method for firing Mn—Zn-based ferrite using a firing base plate having a horizontal groove or a vertical groove in the thickness direction and using a frame and a lid.

【0016】先ず、焼成用敷板の製法について述べる。
化学的純度99%以上のジルコニア(ZrO2)原料を
混合し、1250℃〜1300℃で数時間仮焼成し、粉
砕機により粉砕分級し、粒径60〜100μ程度に調整
した。上記のように混合粉砕して得られた粉末に有機バ
インダーを適量加えて造粒した後、1.5t/cm2
圧力で加圧成形し、1230℃〜1260℃の温度で数
時間焼成した。得られた焼成体から幅295mm×長さ
295mm×5tmm及び10tmmの敷板を作製し、
更に下記の三種類の敷板を作製した。ジルコニア製敷板
は幅295mm×長さ295mm×5tmmに5m間
隔にハニカム状のφ5mmの貫通多孔を有する敷板に仕
上げる。敷板は幅295mm×長さ295mm×10
tmmに5m間隔にハニカム状の外径φ5mm×深さ5
mmの有底多孔を有する敷板に仕上げる。敷板は、幅
295mm×長さ295mm×10tmmに5mm間隔
に幅5mm×深さ5mmの横溝を有する敷板に仕上げ
る。
First, a method of manufacturing a baking sheet will be described.
A zirconia (ZrO 2 ) raw material having a chemical purity of 99% or more was mixed, calcinated at 1250 ° C. to 1300 ° C. for several hours, pulverized and classified by a pulverizer, and the particle size was adjusted to about 60 to 100 μm. An appropriate amount of an organic binder was added to the powder obtained by mixing and pulverizing as described above, the mixture was granulated, pressure-molded at a pressure of 1.5 t / cm 2 , and fired at a temperature of 1230 ° C. to 1260 ° C. for several hours. . From the obtained fired body, a floor board having a width of 295 mm × a length of 295 mm × 5 tmm and 10 tmm is prepared,
Furthermore, the following three types of floor boards were produced. The zirconia base plate is finished to have a honeycomb-like base plate having a perforation of φ5 mm with a width of 295 mm, a length of 295 mm, and a length of 5 tmm and 5 m intervals. The floorboard is 295 mm wide x 295 mm long x 10
Honeycomb-shaped outer diameter φ5 mm × depth 5 at intervals of 5 m in tmm
Finish into a floor plate having a bottomed perforation of mm. The floor plate is finished to have a width of 295 mm × length of 295 mm × 10 tmm and lateral grooves of 5 mm width × 5 mm depth at 5 mm intervals.

【0017】上記ジルコニア製敷板と同様な方法によっ
て、アルミナ(Al23)製敷板、孔又は溝を有しない
板状の幅295mm×長さ295mm×厚さ10tmm
の敷板を作製した。
By the same method as the zirconia base plate, an alumina (Al 2 O 3 ) base plate, a plate-like plate having no holes or grooves, width 295 mm × length 295 mm × thickness 10 tmm.
The floor board of was produced.

【0018】上記ジルコニア製敷板と同様な方法により
マグネシア(MgO)製敷板、孔、又は溝を有しない板
状の幅295mm×長さ295mm×厚さ10tmmの
敷板を作製した。
A magnesia (MgO) floor plate, a plate-like floor plate having no holes or grooves and having a width of 295 mm, a length of 295 mm, and a thickness of 10 tmm was prepared in the same manner as the above-mentioned zirconia floor plate.

【0019】枠はジルコニア製の幅295mm×長さ2
95mm×高さ10mmのものを使用し、蓋はジルコニ
ア製の幅295mm×長さ295mm×厚さ5mmのも
のを使用した。
The frame is made of zirconia and has a width of 295 mm and a length of 2.
The one used was 95 mm × height 10 mm, and the lid was made of zirconia and had a width of 295 mm × a length of 295 mm × a thickness of 5 mm.

【0020】以上、前記敷板及び枠11と蓋12
とを採用したことによる効果を確認するに至った方法、
及びその結果を以下に説明する。
Above, the floor plate and frame 11 and lid 12
The method that led to confirming the effect of adopting and
And the result is demonstrated below.

【0021】先ず、本実施例に採用したMn−Zn系フ
ェライトの製造方法について説明する。組成がFe23
52モル%,MnO25モル%,ZnO23モル%の各
粉末をボールミルにより40時間混合し、900℃×2
時間で仮焼成する。次に、得られた粉末に特性改善剤と
してのCaCO3及びSiO2をそれぞれ0.06,0.
01wt%添加し、ボールミルにより24時間粉砕す
る。しかる後、バインダー5wt%を投入し、更にボー
ルミルで4時間混合する。更に、得られた混合物を噴霧
乾燥装置で処理し、所定の粒径に整粒し、これを圧縮成
形機にかけて2000Kg/cm2の圧力で圧縮成形し
て、図4のようなリング状のMn−Zn系フェライト成
形体10を得た。この成形体10は、外径φ25mm×
内径φ15mm×厚さ4.5tmmの寸法である。
First, a method of manufacturing the Mn-Zn type ferrite adopted in this embodiment will be described. The composition is Fe 2 O 3
Powders of 52 mol%, MnO 25 mol% and ZnO 23 mol% were mixed by a ball mill for 40 hours, and 900 ° C. × 2
Temporarily bake in time. Next, the obtained powder was added with CaCO 3 and SiO 2 as a property improving agent at 0.06, 0.
Add 01 wt% and crush with a ball mill for 24 hours. Thereafter, 5 wt% of a binder is added and further mixed by a ball mill for 4 hours. Further, the obtained mixture was treated with a spray dryer to regulate the particle size to a predetermined particle size, and this was compressed into a compression molding machine at a pressure of 2000 Kg / cm 2 to give a ring-shaped Mn as shown in FIG. A Zn-based ferrite compact 10 was obtained. This molded body 10 has an outer diameter of 25 mm x
The inner diameter is 15 mm and the thickness is 4.5 tmm.

