JP5205631B2 - Crystal manufacturing method and crystal manufacturing apparatus - Google Patents

Crystal manufacturing method and crystal manufacturing apparatus Download PDF

Info

Publication number
JP5205631B2
JP5205631B2 JP2009168525A JP2009168525A JP5205631B2 JP 5205631 B2 JP5205631 B2 JP 5205631B2 JP 2009168525 A JP2009168525 A JP 2009168525A JP 2009168525 A JP2009168525 A JP 2009168525A JP 5205631 B2 JP5205631 B2 JP 5205631B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
raw material
substrate
seed substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009168525A
Other languages
Japanese (ja)
Other versions
JP2011020903A (en
Inventor
武克 山本
尚 峯本
健 畑山
大蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009168525A priority Critical patent/JP5205631B2/en
Publication of JP2011020903A publication Critical patent/JP2011020903A/en
Application granted granted Critical
Publication of JP5205631B2 publication Critical patent/JP5205631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶製造方法および結晶製造装置に関するものである。   The present invention relates to a crystal manufacturing method and a crystal manufacturing apparatus.

化合物半導体、そのなかでも窒化ガリウム(GaN)などのIII族元素窒化物(以下、III族窒化物、III族窒化物半導体、またはGaN系半導体という場合がある)は、青色や紫外光を発光する半導体素子の材料として注目されている。青色レーザダイオード(LD)は高密度光ディスクやディスプレイなどに応用され、青色発光ダイオード(LED)はディスプレイや照明などに応用されている。また、紫外線LDはバイオテクノロジなどへの応用が期待され、紫外線LEDは蛍光灯の紫外線源として期待されている。   Compound semiconductors, among them Group III element nitrides such as gallium nitride (GaN) (hereinafter sometimes referred to as Group III nitrides, Group III nitride semiconductors, or GaN-based semiconductors) emit blue or ultraviolet light. It is attracting attention as a material for semiconductor elements. Blue laser diodes (LDs) are applied to high-density optical discs and displays, and blue light-emitting diodes (LEDs) are applied to displays and lighting. Further, ultraviolet LD is expected to be applied to biotechnology and the like, and ultraviolet LED is expected to be an ultraviolet source of fluorescent lamps.

LDやLED用のIII族窒化物半導体(例えば、GaN)の基板は、通常、サファイア基板上に、気相エピタキシャル成長法を用いて、III族窒化物単結晶をヘテロエピタキシャル成長させることによって形成されている。気相成長方法としては、有機金属化学気相成長法(MOCVD法)、水素化物気相成長法(HVPE法)、分子線エピタキシー法(MBE法)などがある。   A group III nitride semiconductor (for example, GaN) substrate for an LD or LED is usually formed by heteroepitaxially growing a group III nitride single crystal on a sapphire substrate using a vapor phase epitaxial growth method. . Examples of the vapor deposition method include a metal organic chemical vapor deposition method (MOCVD method), a hydride vapor deposition method (HVPE method), a molecular beam epitaxy method (MBE method), and the like.

一方、気相エピタキシャル成長ではなく、液相で結晶成長を行う方法も検討されてきた。GaNやAlNなどのIII族窒化物単結晶の融点における窒素の平衡蒸気圧は1万気圧以上であるため、従来、窒化ガリウムを液相で育成させるためには1200℃で8000気圧(8000×1.01325×10Pa)の条件が必要とされてきた。これに対し、近年、Naなどのアルカリ金属を用いることで、750℃、50気圧(50×1.01325×10Pa)という比較的低温低圧でGaNを合成できることが明らかにされた。 On the other hand, a method of performing crystal growth in a liquid phase instead of vapor phase epitaxial growth has been studied. Since the equilibrium vapor pressure of nitrogen at the melting point of a group III nitride single crystal such as GaN or AlN is 10,000 atmospheres or more, conventionally, gallium nitride is grown at 1200 ° C. at 8000 atmospheres (8000 × 1) in the liquid phase. .01325 × 10 5 Pa) has been required. On the other hand, in recent years, it has been clarified that GaN can be synthesized at a relatively low temperature and low pressure of 750 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) by using an alkali metal such as Na.

最近では、アンモニアを含む窒素ガス雰囲気下においてGaとNaとの混合物を800℃、50気圧(50×1.01325×10Pa)で溶融させ、この融解液を用いて96時間の育成時間で、最大結晶サイズが1.2mm程度の単結晶が得られている(例えば、特許文献1参照)。 Recently, a mixture of Ga and Na was melted at 800 ° C. and 50 atm (50 × 1.01325 × 10 5 Pa) in a nitrogen gas atmosphere containing ammonia, and this melt was used for a growth time of 96 hours. A single crystal having a maximum crystal size of about 1.2 mm is obtained (for example, see Patent Document 1).

従来の液相成長によるIII族元素窒化物結晶製造装置を図6に示す。説明のため、GaN結晶を作製する場合を例に取る。13は原料ガスである窒素ガスを供給する原料ガス供給装置、14は結晶育成を行うための密閉性の結晶成長容器、15は原料ガス供給装置13と結晶成長容器14とを接続する接続配管、23は加熱手段を具備した育成炉である。接続配管15は、圧力調整器16、ストップバルブ17、リーク弁18、切り離し部分19を有している。育成炉23は、断熱材20とヒータ21とを備える電気炉として構成されており、熱電対22により温度管理され、全体を揺動可能である。   FIG. 6 shows a conventional group III element nitride crystal manufacturing apparatus by liquid phase growth. For the sake of explanation, the case of producing a GaN crystal is taken as an example. 13 is a raw material gas supply device for supplying nitrogen gas, which is a raw material gas, 14 is a hermetic crystal growth vessel for crystal growth, 15 is a connecting pipe for connecting the raw material gas supply device 13 and the crystal growth vessel 14, 23 is a growth furnace equipped with a heating means. The connection pipe 15 includes a pressure regulator 16, a stop valve 17, a leak valve 18, and a disconnecting portion 19. The growth furnace 23 is configured as an electric furnace including a heat insulating material 20 and a heater 21. The temperature of the growth furnace 23 is controlled by a thermocouple 22 and the whole can be swung.

かかる構成の製造装置において、坩堝1内に、種基板2をセットする。この種基板2を、坩堝1の底面に平行な向きに配置する。また、原料である金属ガリウムとNaとを所定の量だけ秤量し、坩堝1内にセットする。   In the manufacturing apparatus having such a configuration, the seed substrate 2 is set in the crucible 1. This seed substrate 2 is arranged in a direction parallel to the bottom surface of the crucible 1. Further, a predetermined amount of metal gallium and Na as raw materials are weighed and set in the crucible 1.

そして坩堝1を結晶成長容器15に挿入し、さらにこの結晶成長容器14を、育成炉23内にセットし、接続パイプ15を介して原料ガス供給装置に接続させて、育成温度850℃、窒素雰囲気圧力50気圧(50×1.01325×10Pa)とし、Ga/Na融解液(以下、原料液という)に窒素ガスを溶解させて、種基板2の上にGaN単結晶の育成を行う。 Then, the crucible 1 is inserted into the crystal growth vessel 15, and this crystal growth vessel 14 is set in the growth furnace 23 and connected to the source gas supply device via the connection pipe 15, and the growth temperature is 850 ° C. and the nitrogen atmosphere. A pressure of 50 atm (50 × 1.01325 × 10 5 Pa) is applied, nitrogen gas is dissolved in a Ga / Na melt (hereinafter referred to as a raw material solution), and a GaN single crystal is grown on the seed substrate 2.

作製されたGaN単結晶は、固化した原料液とともに坩堝の中にあるので、この状態からGaN単結晶を取り出さなければならない。   Since the produced GaN single crystal is in the crucible together with the solidified raw material solution, the GaN single crystal must be taken out from this state.

図7から図8に、図6の製造装置で製造したGaN単結晶の取り出し方法を示す。室温で坩堝1を結晶成長容器14から取り出した状態では、原料液は固体状態の固体原料4となっており、そのままでは種基板2の上に成長させたGaN単結晶を取り出すことが出来ない。そこで、図7に示すように固体原料処理液9が満たされている処理容器8に坩堝1を入れ、固体原料処理液9と固体原料4を化学反応させることにより固体原料4を上面より溶かしていく。ここで、原料としてGa/Na処理液を使用する場合は、固体原料処理液9としてエタノールを使用することにより、反応気体10として水素を発生させながら、固体原料4を溶かすことが可能となる。   7 to 8 show a method for taking out a GaN single crystal manufactured by the manufacturing apparatus of FIG. In a state where the crucible 1 is taken out from the crystal growth vessel 14 at room temperature, the raw material liquid is a solid raw material 4, and the GaN single crystal grown on the seed substrate 2 cannot be taken out as it is. Therefore, as shown in FIG. 7, the crucible 1 is placed in a processing vessel 8 filled with the solid raw material treatment liquid 9, and the solid raw material treatment liquid 9 and the solid raw material 4 are chemically reacted to dissolve the solid raw material 4 from the upper surface. Go. Here, when a Ga / Na treatment liquid is used as a raw material, it is possible to dissolve the solid raw material 4 while generating hydrogen as the reaction gas 10 by using ethanol as the solid raw material treatment liquid 9.

また、原料液は坩堝1の底面と種基板2との間に入り込んでおり、薄い層状に固体原料4が存在している。図8に示すように、GaN単結晶より上側の固体原料4が処理されたあとは、種基板2の外周側から固体原料処理液9が回り込み、坩堝1の底面とGaN単結晶2の間に存在する固体原料4を溶かしていく。そして、固体原料4が全て処理されるとGaN単結晶2と坩堝1が分離され、GaN単結晶2を坩堝1から取り出すことが可能となる。   Further, the raw material liquid enters between the bottom surface of the crucible 1 and the seed substrate 2, and the solid raw material 4 exists in a thin layer shape. As shown in FIG. 8, after the solid raw material 4 above the GaN single crystal is processed, the solid raw material treatment liquid 9 circulates from the outer peripheral side of the seed substrate 2, and between the bottom surface of the crucible 1 and the GaN single crystal 2. The existing solid raw material 4 is melted. When all the solid raw materials 4 are processed, the GaN single crystal 2 and the crucible 1 are separated, and the GaN single crystal 2 can be taken out from the crucible 1.

特開2002−293696号公報JP 2002-293696 A

しかしながら、前記従来の構成では、坩堝からGaN単結晶を除去する際、固化した固体原料をエタノールなどの固体原料処理液で処理して取り除くため、坩堝の底部にGaN単結晶があるために長時間を要していた。特に、種基板の下方底面に形成された種基板と坩堝内底面との隙間に形成された固体原料は、種基板の下方底面全体が坩堝の内底面に当接した状態になっているので、固体原料処理液が接する固体原料の表面範囲がこの隙間の垂直方向の狭い範囲に限られるため、処理に時間がかかってしまう。さらには、坩堝の内底面に当接した固体原料の面積が大きいので、この範囲の固体原料を溶解するのに数日かかってしまっていて、生産性が悪いという問題があった。   However, in the conventional configuration, when the GaN single crystal is removed from the crucible, the solidified solid material is removed by treatment with a solid raw material treatment liquid such as ethanol. Needed. In particular, since the solid raw material formed in the gap between the seed substrate formed on the bottom surface of the seed substrate and the bottom surface of the crucible is in a state where the entire bottom surface of the seed substrate is in contact with the inner bottom surface of the crucible, Since the surface range of the solid raw material in contact with the solid raw material treatment liquid is limited to a narrow range in the vertical direction of this gap, the processing takes time. Furthermore, since the area of the solid raw material in contact with the inner bottom surface of the crucible is large, it took several days to dissolve the solid raw material in this range, and there was a problem that productivity was poor.

本発明は、前記従来の課題を解決するもので、結晶を固体原料から短時間で取り出すことができる生産性が高い結晶製造方法およびその装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a crystal production method and an apparatus thereof with high productivity capable of taking out crystals from a solid raw material in a short time.

そしてこの目的を達成するために本発明は、坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面もしくは側面に少なくとも1つ以上の孔を設けた状態にした。   And in order to achieve this object, the present invention, before putting the crucible into the processing vessel, or after putting the crucible into the processing vessel, let the solid raw material processing liquid flow, into the crucible, The crystal substrate generated on this seed substrate and the seed substrate and the solid raw material covering the crystal substrate are stored, and at least one or more holes are provided on the bottom surface or side surface of the crucible. did.

これにより所期の目的を達成するものである。   This achieves the intended purpose.

以上のように本発明は、坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面もしくは側面に少なくとも1つ以上の孔を設けた状態にしたものであるので、生産性を高くすることができるものである。   As described above, the present invention allows the solid raw material treatment liquid to flow into the processing container before or after the crucible is placed in the processing container, and the seed crucible and the seed substrate are placed in the crucible. And the seed substrate and the solid material covering the crystal substrate are accommodated, and at least one or more holes are provided in the bottom or side surface of the crucible. Therefore, productivity can be increased.

すなわち、坩堝の底面もしくは底面に少なくとも1つ以上の孔が設けられているので、孔からも固体原料処理液を流入できるので、固体原料処理液が固体原料に接する範囲が広くなり、固体原料を速く溶解させることができる。   That is, since at least one or more holes are provided in the bottom surface or bottom surface of the crucible, the solid raw material treatment liquid can flow in from the holes, so that the range in which the solid raw material treatment liquid is in contact with the solid raw material is widened. It can be dissolved quickly.

しかも、底面に孔を開けた場合は、最も時間がかかる種基板と坩堝内底面の間に存在する固体原料を、初期から溶解可能であるので、数時間で種基板を取り出すことが出来るようになり、生産性を高くすることができるのである。   In addition, when a hole is made in the bottom surface, the solid material existing between the seed substrate and the bottom surface in the crucible that can take the longest can be dissolved from the beginning, so that the seed substrate can be taken out in a few hours. Thus, productivity can be increased.

実施の形態1の結晶製造装置の一部の断面図Sectional drawing of a part of the crystal manufacturing apparatus of Embodiment 1 実施の形態1の結晶製造装置を用いた初期の固体原料処理工程図Initial solid raw material treatment process using the crystal production apparatus of the first embodiment 実施の形態1の坩堝固定台の斜面・断面図Slope / cross-sectional view of crucible fixing base of Embodiment 1 実施の形態1の結晶製造装置を用いた後期の固体原料処理工程図Late solid raw material treatment process using the crystal production apparatus of the first embodiment 実施の形態2の結晶製造装置の一部の断面図Partial sectional view of the crystal manufacturing apparatus of the second embodiment 一般的なIII族窒化物単結晶製造方法を行う装置の概略構成断面図Schematic configuration cross-sectional view of an apparatus for performing a general group III nitride single crystal manufacturing method 従来の初期の固体原料処理工程図Conventional initial solid raw material treatment process diagram 従来の後期の固体原料処理工程図Conventional late-stage solid material treatment process diagram

以下に本発明の物結晶製造方法および装置の実施の形態を図面とともに詳細に説明する。   Embodiments of the method and apparatus for producing a product crystal of the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
図1に、本発明の実施の形態における結晶製造装置の一部を示す。図1に示すように、アルミナ等の耐熱材料で作成されたカップ状の坩堝1と、同様に耐熱材料で作成された種基板位置決め冶具5と、表面に窒化物結晶を成長させる種基板2で構成されている。坩堝1の坩堝内底面7に種基板位置決め冶具5を設置し、種基板位置決め冶具5によって種基板2を坩堝内底面7の所定の位置に保持している。
(Embodiment 1)
FIG. 1 shows a part of a crystal manufacturing apparatus according to an embodiment of the present invention. As shown in FIG. 1, a cup-shaped crucible 1 made of a heat-resistant material such as alumina, a seed substrate positioning jig 5 similarly made of a heat-resistant material, and a seed substrate 2 for growing a nitride crystal on the surface It is configured. A seed substrate positioning jig 5 is installed on the crucible inner bottom surface 7 of the crucible 1, and the seed substrate positioning jig 5 holds the seed substrate 2 at a predetermined position on the crucible inner bottom surface 7.

次に、結晶の製造方法を説明する。まず、図1に示す坩堝1に原料である結晶元素材料(例えば、ガリウム、アルミニウム、インジウム)とアルカリ金属(例えば、リチウム、ナトリウム、カリウム)またはアルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ラジウム、ベリリウム、マグネシウム)を供給する。これらアルカリ金属およびアルカリ土類金属は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。結晶元素材料およびアルカリ金属の秤量や取り扱いは、アルカリ金属の酸化や水分吸着を回避するために、窒素ガスやアルゴンガスやネオンガスなどで置換されたグローブボックス中で行うことが好ましい。   Next, a method for producing a crystal will be described. First, a crystal element material (for example, gallium, aluminum, indium) and an alkali metal (for example, lithium, sodium, potassium) or an alkaline earth metal (for example, calcium, strontium, barium, Supply radium, beryllium, magnesium). These alkali metals and alkaline earth metals may be used alone or in combination of two or more. The weighing and handling of the crystal element material and the alkali metal are preferably performed in a glove box substituted with nitrogen gas, argon gas, neon gas or the like in order to avoid oxidation of the alkali metal and moisture adsorption.

次に、図8に示す結晶成長容器14に坩堝1挿入し、密閉状態でグローブボックスから取り出し、結晶成長容器14を育成炉23内に固定する。その後、結晶成長容器14と接続管15を接続し、ストップバルブ17を開放して、原料ガス供給装置13から結晶成長容器14に原料ガスを注入する。   Next, the crucible 1 is inserted into the crystal growth vessel 14 shown in FIG. 8, taken out from the glove box in a sealed state, and the crystal growth vessel 14 is fixed in the growth furnace 23. Thereafter, the crystal growth vessel 14 and the connecting pipe 15 are connected, the stop valve 17 is opened, and the source gas is injected from the source gas supply device 13 into the crystal growth vessel 14.

そして、熱電対22や圧力調整器16によって、育成炉23の温度および育成雰囲気の圧力を制御しながら加圧・加熱を行う。なお、結晶を生成するための原料の溶融および育成の条件は、原料である結晶材料やアルカリ金属の成分、および原料ガスの成分およびその圧力に依存するが、例えば、温度は700℃〜1100℃、好ましくは700℃〜900℃の低温が用いられる。圧力は20気圧(20×1.01325×105Pa)以上、好ましくは30気圧(5×1.01325×105Pa)〜100気圧(100×1.01325×105Pa)が用いられる。   Then, pressurization and heating are performed by controlling the temperature of the growth furnace 23 and the pressure of the growth atmosphere by the thermocouple 22 and the pressure regulator 16. The conditions for melting and growing the raw material for generating crystals depend on the raw crystal material and the alkali metal component, the raw material gas component and the pressure thereof. For example, the temperature is 700 ° C. to 1100 ° C. Preferably, a low temperature of 700 ° C. to 900 ° C. is used. The pressure is 20 atmospheres (20 × 1.01325 × 105 Pa) or more, preferably 30 atmospheres (5 × 1.01325 × 105 Pa) to 100 atmospheres (100 × 1.01325 × 105 Pa).

このように、育成温度に昇温することにより、坩堝1内で、結晶元素材料/アルカリ金属の融解液、つまり原料液が形成され、この原料液中に原料ガスが溶け込み、結晶元素材料と原料ガスとが反応して、種基板2の上に結晶基板が育成される。   In this way, by raising the temperature to the growth temperature, a crystal element material / alkali metal melt, that is, a raw material liquid is formed in the crucible 1, and the raw material gas is dissolved in the raw material liquid. A crystal substrate is grown on the seed substrate 2 by reacting with the gas.

所定の時間が経過してIII族元素窒化物単結晶の育成が終了した後に、育成炉23を常圧・常温に戻し、結晶成長容器14と接続管15を取り外し、育成炉23から結晶成長容器14を取り出す。さらに、結晶成長容器23から坩堝1を取り出す。   After a predetermined time has elapsed and the growth of the group III element nitride single crystal is completed, the growth furnace 23 is returned to normal pressure and room temperature, the crystal growth vessel 14 and the connecting pipe 15 are removed, and the crystal growth vessel 23 is removed from the growth furnace 23. 14 is taken out. Further, the crucible 1 is taken out from the crystal growth vessel 23.

ここで図2に示す、結晶成長後の坩堝1内の原料液中には結晶元素材料は5〜30%程度しか残存せず、殆どがアルカリ金属である。また、原料液は常温では固体原料4として存在し、結晶基板3が一体に形成された種基板2や種基板位置決め冶具5を覆っている。この坩堝1の側面や底面を、ドリルなどを用いて坩堝孔6を開ける。このとき、種基板位置決め冶具5で種基板2を位置決めしているので、種基板2や結晶基板3の坩堝内での位置が把握でき、坩堝孔6を開けるときに誤って種基板2や結晶基板3を傷つける恐れが無い。特に、種基板位置決め冶具5によって坩堝内底面7の中心部に種基板2を位置決めすると、坩堝側面のどの位置にドリルで孔を開けても、坩堝内周面と種基板外周との隙間の寸法を考慮して、ドリルの移動量を制御さえすればよい。また、坩堝内底面にドリルで孔を開ける場合は、種基板位置決め冶具5の位置に孔を開ければよい。   Here, only about 5 to 30% of the crystal element material remains in the raw material liquid in the crucible 1 after crystal growth shown in FIG. 2, and most of them are alkali metals. Further, the raw material liquid exists as a solid raw material 4 at room temperature, and covers the seed substrate 2 and the seed substrate positioning jig 5 on which the crystal substrate 3 is integrally formed. The crucible hole 6 is opened on the side and bottom of the crucible 1 using a drill or the like. At this time, since the seed substrate 2 is positioned by the seed substrate positioning jig 5, the positions of the seed substrate 2 and the crystal substrate 3 in the crucible can be grasped, and when the crucible hole 6 is opened, the seed substrate 2 and the crystal are mistakenly formed. There is no fear of damaging the substrate 3. In particular, when the seed substrate 2 is positioned at the center of the crucible inner bottom surface 7 by the seed substrate positioning jig 5, the size of the gap between the crucible inner peripheral surface and the seed substrate outer periphery no matter what position on the side of the crucible is drilled. Therefore, it is only necessary to control the amount of movement of the drill. Moreover, what is necessary is just to open a hole in the position of the seed substrate positioning jig 5 when opening a hole in a crucible inner bottom face with a drill.

次に、結晶基板3が一体に形成された種基板2を取り出すために固体原料4の処理を行う。切断した坩堝1を処理容器8に設置した坩堝固定台11に固定し、水酸基(-OH)を含む任意の固体原料処理液9、たとえばエタノール、メタノール、イソプロピルアルコールなどのアルコール類や水などを注入する。固体原料4を固体原料処理液9に浸漬させることで、処理液中に溶解する金属アルコキシド(水を用いる場合は金属水酸化物)と反応気体10である水素を生成させて、固体原料4を処理する。坩堝1に坩堝孔6を形成しているため、固体原料4の上面だけでなく、坩堝孔6の部分でも固体原料処理液8と接するため、処理時間の短縮が可能となる。   Next, in order to take out the seed substrate 2 on which the crystal substrate 3 is integrally formed, the solid raw material 4 is processed. The cut crucible 1 is fixed to a crucible fixing base 11 installed in a processing vessel 8, and an arbitrary solid raw material treatment liquid 9 containing a hydroxyl group (-OH), for example, alcohols such as ethanol, methanol, isopropyl alcohol, or water is injected. To do. By immersing the solid raw material 4 in the solid raw material treatment liquid 9, a metal alkoxide (a metal hydroxide in the case of using water) and hydrogen as the reaction gas 10 are generated in the treatment liquid, and the solid raw material 4 is obtained. To process. Since the crucible hole 6 is formed in the crucible 1, not only the upper surface of the solid raw material 4 but also the portion of the crucible hole 6 is in contact with the solid raw material processing liquid 8, so that the processing time can be shortened.

図2に示すように、処理容器8の内底面に対して前記坩堝を支持する坩堝固定台11を備えており、この坩堝固定台11は、所定間隔離して配置した複数の支持部を有している。   As shown in FIG. 2, a crucible fixing base 11 that supports the crucible with respect to the inner bottom surface of the processing vessel 8 is provided, and the crucible fixing base 11 has a plurality of support portions arranged at predetermined intervals. ing.

これら坩堝固定台11の支持部は、坩堝固定台11を部分的に切断して形成することもできるし、また、坩堝固定台11を複数に分割して形成することもできる。   The support portions of these crucible fixing bases 11 can be formed by partially cutting the crucible fixing base 11 or can be formed by dividing the crucible fixing base 11 into a plurality of parts.

より具体的には、図3に一部が切断されている坩堝固定台11を示す。この切断部から、坩堝内底面7に形成された坩堝孔6に固体原料処理液9を供給する事が可能となっている。図3では1部品で坩堝固定台11を形成しているが、複数個の坩堝固定台11を使用しても、それぞれの坩堝固定台11の支持部間から、坩堝内底面7に形成された坩堝孔6に固体原料処理液9を供給する事が可能である。   More specifically, FIG. 3 shows the crucible fixing base 11 partially cut. From this cutting part, it is possible to supply the solid raw material processing liquid 9 to the crucible hole 6 formed in the crucible inner bottom surface 7. In FIG. 3, the crucible fixing base 11 is formed by one component. However, even when a plurality of crucible fixing bases 11 are used, the crucible fixing base 11 is formed on the bottom surface 7 in the crucible from between the support portions of the respective crucible fixing bases 11. It is possible to supply the solid raw material treatment liquid 9 to the crucible hole 6.

固体原料4の処理が進むと、図4に示すように種基板2と種基板支持台3の間の隙間に固体原料4が残るが、坩堝内底面7に坩堝孔6を形成した場合、処理開始直後から隙間の固体原料4に固体原料処理液9が浸漬するので、処理時間の更なる短縮が可能となる。   As the processing of the solid material 4 proceeds, the solid material 4 remains in the gap between the seed substrate 2 and the seed substrate support 3 as shown in FIG. 4, but when the crucible hole 6 is formed in the bottom surface 7 of the crucible, Since the solid raw material treatment liquid 9 is immersed in the solid raw material 4 in the gap immediately after the start, the processing time can be further shortened.

固体原料4の処理が完全に終了すると、結晶基板3が一体に形成された種基板2と坩堝1及び種基板支持台4は分離されているので、結晶基板10及び種基板2を坩堝1から取り出すことが可能となる。   When the processing of the solid raw material 4 is completed, the seed substrate 2 on which the crystal substrate 3 is integrally formed, the crucible 1 and the seed substrate support 4 are separated, so that the crystal substrate 10 and the seed substrate 2 are removed from the crucible 1. It can be taken out.

内径90mmの坩堝1に直径50mmの種基板2を入れて、原料としてガリウムとナトリウムを使用してGaN単結晶を育成し、固体原料4の上面と結晶基板10上面の距離が10mmである固体原料4をエタノール処理する実験を行った。従来例では種基板2や結晶基板10の周りの固体原料4を処理する時間(図7から図8になる時間)が4時間、坩堝内底面7と種基板2との隙間に存在する固体原料4を処理するのに50時間ほどかかる。それに対し本実施例では、坩堝側面と坩堝内底面にそれぞれ直径10mmの坩堝孔6を4ヶ所形成した場合、種基板2周りの固体原料4を処理する時間(図2から図4になる時間)が3時間、坩堝1の底面15と種基板支持台3との隙間に存在する固体原料4を処理するのに30時間程度で可能となり、大幅な時間短縮が可能となった。   A seed substrate 2 having a diameter of 50 mm is placed in a crucible 1 having an inner diameter of 90 mm, a GaN single crystal is grown using gallium and sodium as raw materials, and a solid raw material in which the distance between the upper surface of the solid raw material 4 and the upper surface of the crystal substrate 10 is 10 mm An experiment was conducted in which 4 was treated with ethanol. In the conventional example, the time for processing the solid material 4 around the seed substrate 2 and the crystal substrate 10 (the time from FIG. 7 to FIG. 8) is 4 hours, and the solid material existing in the gap between the crucible inner bottom surface 7 and the seed substrate 2. It takes about 50 hours to process 4. On the other hand, in this embodiment, when four crucible holes 6 each having a diameter of 10 mm are formed on the side surface of the crucible and the bottom surface in the crucible, the time for processing the solid raw material 4 around the seed substrate 2 (time from FIG. 2 to FIG. 4) However, it took about 30 hours to process the solid raw material 4 existing in the gap between the bottom surface 15 of the crucible 1 and the seed substrate support 3 for 3 hours, and the time was significantly reduced.

(実施の形態2)
本発明の実施の形態2の結晶製造装置を、図5に示す。図5において、実施の形態1の構成と異なる所は、坩堝1の坩堝内底面7を加工して、種基板位置決め部12を坩堝1と一体で形成された点である。このように、種基板位置決め部12を坩堝1と一体形成して、種基板位置決め冶具を無くしても、実施の形態1と同様の効果が得られ、結晶基板3や種基板2を短時間で取り出す事ができる。さらには、坩堝と一体形成されているので、部品点数を減少でき、生産性を高くする事ができる。
(Embodiment 2)
A crystal manufacturing apparatus according to Embodiment 2 of the present invention is shown in FIG. In FIG. 5, the difference from the configuration of the first embodiment is that the bottom surface 7 in the crucible 1 of the crucible 1 is processed and the seed substrate positioning portion 12 is formed integrally with the crucible 1. Thus, even if the seed substrate positioning part 12 is integrally formed with the crucible 1 and the seed substrate positioning jig is eliminated, the same effect as in the first embodiment can be obtained, and the crystal substrate 3 and the seed substrate 2 can be quickly mounted. You can take it out. Furthermore, since it is integrally formed with the crucible, the number of parts can be reduced and the productivity can be increased.

本発明にかかる結晶製造方法及び装置は、液相成長にて形成したGaN単結晶などのIII族元素窒化物結晶を原料液の中から短時間で取り出すことに効果を有し、青色レーザーダイオードや青色発光ダイオードなどに使用される半導体素子の基板製造に有用である。   The crystal manufacturing method and apparatus according to the present invention have an effect of taking out a group III element nitride crystal such as a GaN single crystal formed by liquid phase growth from a raw material solution in a short time, It is useful for manufacturing a substrate of a semiconductor element used for a blue light emitting diode or the like.

1 坩堝
2 種基板
3 結晶基板
4 固体原料
5 種基板位置決め冶具
6 坩堝孔
7 坩堝内底面
8 処理容器
9 固体原料処理液
10 反応気体
11 坩堝固定台
12 種基板位置決め部
13 原料ガス供給装置
14 結晶成長容器
15 接続管
16 圧力調整器
17 ストップバルブ
18 リーク弁
19 切り離し部
20 断熱材
21 ヒータ
22 熱伝対
23 育成炉
1 crucible 2 seed substrate 3 crystal substrate 4 solid raw material 5 seed substrate positioning jig 6 crucible hole 7 bottom surface of crucible 8 processing vessel 9 solid raw material processing liquid 10 reaction gas 11 crucible fixing base 12 seed substrate positioning unit 13 source gas supply device 14 crystal Growth vessel 15 Connection pipe 16 Pressure regulator 17 Stop valve 18 Leak valve 19 Separation part 20 Heat insulating material 21 Heater 22 Thermocouple 23 Growth furnace

Claims (8)

坩堝内で育成された結晶基板を固体原料から取り出す結晶の製造方法であって、
坩堝を処理容器内に入れる前、あるいは、入れた後に、前記処理容器内に固体原料処理液を流入させ、前記坩堝内には、種基板と、この種基板上に生成された結晶基板と、これらの種基板および結晶基板を覆った固体原料とが収納された状態とし、前記坩堝の底面もしくは側面に少なくとも1つ以上の孔を設けた結晶製造方法。
A method for producing a crystal in which a crystal substrate grown in a crucible is taken out of a solid material,
Before or after putting the crucible into the processing container, the solid raw material processing liquid is allowed to flow into the processing container, and in the crucible, a seed substrate, a crystal substrate generated on the seed substrate, and A crystal manufacturing method in which these seed substrate and solid raw material covering the crystal substrate are stored, and at least one or more holes are provided on the bottom surface or side surface of the crucible.
前記処理容器の内底面に対して前記坩堝を支持する坩堝固定台を備え、この坩堝固定台は、
所定間隔離して配置した複数の支持部を有する請求項1に記載の結晶製造方法。
A crucible fixing base that supports the crucible with respect to the inner bottom surface of the processing container,
The crystal manufacturing method according to claim 1, further comprising a plurality of support portions arranged at predetermined intervals.
前記坩堝固定台の支持部は、坩堝固定台を部分的に切断して形成した請求項2に記載の結晶製造方法。 The crystal manufacturing method according to claim 2, wherein the support portion of the crucible fixing base is formed by partially cutting the crucible fixing base. 前記坩堝固定台の支持部は、坩堝固定台を複数に分割して形成した請求項2に記載の結晶製造方法。 The crystal manufacturing method according to claim 2, wherein the support portion of the crucible fixing base is formed by dividing the crucible fixing base into a plurality of parts. 前記種基板は、種基板位置決め冶具によって位置決めされている請求項1に記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein the seed substrate is positioned by a seed substrate positioning jig. 前記種基板は、前記坩堝内底面形成された種基板位置決め部によって位置決めされている請求項1に記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein the seed substrate is positioned by a seed substrate positioning portion formed in the bottom surface of the crucible. 種基板を窒化ガリウム基板とした請求項1〜6のいずれか一つに記載の結晶製造方法。 The crystal manufacturing method according to claim 1, wherein the seed substrate is a gallium nitride substrate. 請求項1〜7の結晶基板の製造方法に用いる結晶基板の製造装置であって、前記処理容器台と、前記処理容器内に前記固体原料処理液を流入させるための流入手段と、前記坩堝内の前記固体原料を前記固体原料処理液で溶解させた後に、前記処理容器内から前記結晶基板と前記種基板を取り出す取り出し手段と、を備えた結晶製造装置。 A crystal substrate manufacturing apparatus used in the method for manufacturing a crystal substrate according to claim 1, wherein the processing vessel table, an inflow means for allowing the solid raw material processing liquid to flow into the processing vessel, and the crucible And a take-out means for taking out the crystal substrate and the seed substrate from the processing container after the solid raw material is dissolved in the solid raw material treatment liquid.
JP2009168525A 2009-07-17 2009-07-17 Crystal manufacturing method and crystal manufacturing apparatus Expired - Fee Related JP5205631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168525A JP5205631B2 (en) 2009-07-17 2009-07-17 Crystal manufacturing method and crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168525A JP5205631B2 (en) 2009-07-17 2009-07-17 Crystal manufacturing method and crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2011020903A JP2011020903A (en) 2011-02-03
JP5205631B2 true JP5205631B2 (en) 2013-06-05

Family

ID=43631302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168525A Expired - Fee Related JP5205631B2 (en) 2009-07-17 2009-07-17 Crystal manufacturing method and crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5205631B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300284A (en) * 1991-03-27 1992-10-23 Mitsubishi Electric Corp Apparatus for liquid-phase epitaxial growth
JP2005263622A (en) * 2004-02-19 2005-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing compound single crystal and apparatus for manufacturing it
JP4716711B2 (en) * 2004-11-05 2011-07-06 日本碍子株式会社 Group III nitride single crystal growth method
JP5024898B2 (en) * 2006-02-13 2012-09-12 日本碍子株式会社 Method for recovering sodium metal from flux
JP4702324B2 (en) * 2007-05-30 2011-06-15 豊田合成株式会社 Group III nitride semiconductor manufacturing apparatus and group III nitride semiconductor manufacturing method
JP2009007207A (en) * 2007-06-28 2009-01-15 Sharp Corp Crystal growth method and crystal growth apparatus
JP2009062231A (en) * 2007-09-06 2009-03-26 Sharp Corp Crystal growth method, crystal growth apparatus, stacking type crystal growth apparatus, and semiconductor device having crystal thin film produced by these method and apparatus
WO2009041053A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Process for producing group iii element nitride crystal and apparatus for producing group iii element nitride crystal
JP5293428B2 (en) * 2009-06-10 2013-09-18 株式会社リコー Crystal manufacturing method and crystal manufacturing apparatus

Also Published As

Publication number Publication date
JP2011020903A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5338672B2 (en) Method and apparatus for producing group III element nitride single crystals
JP4821007B2 (en) Method for producing group III element nitride crystal and group III element nitride crystal
JP2001064098A (en) Method and device for growing crystal, and group iii nitride crystal
JP2003206198A (en) Method and apparatus for growing group iii nitride crystal
JP2009062231A (en) Crystal growth method, crystal growth apparatus, stacking type crystal growth apparatus, and semiconductor device having crystal thin film produced by these method and apparatus
JP2013060343A (en) Group 13 nitride crystal and group 13 nitride crystal substrate
JP5205631B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP4159303B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP5293428B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP5205630B2 (en) Crystal manufacturing method and crystal manufacturing apparatus
JP5765370B2 (en) Method for producing group III nitride crystal
JP2010285288A (en) Method and apparatus for producing crystal
JP2009221041A (en) Crystal growth method, crystal growth apparatus, and semiconductor device having crystal thin film produced by the same
JP4248276B2 (en) Group III nitride crystal manufacturing method
JP2003300799A (en) Method and apparatus for growing group iii nitride crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2010269955A (en) Method and device for producing crystal
JP4426238B2 (en) Group III nitride crystal manufacturing method
JP2009007207A (en) Crystal growth method and crystal growth apparatus
JP2005132663A (en) Group iii nitride crystal growth method, group iii nitride crystal, and crystal growth apparatus
JP4527496B2 (en) Group III nitride crystal manufacturing method
JP4271408B2 (en) Group III nitride crystal production method
JP5030821B2 (en) Flux processing method
JP4640943B2 (en) Group III nitride crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees