JP5293428B2 - Crystal manufacturing method and crystal manufacturing apparatus - Google Patents

Crystal manufacturing method and crystal manufacturing apparatus Download PDF

Info

Publication number
JP5293428B2
JP5293428B2 JP2009138884A JP2009138884A JP5293428B2 JP 5293428 B2 JP5293428 B2 JP 5293428B2 JP 2009138884 A JP2009138884 A JP 2009138884A JP 2009138884 A JP2009138884 A JP 2009138884A JP 5293428 B2 JP5293428 B2 JP 5293428B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
raw material
substrate
seed substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009138884A
Other languages
Japanese (ja)
Other versions
JP2010285306A (en
Inventor
武克 山本
尚 峯本
健 畑山
大蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009138884A priority Critical patent/JP5293428B2/en
Publication of JP2010285306A publication Critical patent/JP2010285306A/en
Application granted granted Critical
Publication of JP5293428B2 publication Critical patent/JP5293428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing a crystal where group III element nitride crystals such as a GaN single crystal formed by liquid phase growing are taken out of the inside of a raw material liquid in a short time. <P>SOLUTION: A crucible 1 is housed in a treating chamber 7 and a solid raw material treating liquid 8 is flown into the treating chamber 7 before or after the crucible 1 is housed in the treating chamber 7. A seed substrate 2 supported with a seed substrate support 3, a crystal substrate 10 generated on the seed substrate 2 and a solid raw material 4 covering the seed substrate 2 and the crystal substrate 10 are housed in the crucible 1 and then the crucible 1 is cut at a cutting part. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、結晶製造方法および結晶製造装置に関するものである。   The present invention relates to a crystal manufacturing method and a crystal manufacturing apparatus.

化合物半導体、そのなかでも窒化ガリウム(GaN)などのIII族元素窒化物(以下、III族窒化物、III族窒化物半導体、またはGaN系半導体という場合がある)は、青色や紫外光を発光する半導体素子の材料として注目されている。青色レーザダイオード(LD)は高密度光ディスクやディスプレイなどに応用され、青色発光ダイオード(LED)はディスプレイや照明などに応用されている。また、紫外線LDはバイオテクノロジなどへの応用が期待され、紫外線LEDは蛍光灯の紫外線源として期待されている。   Compound semiconductors, among them Group III element nitrides such as gallium nitride (GaN) (hereinafter sometimes referred to as Group III nitrides, Group III nitride semiconductors, or GaN-based semiconductors) emit blue or ultraviolet light. It is attracting attention as a material for semiconductor elements. Blue laser diodes (LDs) are applied to high-density optical discs and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Further, ultraviolet LD is expected to be applied to biotechnology and the like, and ultraviolet LED is expected to be an ultraviolet source of fluorescent lamps.

LDやLED用のIII族窒化物半導体(例えば、GaN)の基板は、通常、サファイア基板上に、気相エピタキシャル成長法を用いて、III族窒化物単結晶をヘテロエピタキシャル成長させることによって形成されている。気相成長方法としては、有機金属化学気相成長法(MOCVD法)、水素化物気相成長法(HVPE法)、分子線エピタキシー法(MBE法)などがある。   A group III nitride semiconductor (for example, GaN) substrate for an LD or LED is usually formed by heteroepitaxially growing a group III nitride single crystal on a sapphire substrate using a vapor phase epitaxial growth method. . Examples of the vapor deposition method include a metal organic chemical vapor deposition method (MOCVD method), a hydride vapor deposition method (HVPE method), a molecular beam epitaxy method (MBE method), and the like.

一方、気相エピタキシャル成長ではなく、液相で結晶成長を行う方法も検討されてきた。GaNやAlNなどのIII族窒化物単結晶の融点における窒素の平衡蒸気圧は1万気圧以上であるため、従来、窒化ガリウムを液相で育成させるためには1200℃で8000気圧(8000×1.01325×10Pa)の条件が必要とされてきた。これに対し、近年、Naなどのアルカリ金属を用いることで、750℃、50気圧(50×1.01325×10Pa)という比較的低温低圧でGaNを合成できることが明らかにされた。 On the other hand, a method of performing crystal growth in a liquid phase instead of vapor phase epitaxial growth has been studied. Since the equilibrium vapor pressure of nitrogen at the melting point of a group III nitride single crystal such as GaN or AlN is 10,000 atmospheres or more, conventionally, gallium nitride is grown at 1200 ° C. at 8000 atmospheres (8000 × 1) in the liquid phase. .01325 × 10 5 Pa) has been required. On the other hand, in recent years, it has been clarified that GaN can be synthesized at a relatively low temperature and low pressure of 750 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) by using an alkali metal such as Na.

最近では、アンモニアを含む窒素ガス雰囲気下においてGaとNaとの混合物を800℃、50気圧(50×1.01325×10Pa)で溶融させ、この融解液を用いて96時間の育成時間で、最大結晶サイズが1.2mm程度の単結晶が得られている(例えば、特許文献1参照)。 Recently, a mixture of Ga and Na was melted at 800 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) in a nitrogen gas atmosphere containing ammonia, and this melt was used for a growth time of 96 hours. A single crystal having a maximum crystal size of about 1.2 mm is obtained (for example, see Patent Document 1).