【0022】従来の焼成は、図7に示すように、酸化亜
鉛の減耗を防止するために板状の敷板上に成形体を並
べ、前記成形体を同一組成の粉末で埋没する状態で覆う
方法を採用していた。詳細には、酸化亜鉛の減耗を完全
に防止するためには、10mm以上の厚さで成形体を覆
っていた。このように埋没する焼成方法をとると、リン
グ形ポットコア、E型コア、コ型コア等、脱有機バイン
ダー工程における有機バインダーの除去が不十分なた
め、ひびや割れが発生する。更に、上記の埋没する焼成
方法をとると、埋没用の焼成用粉末が焼結体に付着し
て、この粉末の付着物を除去しなければならないので、
効率が悪い。このため先ず、Mn−Zn系フェライトの
焼成体の酸化亜鉛の減耗を防止し、かつ作業効率のよい
方法を生み出すため、下記の実施例を先行させた。
As shown in FIG. 7, the conventional firing is a method of arranging compacts on a plate-like base plate in order to prevent the wear of zinc oxide, and covering the compacts with a powder having the same composition. Was adopted. Specifically, in order to completely prevent the wear of zinc oxide, the molded body was covered with a thickness of 10 mm or more. When the burning method of burying in such a manner is adopted, cracks and cracks occur because the removal of the organic binder such as the ring-shaped pot core, the E-shaped core, and the co-shaped core in the step of removing the organic binder is insufficient. Furthermore, when the above-mentioned burial firing method is used, the burial firing powder adheres to the sintered body, and the deposits of this powder must be removed.
ineffective. Therefore, first, in order to prevent the wear of zinc oxide in the fired body of Mn-Zn ferrite and to produce a method with good working efficiency, the following examples were preceded.

【0023】酸化亜鉛の減耗量を確認する実施例は7種
類であり、この7種類の実施例にすべて敷板7を使用
し、同様にすべてに枠と蓋を使用し、敷板の多孔に下
記の焼成用の粉末をつめて敷板に成形体を10個並べ
た。又、敷板に使用した焼成粉末は、成形体と同一粉
末に酸化亜鉛1モル%、2モル%、2.5モル%、3モ
ル%、4モル%、5モル%増加させた粉末を使用し、更
に同一粉末を上記の条件に1種加えた7種類になる。即
ち、実施例1は、図2に示すように、枠11と蓋12を
使用し、敷板に使用した焼成用粉末は成形体と同一組成
に対して酸化亜鉛含有量を1モル%増加させた粉末を使
用し、敷板7の有底多孔6を埋め、敷板7に成形体
10を10個並べて焼成した。実施例2は実施例1と全
く同じ方法で焼成したが、使用した焼成用粉末は成形体
と同一組成に対して酸化亜鉛含有量を2モル%増加させ
た粉末である。実施例3は実施例1と全く同じ方法で焼
成したが、使用した焼成用粉末は成形体と同一組成に対
して酸化亜鉛含有量を2.5モル%増加させた粉末であ
る。実施例4は実施例1と全く同じ方法で焼成したが、
使用した焼成用粉末は成形体と同一組成に対して酸化亜
鉛含有量を3.0モル%増加させた粉末である。実施例
5は実施例1と全く同じ方法で焼成したが、使用した焼
成用粉末は成形体と同一組成に対して酸化亜鉛含有量を
4.0モル%増加させた粉末である。実施例6は実施例
1と全く同じ方法で焼成したが、使用した焼成用粉末は
成形体と同一組成に対して酸化亜鉛含有量を5.0モル
%増加させた粉末である。実施例7は実施例1と全く同
じ方法で焼成したが、使用した焼成用粉末は成形体と同
一粉末を使用した。敷板はジルコニア製の焼成用敷板
で、幅295mm×長さ295mm×厚さ10tmmの
板に5mm間隔にハニカム状に外径φ5mm×深さ5m
mの有底多孔を有す。又、枠は幅295mm×長さ29
5mm×高さ10mm、肉厚5tmmの寸法であり、蓋
は枠寸法と同一で、厚さ5tmmの寸法である。以上の
実施例1〜7までの試料を採り、焼成体の表面をX線マ
イクロアナライザーで測定し、酸化亜鉛の減耗を調べ
た。その結果を表1に示す。
There are seven types of examples for confirming the amount of depletion of zinc oxide. In all of these seven types of examples, a floor plate 7 is used, and similarly, a frame and a lid are used for all of them and Ten compacts were lined up on the floor plate with the powder for firing packed. The firing powder used for the floorboard is the same powder as that of the molded body, which is obtained by increasing the amount of zinc oxide by 1 mol%, 2 mol%, 2.5 mol%, 3 mol%, 4 mol% or 5 mol%. Further, one kind of the same powder was added to the above condition to obtain seven kinds. That is, in Example 1, as shown in FIG. 2, the frame 11 and the lid 12 were used, and the firing powder used for the floorboard increased the zinc oxide content by 1 mol% with respect to the same composition as the molded body. Powder was used to fill the bottomed perforations 6 of the floor plate 7, and ten molded bodies 10 were arranged on the floor plate 7 and fired. Example 2 was fired in exactly the same manner as in Example 1, but the firing powder used was a powder in which the zinc oxide content was increased by 2 mol% with respect to the same composition as the molded body. Example 3 was fired by the same method as in Example 1, but the firing powder used was a powder in which the zinc oxide content was increased by 2.5 mol% with respect to the same composition as the molded body. Example 4 was fired in exactly the same way as Example 1, but
The firing powder used was a powder in which the zinc oxide content was increased by 3.0 mol% with respect to the same composition as the molded body. Example 5 was fired in exactly the same manner as in Example 1, but the firing powder used was a powder in which the zinc oxide content was increased by 4.0 mol% with respect to the same composition as the molded body. Example 6 was fired in exactly the same manner as in Example 1, but the firing powder used was a powder in which the zinc oxide content was increased by 5.0 mol% with respect to the same composition as the molded body. Example 7 was fired in exactly the same manner as in Example 1, but the firing powder used was the same powder as the compact. The laying board is a zirconia laying board, which is a 295 mm wide x 295 mm long x 10 tmm thick honeycomb-like outer diameter φ5 mm x depth 5 m.
It has a bottomed porosity of m. Also, the frame is 295 mm wide x 29 long
The dimensions are 5 mm × height 10 mm and wall thickness 5 tmm, and the lid has the same dimensions as the frame and has a thickness 5 tmm. The samples of Examples 1 to 7 described above were taken, and the surface of the fired body was measured with an X-ray microanalyzer to examine the wear of zinc oxide. The results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1の結果より、成形体と同一組成に対し
て2.0モル%〜3.0モル%の酸化亜鉛量を増加した
粉末を焼成用粉末として使用するのがよく、以上の結果
より、成形体と同一組成に対して2.5モル%の酸化亜
鉛含有量を増加させた粉末を使用した場合、敷板に枠
と蓋をかぶせて焼成する場合が最も酸化亜鉛の目標の組
成に近く、組成ずれが少ないことが判明した。
From the results shown in Table 1, it is preferable to use a powder having an increased zinc oxide content of 2.0 mol% to 3.0 mol% with respect to the same composition as that of the molded body as the powder for firing. As a result, when using a powder with an increased zinc oxide content of 2.5 mol% relative to the same composition as the molded body, the most desirable composition of zinc oxide is the case where the floor plate is covered with a frame and the lid is baked. It was found that the composition shift was small in the vicinity.

【0026】(実施例8)図1に示すように、幅295
mm×長さ295mm×厚さ5tmmのジルコニア製の
焼成用敷板2を使用した。敷板2の貫通多孔5は、
外径φ5mmの孔が5mm間隔にハニカム状に配列され
ている。幅295mm×長さ295mm×厚さ10tm
mのジルコニア製台板4にMn−Zn系フェライトと同
一組成の粉末13を盛り上がるように敷き詰めて、上記
ジルコニア製の焼成用敷板2をこの敷き詰めた成形体
と同一組成の粉末13に押し付ける。敷板2が粉末1
3に押し付けられると、ハニカム状の貫通多孔5から前
記同一組成の粉末13が盛り上がり、上へはみ出してく
るので、敷板2上をならして平にして、前記貫通多孔
5が充填されるのを確かめ、上記ジルコニア製の焼成用
敷板2にMn−Zn系フェライトの成形体10を30
個載置した。この後、幅295mm×長さ295mm×
高さ10mm、肉厚5tmmの枠11と、幅295mm
×長さ295mm×厚さ5tmmの蓋12を用意して3
0個の成形体10にふれないように焼成用敷板2上に
載置した。しかる後に、上記のように敷板2上に30
個成形体を保持し、所定の酸素雰囲気中の焼成炉内に挿
入し、1350℃×2時間でこの成形体を焼成し、試料
として30個の焼成体10を作製した。
(Embodiment 8) As shown in FIG.
A zirconia laying plate 2 having a size of mm × length 295 mm × thickness 5 tmm was used. The through-holes 5 of the floorboard 2 are
Holes having an outer diameter of 5 mm are arranged in a honeycomb shape at intervals of 5 mm. Width 295 mm x length 295 mm x thickness 10 tm
The powder 13 having the same composition as the Mn—Zn-based ferrite is spread over the zirconia base plate 4 of m so as to rise, and the zirconia baking plate 2 is pressed against the powder 13 having the same composition as the spread compact. Floor plate 2 is powder 1
When pressed against 3, the powder 13 of the same composition rises from the honeycomb-shaped through-holes 5 and protrudes upward, so that the floor plate 2 is leveled and flattened to fill the through-holes 5. After confirming, the molded body 10 of Mn—Zn ferrite was applied to the zirconia base plate 2 for burning 30 times.
I put them individually. After this, width 295 mm x length 295 mm x
Frame 11 with a height of 10 mm and a wall thickness of 5 tmm and a width of 295 mm
× Prepare a lid 12 of 295 mm in length × 5 tmm in thickness and 3
It was placed on the baking base plate 2 so as not to touch 0 molded bodies 10. After that, 30 on the floor plate 2 as described above.
The individual compact was held and inserted into a firing furnace in a predetermined oxygen atmosphere, and the compact was fired at 1350 ° C. for 2 hours to prepare 30 fired bodies 10 as samples.

【0027】(実施例9)実施例9は、図1に示すよう
に、実施例8と全く同じ実験である。但し、焼成用粉末
は、実施例8では成形体10と同一組成の粉末であった
が、実施例9では成形体と同一組成に対して酸化亜鉛含
有量を2.5モル%増加させた焼成用粉末を使用した。
(Embodiment 9) Embodiment 9 is exactly the same experiment as Embodiment 8, as shown in FIG. However, although the powder for firing had the same composition as that of the molded body 10 in Example 8, in Example 9 the firing was performed by increasing the zinc oxide content by 2.5 mol% with respect to the same composition as that of the molded body. The powder for use was used.

【0028】(実施例10)図2に示すように、ジルコ
ニア製の焼成用敷板7は、幅295mm×長さ295
mm×厚さ10tmmの寸法である。敷板7は、5m
m間隔に外径φ5mm×深さ5mmのハニカム状の有底
多孔6を有する板である。Mn−Zn系フェライトの組
成と同一組成の粉末13を上記ジルコニア製の焼成用敷
板7の有底多孔6に盛り上がるように充填し、その上
をならして平にして、上記ジルコニア製の焼成用敷板
7に成形体10を30個載置した。その後、幅295m
m×長さ295mm×高さ10mm、肉厚5tmmの枠
11と、幅295mm×長さ295mm×厚さ5tmm
の蓋12をかぶせて成形体10にふれないように焼成用
敷板上に載置した。しかる後に、この上述の状態を保
持し、所定の酸素雰囲気中の焼成炉内にこれを挿入し、
1350℃×2時間でこの成形体10を焼成し、試料と
して30個の焼成体を作製した。
(Embodiment 10) As shown in FIG. 2, a baking base plate 7 made of zirconia has a width of 295 mm and a length of 295.
mm × thickness 10 tmm. Floor board 7 is 5m
This is a plate having honeycomb-shaped perforated bottoms 6 having an outer diameter of φ5 mm and a depth of 5 mm at m intervals. A powder 13 having the same composition as that of the Mn-Zn ferrite is filled so as to rise into the bottomed pores 6 of the zirconia baking sheet 7 and flattened to flatten the zirconia baking sheet 7. Thirty compacts 10 were placed on the floor plate 7. After that, width 295m
m × length 295 mm × height 10 mm, wall thickness 5 tmm frame 11, width 295 mm × length 295 mm × thickness 5 tmm
The lid 12 was put on the firing floor plate so as not to touch the molded body 10. After that, keeping the above-mentioned state, insert it in a firing furnace in a predetermined oxygen atmosphere,
The molded body 10 was fired at 1350 ° C. for 2 hours to prepare 30 fired bodies as samples.

【0029】(実施例11)実施例11は、図2に示す
ように、実施例10と全く同様な実験である。但し、焼
成用粉末は、成形体と同一組成に対して酸化亜鉛含有量
を2.5モル%増加させた粉末を使用している。
Example 11 As shown in FIG. 2, Example 11 is an experiment exactly the same as Example 10. However, as the powder for firing, a powder in which the zinc oxide content is increased by 2.5 mol% with respect to the same composition as the molded body is used.

【0030】(実施例12)図3に示すジルコニア製の
焼成用敷板9は、幅295mm×長さ295mm×厚
さ10tmmの寸法であり、5mm間隔に溝幅5mmの
横溝8を有する板である。Mn−Zn系フェライトの組
成と同一組成の粉末13を上記ジルコニア製の焼成用敷
板9の溝8に盛り上がるように充填し、その上をなら
して平にして、上記ジルコニア製の敷板9にMn−Z
n系フェライトの成形体10を載置した。その後、幅2
95mm×長さ295mm×高さ10mm、肉厚5tm
mの枠11と、幅295mm×長さ295mm×厚さ5
tmmの蓋12を用意して成形体10にふれないように
焼成用敷板9上に載置した。しかる後に、この状態を
保持し、所定の酸素雰囲気中の焼成炉内にこれを挿入
し、1350℃×2時間でこの成形体10を焼成し、試
料として30個の焼成体を作製した。
(Embodiment 12) A zirconia base plate 9 for firing shown in FIG. 3 has a width of 295 mm × a length of 295 mm × a thickness of 10 tmm and has lateral grooves 8 having a groove width of 5 mm at intervals of 5 mm. . A powder 13 having the same composition as that of the Mn-Zn ferrite is filled in the groove 8 of the zirconia baking base plate 9 so as to be raised, and then flattened to flatten the Mn-Zn base plate Mn. -Z
A molded body 10 of n-type ferrite was placed. Then width 2
95mm x Length 295mm x Height 10mm, Wall Thickness 5tm
m frame 11 and width 295 mm x length 295 mm x thickness 5
A tmm lid 12 was prepared and placed on the firing floor plate 9 so as not to touch the compact 10. After that, this state was maintained, this was inserted into a firing furnace in a predetermined oxygen atmosphere, the molded body 10 was fired at 1350 ° C. × 2 hours, and 30 fired bodies were prepared as samples.

【0031】(実施例13)実施例13は、図3に示す
ように、実施例12と全く同様な実験である。但し、同
一組成の粉末の代わり、成形体と同一組成に対して酸化
亜鉛含有量を2.5モル%増加させた粉末13を使用し
た。
(Embodiment 13) As shown in FIG. 3, Embodiment 13 is an experiment exactly the same as Embodiment 12. However, instead of the powder having the same composition, a powder 13 in which the zinc oxide content was increased by 2.5 mol% with respect to the same composition as the molded body was used.

【0032】(比較例1)比較例1として、図5に示す
ように、加工の施していないジルコニア製の焼成用敷板
17は、幅295mm×長さ295mm×厚さ10tm
mの寸法の板である。その上に上記のMn−Zn系フェ
ライトの組成と同一組成の粉末13を平に2〜3mmの
厚みになるように敷き詰め、その上に上記Mn−Zn系
フェライトの成形体10を載置し、外周と内周とを同一
組成の粉末で覆った。しかる後に、この状態を保持し、
所定の酸素雰囲気中の焼成炉内にこれを挿入し、135
0℃×2時間でこの成形体10を焼成して、試料として
30個の焼成体を作製した。
(Comparative Example 1) As Comparative Example 1, as shown in FIG. 5, the unbaked zirconia baking sheet 17 had a width of 295 mm, a length of 295 mm, and a thickness of 10 tm.
A plate with a size of m. A powder 13 having the same composition as that of the Mn-Zn-based ferrite is flatly spread thereon so as to have a thickness of 2 to 3 mm, and the Mn-Zn-based ferrite compact 10 is placed thereon. The outer circumference and the inner circumference were covered with powder having the same composition. After that, keep this state,
Insert this in a firing furnace in a prescribed oxygen atmosphere,
The molded body 10 was fired at 0 ° C. for 2 hours to prepare 30 fired bodies as samples.

【0033】(比較例2)比較例2は、図6に示すよう
に、加工の施していないジルコニア製の焼成用敷板17
上に直に成形体10をのせ、比較例1と同様な処理をし
て、試料として30個の焼成体を作製した。
(Comparative Example 2) In Comparative Example 2, as shown in FIG. 6, a zirconia laying board 17 made of unprocessed zirconia.
The molded body 10 was placed directly on the top, and the same treatment as in Comparative Example 1 was performed to prepare 30 fired bodies as samples.

【0034】(比較例3)比較例3は、図7に示すよう
に、加工の施していないジルコニア製敷板17上に2〜
3mmの厚さで成形体と同一の粉末13を敷き詰め、更
に成形体10を載置し、10mm以上埋没するように敷
板上に成形体と同一組成粉末で覆う。比較例1と同様な
処理を施して、試料として30個の焼成体を作製した。
(Comparative Example 3) In Comparative Example 3, as shown in FIG. 7, 2 to 3 are formed on the unprocessed zirconia base plate 17.
The powder 13 having a thickness of 3 mm, which is the same as that of the molded body, is spread, the molded body 10 is further placed, and the powder having the same composition as the molded body is covered on the floor plate so as to be buried by 10 mm or more. The same treatment as in Comparative Example 1 was performed to prepare 30 fired bodies as samples.

【0035】実施例8〜13、比較例1〜3までの条件
及び結果を表2、表3に示す。
The conditions and results of Examples 8 to 13 and Comparative Examples 1 to 3 are shown in Tables 2 and 3.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表2、表3は、実施例8〜13及び比較例
1〜3において、各々30個の試料について初透磁率
(μi)、相対損失係数(tanδ/μ)、ヒステリシス損
失係数(h10)をLCRメーターで測定し、又、粉末の
付着、ひび、割れ等、検査した結果を示す。
Tables 2 and 3 show the initial magnetic permeability (μ i ), relative loss coefficient (tan δ / μ) and hysteresis loss coefficient (for each of 30 samples in Examples 8 to 13 and Comparative Examples 1 to 3). h 10 ) is measured with an LCR meter, and the results of inspections such as powder adhesion, cracks and cracks are shown.

【0039】表2、表3より、比較例3の、成形体と同
一組成の粉末で成形体を埋没させ、成形体のまわりを厚
さ10mm程度で覆ったものが最もよい結果となった。
しかし、比較例3は、成形体を埋没させる手数、粉末の
付着があって、この付着物を除去しなければならないこ
と、粉末が脱バインダーに起因する割れが10%程度発
生すること等の欠点がある。実施例8〜13は粉末の付
着物が無く、磁気特性も実用上、使用に供する値を有す
る意義が大きく、比較例3の欠点を補い得る結果となっ
た。又、枠と蓋を使用した効果は、焼成炉の高温を直接
受けず、本発明に使用した敷板の貫通した多孔、有底多
孔、溝等につまった粉末より蒸発した酸化亜鉛が炉中雰
囲気中に逃げず、枠と蓋の内部に封じ込められて、成形
体から酸化亜鉛が脱けることを防止していると考えられ
る。特に、貫通した多孔、有底多孔、溝等に使用した焼
成用粉末が、成形体より酸化亜鉛含有量において2.5
モル%増加されているものを使用した効果が示されてい
る。比較例1は、成形体の上面を除いて内外周面を粉末
でカバーしているものの、枠と蓋を使用していないの
で、炉中へ酸化亜鉛が蒸発したと考えられる。比較例2
は、枠と蓋を使用せず、敷板に直に載置し焼成している
ので、磁気特性が著しく劣化した。
From Tables 2 and 3, the best results were obtained in Comparative Example 3 in which the molded body was embedded with the powder having the same composition as the molded body and the molded body was covered with a thickness of about 10 mm.
However, Comparative Example 3 has disadvantages such as the number of steps for burying the molded body, the adhesion of the powder, which must be removed, and the fact that the powder is cracked by about 10% due to debinding. There is. In Examples 8 to 13, there were no powder deposits, and the magnetic properties were of great significance for practical use, and the results of Comparative Example 3 could be supplemented. Further, the effect of using the frame and the lid is that the zinc oxide evaporated from the powder filled in the perforated holes, the bottomed holes, the grooves, etc. of the floor plate used in the present invention is not directly exposed to the high temperature of the baking furnace and the atmosphere in the furnace is It is considered that the zinc oxide is prevented from coming off from the molded body by being trapped inside the frame and the lid without escaping inside. In particular, the firing powder used for through-hole porosity, bottom-end porosity, grooves, etc., has a zinc oxide content of 2.5 from the molded body.
The effect of using the one that has been increased by mol% is shown. In Comparative Example 1, the inner and outer peripheral surfaces except the upper surface of the molded body were covered with powder, but the frame and the lid were not used, so it is considered that zinc oxide was evaporated into the furnace. Comparative example 2
Since it was placed directly on the floor plate and baked without using a frame and a lid, the magnetic properties deteriorated significantly.

【0040】(実施例14)グリーンチップ状セラミッ
クコンデンサの組成物として、セラミックコンデンサの
主原料にPbO,MnO2,Nb25,WO3,Ti
2,Fe23の内、少なくとも4種類以上を選び、実
施例14〜16においては、化学的純度99%以上の出
発原料PbO,MnO2,Nb25,TiO2を所定の配
合比となるように精秤し混合して、次いで850℃〜9
00℃で仮焼成した。仮焼成粉をボールミルによって粉
砕して得られた粉末に、有機バインダー可塑剤等を適量
加えて混練し、ドクターブレード法を用いて、厚さ15
〜30μmのグリーンシートを作製した。グリーンシー
ト上に内部電極となるAgとPdの混合ペーストをスク
リーン印刷法で印刷し、内部電極を形成し、その後、打
ち抜いて内部に複数枚形成された内部電極を有する積層
型セラミックコンデンサのグリーンチップ状の成形体を
得た。2mm×5mm×2tmmの直方体の成形体を試
料として30個作製した。
Example 14 As a composition of a green chip-shaped ceramic capacitor, PbO, MnO 2 , Nb 2 O 5 , WO 3 and Ti were used as the main raw materials of the ceramic capacitor.
At least four kinds or more of O 2 and Fe 2 O 3 are selected, and in Examples 14 to 16, starting materials PbO, MnO 2 , Nb 2 O 5 , and TiO 2 having a chemical purity of 99% or more are blended in a predetermined composition. Weigh accurately and mix to obtain a ratio, and then 850 ° C-9
It was calcined at 00 ° C. An appropriate amount of an organic binder plasticizer and the like is added to the powder obtained by pulverizing the calcined powder with a ball mill, and the mixture is kneaded to have a thickness of 15 using a doctor blade method.
A green sheet of -30 μm was prepared. A green chip of a multilayer ceramic capacitor having a plurality of internal electrodes formed by printing a mixed paste of Ag and Pd to be internal electrodes on a green sheet by a screen printing method to form internal electrodes A shaped body was obtained. 30 pieces of 2 mm × 5 mm × 2 tmm rectangular parallelepiped shaped bodies were prepared as samples.

【0041】図8に示すように、貫通多孔のジルコニア
製敷板2を使用し、貫通多孔5に成形体1と同一組成
の粉末をつめ、台板4に成形体1と同一組成の粉末3を
散布し、その上に敷板2を載置した。貫通多孔5には
粉末が満たされ、盛り上がった場合は敷板上をならして
平にした。この状態で枠11と蓋12を敷板2にのせ
て成形体1を30個載置して1200℃〜1230℃の
温度で数時間焼成した。
As shown in FIG. 8, a through-hole zirconia base plate 2 is used, the through-hole 5 is filled with powder having the same composition as the molded body 1, and the base plate 4 is filled with powder 3 having the same composition as the molded body 1. It was sprayed, and the floor plate 2 was placed on it. The through-holes 5 were filled with powder, and when they were swelled, the floor plate was flattened. In this state, the frame 11 and the lid 12 were placed on the floor plate 2, and 30 compacts 1 were placed and fired at a temperature of 1200 ° C to 1230 ° C for several hours.

【0042】(実施例15)図9に示すように、有底多
孔6のジルコニア製敷板7を使用し、有底多孔6に成
形体1と同一組成の粉末3をつめ、有底多孔6に粉末が
満たされ、盛り上がった場合は敷板7上をならして平
にした。この状態で枠11と蓋12を敷板7にのせて
成形体1を30個載置して1200℃〜1230℃の温
度で数時間焼成した。
(Example 15) As shown in FIG. 9, a zirconia base plate 7 having a bottomed perforation 6 was used, the bottomed porosity 6 was filled with a powder 3 having the same composition as that of the molded body 1, and the bottomed porosity 6 was formed. When the powder was filled and swelled, the floor plate 7 was leveled and flattened. In this state, the frame 11 and the lid 12 were placed on the floor plate 7, and 30 compacts 1 were placed and fired at a temperature of 1200 ° C to 1230 ° C for several hours.

【0043】(実施例16)図10に示すように、横溝
のジルコニア製敷板9を使用し、横溝8に成形体1と
同一組成の粉末3をつめ、横溝8に粉末が満たされ、盛
り上がった場合は敷板9上をならして平にした。この
状態で枠11と蓋12を敷板9にのせて成形体1を3
0個載置して1200℃〜1230℃の温度で数時間焼
成した。
(Example 16) As shown in FIG. 10, a zirconia base plate 9 having a lateral groove was used, and the lateral groove 8 was filled with powder 3 having the same composition as that of the molded body 1. The lateral groove 8 was filled with the powder and swelled. In some cases, the floor plate 9 was leveled and flattened. In this state, the frame 11 and the lid 12 are placed on the base plate 9 to set the molded body 1 to 3
Zero pieces were placed and baked at a temperature of 1200 ° C to 1230 ° C for several hours.

【0044】(比較例4)図12に示すように、アルミ
ナ製敷板で敷板のように多孔及び溝を有していな
い敷板15を使用した。成形体と同一組成の粉末を使用
せず、同様の枠と蓋も使用しない状態で30個の成形体
1を1200℃〜1230℃の温度で数時間焼成した。
(Comparative Example 4) As shown in FIG. 12, a floor board 15 made of an alumina floor board having no perforations and grooves was used. Thirty compacts 1 were fired at a temperature of 1200 ° C to 1230 ° C for several hours without using a powder having the same composition as that of the compact and using the same frame and lid.

【0045】(比較例5)図12に示すように、マグネ
シア製の板状の敷板で、敷板のように多孔及び溝
を有していない敷板16を使用した。成形体と同一組成
の粉末を使用せず、同様の枠と蓋も使用していない状態
で30個の成形体1を1200℃〜1230℃の温度で
数時間焼成した。
(Comparative Example 5) As shown in FIG. 12, a magnesia plate-shaped floor plate having no perforations and grooves like the floor plate was used. Thirty compacts 1 were fired at a temperature of 1200 ° C. to 1230 ° C. for several hours without using a powder having the same composition as that of the compact and using the same frame and lid.

【0046】(比較例6)図12に示すように、ジルコ
ニア製の板状の敷板で、敷板のように多孔及び溝
を有していない敷板17を使用した。成形体と同一組成
の粉末を使用せず、同様の枠と蓋も使用しない状態で3
0個の成形体1を1200℃〜1230℃の温度で数時
間焼成した。
(Comparative Example 6) As shown in FIG. 12, a zirconia plate-shaped floor plate having no perforations and grooves like the floor plate was used. Without using the powder of the same composition as the compact, and without using the same frame and lid
Zero molded bodies 1 were fired at a temperature of 1200 ° C to 1230 ° C for several hours.

【0047】上述した実施例14〜16、及び比較例4
〜6までの結果を表4に示す。
Examples 14 to 16 described above and Comparative Example 4
The results up to 6 are shown in Table 4.

【0048】[0048]

【表4】 [Table 4]

【0049】合否判定結果は実施例14〜16まで合格
とすることができる。比較例4〜6は、変色又は溶着等
があり、不合格である。
The pass / fail judgment results can be passed in Examples 14 to 16. Comparative Examples 4 to 6 are disqualified because of discoloration or welding.

【0050】[0050]

【発明の効果】以上述べたように、本発明によれば、焼
成後、焼成体と前記敷板と焼成用粉末との溶着がなく、
作業効率のよい、諸特性のばらつきが少ない、フェライ
ト及びセラミックコンデンサ等の誘電体の焼成方法が得
られる。
As described above, according to the present invention, after firing, there is no welding of the fired body, the floor plate and the firing powder,
It is possible to obtain a method for firing a dielectric material such as a ferrite and a ceramic capacitor, which has good working efficiency and little variation in various characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】貫通多孔を有する敷板、枠と蓋、及び焼成用
粉末とを使用した本発明のMn−Zn系フェライトの焼
成方法を示す説明図。図1(a)は、本発明の実施例
8,9のMn−Zn系フェライトの焼成方法を示す斜視
図。図1(b)は、図1(a)の部分拡大図。
FIG. 1 is an explanatory view showing a method for firing Mn—Zn-based ferrite of the present invention using a floor plate having a through-hole, a frame and a lid, and a firing powder. FIG. 1A is a perspective view showing a method for firing Mn—Zn based ferrite according to Examples 8 and 9 of the present invention. FIG. 1B is a partially enlarged view of FIG.

【図2】有底多孔を有する敷板、枠と蓋、及び焼成用
粉末とを使用した本発明のMn−Zn系フェライトの焼
成方法を示す説明図。図2(a)は、本発明の実施例1
0,11のMn−Zn系フェライトの焼成方法を示す斜
視図。図2(b)は、図2(a)の部分拡大図。
FIG. 2 is an explanatory diagram showing a method of firing Mn—Zn-based ferrite of the present invention using a floor plate having a bottomed porous structure, a frame and a lid, and a firing powder. FIG. 2A shows a first embodiment of the present invention.
The perspective view which shows the baking method of 0,11 Mn-Zn type | system | group ferrite. FIG. 2B is a partially enlarged view of FIG.

【図3】横溝を有する敷板、枠と蓋、及び焼成用粉末
とを使用した本発明のMn−Zn系フェライトの焼成方
法を示す説明図。図3(a)は、本発明の実施例12,
13のMn−Zn系フェライトの焼成方法を示す斜視
図。図3(b)は、図3(a)の部分拡大図。
FIG. 3 is an explanatory diagram showing a method for firing Mn—Zn-based ferrite of the present invention using a floorboard having lateral grooves, a frame and a lid, and a firing powder. FIG. 3A shows a twelfth embodiment of the present invention.
13 is a perspective view showing a method of firing Mn—Zn based ferrite of No. 13. FIG. 3B is a partially enlarged view of FIG.

【図4】Mn−Zn系フェライトの成形体の斜視図。FIG. 4 is a perspective view of a molded body of Mn—Zn ferrite.

【図5】比較例1を示すMn−Zn系フェライトの焼成
方法を示す斜視図。
5 is a perspective view showing a method of firing Mn—Zn-based ferrite showing Comparative Example 1. FIG.

【図6】比較例2を示すMn−Zn系フェライトの焼成
方法を示す斜視図。
FIG. 6 is a perspective view showing a firing method of Mn—Zn ferrite showing Comparative Example 2.

【図7】比較例3を示すMn−Zn系フェライトの焼成
方法を示す断面図。
FIG. 7 is a cross-sectional view showing a method for firing Mn—Zn-based ferrite showing Comparative Example 3.

【図8】貫通多孔を有する敷板、枠と蓋、及び焼成用
粉末とを用いた本発明のセラミックコンデンサの焼成方
法を示す説明図。図8(a)は、本発明の実施例14の
セラミックコンデンサの焼成方法を示す斜視図。図8
(b)は、図8(a)の部分拡大図。
FIG. 8 is an explanatory view showing a firing method for a ceramic capacitor of the present invention using a floor plate having a through-hole, a frame and a lid, and a firing powder. FIG. 8A is a perspective view showing a method for firing a ceramic capacitor of Example 14 of the present invention. Figure 8
8B is a partially enlarged view of FIG.

【図9】有底多孔を有する敷板、枠と蓋、及び焼成用
粉末とを使用した本発明のセラミックコンデンサの焼成
方法を示す説明図。図9(a)は、本発明の実施例15
のセラミックコンデンサの焼成方法を示す斜視図。図9
(b)は、図9(a)の部分拡大図。
FIG. 9 is an explanatory view showing a firing method for a ceramic capacitor of the present invention using a floor plate having a bottomed porous structure, a frame and a lid, and a firing powder. FIG. 9A shows a fifteenth embodiment of the present invention.
FIG. 6 is a perspective view showing a method of firing the ceramic capacitor of FIG. Figure 9
FIG. 9B is a partially enlarged view of FIG.

【図10】横溝を有する敷板、枠と蓋、及び焼成用粉
末とを使用した本発明のセラミックコンデンサの焼成方
法を示す説明図。図10(a)は、本発明の実施例16
のセラミックコンデンサの焼成方法を示す斜視図。図1
0(b)は、図10(a)の部分拡大図。
FIG. 10 is an explanatory view showing a method for firing a ceramic capacitor of the present invention using a floor plate having lateral grooves, a frame and a lid, and a firing powder. FIG. 10A shows a sixteenth embodiment of the present invention.
FIG. 6 is a perspective view showing a method of firing the ceramic capacitor of FIG. Figure 1
0 (b) is a partially enlarged view of FIG. 10 (a).

【図11】積層セラミックコンデンサのグリーンチップ
成形体を示す斜視図。
FIG. 11 is a perspective view showing a green chip molded body of a laminated ceramic capacitor.

【図12】板状敷板に積層セラミックコンデンサのグリ
ーンチップ成形体を載置した斜視図。
FIG. 12 is a perspective view in which a green chip molded body of a laminated ceramic capacitor is placed on a plate-shaped floor plate.

【符号の説明】[Explanation of symbols]

1 (グリーンチップ)成形体 2 敷板 3 成形体と同一組成の粉末(セラミックコンデン
サ) 4 台板 5 貫通多孔 6 有底多孔 7 敷板 8 横溝 9 敷板 10 (Mn−Zn系フェライトの)成形体 11 枠 12 蓋 13 成形体と同一組成の粉末(フェライト粉末) 15 従来の敷板(アルミナ製) 16 従来の敷板(マグネシア製) 17 従来の敷板(ジルコニア製)
1 (green chip) molded body 2 floor plate 3 powder of the same composition as the molded body (ceramic capacitor) 4 base plate 5 through-hole porous 6 bottomed porous 7 floor plate 8 lateral groove 9 floor plate 10 (Mn-Zn-based ferrite) molded body 11 frame 12 Lid 13 Powder (Ferrite Powder) with the Same Composition as the Molded Body 15 Conventional Floorboard (Alumina) 16 Conventional Floorboard (Magnesia) 17 Conventional Floorboard (Zirconia)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 敷板がハニカム状の貫通多孔を有し、前
記敷板上に蓋を載せた枠を配し、前記敷板を用いて、組
成変動を抑制するための粉末を敷いて、セラミックの成
形体を載置し、該成形体を焼成することを特徴とするセ
ラミックの焼成方法。
1. A ceramic molding, wherein a floor plate has a honeycomb-shaped through-hole, a frame with a lid is placed on the floor plate, and a powder for suppressing a composition variation is spread using the floor plate. A method for firing a ceramic, comprising placing a body and firing the formed body.
【請求項2】 敷板がハニカム状の有底多孔を有し、前
記敷板上に蓋を載せた枠を配し、前記敷板を用いて、組
成変動を抑制するための粉末を敷いて、セラミックの成
形体を載置し、該成形体を焼成することを特徴とするセ
ラミックの焼成方法。
2. The base plate has a honeycomb-like bottomed porosity, a frame with a lid is placed on the base plate, and the base plate is used to spread a powder for suppressing compositional variation, and a ceramic A ceramic firing method, comprising placing a compact and firing the compact.
【請求項3】 敷板が凹状の溝を有し、前記敷板上に蓋
を載せた枠を配し、前記敷板を用いて、組成変動を抑制
するための粉末を敷いて、セラミックの成形体を載置
し、該成体を焼成することを特徴とするセラミックの焼
成方法。
3. A ceramic molding is obtained by laying a frame having a lid on the floor plate, laying a powder for suppressing compositional variation on the floor plate, and laying a powder on the floor plate. A method for firing a ceramic, which comprises placing and firing the adult body.
【請求項4】 組成変動を抑制するための粉末として、
同一組成より0〜3モル%のZnOを増加させた粉末を
用いることを特徴とする請求項1〜3記載のZnを含む
フェライトの焼成方法。
4. A powder for suppressing composition fluctuation,
The method for calcination of ferrite containing Zn according to claim 1, wherein a powder containing 0 to 3 mol% of ZnO increased from the same composition is used.
【請求項5】 同一組成のフェライトの焼成用粉末を使
用することを特徴とする請求項1〜3記載のZnを含む
フェライトの焼成方法。
5. The method for firing a ferrite containing Zn according to claim 1, wherein powders for firing ferrite having the same composition are used.
【請求項6】 同一組成のセラミックコンデンサの焼成
用粉末を使用することを特徴とする請求項1〜3記載の
セラミックコンデンサの焼成方法。
6. The method for firing a ceramic capacitor according to claim 1, wherein powders for firing a ceramic capacitor having the same composition are used.
【請求項7】 同一組成の圧電セラミックの焼成用粉末
を使用することを特徴とする請求項1〜3記載の圧電セ
ラミックの焼成方法。
7. The method for firing a piezoelectric ceramic according to claim 1, wherein powders for firing the piezoelectric ceramic having the same composition are used.
JP6054969A 1994-02-28 1994-02-28 Method for burning ceramics Pending JPH07237975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6054969A JPH07237975A (en) 1994-02-28 1994-02-28 Method for burning ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6054969A JPH07237975A (en) 1994-02-28 1994-02-28 Method for burning ceramics

Publications (1)

Publication Number Publication Date
JPH07237975A true JPH07237975A (en) 1995-09-12

Family

ID=12985494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6054969A Pending JPH07237975A (en) 1994-02-28 1994-02-28 Method for burning ceramics

Country Status (1)

Country Link
JP (1) JPH07237975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321161A (en) * 2004-05-11 2005-11-17 Mitsui Mining & Smelting Co Ltd Kiln tool for baking
JP2009084102A (en) * 2007-09-28 2009-04-23 Hitachi Metals Ltd Method of firing ceramic honeycomb structure
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
JP2012214378A (en) * 2012-06-18 2012-11-08 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
CN108675781A (en) * 2018-04-27 2018-10-19 苏州威斯东山电子技术有限公司 A kind of large area ferrite sintering process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321161A (en) * 2004-05-11 2005-11-17 Mitsui Mining & Smelting Co Ltd Kiln tool for baking
JP2009084102A (en) * 2007-09-28 2009-04-23 Hitachi Metals Ltd Method of firing ceramic honeycomb structure
JP2010083738A (en) * 2008-10-02 2010-04-15 Hitachi Metals Ltd Method for producing aluminum titanate-based ceramic honeycomb structure
JP2012214378A (en) * 2012-06-18 2012-11-08 Kyocera Corp Ferrite sintered compact, and ferrite core and ferrite coil using the same
CN108675781A (en) * 2018-04-27 2018-10-19 苏州威斯东山电子技术有限公司 A kind of large area ferrite sintering process

Similar Documents

Publication Publication Date Title
KR0138017B1 (en) Ceramics and method of producing the same
KR100317469B1 (en) Method of producing the multi-layer ceramic substrate
KR20000005955A (en) Method of producing a multi-layer ceramic substrate
KR100475348B1 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
JP2002255646A (en) Dielectric ceramic fired at low temperature, multilayer type dielectric element, method of producing the dielectric ceramic and auxiliary oxide
JPH07237975A (en) Method for burning ceramics
EP0724549B1 (en) Magnetodielectric ceramic composite material, method of manufacturing same, application, and a multifunctional component
EP2452929A1 (en) Piezoelectric body/electrostrictive body, piezoelectric/electrostrictive ceramic composition, piezoelectric element/electrostrictive element, and piezoelectric motor
KR100791753B1 (en) Ceramic capacitor and method for the manufacture thereof
JP4362807B2 (en) Ceramic composite material
JP7363966B2 (en) Piezoelectric ceramics, ceramic electronic components, and piezoelectric ceramic manufacturing methods
JPH08239265A (en) Dielectric ceramic composition,laminated ceramic capacitor made thereof and its production
JP2001313225A (en) Ceramic capacitor
JPH1117242A (en) Method of manufacturing burned ceramic board
JPH04325465A (en) Method for burning piezoelectric ceramics
JP2725227B2 (en) Multilayer inductor and method for manufacturing the same
JPH07183155A (en) Laminated ceramic electronic component and its manufacture
JP2833726B2 (en) Manufacturing method of soft ferrite
JP2002100510A (en) Low dielectric constant magnetic substance ceramic material and its manufacturing method
JP3024891B2 (en) Method for producing Mn-Zn ferrite
JP2801796B2 (en) Manufacturing method of soft ferrite
JP2004250241A (en) Setter for firing and method for firing
JP2024076784A (en) Multilayer Electronic Components
KR100891872B1 (en) Ceramic condencer, dielectric ceramic composition and farication method thereof
JPH0987016A (en) Piezoelectric ceramic material and its production