JP2010285288A - Method and apparatus for producing crystal - Google Patents

Method and apparatus for producing crystal Download PDF

Info

Publication number
JP2010285288A
JP2010285288A JP2009137871A JP2009137871A JP2010285288A JP 2010285288 A JP2010285288 A JP 2010285288A JP 2009137871 A JP2009137871 A JP 2009137871A JP 2009137871 A JP2009137871 A JP 2009137871A JP 2010285288 A JP2010285288 A JP 2010285288A
Authority
JP
Japan
Prior art keywords
crystal
raw material
crucible
solid raw
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009137871A
Other languages
Japanese (ja)
Inventor
Takekatsu Yamamoto
武克 山本
Takashi Minemoto
尚 峯本
Takeshi Hatayama
健 畑山
Daizo Yamazaki
大蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009137871A priority Critical patent/JP2010285288A/en
Publication of JP2010285288A publication Critical patent/JP2010285288A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a crystal where group III element nitride crystals such as a GaN single crystal formed by liquid phase growing are taken out of the inside of a raw material liquid in a short time. <P>SOLUTION: A crucible 1 is housed in a treating chamber 6 and a solid raw material treating liquid 7 is put into the treating chamber 6 before or after the crucible 1 is housed in the treating chamber 6. A seed substrate 2, a crystal substrate 10 generated on the seed substrate 2 and a solid raw material 3 covering the seed substrate 2 and the crystal substrate 10 are housed in the crucible 1 and then ultrasonic waves 11 are emitted from an ultrasonic generating means 8 into the treating chamber 6. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、結晶製造方法および結晶製造装置に関するものである。   The present invention relates to a crystal manufacturing method and a crystal manufacturing apparatus.

化合物半導体、そのなかでも窒化ガリウム(GaN)などのIII族元素窒化物(以下、III族窒化物、III族窒化物半導体、またはGaN系半導体という場合がある)は、青色や紫外光を発光する半導体素子の材料として注目されている。青色レーザダイオード(LD)は高密度光ディスクやディスプレイなどに応用され、青色発光ダイオード(LED)はディスプレイや照明などに応用されている。また、紫外線LDはバイオテクノロジなどへの応用が期待され、紫外線LEDは蛍光灯の紫外線源として期待されている。   Compound semiconductors, among them Group III element nitrides such as gallium nitride (GaN) (hereinafter sometimes referred to as Group III nitrides, Group III nitride semiconductors, or GaN-based semiconductors) emit blue or ultraviolet light. It is attracting attention as a material for semiconductor elements. Blue laser diodes (LDs) are applied to high-density optical discs and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Further, ultraviolet LD is expected to be applied to biotechnology and the like, and ultraviolet LED is expected to be an ultraviolet source of fluorescent lamps.

LDやLED用のIII族窒化物半導体(例えば、GaN)の基板は、通常、サファイア基板上に、気相エピタキシャル成長法を用いて、III族窒化物単結晶をヘテロエピタキシャル成長させることによって形成されている。気相成長方法としては、有機金属化学気相成長法(MOCVD法)、水素化物気相成長法(HVPE法)、分子線エピタキシー法(MBE法)などがある。   A group III nitride semiconductor (for example, GaN) substrate for an LD or LED is usually formed by heteroepitaxially growing a group III nitride single crystal on a sapphire substrate using a vapor phase epitaxial growth method. . Examples of the vapor deposition method include a metal organic chemical vapor deposition method (MOCVD method), a hydride vapor deposition method (HVPE method), a molecular beam epitaxy method (MBE method), and the like.

一方、気相エピタキシャル成長ではなく、液相で結晶成長を行う方法も検討されてきた。GaNやAlNなどのIII族窒化物単結晶の融点における窒素の平衡蒸気圧は1万気圧以上であるため、従来、窒化ガリウムを液相で育成させるためには1200℃で8000気圧(8000×1.01325×10Pa)の条件が必要とされてきた。これに対し、近年、Naなどのアルカリ金属を用いることで、750℃、50気圧(50×1.01325×10Pa)という比較的低温低圧でGaNを合成できることが明らかにされた。 On the other hand, a method of performing crystal growth in a liquid phase instead of vapor phase epitaxial growth has been studied. Since the equilibrium vapor pressure of nitrogen at the melting point of a group III nitride single crystal such as GaN or AlN is 10,000 atm or higher, conventionally, 8000 atm (8000 × 1) at 1200 ° C. for growing gallium nitride in the liquid phase. .01325 × 10 5 Pa) has been required. On the other hand, in recent years, it has been clarified that GaN can be synthesized at a relatively low temperature and low pressure of 750 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) by using an alkali metal such as Na.

最近では、アンモニアを含む窒素ガス雰囲気下においてGaとNaとの混合物を800℃、50気圧(50×1.01325×10Pa)で溶融させ、この融解液を用いて96時間の育成時間で、最大結晶サイズが1.2mm程度の単結晶が得られている(例えば、特許文献1参照)。 Recently, a mixture of Ga and Na was melted at 800 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) in a nitrogen gas atmosphere containing ammonia, and this melt was used for a growth time of 96 hours. A single crystal having a maximum crystal size of about 1.2 mm is obtained (for example, see Patent Document 1).

従来の液相成長によるIII族元素窒化物結晶製造装置を図6示す。説明のため、GaN結晶を作製する場合を例に取る。12は原料ガスである窒素ガスを供給する原料ガス供給装置、13は結晶育成を行うための密閉性の結晶成長容器、14は原料ガス供給装置12と結晶成長容器13とを接続する接続配管、22は加熱手段を具備した育成炉である。接続配管14は、圧力調整器15、ストップバルブ16、リーク弁17、切り離し部分18を有している。育成炉22は、断熱材19とヒータ20とを備える電気炉として構成されており、熱電対21により温度管理され、全体を揺動可能である。   FIG. 6 shows a conventional group III element nitride crystal manufacturing apparatus by liquid phase growth. For the sake of explanation, the case of producing a GaN crystal is taken as an example. 12 is a raw material gas supply device for supplying nitrogen gas, which is a raw material gas, 13 is a hermetic crystal growth vessel for crystal growth, 14 is a connecting pipe for connecting the raw material gas supply device 12 and the crystal growth vessel 13, 22 is a growth furnace equipped with heating means. The connection pipe 14 includes a pressure regulator 15, a stop valve 16, a leak valve 17, and a disconnecting portion 18. The growth furnace 22 is configured as an electric furnace including a heat insulating material 19 and a heater 20, is temperature-controlled by a thermocouple 21, and can swing as a whole.

かかる構成の製造装置において、坩堝1内に、種基板2をセットする。この種基板2を、坩堝1の底面に平行な向きに配置する。また、原料である金属ガリウムとNaとを所定の量だけ秤量し、坩堝1内にセットする。   In the manufacturing apparatus having such a configuration, the seed substrate 2 is set in the crucible 1. This seed substrate 2 is arranged in a direction parallel to the bottom surface of the crucible 1. Further, a predetermined amount of metal gallium and Na as raw materials are weighed and set in the crucible 1.

そして坩堝1を結晶成長容器13に挿入し、さらにこの結晶成長容器13を、育成炉22内にセットし、接続パイプ14を介して原料ガス供給装置に接続させて、育成温度850℃、窒素雰囲気圧力50気圧(50×1.01325×10Pa)とし、Ga/Na融解液(以下、原料液という)に窒素ガスを溶解させて、種基板2の上にGaN単結晶の育成を行う。 Then, the crucible 1 is inserted into the crystal growth vessel 13, and this crystal growth vessel 13 is set in the growth furnace 22 and connected to the source gas supply device via the connection pipe 14, and the growth temperature is 850 ° C. and the nitrogen atmosphere. A pressure of 50 atm (50 × 1.01325 × 10 5 Pa) is applied, nitrogen gas is dissolved in a Ga / Na melt (hereinafter referred to as a raw material solution), and a GaN single crystal is grown on the seed substrate 2.

作製されたGaN単結晶は、固化した原料液とともに坩堝の中にあるので、この状態からGaN単結晶を取り出さなければならない。   Since the produced GaN single crystal is in the crucible together with the solidified raw material solution, the GaN single crystal must be taken out from this state.

図7から図8に、図6の製造装置で製造したGaN単結晶の取り出し方法を示す。室温で坩堝1を結晶成長容器13から取り出した状態では、原料液は固体状態の固体原料4となっており、そのままでは種基板2の上に成長させたGaN単結晶を取り出すことが出来ない。そこで、図7に示すように固体原料処理液6が満たされている処理容器5に坩堝1を入れ、固体原料処理液6と固体原料4を化学反応させることにより固体原料4を上面より溶かしていく。ここで、原料としてGa/Na処理液を使用する場合は、固体原料処理液6としてエタノールを使用することにより、反応気体7として水素を発生させながら、固体原料4を溶かすことが可能となる。   7 to 8 show a method for taking out a GaN single crystal manufactured by the manufacturing apparatus of FIG. In a state where the crucible 1 is taken out from the crystal growth vessel 13 at room temperature, the raw material liquid is the solid raw material 4, and the GaN single crystal grown on the seed substrate 2 cannot be taken out as it is. Therefore, as shown in FIG. 7, the crucible 1 is placed in a processing vessel 5 filled with the solid raw material treatment liquid 6, and the solid raw material treatment liquid 6 and the solid raw material 4 are chemically reacted to dissolve the solid raw material 4 from the upper surface. Go. Here, when a Ga / Na treatment liquid is used as a raw material, it is possible to dissolve the solid raw material 4 while generating hydrogen as the reaction gas 7 by using ethanol as the solid raw material treatment liquid 6.

また、原料液は坩堝1の底面5と種基板2との間に入り込んでおり、薄い層状に固体原料4が存在している。図8に示すように、GaN単結晶より上側の固体原料4が処理されたあとは、種基板2の外周側から固体原料処理液6が回り込み、坩堝1の底面とGaN単結晶2の間に存在する固体原料4を溶かしていく。そして、固体原料4が全て処理されるとGaN単結晶2と坩堝1が分離され、GaN単結晶2を坩堝1から取り出すことが可能となる。   The raw material liquid enters between the bottom surface 5 of the crucible 1 and the seed substrate 2, and the solid raw material 4 exists in a thin layer shape. As shown in FIG. 8, after the solid raw material 4 above the GaN single crystal is processed, the solid raw material treatment liquid 6 circulates from the outer peripheral side of the seed substrate 2, and between the bottom surface of the crucible 1 and the GaN single crystal 2. The existing solid raw material 4 is melted. When all the solid raw materials 4 are processed, the GaN single crystal 2 and the crucible 1 are separated, and the GaN single crystal 2 can be taken out from the crucible 1.

特開2002−293696号公報JP 2002-293696 A

しかしながら、前記従来の構成では、坩堝からGaN単結晶を除去する際、固化した固体原料をエタノールなどの固体原料処理液で処理して取り除くために長時間を要していた。特に、種基板の下方底面に形成されたGaN単結晶と坩堝内底面との隙間に形成された固体原料は、種基板の下方底面全体が坩堝の内底面に当接した状態になっているので、固体原料処理液が接する固体原料の表面範囲がこの隙間の垂直方向の狭い範囲に限られるため、処理に時間がかかってしまう。さらには、坩堝の内底面に当接した固体原料の面積が大きいので、この範囲の固体原料を溶解するのに数日かかってしまっていて、生産性が悪いという問題があった。   However, in the conventional configuration, when removing the GaN single crystal from the crucible, it takes a long time to remove the solidified solid raw material by treating it with a solid raw material treatment liquid such as ethanol. In particular, the solid raw material formed in the gap between the GaN single crystal formed on the bottom surface of the seed substrate and the bottom surface of the crucible is in a state where the entire bottom surface of the seed substrate is in contact with the bottom surface of the crucible. Since the surface range of the solid raw material in contact with the solid raw material treatment liquid is limited to a narrow range in the vertical direction of the gap, the processing takes time. Furthermore, since the area of the solid raw material in contact with the inner bottom surface of the crucible is large, it took several days to dissolve the solid raw material in this range, and there was a problem that productivity was poor.

本発明は、前記従来の課題を解決するもので、結晶を固体原料から短時間で取り出すことができる生産性が高い結晶製造方法およびその装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a crystal production method and an apparatus thereof with high productivity capable of taking out crystals from a solid raw material in a short time.

そしてこの目的を達成するために本発明は、処理容器内に坩堝を収納させ、前記坩堝を前記処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には種基板と、前記種基板上に生成された結晶基板と、前記種基板および前記結晶基板を覆った固体原料とが収納された状態とし、前記処理容器は超音波発生手段に設置され、前記超音波発生手段から超音波を発生させる構成にした。   In order to achieve this object, the present invention includes a crucible stored in a processing vessel, and a solid raw material processing solution is allowed to flow into the processing vessel before or after the crucible is placed in the processing vessel. In the crucible, a seed substrate, a crystal substrate generated on the seed substrate, and a solid raw material covering the seed substrate and the crystal substrate are accommodated, and the processing vessel is an ultrasonic generation means And configured to generate ultrasonic waves from the ultrasonic wave generating means.

これにより所期の目的を達成するものである。   This achieves the intended purpose.

以上のように本発明は、処理容器内に坩堝を収納させ、前記坩堝を前記処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には種基板と、前記種基板上に生成された結晶基板と、前記種基板および前記結晶基板を覆った固体原料とが収納された状態とし、前記処理容器内に、超音波発生手段から発射された超音波を与えるので、生産性を高くすることができるものである。   As described above, according to the present invention, the crucible is accommodated in the processing container, and before or after the crucible is placed in the processing container, the solid raw material processing liquid is allowed to flow into the processing container, The seed substrate, the crystal substrate generated on the seed substrate, and the seed substrate and the solid raw material covering the crystal substrate are accommodated, and are emitted from the ultrasonic wave generation means into the processing container. Productivity can be increased because the applied ultrasonic waves are applied.

すなわち、超音波発生手段から超音波を発生しているので、坩堝と種基板が振動して隙間に挟まった反応気体が排出される。反応気体が排出された部分には固体原料処理液が導入され、固体原料処理液が固体原料に接する範囲が広くなり、固体原料を速く溶解させることができ、生産性を高くすることができるのである。   That is, since the ultrasonic wave is generated from the ultrasonic wave generation means, the crucible and the seed substrate vibrate and the reaction gas sandwiched in the gap is discharged. Since the solid raw material treatment liquid is introduced into the part where the reaction gas is discharged, the range in which the solid raw material treatment liquid contacts the solid raw material is widened, the solid raw material can be dissolved quickly, and the productivity can be increased. is there.

実施の形態1の結晶製造装置を用いた初期の固体原料処理工程を示す図The figure which shows the initial stage solid-material processing process using the crystal manufacturing apparatus of Embodiment 1. 実施の形態1の後期の固体原料処理工程を示す図The figure which shows the solid raw material processing process of the latter half of Embodiment 1 通常条件と超音波条件の実験結果を示す図Diagram showing experimental results under normal and ultrasonic conditions 実施の形態2の結晶製造装置を用いた初期の固体原料処理工程を示す図The figure which shows the initial stage solid-material processing process using the crystal manufacturing apparatus of Embodiment 2. 実施の形態2の結晶製造装置を用いた後期の固体原料処理工程を示す図The figure which shows the latter solid raw material processing process using the crystal manufacturing apparatus of Embodiment 2. FIG. 一般的なIII族窒化物単結晶製造方法を行う装置の概略構成断面図Schematic configuration cross-sectional view of an apparatus for performing a general group III nitride single crystal manufacturing method 従来の初期の固体原料処理工程を示す図The figure which shows the conventional initial stage solid material processing process 従来の後期の固体原料処理工程を示す図Diagram showing conventional solid raw material treatment process

以下に本発明の結晶製造方法の実施の形態を、図面とともに詳細に説明する。   Embodiments of the crystal manufacturing method of the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
まず、図6に示すように、アルミナ等の耐熱材料で作成されたカップ状の坩堝1に、表面に結晶を成長させる種基板2を設置する。さらに、原料である結晶材料(例えば、ガリウム、アルミニウム、インジウム)とアルカリ金属(例えば、リチウム、ナトリウム、カリウム)またはアルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ラジウム、ベリリウム、マグネシウム)を供給する。これらアルカリ金属およびアルカリ土類金属は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。結晶材料およびアルカリ金属の秤量や取り扱いは、アルカリ金属の酸化や水分吸着を回避するために、窒素ガスやアルゴンガスやネオンガスなどで置換されたグローブボックス中で行うことが好ましい。
(Embodiment 1)
First, as shown in FIG. 6, in a cup-shaped crucible 1 made of a heat-resistant material such as alumina, a seed substrate 2 for growing crystals on the surface is installed. In addition, crystal materials (eg, gallium, aluminum, indium) and alkali metals (eg, lithium, sodium, potassium) or alkaline earth metals (eg, calcium, strontium, barium, radium, beryllium, magnesium) are supplied. To do. These alkali metals and alkaline earth metals may be used alone or in combination of two or more. The weighing and handling of the crystal material and the alkali metal are preferably performed in a glove box substituted with nitrogen gas, argon gas, neon gas, or the like in order to avoid oxidation of the alkali metal and moisture adsorption.

次に、結晶成長容器13に坩堝1を挿入し、密閉状態でグローブボックスから取り出し、結晶成長容器13を育成炉22内に固定する。その後、結晶成長容器13と接続管14を接続し、ストップバルブ16を開放して、原料ガス供給装置12から結晶成長容器13に原料ガスを注入する。   Next, the crucible 1 is inserted into the crystal growth vessel 13, taken out from the glove box in a sealed state, and the crystal growth vessel 13 is fixed in the growth furnace 22. Thereafter, the crystal growth vessel 13 and the connection pipe 14 are connected, the stop valve 16 is opened, and the source gas is injected from the source gas supply device 12 into the crystal growth vessel 13.

そして、熱電対21や圧力調整器15によって、育成炉22の温度および育成雰囲気の圧力を制御しながら加圧・加熱を行う。なお、結晶を生成するための原料の溶融および育成の条件は、原料である結晶材料やアルカリ金属の成分、および原料ガスの成分およびその圧力に依存するが、例えば、温度は700℃〜1100℃、好ましくは700℃〜900℃の低温が用いられる。圧力は20気圧(20×1.01325×105Pa)以上、好ましくは30気圧(5×1.01325×105Pa)〜100気圧(100×1.01325×105Pa)が用いられる。   Then, pressurization and heating are performed by controlling the temperature of the growth furnace 22 and the pressure of the growth atmosphere by the thermocouple 21 and the pressure regulator 15. The conditions for melting and growing the raw material for generating crystals depend on the raw crystal material and the alkali metal component, the raw material gas component and the pressure thereof. For example, the temperature is 700 ° C. to 1100 ° C. Preferably, a low temperature of 700 ° C. to 900 ° C. is used. The pressure is 20 atmospheres (20 × 1.01325 × 105 Pa) or more, preferably 30 atmospheres (5 × 1.01325 × 105 Pa) to 100 atmospheres (100 × 1.01325 × 105 Pa).

このように、育成温度に昇温することにより、坩堝1内で、結晶材料/アルカリ金属の融解液、つまり原料液が形成され、この原料液中に原料ガスが溶け込み、結晶材料と原料ガスとが反応して、種基板2の上に結晶基板10が育成される。   Thus, by raising the temperature to the growth temperature, a crystal material / alkali metal melt, that is, a raw material liquid is formed in the crucible 1, and the raw material gas is dissolved in the raw material liquid. Reacts to grow the crystal substrate 10 on the seed substrate 2.

所定の時間が経過して結晶基板10の育成が終了した後に、育成炉22を常圧・常温に戻し、結晶成長容器11と接続管14を取り外し、育成炉13から結晶成長容器11を取り出す。さらに、結晶成長容器11から坩堝1を取り出す。   After the growth of the crystal substrate 10 is completed after a predetermined time has elapsed, the growth furnace 22 is returned to normal pressure and room temperature, the crystal growth vessel 11 and the connecting tube 14 are removed, and the crystal growth vessel 11 is taken out from the growth furnace 13. Further, the crucible 1 is taken out from the crystal growth vessel 11.

ここで、結晶成長後の坩堝1内の原料液中には結晶材料は5〜30%程度しか残存せず、殆どがアルカリ金属である。また、原料液は常温では固体原料3として存在し、結晶が一体基板10に形成された種基板2を覆っている。   Here, only about 5 to 30% of the crystal material remains in the raw material liquid in the crucible 1 after crystal growth, and most of the material is alkali metal. In addition, the raw material liquid exists as a solid raw material 3 at room temperature, and covers the seed substrate 2 in which crystals are formed on the integrated substrate 10.

次に、図1に示すように結晶基板10が一体に形成された種基板2を取り出すために固体原料3の処理を行う。坩堝1を処理容器6の内部に設置し、さらに処理容器6を超音波発生手段8の内部に設置する。   Next, in order to take out the seed substrate 2 on which the crystal substrate 10 is integrally formed as shown in FIG. The crucible 1 is installed inside the processing container 6, and the processing container 6 is further installed inside the ultrasonic wave generation means 8.

そして、処理容器6に水酸基(-OH)を含む任意の固体原料処理液7、たとえばエタノール、メタノール、イソプロピルアルコールなどのアルコール類や水などを注入する。固体原料3を固体原料処理液7に浸漬させることで、処理液中に溶解する金属アルコキシド(水を用いる場合は金属水酸化物)と反応気体4である水素を生成させて、固体原料3を処理する。   Then, an arbitrary solid raw material treatment liquid 7 containing a hydroxyl group (—OH), for example, alcohol such as ethanol, methanol, isopropyl alcohol, water, or the like is injected into the treatment container 6. By immersing the solid raw material 3 in the solid raw material treatment liquid 7, a metal alkoxide (a metal hydroxide if water is used) and hydrogen which is the reaction gas 4 are generated in the treatment liquid, and the solid raw material 3 is obtained. Process.

ここで、本発明は超音波発生手段8から超音波を発生させることを特徴としている。超音波11を発生させる事により、固体原料3と固体原料処理液7の反応が促進され、固体原料の処理を短縮することが出来る。ここで、超音波11を発生する事により固体原料処理液7などの温度が上昇すると、結晶基板10や種基板2に割れが発生する。そこで、処理容器6と超音波発生手段8の間には冷却水9が入れられており、超音波11発生による固体原料処理液7などの温度が上昇するのを防いでいる。   Here, the present invention is characterized in that ultrasonic waves are generated from the ultrasonic wave generation means 8. By generating the ultrasonic wave 11, the reaction between the solid raw material 3 and the solid raw material treatment liquid 7 is promoted, and the processing of the solid raw material can be shortened. Here, when the temperature of the solid raw material treatment liquid 7 and the like is increased by generating the ultrasonic wave 11, the crystal substrate 10 and the seed substrate 2 are cracked. Therefore, cooling water 9 is placed between the processing vessel 6 and the ultrasonic wave generation means 8 to prevent the temperature of the solid raw material treatment liquid 7 and the like from rising due to the generation of the ultrasonic waves 11.

固体原料3の処理が進むと、図2に示すように坩堝1の坩堝底面5と種基板2の間に固体原料3が残る。このときに、反応気体4が坩堝底面5と種基板2の間に留まり、固体原料3に固体原料処理液7が十分供給されなくなる。しかしながら、超音波発生手段8から超音波11を坩堝底面5と種基板2の間に向けて発射させることにより、坩堝底面5と種基板の間に留まっている反応気体4が図中の矢印のように取り除かれ、固体原料3に処理液7が十分供給される。したがって、処理時間の更なる短縮が可能となる。   As the processing of the solid material 3 proceeds, the solid material 3 remains between the bottom surface 5 of the crucible 1 and the seed substrate 2 as shown in FIG. At this time, the reaction gas 4 remains between the crucible bottom surface 5 and the seed substrate 2, and the solid raw material treatment liquid 7 is not sufficiently supplied to the solid raw material 3. However, when the ultrasonic wave 11 is emitted from the ultrasonic wave generation means 8 toward the bottom surface 5 of the crucible and the seed substrate 2, the reaction gas 4 remaining between the bottom surface 5 of the crucible and the seed substrate is indicated by an arrow in the figure. Thus, the treatment liquid 7 is sufficiently supplied to the solid raw material 3. Therefore, the processing time can be further shortened.

このようにして、固体原料3の処理が完全に終了すると、結晶基板10が一体に形成された種基板2と坩堝1は分離されているので、種基板2を坩堝1から取り出すことが可能となる。   In this way, when the processing of the solid raw material 3 is completed, the seed substrate 2 and the crucible 1 on which the crystal substrate 10 is integrally formed are separated, so that the seed substrate 2 can be taken out from the crucible 1. Become.

次に、超音波を発生させない従来の通常条件と、本発明の超音波を発生させる超音波条件との比較を行った。この実験では、内径58mmの坩堝1に外径50mmの種基板2を設置して、さらに坩堝1に結晶原料のガリウムとアルカリ金属であるナトリウムをいれて、育成炉22で窒化ガリウム単結晶基板10を種基板2の表面に育成している。育成終了後の坩堝1には、窒化ガリウム単結晶基板10が一体に形成された種基板2とともに、約25gのナトリウムと数gのガリウムが固体原料3として残っている。坩堝1から結晶基板10及び種基板2を取り出すために、図1に示す処理容器6に固体原料処理液7としてエタノールを3000ml入れ、固体原料3の処理を行った。ここで、超音波条件では、処理が始まると同時に超音波発生装置から超音波を発生した。超音波の発生条件は、発振周波数40kHz及び出力160Wである。   Next, comparison was made between conventional normal conditions that do not generate ultrasonic waves and ultrasonic conditions that generate ultrasonic waves according to the present invention. In this experiment, a seed substrate 2 having an outer diameter of 50 mm is installed in a crucible 1 having an inner diameter of 58 mm, and further, gallium as a crystal raw material and sodium, which is an alkali metal, are placed in the crucible 1. Is grown on the surface of the seed substrate 2. In the crucible 1 after the growth, about 25 g of sodium and several g of gallium remain as the solid raw material 3 together with the seed substrate 2 on which the gallium nitride single crystal substrate 10 is integrally formed. In order to take out the crystal substrate 10 and the seed substrate 2 from the crucible 1, 3000 ml of ethanol was placed in the processing vessel 6 shown in FIG. Here, under the ultrasonic conditions, ultrasonic waves were generated from the ultrasonic generator at the same time as the processing started. The ultrasonic generation conditions are an oscillation frequency of 40 kHz and an output of 160 W.

この実験結果を図3に示す。この図から分かるように、結晶上面処理工程(図1から図2になるまでの工程)は、通常条件が平均114分かかるのに対し、超音波条件は平均101分であり、13分の時間短縮を図る事が出来た。また、結晶下面処理工程(図2から結晶を取り出すまでの工程)は、通常条件が平均2310分かかるのに対し、超音波条件が平均1272分であり、1038分の時間短縮を図る事が出来た。つまり、総時間では1051分の時間短縮を測る事が出来た。   The result of this experiment is shown in FIG. As can be seen from this figure, the crystal top surface treatment process (the process from FIG. 1 to FIG. 2) takes an average of 114 minutes for the normal condition, while the ultrasonic condition takes an average of 101 minutes and takes 13 minutes. I was able to shorten it. In addition, the crystal bottom surface treatment process (the process until the crystal is taken out from FIG. 2) takes an average of 2310 minutes, while the ultrasonic condition takes an average of 1272 minutes, and the time can be reduced by 1038 minutes. It was. In other words, the total time was able to measure a time reduction of 1051 minutes.

また、この図から分かるように、通常条件に対する超音波条件の処理時間は、結晶処理工程が89%で、結晶下面処理工程が55%となっており、超音波発生の効果は、結晶下面処理工程のほうが大きい事が分かる。   Further, as can be seen from this figure, the processing time of the ultrasonic condition relative to the normal condition is 89% for the crystal processing step and 55% for the crystal bottom surface processing step, and the effect of ultrasonic generation is the crystal bottom surface processing. You can see that the process is bigger.

なお、図3の実験の条件は一例であり、本発明は他の材料や分量及び超音波の条件でも適応可能である。   Note that the experimental conditions in FIG. 3 are merely examples, and the present invention can be applied to other materials, quantities, and ultrasonic conditions.

(実施の形態2)
本発明の実施の形態2のIII族元素窒化物結晶製造装置は、実施の形態1と同様に図6に示すような育成炉22を用いて、III族元素窒化物結晶の育成を行い、坩堝1を育成炉から取り出す。次に、図4に示すように坩堝1から結晶基板10が一体に形成された種基板2を取り出すために、超音波発生手段8の内部に設置する。そして、超音波発生手段8に水酸基(-OH)を含む任意の固体原料処理液7、たとえばエタノール、メタノール、イソプロピルアルコールなどのアルコール類や水などを注入する。固体原料3を固体原料処理液7に浸漬させることで、処理液中に溶解する金属アルコキシド(水を用いる場合は金属水酸化物)と反応気体4である水素を生成させて、固体原料3を処理する。
(Embodiment 2)
The group III element nitride crystal manufacturing apparatus according to the second embodiment of the present invention grows a group III element nitride crystal using a growth furnace 22 as shown in FIG. 1 is removed from the growth furnace. Next, as shown in FIG. 4, in order to take out the seed substrate 2 in which the crystal substrate 10 is integrally formed from the crucible 1, it is installed inside the ultrasonic wave generation means 8. Then, an arbitrary solid raw material treatment liquid 7 containing a hydroxyl group (—OH), for example, alcohol such as ethanol, methanol, isopropyl alcohol, water, or the like is injected into the ultrasonic wave generation means 8. By immersing the solid raw material 3 in the solid raw material treatment liquid 7, a metal alkoxide (a metal hydroxide if water is used) and hydrogen which is the reaction gas 4 are generated in the treatment liquid, and the solid raw material 3 is obtained. To process.

ここで、本発明の実施の形態では超音波発生手段8から超音波11を発生させることを特徴としている。超音波を発生させる事により、固体原料3と処理液7の反応が促進され、固体原料の処理を短縮することが出来る。実施の形態1に対して、超音波11が処理容器6を介さずに、直接固体原料3と固体原料処理液7の接触部に届くので、さらに処理時間の短縮が図る事が出来る。ただし、固体原料処理液7の温度が上昇も促進されるので、固体原料処理液7の量を多くしたり、定期的に追加するなどの対応を取ると良い。   Here, the embodiment of the present invention is characterized in that the ultrasonic waves 11 are generated from the ultrasonic wave generation means 8. By generating ultrasonic waves, the reaction between the solid raw material 3 and the treatment liquid 7 is promoted, and the processing of the solid raw material can be shortened. In contrast to the first embodiment, since the ultrasonic wave 11 reaches the contact portion between the solid raw material 3 and the solid raw material treatment liquid 7 directly without passing through the processing vessel 6, the processing time can be further shortened. However, since the temperature of the solid raw material treatment liquid 7 is also promoted, it is advisable to take measures such as increasing the amount of the solid raw material treatment liquid 7 or adding it regularly.

固体原料3の処理が進むと、図5に示すように坩堝1の坩堝底面5と種基板2の間に固体原料3が残る。このときに、反応気体4が坩堝底面5と種基板2の間に留まり、固体原料3に固体原料処理液7が十分供給されなくなる。しかしながら、超音波発生手段8から超音波11を坩堝底面5と種基板2の間に向けて発射させることにより、坩堝底面5と種基板の間に留まっている反応気体4が図中の矢印のように取り除かれ、固体原料3に固体原料処理液7が十分供給される。したがって、処理時間の更なる短縮が可能となる。   As the processing of the solid material 3 proceeds, the solid material 3 remains between the bottom surface 5 of the crucible 1 and the seed substrate 2 as shown in FIG. At this time, the reaction gas 4 remains between the crucible bottom surface 5 and the seed substrate 2, and the solid raw material treatment liquid 7 is not sufficiently supplied to the solid raw material 3. However, when the ultrasonic wave 11 is emitted from the ultrasonic wave generation means 8 toward the bottom surface 5 of the crucible and the seed substrate 2, the reaction gas 4 remaining between the bottom surface 5 of the crucible and the seed substrate is indicated by an arrow in the figure. The solid raw material treatment liquid 7 is sufficiently supplied to the solid raw material 3. Therefore, the processing time can be further shortened.

このようにして、固体原料3の処理が完全に終了すると、結晶基板10が一体に形成された種基板2と坩堝1は分離されているので、種基板2を坩堝1から取り出すことが可能となる。   In this way, when the processing of the solid raw material 3 is completed, the seed substrate 2 and the crucible 1 on which the crystal substrate 10 is integrally formed are separated, so that the seed substrate 2 can be taken out from the crucible 1. Become.

本発明にかかる結晶製造方法は、液相成長にて形成したGaN単結晶などのIII族元素窒化物結晶を原料液の中から短時間で取り出すことに効果を有し、青色レーザーダイオードや青色発光ダイオードなどに使用される半導体素子の基板製造に有用である。   The crystal manufacturing method according to the present invention has an effect of taking out a group III element nitride crystal such as a GaN single crystal formed by liquid phase growth from a raw material solution in a short time, and can produce a blue laser diode or blue light emission. This is useful for manufacturing a substrate of a semiconductor element used for a diode or the like.

1 坩堝
2 種基板
3 固体原料
4 反応気体
5 坩堝底面
6 処理容器
7 固体原料処理液
8 超音波発生手段
9 冷却水
10 結晶基板
11 超音波
12 原料ガス供給装置
13 結晶成長容器
14 接続管
15 圧力調整器
16 ストップバルブ
17 リーク弁
18 切り離し部
19 断熱材
20 ヒータ
21 熱伝対
22 育成炉
DESCRIPTION OF SYMBOLS 1 Crucible 2 Seed board | substrate 3 Solid raw material 4 Reaction gas 5 Crucible bottom face 6 Processing container 7 Solid raw material processing liquid 8 Ultrasonic generating means 9 Cooling water 10 Crystal substrate 11 Ultrasonic 12 Raw material gas supply apparatus 13 Crystal growth container 14 Connection pipe 15 Pressure Adjuster 16 Stop valve 17 Leak valve 18 Separation part 19 Heat insulating material 20 Heater 21 Thermocouple 22 Growing furnace

Claims (6)

結晶を育成した後工程として、前記結晶を固体原料から取り出す結晶の製造方法であって、
処理容器内に坩堝を収納させ、前記坩堝を前記処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には種基板と、前記種基板上に生成された結晶基板と、前記種基板および前記結晶基板を覆った固体原料とが収納された状態とし、前記処理容器内に、超音波発生手段から発射された超音波を与えるとした結晶製造方法。
As a post-process for growing a crystal, a method for producing a crystal in which the crystal is extracted from a solid raw material,
A crucible is housed in a processing container, and before or after the crucible is placed in the processing container, a solid raw material processing liquid is allowed to flow into the processing container, and a seed substrate and the seed are placed in the crucible. The crystal substrate generated on the substrate and the seed substrate and the solid raw material covering the crystal substrate are accommodated, and the ultrasonic wave emitted from the ultrasonic wave generation means is applied to the processing container. Crystal manufacturing method.
前記超音波発生手段から、前記坩堝内底面と前記種基板との間に超音波を与えるとした請求項1に記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein ultrasonic waves are applied between the inner surface of the crucible and the seed substrate from the ultrasonic wave generation means. 前記固体原料処理液が前記結晶基板の周辺の前記固体原料を溶解し、前記結晶基板に前記固体原料処理液が直接接する状態になった後に、前記超音波を発生させる処理加速工程を行う請求項1に記載の結晶製造方法。 A process acceleration step of generating the ultrasonic wave is performed after the solid raw material treatment liquid dissolves the solid raw material around the crystal substrate and the solid raw material treatment liquid comes into direct contact with the crystal substrate. 2. The crystal production method according to 1. 請求項1から3の結晶基板の製造方法に用いる結晶基板の製造装置であって、前記処理容器に、前記固体原料処理液を流入させるための流入手段と、坩堝内の固体原料を固体原料処理液で溶解させた後に、処理容器内から結晶基板と種基板を取り出す取り出し手段と、を備えた結晶製造装置。 4. A crystal substrate manufacturing apparatus for use in the method for manufacturing a crystal substrate according to claim 1, wherein an inflow means for allowing the solid material processing liquid to flow into the processing vessel and a solid material processing in the crucible. A crystal manufacturing apparatus comprising: a take-out means for taking out a crystal substrate and a seed substrate from the processing container after being dissolved with a liquid. 請求項1から3の結晶基板の製造方法に用いる結晶基板の製造装置であって、前記処理容器に、前記固体原料処理液を流入させるための流入手段と、坩堝内の固体原料を固体原料処理液で溶解させた後に、処理容器内から結晶基板と種基板を取り出す取り出し手段と、前記処理容器内に超音波を与える超音波発生手段と、を備え、前記超音波発生手段は前記処理容器を収納するとした結晶製造装置。 An apparatus for manufacturing a crystal substrate used in the method for manufacturing a crystal substrate according to claim 1, wherein an inflow means for allowing the solid raw material processing liquid to flow into the processing vessel and a solid raw material in the crucible A dissolution means for taking out the crystal substrate and the seed substrate from the processing container after being dissolved in the liquid, and an ultrasonic wave generating means for applying an ultrasonic wave to the processing container. Crystal manufacturing equipment that is supposed to be stored. 前記超音波発生手段と前記処理容器との間に冷却液を備えた請求項5に記載の結晶製造装置。 The crystal manufacturing apparatus according to claim 5, further comprising a cooling liquid between the ultrasonic wave generation unit and the processing container.
JP2009137871A 2009-06-09 2009-06-09 Method and apparatus for producing crystal Pending JP2010285288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137871A JP2010285288A (en) 2009-06-09 2009-06-09 Method and apparatus for producing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137871A JP2010285288A (en) 2009-06-09 2009-06-09 Method and apparatus for producing crystal

Publications (1)

Publication Number Publication Date
JP2010285288A true JP2010285288A (en) 2010-12-24

Family

ID=43541300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137871A Pending JP2010285288A (en) 2009-06-09 2009-06-09 Method and apparatus for producing crystal

Country Status (1)

Country Link
JP (1) JP2010285288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150374A (en) * 2021-12-08 2022-03-08 北京世纪金光半导体有限公司 Liquid phase growth structure and growth method of high-yield aluminum nitride single crystal
CN114934311A (en) * 2022-05-09 2022-08-23 华厦半导体(深圳)有限公司 Gallium nitride liquid phase growth device of ultrasonic wave stirring

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212764A (en) * 1989-02-13 1990-08-23 Nippon Seiko Kk Analysis of vaporizing rust preventives in vaporizing rust proofing paper
JPH05166794A (en) * 1991-12-11 1993-07-02 Brother Ind Ltd Substrate pretreatment method in forming film by sputtering
JPH0663506A (en) * 1992-08-19 1994-03-08 Kaijo Corp Ultrasonic washing machine
JPH11268988A (en) * 1998-03-20 1999-10-05 Univ Shizuoka Growth of crystal and device
JPH11302755A (en) * 1998-04-17 1999-11-02 Akio Kawabe Production of silicon carbide particle dispersion reinforcement type composite material and its product
JP2004143000A (en) * 2002-10-25 2004-05-20 Sharp Corp Method for measuring damage layer thickness and flexural strength of semiconductor substrate and laminator used in measuring them
JP2004281670A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Method of polishing group iii nitride crystal, and group iii nitride crystal and group iii nitride semiconductor device
JP2005263622A (en) * 2004-02-19 2005-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing compound single crystal and apparatus for manufacturing it
JP2006131454A (en) * 2004-11-05 2006-05-25 Ngk Insulators Ltd Group iii nitride single crystal and method for manufacturing the same
WO2007094126A1 (en) * 2006-02-13 2007-08-23 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP2008297153A (en) * 2007-05-30 2008-12-11 Toyoda Gosei Co Ltd Apparatus and method for producing group iii nitride semiconductor
WO2009041053A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Process for producing group iii element nitride crystal and apparatus for producing group iii element nitride crystal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212764A (en) * 1989-02-13 1990-08-23 Nippon Seiko Kk Analysis of vaporizing rust preventives in vaporizing rust proofing paper
JPH05166794A (en) * 1991-12-11 1993-07-02 Brother Ind Ltd Substrate pretreatment method in forming film by sputtering
JPH0663506A (en) * 1992-08-19 1994-03-08 Kaijo Corp Ultrasonic washing machine
JPH11268988A (en) * 1998-03-20 1999-10-05 Univ Shizuoka Growth of crystal and device
JPH11302755A (en) * 1998-04-17 1999-11-02 Akio Kawabe Production of silicon carbide particle dispersion reinforcement type composite material and its product
JP2004143000A (en) * 2002-10-25 2004-05-20 Sharp Corp Method for measuring damage layer thickness and flexural strength of semiconductor substrate and laminator used in measuring them
JP2004281670A (en) * 2003-03-14 2004-10-07 Ricoh Co Ltd Method of polishing group iii nitride crystal, and group iii nitride crystal and group iii nitride semiconductor device
JP2005263622A (en) * 2004-02-19 2005-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing compound single crystal and apparatus for manufacturing it
JP2006131454A (en) * 2004-11-05 2006-05-25 Ngk Insulators Ltd Group iii nitride single crystal and method for manufacturing the same
WO2007094126A1 (en) * 2006-02-13 2007-08-23 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP2008297153A (en) * 2007-05-30 2008-12-11 Toyoda Gosei Co Ltd Apparatus and method for producing group iii nitride semiconductor
WO2009041053A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Process for producing group iii element nitride crystal and apparatus for producing group iii element nitride crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150374A (en) * 2021-12-08 2022-03-08 北京世纪金光半导体有限公司 Liquid phase growth structure and growth method of high-yield aluminum nitride single crystal
CN114934311A (en) * 2022-05-09 2022-08-23 华厦半导体(深圳)有限公司 Gallium nitride liquid phase growth device of ultrasonic wave stirring

Similar Documents

Publication Publication Date Title
JP5338672B2 (en) Method and apparatus for producing group III element nitride single crystals
JP4790607B2 (en) Group III element nitride crystal production apparatus and group III element nitride crystal production method
JP4821007B2 (en) Method for producing group III element nitride crystal and group III element nitride crystal
JPWO2010084675A1 (en) Group 3B nitride crystal plate
KR20190033424A (en) Method of producing iii-v group compound crystal and method of producing semiconductor device
JP2005194146A (en) Production method for group iii nitride crystal
JP2010285288A (en) Method and apparatus for producing crystal
JP2003206198A (en) Method and apparatus for growing group iii nitride crystal
JP2007119276A (en) Gallium nitride crystal, apparatus for growing the same, and method for producing the same
JP2003286098A (en) Method and apparatus for growing group iii nitride crystal
JP5205630B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP5293428B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP2003300799A (en) Method and apparatus for growing group iii nitride crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP5205631B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP5765370B2 (en) Method for producing group III nitride crystal
JP4248276B2 (en) Group III nitride crystal manufacturing method
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2009007207A (en) Crystal growth method and crystal growth apparatus
JP4426238B2 (en) Group III nitride crystal manufacturing method
JP2010269955A (en) Method and device for producing crystal
JP5030821B2 (en) Flux processing method
JPWO2008029827A1 (en) Method for producing AlN crystal
JP2004189590A (en) Iii-group nitride crystal, method for crystal growth thereof, and semiconductor device and system
JP2008300712A (en) Method for filling solid organic metal compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130121

A02 Decision of refusal

Effective date: 20130604

Free format text: JAPANESE INTERMEDIATE CODE: A02