従来の液相成長によるIII族元素窒化物結晶製造装置を図8に示す。説明のため、GaN結晶を作製する場合を例に取る。14は原料ガスである窒素ガスを供給する原料ガス供給装置、15は結晶育成を行うための密閉性の結晶成長容器、16は原料ガス供給装置14と結晶成長容器15とを接続する接続配管、24は加熱手段を具備した育成炉である。接続配管16は、圧力調整器17、ストップバルブ18、リーク弁19、切り離し部分20を有している。育成炉24は、断熱材21とヒータ22とを備える電気炉として構成されており、熱電対23により温度管理され、全体を揺動可能である。   FIG. 8 shows a conventional group III element nitride crystal manufacturing apparatus using liquid phase growth. For the sake of explanation, the case of producing a GaN crystal is taken as an example. 14 is a raw material gas supply device for supplying nitrogen gas, which is a raw material gas, 15 is a hermetic crystal growth vessel for crystal growth, 16 is a connecting pipe for connecting the raw material gas supply device 14 and the crystal growth vessel 15, Reference numeral 24 denotes a growth furnace equipped with heating means. The connection pipe 16 includes a pressure regulator 17, a stop valve 18, a leak valve 19, and a disconnecting portion 20. The growth furnace 24 is configured as an electric furnace including a heat insulating material 21 and a heater 22, is temperature-controlled by a thermocouple 23, and can swing as a whole.

かかる構成の製造装置において、坩堝1内に、種基板2をセットする。この種基板2を、坩堝1の底面に平行な向きに配置する。また、原料である金属ガリウムとNaとを所定の量だけ秤量し、坩堝1内にセットする。   In the manufacturing apparatus having such a configuration, the seed substrate 2 is set in the crucible 1. This seed substrate 2 is arranged in a direction parallel to the bottom surface of the crucible 1. Further, a predetermined amount of metal gallium and Na as raw materials are weighed and set in the crucible 1.

そして坩堝1を結晶成長容器15に挿入し、さらにこの結晶成長容器15を、育成炉24内にセットし、接続パイプ16を介して原料ガス供給装置に接続させて、育成温度850℃、窒素雰囲気圧力50気圧(50×1.01325×10Pa)とし、Ga/Na融解液(以下、原料液という)に窒素ガスを溶解させて、種基板2の上にGaN単結晶の育成を行う。 Then, the crucible 1 is inserted into the crystal growth vessel 15, and this crystal growth vessel 15 is set in the growth furnace 24 and connected to the source gas supply device via the connection pipe 16, and the growth temperature is 850 ° C. and the nitrogen atmosphere. A pressure of 50 atm (50 × 1.01325 × 10 5 Pa) is applied, nitrogen gas is dissolved in a Ga / Na melt (hereinafter referred to as a raw material solution), and a GaN single crystal is grown on the seed substrate 2.

作製されたGaN単結晶は、固化した原料液とともに坩堝の中にあるので、この状態からGaN単結晶を取り出さなければならない。   Since the produced GaN single crystal is in the crucible together with the solidified raw material solution, the GaN single crystal must be taken out from this state.

図9から図10に、図8の製造装置で製造したGaN単結晶の取り出し方法を示す。室温で坩堝1を結晶成長容器15から取り出した状態では、原料液は固体状態の固体原料4となっており、そのままでは種基板2の上に成長させたGaN単結晶を取り出すことが出来ない。そこで、図9に示すように固体原料処理液8が満たされている処理容器7に坩堝1を入れ、固体原料処理液8と固体原料4を化学反応させることにより固体原料4を上面より溶かしていく。ここで、原料としてGa/Na処理液を使用する場合は、固体原料処理液8としてエタノールを使用することにより、反応気体9として水素を発生させながら、固体原料4を溶かすことが可能となる。   9 to 10 show a method for extracting a GaN single crystal manufactured by the manufacturing apparatus of FIG. In a state where the crucible 1 is taken out from the crystal growth vessel 15 at room temperature, the raw material liquid is a solid raw material 4, and the GaN single crystal grown on the seed substrate 2 cannot be taken out as it is. Therefore, as shown in FIG. 9, the crucible 1 is placed in a processing vessel 7 filled with the solid raw material treatment liquid 8, and the solid raw material treatment liquid 8 and the solid raw material 4 are chemically reacted to dissolve the solid raw material 4 from the upper surface. Go. Here, when a Ga / Na treatment liquid is used as a raw material, it is possible to dissolve the solid raw material 4 while generating hydrogen as the reaction gas 9 by using ethanol as the solid raw material treatment liquid 8.

また、原料液は坩堝1の底面と種基板2との間に入り込んでおり、薄い層状に固体原料4が存在している。図9に示すように、GaN単結晶より上側の固体原料4が処理されたあとは、種基板2の外周側から固体原料処理液9が回り込み、坩堝1の底面とGaN単結晶2の間に存在する固体原料4を溶かしていく。そして、固体原料4が全て処理されるとGaN単結晶2と坩堝1が分離され、GaN単結晶2を坩堝1から取り出すことが可能となる。   Further, the raw material liquid enters between the bottom surface of the crucible 1 and the seed substrate 2, and the solid raw material 4 exists in a thin layer shape. As shown in FIG. 9, after the solid raw material 4 above the GaN single crystal is processed, the solid raw material treatment liquid 9 circulates from the outer peripheral side of the seed substrate 2, and between the bottom surface of the crucible 1 and the GaN single crystal 2. The existing solid raw material 4 is melted. When all the solid raw materials 4 are processed, the GaN single crystal 2 and the crucible 1 are separated, and the GaN single crystal 2 can be taken out from the crucible 1.

特開2002−293696号公報JP 2002-293696 A

しかしながら、前記従来の構成では、坩堝からGaN単結晶を除去する際、固化した固体原料をエタノールなどの固体原料処理液で処理して取り除くため、坩堝の底部にGaN単結晶があるために長時間を要していた。特に、種基板の下方底面に形成された種基板と坩堝底面との隙間に形成された固体原料は、種基板の下方底面全体が坩堝の内底面に当接した状態になっているので、固体原料処理液が接する固体原料の表面範囲がこの隙間の垂直方向の狭い範囲に限られるため、処理に時間がかかってしまう。さらには、坩堝の内底面に当接した固体原料の面積が大きいので、この範囲の固体原料を溶解するのに数日かかってしまっていて、生産性が悪いという問題があった。   However, in the conventional configuration, when the GaN single crystal is removed from the crucible, the solidified solid material is removed by treatment with a solid raw material treatment liquid such as ethanol. Needed. In particular, the solid raw material formed in the gap between the seed substrate formed on the bottom surface of the seed substrate and the bottom surface of the crucible is in a state where the entire bottom surface of the seed substrate is in contact with the inner bottom surface of the crucible. Since the surface range of the solid raw material in contact with the raw material treatment liquid is limited to a narrow range in the vertical direction of this gap, the processing takes time. Furthermore, since the area of the solid raw material in contact with the inner bottom surface of the crucible is large, it took several days to dissolve the solid raw material in this range, and there was a problem that productivity was poor.

本発明は、前記従来の課題を解決するもので、結晶を固体原料から短時間で取り出すことができる生産性が高い結晶製造方法およびその装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a crystal production method and an apparatus thereof with high productivity capable of taking out crystals from a solid raw material in a short time.

そしてこの目的を達成するために本発明は、処理容器内に坩堝を収納させ、この坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面を取り外した状態とした構成にした。   And in order to achieve this object, the present invention accommodates a crucible in a processing container, and before or after putting this crucible in the processing container, allows the solid raw material processing liquid to flow into the processing container, In the crucible, a seed substrate, a crystal substrate generated on the seed substrate, and a solid material covering the seed substrate and the crystal substrate are accommodated, and a bottom surface of the crucible is removed. The configuration was as follows.

これにより所期の目的を達成するものである。   This achieves the intended purpose.

以上のように本発明は、処理容器内に坩堝を収納させ、この坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面を取り外した状態としたものであるので、生産性を高くすることができるものである。   As described above, according to the present invention, the crucible is accommodated in the processing container, and before or after the crucible is placed in the processing container, the solid raw material processing liquid is allowed to flow into the processing container, and the crucible is placed in the crucible. Is a state in which a seed substrate, a crystal substrate generated on the seed substrate, and a solid material covering the seed substrate and the crystal substrate are stored, and a bottom surface of the crucible is removed. Therefore, productivity can be increased.

すなわち、坩堝の底面が取り外されているので、坩堝の底部からも固体原料処理液を導入できるので、固体原料処理液が固体原料に接する範囲が広くなり、固体原料を速く溶解させることができる。   That is, since the bottom of the crucible is removed, the solid raw material treatment liquid can be introduced also from the bottom of the crucible, so the range in which the solid raw material treatment liquid is in contact with the solid raw material is widened, and the solid raw material can be dissolved quickly.

しかも、最も時間がかかる種基板と坩堝底面の間に存在する固体原料を、初期から溶解可能であるので、数時間で種基板を取り出すことが出来るようになり、生産性を高くすることができるのである。   Moreover, since the solid raw material existing between the seed substrate and the bottom of the crucible, which takes the longest time, can be dissolved from the beginning, the seed substrate can be taken out in a few hours, and the productivity can be increased. It is.

実施の形態1の結晶製造装置を用いた初期の固体原料処理工程図Initial solid raw material treatment process using the crystal production apparatus of the first embodiment 実施の形態1の結晶製造装置の一部の組図Partial assembly diagram of crystal manufacturing apparatus according to Embodiment 1 実施の形態1の物結晶製造装置の一部の断面図Sectional drawing of a part of physical crystal manufacturing apparatus of Embodiment 1 実施の形態1の坩堝固定台の斜面・断面図Slope / cross-sectional view of crucible fixing base of Embodiment 1 実施の形態1の結晶製造装置を用いた後期の固体原料処理工程図Late solid raw material treatment process using the crystal production apparatus of the first embodiment 実施の形態2の結晶製造装置の一部の断面図Partial sectional view of the crystal manufacturing apparatus of the second embodiment 実施の形態3の結晶製造装置の断面図Sectional drawing of the crystal manufacturing apparatus of Embodiment 3 一般的なIII族窒化物単結晶製造方法を行う装置の概略構成断面図Schematic configuration cross-sectional view of an apparatus for performing a general group III nitride single crystal manufacturing method 従来の初期の固体原料処理工程図Conventional initial solid raw material treatment process diagram 従来の後期の固体原料処理工程図Conventional late-stage solid material treatment process diagram

以下に本発明の物結晶製造方法および装置の実施の形態を図面とともに詳細に説明する。   Embodiments of the method and apparatus for producing a product crystal of the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
図2に、本発明の実施の形態における結晶製造製造装置の一部を示す。図2に示すように、アルミナ等の耐熱材料で作成されたカップ状の坩堝1と、同様に耐熱材料で作成された支持体3と、表面に窒化物結晶を成長させる種基板2で構成されている。坩堝1の坩堝内底面12に種基板支持体3を設置し、種基板支持体3によって種基板2を所定の高さに保持している。
(Embodiment 1)
FIG. 2 shows a part of the crystal manufacturing and manufacturing apparatus according to the embodiment of the present invention. As shown in FIG. 2, it is composed of a cup-shaped crucible 1 made of a heat-resistant material such as alumina, a support 3 similarly made of a heat-resistant material, and a seed substrate 2 on which a nitride crystal is grown. ing. The seed substrate support 3 is installed on the crucible inner bottom surface 12 of the crucible 1, and the seed substrate 2 is held at a predetermined height by the seed substrate support 3.

次に、結晶の製造方法を説明する。まず、図2に示す坩堝1に原料である結晶元素材料(例えば、ガリウム、アルミニウム、インジウム)とアルカリ金属(例えば、リチウム、ナトリウム、カリウム)またはアルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ラジウム、ベリリウム、マグネシウム)を供給する。これらアルカリ金属およびアルカリ土類金属は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。III族元素材料およびアルカリ金属の秤量や取り扱いは、アルカリ金属の酸化や水分吸着を回避するために、窒素ガスやアルゴンガスやネオンガスなどで置換されたグローブボックス中で行うことが好ましい。   Next, a method for producing a crystal will be described. First, a crystal element material (for example, gallium, aluminum, indium) and an alkali metal (for example, lithium, sodium, potassium) or an alkaline earth metal (for example, calcium, strontium, barium, Supply radium, beryllium, magnesium). These alkali metals and alkaline earth metals may be used alone or in combination of two or more. It is preferable to weigh and handle the group III element material and the alkali metal in a glove box substituted with nitrogen gas, argon gas, neon gas or the like in order to avoid alkali metal oxidation or moisture adsorption.

次に、図8に示す結晶成長容器15に坩堝1挿入し、密閉状態でグローブボックスから取り出し、結晶成長容器15を育成炉24内に固定する。その後、結晶成長容器15と接続管16を接続し、ストップバルブ18を開放して、原料ガス供給装置14から結晶成長容器15に原料ガスを注入する。   Next, the crucible 1 is inserted into the crystal growth vessel 15 shown in FIG. 8, taken out from the glove box in a sealed state, and the crystal growth vessel 15 is fixed in the growth furnace 24. Thereafter, the crystal growth vessel 15 and the connecting pipe 16 are connected, the stop valve 18 is opened, and the source gas is injected from the source gas supply device 14 into the crystal growth vessel 15.

そして、熱電対23や圧力調整器17によって、育成炉24の温度および育成雰囲気の圧力を制御しながら加圧・加熱を行う。なお、結晶を生成するための原料の溶融および育成の条件は、原料である結晶材料やアルカリ金属の成分、および原料ガスの成分およびその圧力に依存するが、例えば、温度は700℃〜1100℃、好ましくは700℃〜900℃の低温が用いられる。圧力は20気圧(20×1.01325×105Pa)以上、好ましくは30気圧(5×1.01325×105Pa)〜100気圧(100×1.01325×105Pa)が用いられる。   Then, pressurization / heating is performed by controlling the temperature of the growth furnace 24 and the pressure of the growth atmosphere by the thermocouple 23 and the pressure regulator 17. The conditions for melting and growing the raw material for generating crystals depend on the raw crystal material and the alkali metal component, the raw material gas component and the pressure thereof. For example, the temperature is 700 ° C. to 1100 ° C. Preferably, a low temperature of 700 ° C. to 900 ° C. is used. The pressure is 20 atmospheres (20 × 1.01325 × 105 Pa) or more, preferably 30 atmospheres (5 × 1.01325 × 105 Pa) to 100 atmospheres (100 × 1.01325 × 105 Pa).

このように、育成温度に昇温することにより、坩堝1内で、結晶元素材料/アルカリ金属の融解液、つまり原料液が形成され、この原料液中に原料ガスが溶け込み、結晶元素材料と原料ガスとが反応して、種基板2の上にIII族元素窒化物単結晶が育成される。   In this way, by raising the temperature to the growth temperature, a crystal element material / alkali metal melt, that is, a raw material liquid is formed in the crucible 1, and the raw material gas is dissolved in the raw material liquid. The group reacts with the gas to grow a group III element nitride single crystal on the seed substrate 2.

所定の時間が経過して結晶基板の育成が終了した後に、育成炉24を常圧・常温に戻し、結晶成長容器15と接続管11を取り外し、育成炉24から結晶成長容器15を取り出す。さらに、結晶成長容器24から坩堝1を取り出す。   After the growth of the crystal substrate is completed after a predetermined time has elapsed, the growth furnace 24 is returned to normal pressure and room temperature, the crystal growth vessel 15 and the connecting tube 11 are removed, and the crystal growth vessel 15 is taken out from the growth furnace 24. Further, the crucible 1 is taken out from the crystal growth vessel 24.

ここで図3に示す、結晶成長後の坩堝1内の原料液中には結晶元素材料は5〜30%程度しか残存せず、殆どがアルカリ金属である。また、原料液は常温では固体原料4として存在し、結晶基板が一体に形成された種基板2や種基板支持体3を覆っている。この坩堝1を切断部5の位置で、旋盤やワイヤーカットなどの装置を用いて輪切りにして、坩堝1の坩堝内底面12を取り外す。このとき、切断部5の位置に分離溝11を形成しておくと、切断時間が短くなるとともに、切断時に坩堝1に加わる応力が小さくなり、種基板2に過剰な応力が加わって破損することが無い。また、外部から目視で切断部5を確認できるので、誤って種基板2を切断することが無い。分離溝10をV形状にすると、溝形成が容易であるとともに、目視しやすい利点があるため有効であるが、V形状に限定するものではなく、凹形状やU形状でも良い。   Here, only about 5 to 30% of the crystal element material remains in the raw material liquid in the crucible 1 after crystal growth shown in FIG. 3, and most of the element is alkali metal. The raw material liquid exists as a solid raw material 4 at room temperature, and covers the seed substrate 2 and the seed substrate support 3 on which the crystal substrate is integrally formed. The crucible 1 is cut into a round shape using a lathe or a wire cutting device at the position of the cutting portion 5, and the crucible inner bottom surface 12 of the crucible 1 is removed. At this time, if the separation groove 11 is formed at the position of the cutting portion 5, the cutting time is shortened, the stress applied to the crucible 1 during cutting is reduced, and the seed substrate 2 is damaged due to excessive stress. There is no. Moreover, since the cutting part 5 can be visually confirmed from the outside, the seed substrate 2 is not cut by mistake. If the separation groove 10 is formed in a V shape, it is effective because it is easy to form the groove and has an advantage of being easily visible, but it is not limited to the V shape, and may be a concave shape or a U shape.

次に、図1に示すように結晶基板10が一体に形成された種基板2を取り出すために固体原料4の処理を行う。切断した坩堝1を処理容器7に設置した坩堝固定台6に固定し、水酸基(-OH)を含む任意の固体原料処理液8、たとえばエタノール、メタノール、イソプロピルアルコールなどのアルコール類や水などを注入する。固体原料4を固体原料処理液8に浸漬させることで、処理液中に溶解する金属アルコキシド(水を用いる場合は金属水酸化物)と反応気体9である水素を生成させて、固体原料4を処理する。坩堝1を切断しているため、固体原料4の上面だけでなく、切断部5(下面側)も固体原料処理液8と接するため、処理時間の短縮が可能となる。   Next, as shown in FIG. 1, the solid material 4 is processed in order to take out the seed substrate 2 on which the crystal substrate 10 is integrally formed. The cut crucible 1 is fixed to a crucible fixing base 6 installed in a processing vessel 7, and an arbitrary solid raw material treatment liquid 8 containing a hydroxyl group (-OH), for example, alcohols such as ethanol, methanol, isopropyl alcohol, or water is injected. To do. By immersing the solid raw material 4 in the solid raw material treatment liquid 8, a metal alkoxide (a metal hydroxide if water is used) and hydrogen as a reaction gas 9 are generated in the treatment liquid, and the solid raw material 4 is obtained. To process. Since the crucible 1 is cut, not only the upper surface of the solid raw material 4 but also the cutting part 5 (lower surface side) is in contact with the solid raw material treatment liquid 8, so that the processing time can be shortened.

ここで、図4に示すように、坩堝固定台6は複数の支持脚6aと坩堝を支持する支持部6bを有する。この坩堝固定台6の支持部6bで坩堝1の外周下面側を支持している。この坩堝固定台6は、複数の支持脚6aの間に空間が設けられているので、固体原料処理液8を切断部5に供給する事が可能となっている。なお、種基板支持体支持部6cを設ける事により、固体原料4が全て溶解した後に種基板支持体3や種基板2及び結晶基板10が処理液7の底面に落下するのを防ぐ事が可能となり、結晶基板10が損傷するのを防ぐ事ができる。なお、図4では1部品で坩堝固定台6を形成しているが、複数部品で形成しても良い。   Here, as shown in FIG. 4, the crucible fixing base 6 has a plurality of support legs 6a and a support portion 6b for supporting the crucible. The support 6 b of the crucible fixing base 6 supports the outer peripheral lower surface side of the crucible 1. Since this crucible fixing base 6 is provided with a space between the plurality of support legs 6 a, the solid raw material treatment liquid 8 can be supplied to the cutting part 5. In addition, it is possible to prevent the seed substrate support 3, the seed substrate 2, and the crystal substrate 10 from falling on the bottom surface of the processing liquid 7 after the solid raw material 4 is completely dissolved by providing the seed substrate support support 6 c. Thus, the crystal substrate 10 can be prevented from being damaged. In FIG. 4, the crucible fixing base 6 is formed by one component, but may be formed by a plurality of components.

固体原料4の処理が進むと、図5に示すように種基板2と種基板支持台3の間の隙間に固体原料4が残るが、図10に示す従来例に比べて、隙間に残る固体原料4が少ない。また、種基板2の外周側からだけでなく種基板支持台3の無い周側からも固体原料処理液8が浸漬するので、処理時間の更なる短縮が可能となる。   As the processing of the solid raw material 4 proceeds, the solid raw material 4 remains in the gap between the seed substrate 2 and the seed substrate support 3 as shown in FIG. 5, but the solid remaining in the gap as compared with the conventional example shown in FIG. There are few raw materials 4. Further, since the solid raw material treatment liquid 8 is immersed not only from the outer peripheral side of the seed substrate 2 but also from the peripheral side where the seed substrate support 3 is not present, the processing time can be further shortened.

固体原料4の処理が完全に終了すると、結晶基板10が一体に形成された種基板2と坩堝1及び種基板支持台4は分離されているので、結晶基板10及び種基板2を坩堝1から取り出すことが可能となる。   When the processing of the solid raw material 4 is completed, the seed substrate 2, the crucible 1, and the seed substrate support 4 on which the crystal substrate 10 is integrally formed are separated, so that the crystal substrate 10 and the seed substrate 2 are removed from the crucible 1. It can be taken out.

内径90mmの坩堝1に直径50mmの種基板2を入れて、原料としてガリウムとナトリウムを使用してGaN単結晶を育成し、固体原料4の上面と結晶基板10上面の距離が10mmである固体原料4をエタノール処理する実験を行った。従来例では種基板2や結晶基板10の周りの固体原料4を処理する時間(図9から図10になる時間)が4時間、坩堝1の底面15と種基板2との隙間に存在する固体原料4を処理するのに50時間ほどかかる。それに対し本実施例では、種基板2周りの固体原料4を処理する時間(図1から図5になる時間)が3時間、坩堝1の底面15と種基板支持台3との隙間に存在する固体原料4を処理するのに5時間程度で可能となり、大幅な時間短縮が可能となった。   A seed substrate 2 having a diameter of 50 mm is placed in a crucible 1 having an inner diameter of 90 mm, a GaN single crystal is grown using gallium and sodium as raw materials, and the distance between the upper surface of the solid material 4 and the upper surface of the crystal substrate 10 is 10 mm. An experiment was conducted in which 4 was treated with ethanol. In the conventional example, the time for processing the solid raw material 4 around the seed substrate 2 and the crystal substrate 10 (the time from FIG. 9 to FIG. 10) is 4 hours, and the solid existing in the gap between the bottom surface 15 of the crucible 1 and the seed substrate 2. It takes about 50 hours to process the raw material 4. In contrast, in this embodiment, the time for processing the solid raw material 4 around the seed substrate 2 (the time from FIG. 1 to FIG. 5) is 3 hours, which is present in the gap between the bottom surface 15 of the crucible 1 and the seed substrate support 3. It took about 5 hours to process the solid raw material 4, and the time could be greatly reduced.

(実施の形態2)
本発明の実施の形態2の結晶製造装置を、図6に示す。図6において、実施の形態1の構成と異なる所は、種基板支持部13を坩堝1の坩堝内底面12を加工して、坩堝1と一体で形成された点である。このように、種基板支持部13を坩堝1と一体形成しても、実施の形態1と同様の効果が得られ、結晶基板10や種基板2を短時間で取り出す事ができる。さらには、坩堝と一体形成されているので、部品点数を減少でき、生産性を高くする事ができる。
(Embodiment 2)
A crystal manufacturing apparatus according to Embodiment 2 of the present invention is shown in FIG. In FIG. 6, the difference from the configuration of the first embodiment is that the seed substrate support portion 13 is formed integrally with the crucible 1 by processing the bottom surface 12 in the crucible 1. Thus, even if the seed substrate support portion 13 is formed integrally with the crucible 1, the same effect as in the first embodiment can be obtained, and the crystal substrate 10 and the seed substrate 2 can be taken out in a short time. Furthermore, since it is integrally formed with the crucible, the number of parts can be reduced and the productivity can be increased.

なお、実施の形態1の図3の種基板支持体3は円筒形状、実施の形態2の図6種基板支持部13は円盤形状としたが、種基板支持台3を円盤形状、種基板支持部13を円筒形状としても良い。さらに、円形状ではなく四角などの他の外・内形状にすることも可能である。   Although the seed substrate support 3 in FIG. 3 of the first embodiment has a cylindrical shape and the seed substrate support 13 in FIG. 6 of the second embodiment has a disk shape, the seed substrate support base 3 has a disk shape and a seed substrate support. The part 13 may be cylindrical. Furthermore, it is possible to use other outer / inner shapes such as a square instead of a circular shape.

(実施の形態3)
本発明の実施の形態3の結晶製造装置を、図7に示す。図7において、実施の形態1の構成と異なるところは坩堝1を処理容器7の内底面に対して、傾斜させている点である。このように傾斜させる事により、実施の形態1のように坩堝固定台6に複数の支持脚を設けなくても、固体原料処理液8を切断部5に供給する事が可能となっている。さらに、固体原料処理液8を切断部5の全面に供給可能であるので、処理速度の短縮をさらに図る事ができ、結晶基板10や種基板2を原料液の中から短時間で取り出すことができる。
(Embodiment 3)
A crystal manufacturing apparatus according to Embodiment 3 of the present invention is shown in FIG. In FIG. 7, the difference from the configuration of the first embodiment is that the crucible 1 is inclined with respect to the inner bottom surface of the processing vessel 7. By inclining in this way, the solid raw material processing liquid 8 can be supplied to the cutting unit 5 without providing a plurality of support legs on the crucible fixing base 6 as in the first embodiment. Furthermore, since the solid raw material treatment liquid 8 can be supplied to the entire surface of the cutting section 5, the processing speed can be further reduced, and the crystal substrate 10 and the seed substrate 2 can be taken out of the raw material liquid in a short time. it can.

本発明にかかる結晶製造方法及び装置は、液相成長にて形成したGaN単結晶などのIII族元素窒化物結晶を原料液の中から短時間で取り出すことに効果を有し、青色レーザーダイオードや青色発光ダイオードなどに使用される半導体素子の基板製造に有用である。   The crystal manufacturing method and apparatus according to the present invention have an effect of taking out a group III element nitride crystal such as a GaN single crystal formed by liquid phase growth from a raw material solution in a short time, It is useful for manufacturing a substrate of a semiconductor element used for a blue light emitting diode or the like.

1 坩堝
2 種基板
3 種基板支持体
4 固体原料
5 切断部
6 坩堝固定台
6a 支持脚
6b 支持部
6c 種基板支持体支持部
7 処理容器
8 固体原料処理液
9 反応気体
10 結晶基板
11 分離溝
12 坩堝内底面
13 種基板支持部
14 原料ガス供給装置
15 結晶成長容器
16 接続管
17 圧力調整器
18 ストップバルブ
19 リーク弁
20 切り離し部
21 断熱材
22 ヒータ
23 熱伝対
24 育成炉
DESCRIPTION OF SYMBOLS 1 Crucible 2 Seed substrate 3 Seed substrate support 4 Solid raw material 5 Cutting part 6 Crucible fixing stand 6a Support leg 6b Support part 6c Seed substrate support support part 7 Processing container 8 Solid raw material process liquid 9 Reactive gas 10 Crystal substrate 11 Separation groove 12 bottom surface of crucible 13 seed substrate support unit 14 raw material gas supply device 15 crystal growth vessel 16 connection pipe 17 pressure regulator 18 stop valve 19 leak valve 20 separation unit 21 heat insulating material 22 heater 23 thermocouple 24 growth furnace

Claims (10)

結晶を育成した後工程として、この結晶を固体原料から取り出す結晶の製造方法であって、
処理容器内に坩堝を収納させ、この坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面を取り外した状態とした結晶製造方法。
As a post-process for growing a crystal, a method for producing a crystal in which the crystal is extracted from a solid raw material,
A crucible is housed in a processing container, and before or after the crucible is placed in the processing container, a solid raw material processing solution is allowed to flow into the processing container, and a seed substrate and the seed are contained in the crucible. A crystal manufacturing method in which a crystal substrate generated on a substrate, a seed substrate and a solid material covering the crystal substrate are stored, and a bottom surface of the crucible is removed.
前記処理容器の内底面に対して前記坩堝を支持する坩堝固定台を備え、この坩堝固定台は、所定間隔離して配置した複数の坩堝固定台支持脚を有し、各坩堝固定台支持脚の支持部で前記坩堝の外周下面側を支持させた請求項1に記載の結晶製造方法。 A crucible fixing base that supports the crucible with respect to the inner bottom surface of the processing container is provided, the crucible fixing base has a plurality of crucible fixing base support legs arranged at predetermined intervals, and each crucible fixing base support leg The crystal manufacturing method according to claim 1, wherein the outer peripheral lower surface side of the crucible is supported by a support portion. 前記処理容器の内底面に対して前記種基板を所定の高さに保持する支持体を備え、この支持体で種基板の外周下面側を支持させた請求項1または2に記載の結晶製造方法。 The crystal manufacturing method according to claim 1, further comprising: a support body that holds the seed substrate at a predetermined height with respect to an inner bottom surface of the processing container, wherein the outer peripheral lower surface side of the seed substrate is supported by the support body. . 前記坩堝は、前記処理容器の内底面に対して傾斜させる傾斜手段を備えた請求項1に記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein the crucible includes a tilting unit that tilts the crucible with respect to an inner bottom surface of the processing container. 前記坩堝の側面に前記底面に平行となるような分離溝を設け、前記分離溝に沿って切断して前記坩堝の底面を取り外すとした請求項1から4のいずれか1つに記載の結晶製造方法。 The crystal manufacturing according to any one of claims 1 to 4, wherein a separation groove that is parallel to the bottom surface is provided on a side surface of the crucible, and the bottom surface of the crucible is removed by cutting along the separation groove. Method. 前記分離溝は、前記坩堝の側面に連続して繋がるように形成されている請求項5に記載の結晶製造方法。 The crystal manufacturing method according to claim 5, wherein the separation groove is formed so as to be continuously connected to a side surface of the crucible. 前記分離溝の断面は、V字形状である請求項5に記載の結晶製造方法。 The crystal manufacturing method according to claim 5, wherein a cross section of the separation groove is V-shaped. 坩堝の内底面から支持脚の支持部までの高さを、種基板の厚さよりも高くした請求項3に記載の結晶の製造方法。 The method for producing a crystal according to claim 3, wherein the height from the inner bottom surface of the crucible to the support portion of the support leg is higher than the thickness of the seed substrate. 種基板を窒化ガリウム基板とした請求項1〜8のいずれか一つに記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein the seed substrate is a gallium nitride substrate. 請求項1〜9の結晶基板の製造方法に用いる結晶基板の製造装置であって、前記処理容器台と、前記処理容器内に前記固体原料処理液を流入させるための流入手段と、前記坩堝内の前記固体原料を前記固体原料処理液で溶解させた後に、前記処理容器内から前記結晶基板と前記種基板を取り出す取り出し手段と、を備えた結晶製造装置。 A crystal substrate manufacturing apparatus for use in the method for manufacturing a crystal substrate according to claim 1, wherein the processing vessel table, an inflow means for allowing the solid raw material processing liquid to flow into the processing vessel, and the crucible And a take-out means for taking out the crystal substrate and the seed substrate from the processing container after the solid raw material is dissolved in the solid raw material treatment liquid.
JP2009138884A 2009-06-10 2009-06-10 Crystal manufacturing method and crystal manufacturing apparatus Expired - Fee Related JP5293428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138884A JP5293428B2 (en) 2009-06-10 2009-06-10 Crystal manufacturing method and crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138884A JP5293428B2 (en) 2009-06-10 2009-06-10 Crystal manufacturing method and crystal manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013124993A Division JP5765370B2 (en) 2013-06-13 2013-06-13 Method for producing group III nitride crystal

Publications (2)

Publication Number Publication Date
JP2010285306A JP2010285306A (en) 2010-12-24
JP5293428B2 true JP5293428B2 (en) 2013-09-18

Family

ID=43541312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138884A Expired - Fee Related JP5293428B2 (en) 2009-06-10 2009-06-10 Crystal manufacturing method and crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5293428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205631B2 (en) * 2009-07-17 2013-06-05 株式会社リコー Crystal manufacturing method and crystal manufacturing apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300284A (en) * 1991-03-27 1992-10-23 Mitsubishi Electric Corp Apparatus for liquid-phase epitaxial growth
JP3752297B2 (en) * 1996-03-28 2006-03-08 京セラ株式会社 Silicon casting
JP2004123417A (en) * 2002-09-30 2004-04-22 Ube Material Industries Ltd Crucible made of calcium fluoride, and method for manufacture the same
JP2005263622A (en) * 2004-02-19 2005-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing compound single crystal and apparatus for manufacturing it
JP4716711B2 (en) * 2004-11-05 2011-07-06 日本碍子株式会社 Group III nitride single crystal growth method
WO2007094126A1 (en) * 2006-02-13 2007-08-23 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP4702324B2 (en) * 2007-05-30 2011-06-15 豊田合成株式会社 Group III nitride semiconductor manufacturing apparatus and group III nitride semiconductor manufacturing method
JP2009062231A (en) * 2007-09-06 2009-03-26 Sharp Corp Crystal growth method, crystal growth apparatus, stacking type crystal growth apparatus, and semiconductor device having crystal thin film produced by these method and apparatus
JP5338672B2 (en) * 2007-09-28 2013-11-13 株式会社リコー Method and apparatus for producing group III element nitride single crystals
JP5205630B2 (en) * 2009-05-21 2013-06-05 株式会社リコー Crystal manufacturing method and crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2010285306A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5338672B2 (en) Method and apparatus for producing group III element nitride single crystals
JP4821007B2 (en) Method for producing group III element nitride crystal and group III element nitride crystal
WO2005071143A1 (en) Process for producing single crystal of gallium-containing nitride
WO2010084682A1 (en) Group 3b nitride crystal
JP5293428B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2009062231A (en) Crystal growth method, crystal growth apparatus, stacking type crystal growth apparatus, and semiconductor device having crystal thin film produced by these method and apparatus
JP5765370B2 (en) Method for producing group III nitride crystal
JP2007246303A (en) Group iii nitride crystal and production method thereof
JP5205630B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP4159303B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP2009126771A (en) Method and apparatus for growing crystal
JP5205631B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP2010285288A (en) Method and apparatus for producing crystal
JP4426251B2 (en) Group III nitride crystal manufacturing method
JP2010269955A (en) Method and device for producing crystal
JP4873169B2 (en) Filling method of solid organometallic compound
JP4426238B2 (en) Group III nitride crystal manufacturing method
JP2009007207A (en) Crystal growth method and crystal growth apparatus
JP6235398B2 (en) Method and apparatus for producing aluminum nitride crystal
JP2010269986A (en) Method for taking out group iii nitride crystal and apparatus used for the same
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP2004277224A (en) Method for growing group iii nitride
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2007137732A (en) Crystal growth apparatus and crystal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees