JP4873169B2 - Filling method of solid organometallic compound - Google Patents

Filling method of solid organometallic compound Download PDF

Info

Publication number
JP4873169B2
JP4873169B2 JP2007146527A JP2007146527A JP4873169B2 JP 4873169 B2 JP4873169 B2 JP 4873169B2 JP 2007146527 A JP2007146527 A JP 2007146527A JP 2007146527 A JP2007146527 A JP 2007146527A JP 4873169 B2 JP4873169 B2 JP 4873169B2
Authority
JP
Japan
Prior art keywords
organometallic compound
container
solid organometallic
valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007146527A
Other languages
Japanese (ja)
Other versions
JP2008300712A (en
Inventor
浩美 大崎
光芳 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007146527A priority Critical patent/JP4873169B2/en
Publication of JP2008300712A publication Critical patent/JP2008300712A/en
Application granted granted Critical
Publication of JP4873169B2 publication Critical patent/JP4873169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、化合物半導体を製造するためのMOCVD(Metalorganic Chemical Vapor Deposition)によるエピタキシャル気相成長用の固体有機金属化合物の充填方法に関するものである。   The present invention relates to a method of filling a solid organometallic compound for epitaxial vapor deposition by MOCVD (Metalorganic Chemical Vapor Deposition) for producing a compound semiconductor.

III−V族の化合物半導体は、高速デバイスや発光デバイスに有利な優れた特性を備えている。それらの優れた特性を利用して、高電子移動度トランジスター、発光ダイオードや半導体レーザーをはじめとする様々なデバイスが実現されている。   Group III-V compound semiconductors have excellent characteristics advantageous for high-speed devices and light-emitting devices. Utilizing these excellent properties, various devices such as high electron mobility transistors, light emitting diodes and semiconductor lasers have been realized.

これら化合物半導体の結晶成長は、有機金属化合物等を用いたMOCVD法により製造される。MOCVD法は、化合物あるいは混晶半導体のエピタキシャル薄膜を形成する上で多く用いられる結晶成長法の1つで、例えばトリメチルインジウム、トリメチルアルミニウム、トリメチルガリウム、ジメチル亜鉛のような有機金属化合物や、アルキルホスフィン、アルキルアルシンの様な有機V族化合物を気化し、基体上での熱分解反応を利用して薄膜の結晶成長を行う方法である。   Crystal growth of these compound semiconductors is manufactured by MOCVD using an organometallic compound or the like. The MOCVD method is one of crystal growth methods often used for forming an epitaxial thin film of a compound or a mixed crystal semiconductor. For example, organometallic compounds such as trimethylindium, trimethylaluminum, trimethylgallium, and dimethylzinc, and alkylphosphine are used. In this method, an organic group V compound such as alkylarsine is vaporized and a thin film crystal is grown by utilizing a thermal decomposition reaction on a substrate.

MOCVD法で用いられるこれら有機金属化合物は、通常、ガス導入用及び排出用配管が接続された密閉容器に充填され、恒温槽等により容器温度が一定に保たれ、水素等のキャリアガスを容器内に導入し、排出用配管から有機金属化合物の蒸気で飽和されたキャリアガスを得る形で使用される。   These organometallic compounds used in the MOCVD method are usually filled in a sealed container to which gas introduction and discharge pipes are connected, the container temperature is kept constant by a thermostatic bath, etc., and a carrier gas such as hydrogen is introduced into the container. The carrier gas saturated with the vapor of the organometallic compound is obtained from the exhaust pipe.

一般に、常温で固体の有機金属化合物は、容器の内壁に付着されたり、粒状の形で容器に充填されている。しかし、これらの充填方法で充填された固体の有機金属化合物は、キャリアガスにより定常的に一定の濃度で供給することが難しいという欠点を有する。即ち、キャリアガスと固体の有機金属化合物との接触状態を均一に保つことが難しく、接触面積に変動が生じたりするため、一定濃度での供給ができない。   In general, the organometallic compound that is solid at room temperature is attached to the inner wall of the container or filled in a granular form. However, the solid organometallic compound filled by these filling methods has a drawback that it is difficult to constantly supply a constant concentration with a carrier gas. That is, it is difficult to keep the contact state between the carrier gas and the solid organometallic compound uniform, and the contact area varies, so that it cannot be supplied at a constant concentration.

有機金属化合物をエピタキシャル成長させて形成される化合物半導体は、成長時の有機金属化合物の組成比率が変化すると、電気的及び光学的特性に著しい悪影響を受ける。従って高性能素子を得るためには、安定に一定濃度の有機金属化合物を供給することが必要である。また、その際に複雑な供給装置を必要とせず、気化容器のみで実現されることが要求されている。特にトリメチルインジウム等の固体有機金属化合物では、液体有機金属化合物と同じ容器でキャリアガスのバブリング方式による供給を行った場合、有機金属化合物の充填量が多い場合と少ない場合とで供給量に変化が生じるため、充填した有機金属化合物を一定条件で最後まで使用することが困難であるという問題を有している。   A compound semiconductor formed by epitaxially growing an organometallic compound has a significant adverse effect on electrical and optical characteristics when the composition ratio of the organometallic compound during growth changes. Therefore, in order to obtain a high-performance element, it is necessary to stably supply a certain concentration of organometallic compound. Further, at that time, it is required to be realized only by a vaporization container without requiring a complicated supply device. In particular, for solid organometallic compounds such as trimethylindium, when the carrier gas is bubbled in the same container as the liquid organometallic compound, the supply amount varies depending on whether the filling amount of the organometallic compound is large or small. For this reason, there is a problem that it is difficult to use the filled organometallic compound to the end under certain conditions.

これら問題を解決する方法としては、図1に示すように、容器内に常温で固体の有機金属化合物とステンレス製充填物を入れ、一度融点以上に加熱して有機金属化合物を融解した後、この容器を回転させながら冷却することで、固体有機金属化合物を容器内で均一分散でき、キャリアガスのバブリング方式による供給を行った場合でも、良好な供給安定性を維持できるという方法(特開平8−299778号公報:特許文献1)が知られている。しかし、このように固体の有機金属化合物を一度融点以上にして融解し、この容器を回転させながら冷却する方法には問題点がある。有機金属化合物を融解し、その容器を回転させながら冷却、固化する際に、有機金属化合物の一部が、図1に示す容器本体1上部のバルブ(6、7)及びバルブ下部の配管(2、3)にも付着し、場合によっては、閉塞してしまうこともある。このような状態でキャリアガスのバブリング方式での供給を行うと、バルブ内やバルブの直下の配管は、容器を一定温度に保つように通常使用される恒温槽内に入らないため、温度コントロールができず、バルブ内やバルブ下部の配管内にある固体の有機金属化合物が気化してなくなるまでの初期の少なくとも1時間は安定した濃度での供給ができず、エピタキシャル気相成長装置へ導入ができないので、廃棄し続けなければならないという欠点があった。   As a method for solving these problems, as shown in FIG. 1, an organometallic compound that is solid at room temperature and a stainless steel filling are placed in a container, and once heated to a melting point or higher, the organometallic compound is melted. By cooling while rotating the container, the solid organometallic compound can be uniformly dispersed in the container, and even when the carrier gas is supplied by a bubbling method, good supply stability can be maintained (Japanese Patent Laid-Open No. 8- No. 299778 is known: Patent Document 1). However, there is a problem in the method in which the solid organometallic compound is once melted to a melting point or higher and cooled while rotating the container. When the organometallic compound is melted and cooled and solidified while rotating the container, a part of the organometallic compound is divided into a valve (6, 7) at the upper part of the container body 1 and a pipe (2 at the lower part of the valve). 3), and in some cases, it may become clogged. If the carrier gas is supplied in such a state in a bubbling system, the piping in the valve or directly under the valve does not enter the constant temperature bath that is normally used to keep the container at a constant temperature. Cannot be supplied at a stable concentration for at least an initial hour until the solid organometallic compound in the valve or in the pipe under the valve is no longer vaporized, and cannot be introduced into the epitaxial vapor phase growth apparatus. So there was a drawback that it had to be discarded.

特開平8−299778号公報JP-A-8-299778

本発明は、上記事情に鑑みなされたもので、エピタキシャル気相成長用の固体有機金属化合物の製造装置内に供給を行う固体の有機金属化合物を使用開始の初期の段階から安定した濃度で供給できる固体有機金属化合物の充填方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can supply a solid organometallic compound to be supplied in a solid organometallic compound manufacturing apparatus for epitaxial vapor phase growth at a stable concentration from the initial stage of use. It aims at providing the filling method of a solid organometallic compound.

本発明者らは、上記目的を達成するために鋭意検討した結果、固体有機金属化合物の容器上部の出口配管を減圧に引きながら、バルブ及び配管部分を加熱してこれらの部分に付着していた固体有機金属化合物を除去することにより、使用開始の初期段階から、容器内の固体有機金属化合物を安定した濃度で供給できることを見出し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention heated the valve and the piping portion while pulling down the outlet piping at the top of the solid organometallic compound container and adhered to these portions. By removing the solid organometallic compound, it was found that the solid organometallic compound in the container can be supplied at a stable concentration from the initial stage of the start of use, and the present invention has been made.

従って、本発明は以下の固体有機金属化合物の充填方法を提供する。
請求項1:
上部に各1か所以上のキャリアガス導入管及び混合ガス排出管をそれぞれ有し、かつ上記導入管及び排出管にそれぞれバルブが介装されてなる容器内に固体有機金属化合物を供給し、この固体有機金属化合物をその融点以上に加熱融解した後、冷却して固体有機金属化合物を前記容器内に充填する方法において、得られた固体有機金属化合物の容器上部の出口配管を減圧に引きながら、上記導入管に介装されたバルブを閉じ、排出管に介装されたバルブを開けた状態で上記導入管及び排出管並びにこれらの管に介装された各バルブをそれぞれ加熱して、上記導入管及び排出管並びにこれらの管に介装された各バルブ部分に付着した固体有機金属化合物を上記排出管から除去することを特徴とする固体有機金属化合物の充填方法。
請求項2:
上記固体有機金属化合物が、トリメチルインジウムであることを特徴とする請求項1記載の固体有機金属化合物の充填方法。
請求項3:
キャリアガス導入管が容器内に上部で開口し、混合ガス排出管が容器内に下部で開口している請求項1又は2記載の固体有機金属化合物の充填方法。
Accordingly, the present invention provides the following solid organometallic compound filling method.
Claim 1:
Each one location or more carrier gas inlet and a gas mixture discharge pipe possess respectively the top, and supplies the solid organometallic compound to the inlet pipe and respectively the discharge tube container valve is being interposed, this In the method of heating and melting the solid organometallic compound above its melting point, and then cooling and filling the solid organometallic compound into the container, while pulling the outlet pipe at the top of the container of the obtained solid organometallic compound to a reduced pressure, Close the valve interposed in the introduction pipe, open the valve interposed in the discharge pipe, and heat the introduction pipe and the discharge pipe and each valve interposed in these pipes to introduce the introduction A solid organometallic compound filling method comprising removing a solid organometallic compound adhering to each valve portion interposed between a pipe and a discharge pipe and these pipes from the discharge pipe.
Claim 2:
2. The solid organometallic compound filling method according to claim 1, wherein the solid organometallic compound is trimethylindium.
Claim 3:
3. The method of filling a solid organometallic compound according to claim 1, wherein the carrier gas introduction pipe is opened at the upper part in the container and the mixed gas discharge pipe is opened at the lower part in the container.

本発明の固体有機金属化合物の充填方法によれば、使用開始の初期段階から、容器内に充填した固体有機金属化合物を安定した濃度で供給できるため、気相成長用原料として直ちに使用することができる。   According to the solid organometallic compound filling method of the present invention, since the solid organometallic compound filled in the container can be supplied at a stable concentration from the initial stage of the start of use, it can be used immediately as a raw material for vapor phase growth. it can.

本発明の固体有機金属化合物の充填に用いられる容器は、上部に各1か所以上のキャリアガス入口及び出口配管をそれぞれ有するものであり、容器内にステンレス製充填物を充填して気孔率が50〜80体積%になるように調整する。この容器に常温で固体の有機金属化合物を更に供給して固体有機金属化合物の融点以上に加熱し、融解した後、回転させながら冷却することにより固体有機金属化合物を前記容器に充填する。この際、容器上部の出口配管を減圧に引きながら、バルブ及び配管部分を加熱することで、上部バルブ及び配管部分に付着した固体有機金属化合物を除去して気相成長用の固体有機金属化合物を気化容器に充填するものである。   The container used for filling the solid organometallic compound of the present invention has one or more carrier gas inlet and outlet pipes at the top, respectively, and the container is filled with a stainless steel filler and has a porosity of Adjust to 50-80% by volume. The container is further supplied with a solid organometallic compound at room temperature, heated to a melting point or higher of the solid organometallic compound, melted, and then cooled while rotating to fill the container with the solid organometallic compound. At this time, while pulling the outlet pipe at the top of the container to a reduced pressure, the valve and the pipe part are heated to remove the solid organometallic compound adhering to the upper valve and the pipe part, thereby removing the solid organometallic compound for vapor phase growth. Fills the vaporization container.

図1に、本発明の固体有機金属化合物の充填方法に用いる容器の一例を示す。本容器は、キャリアガス導入管2と混合ガス排出管3とがそれぞれ容器1内で開口し、キャリアガス導入管2は上部で、混合ガス排出管3は下部で開口している。キャリアガス導入管2が下部で、混合ガス排出管3が上部で開口していてもよいが、好ましくはガス比重の重い固体有機金属化合物がより高い濃度で排出されるようにキャリアガス導入管2は上部で、混合ガス排出管3が下部で開口していることがよい。なお、5,8,9はノズルである。   In FIG. 1, an example of the container used for the filling method of the solid organometallic compound of this invention is shown. In this container, a carrier gas introduction pipe 2 and a mixed gas discharge pipe 3 are opened in the container 1, respectively, the carrier gas introduction pipe 2 is opened at the top, and the mixed gas discharge pipe 3 is opened at the bottom. The carrier gas introduction pipe 2 may be open at the bottom and the mixed gas discharge pipe 3 may be opened at the top, but preferably the carrier gas introduction pipe 2 is discharged so that the solid organometallic compound having a high gas specific gravity is discharged at a higher concentration. It is preferable that the mixed gas discharge pipe 3 is opened at the upper part. Reference numerals 5, 8, and 9 are nozzles.

容器全体の大きさは、特に限定はないが、通常この分野で使用される容器として、直径30〜500mmφ、高さ50〜500mmが好ましい。   The size of the entire container is not particularly limited, but a container usually used in this field preferably has a diameter of 30 to 500 mmφ and a height of 50 to 500 mm.

この気化容器1内に充填物4をノズル5より充填するが、充填物としては、ステンレス製充填物が、熱伝導がよく、恒温槽等に入れて使用する場合は外部の熱を容器内部に伝えやすいため好ましい。   The vaporizing container 1 is filled with the filling 4 from the nozzle 5. As the filling, a stainless steel filling is good in heat conduction, and when used in a thermostatic bath, external heat is put inside the container. It is preferable because it is easy to convey.

次に、ここで使用される固体有機金属化合物としては、常温で固体であれば使用可能であるが、トリメチルインジウム、シクロペンタジエニルマグネシウム等が挙げられる。特に気相成長用として一般的に多量に使用されるトリメチルインジウムに対して有効である。   Next, the solid organometallic compound used here can be used as long as it is solid at room temperature, and examples thereof include trimethylindium and cyclopentadienylmagnesium. This is particularly effective for trimethylindium which is generally used in a large amount for vapor phase growth.

固体有機金属化合物を気化容器に充填する方法は特に限定されるものではなく、減圧による昇華充填や窒素等の不活性ガス雰囲気下でノズル5より開放充填してもよい。   The method for filling the vaporization container with the solid organometallic compound is not particularly limited, and sublimation filling under reduced pressure or open filling from the nozzle 5 under an inert gas atmosphere such as nitrogen may be used.

この固体有機金属化合物の気化容器をそのまま固体有機金属化合物の融点以上に加熱し融解するが、加熱方法は特に限定されるものではなく、オイルバス、恒温槽等を用いて加熱すればよく、例えば、トリメチルインジウムの場合であれば、融点以上である90〜110℃程度でよい。所定の温度に達した後、気化容器を回転させながら冷却することにより、有機金属化合物が容器内で均一に分散固化した状態が得られる。この回転冷却方法は、例えばポットミル回転台等を用いて自然冷却すればよい。   The solid organometallic compound vaporization vessel is heated as it is to the melting point of the solid organometallic compound or more to melt, but the heating method is not particularly limited and may be heated using an oil bath, a thermostatic bath, etc. In the case of trimethylindium, the temperature may be about 90 to 110 ° C., which is higher than the melting point. After reaching a predetermined temperature, the vaporization container is cooled while being rotated, whereby a state in which the organometallic compound is uniformly dispersed and solidified in the container is obtained. This rotation cooling method may be natural cooling using, for example, a pot mill turntable.

この状態では、気化容器上部や、キャリアガス導入管2、排出管3、バルブ6、バルブ7内に固体有機金属化合物が付着した状態となり、特に排出管3、バルブ7に付着した固体有機金属化合物は、エピタキシャル成長時に恒温槽内に入れることができないため、外気温の影響を受け、供給安定性にかけるものとなる。従来、この問題を解決する方法として、容器を回転させながら冷却した後に、バルブ内やバルブの直下の配管を加熱し、付着した有機金属化合物を再融解し自重により下に落とすことが試みられてきたが、この方法ではかなりの除去時間を要するばかりか、有機金属化合物を完全に除去することはできないという欠点があった。   In this state, the solid organometallic compound adheres to the upper part of the vaporization container, the carrier gas introduction pipe 2, the discharge pipe 3, the valve 6 and the valve 7, and in particular, the solid organometallic compound attached to the discharge pipe 3 and the valve 7. Since it cannot be put in a thermostatic bath at the time of epitaxial growth, it is affected by the outside air temperature and is subject to supply stability. Conventionally, as a method for solving this problem, after cooling the container while rotating, it has been attempted to heat the piping in the valve or directly under the valve to remelt the attached organometallic compound and drop it under its own weight. However, this method has a drawback that not only a considerable removal time is required but also the organometallic compound cannot be completely removed.

そこで、本発明においては、上記付着した固体有機金属化合物を除去するため、例えば図2に示す装置を用いた。この装置は、真空ポンプを備えた設備に取り付け、真空ポンプで減圧にしながら、キャリアガス導入管2、排出管3、バルブ6、バルブ7を加温し、配管内に付着している固体有機金属化合物を取り除くものである。   Therefore, in the present invention, in order to remove the attached solid organometallic compound, for example, an apparatus shown in FIG. 2 was used. This apparatus is attached to equipment equipped with a vacuum pump, and while reducing the pressure with the vacuum pump, the carrier gas introduction pipe 2, the discharge pipe 3, the valve 6 and the valve 7 are heated, and the solid organic metal adhering to the pipe It removes compounds.

より具体的には、図2において、全てのバルブが閉まった状態から、10の真空ポンプを稼動し、バルブ13を開け、圧力計17が減圧を示すことを確認する。減圧度は、特に限定されるものではないが、圧力が高いと処理に時間がかかるので、4000Pa以下が好ましい。   More specifically, in FIG. 2, 10 vacuum pumps are operated from a state in which all the valves are closed, the valve 13 is opened, and it is confirmed that the pressure gauge 17 indicates depressurization. The degree of reduced pressure is not particularly limited, but is preferably 4000 Pa or less because the treatment takes time when the pressure is high.

次いで、バルブ7を開け、容器本体1を除くバルブ6、キャリアガス導入管2、排出管3、バルブ7を加温することで、内部に付着、残存した有機金属化合物を除去する。上記バルブ6等の加温には、温風器(ドライヤー)等の熱風にて加熱する方法、テープ状ヒーター等を巻いて直接的に加熱する方法等の公知の方法を採用でき、その温度は40℃以上とすればよい。特に排出管3、バルブ7は気相成長に使用する際に直接影響を及ぼすため、当該処理を欠くことはできない。その際、容器本体1の内部の有機金属化合物の昇華を抑える目的で、容器本体1部分を恒温槽やドライアイス等で冷却してもよい。   Next, the valve 7 is opened, and the valve 6, the carrier gas introduction pipe 2, the discharge pipe 3, and the valve 7 excluding the container body 1 are heated to remove the organometallic compound adhering and remaining inside. For the heating of the valve 6 or the like, a known method such as a method of heating with hot air such as a warm air heater (dryer), a method of directly heating by winding a tape heater or the like can be adopted, and the temperature is What is necessary is just to be 40 degreeC or more. In particular, since the discharge pipe 3 and the valve 7 have a direct influence when used for vapor phase growth, the treatment is indispensable. At that time, for the purpose of suppressing sublimation of the organometallic compound inside the container body 1, the container body 1 may be cooled with a thermostatic bath, dry ice, or the like.

加温時間は、減圧度と加熱温度にもよるが、30分以下が好ましい。処理後は、バルブ7を閉め、バルブ11より雰囲気ガスを導入した後、バルブ6を閉め、容器を取り外せばよい。   The heating time is preferably 30 minutes or less, although it depends on the degree of pressure reduction and the heating temperature. After the treatment, the valve 7 is closed, the atmospheric gas is introduced from the valve 11, the valve 6 is closed, and the container is removed.

なお、10の真空ポンプを使用せず全てのバルブが閉まった状態から、バルブ11,6,7,14を開けて、ガスボンベ15からガスを流しながら、バルブ6,7、配管2,3を加熱し、処理する方法も可能であるが、処理時間がかかるため減圧での処理の方が望ましい。なお、16は圧力調整器である。   When all the valves are closed without using 10 vacuum pumps, the valves 11, 6, 7, 14 are opened, and the valves 6, 7 and the pipes 2, 3 are heated while the gas is flowing from the gas cylinder 15. However, a processing method is also possible, but since processing time is required, processing under reduced pressure is preferable. Reference numeral 16 denotes a pressure regulator.

以下、実施例及び比較例を示して、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
100メッシュのステンレス金網を3mm×15mmに切断した後、直径3mmφ程度になるように丸める。気孔率が約70体積%となるように径方向に押しつぶしたものを100g用意した。このステンレス製充填物の容量は約150mlであった。
図1に示すように、サイズが外径60.5mmφ、本体高さ115mmで内容積200mlの気化容器1を十分に水洗、乾燥した後、ノズル5を開け、前述のステンレス製充填物4を100g充填し、ノズル5を閉めた後に、ノズル9に真空ポンプを接続し、10Paまで真空引きをした。その後、ノズル8よりヘリウムガスを導入し、ガス置換を行った。この操作を3回繰り返した後、ノズル8とトリメチルインジウムの入った容器(図示せず)を接続し、バルブ6を開け、昇華を利用して気化容器1内に移送充填した。充填量は、105gであった。
その後、オイルバス中に気化容器1を浸して100℃に加熱し、0.5時間保持した後、気化容器1を取り出して円筒容器(図示せず)内に固定した。これをポットミル回転台(図示せず)にのせ、充填容器1を60rpmで3時間回転させながら冷却した。
その後、気化容器1を取り出し、図2に示す処理装置に気化容器1を接続した。10の真空ポンプを稼動し、バルブ13を開け、17の圧力計が4000Pa以下になることを確認し、バルブ7を開け、温風器(ドライヤー)にてバルブ6、キャリアガス導入管2、排出管3、バルブ7を10分間加熱した。その際の配管の温度は、約50℃であった。
次いで、この気化容器による有機金属化合物の安定供給が可能であるか試験を行った。即ち、このトリメチルインジウムの入った気化容器1を、20℃に調整した恒温槽(図示せず)内に取り付け、この容器にキャリアガス導入管2より高純度ヘリウムを500ml/分の速度で通気させ、排出管3より得られたトリメチルインジウムのガス相をガス濃度計(アオプリオリ社製、図示せず)にて測定した。
図3は、フィード時間(フィード開始直後からの経過時間)とトリメチルインジウムの濃度との関係を示す。図3に示すように、本発明によれば、フィード開始直後から濃度が安定して得られ、気相成長用原料として直ちに使用できることが確認された。
[Example 1]
A 100 mesh stainless steel wire mesh is cut into 3 mm × 15 mm and then rounded to a diameter of about 3 mmφ. 100 g of a product crushed in the radial direction so that the porosity was about 70% by volume was prepared. The volume of the stainless steel packing was about 150 ml.
As shown in FIG. 1, the vaporization container 1 having an outer diameter of 60.5 mmφ and a body height of 115 mm and an internal volume of 200 ml is sufficiently washed with water and dried. After filling and the nozzle 5 was closed, a vacuum pump was connected to the nozzle 9 and evacuated to 10 Pa. Thereafter, helium gas was introduced from the nozzle 8 to perform gas replacement. After repeating this operation three times, the nozzle 8 and a container (not shown) containing trimethylindium were connected, the valve 6 was opened, and the vaporization container 1 was transferred and filled using sublimation. The filling amount was 105 g.
Thereafter, the vaporization container 1 was immersed in an oil bath, heated to 100 ° C. and held for 0.5 hour, and then the vaporization container 1 was taken out and fixed in a cylindrical container (not shown). This was placed on a pot mill turntable (not shown) and cooled while the filling container 1 was rotated at 60 rpm for 3 hours.
Then, the vaporization container 1 was taken out and the vaporization container 1 was connected to the processing apparatus shown in FIG. 10 vacuum pump is operated, valve 13 is opened, 17 pressure gauge is confirmed to be 4000 Pa or less, valve 7 is opened, valve 6 with carrier air (dryer), carrier gas introduction pipe 2, discharge Tube 3 and valve 7 were heated for 10 minutes. The temperature of the piping at that time was about 50 ° C.
Next, a test was conducted to see if the organometallic compound could be stably supplied from this vaporization vessel. That is, the vaporization vessel 1 containing trimethylindium is mounted in a thermostat (not shown) adjusted to 20 ° C., and high purity helium is vented to the vessel through the carrier gas introduction pipe 2 at a rate of 500 ml / min. The gas phase of trimethylindium obtained from the discharge pipe 3 was measured with a gas concentration meter (manufactured by Aopriori, not shown).
FIG. 3 shows the relationship between feed time (elapsed time immediately after the start of feed) and the concentration of trimethylindium. As shown in FIG. 3, according to the present invention, it was confirmed that the concentration was stably obtained immediately after the start of feeding and can be used immediately as a raw material for vapor phase growth.

[実施例2]
温風器(ドライヤー)を使用する代わりに、テープ状ヒーターを巻き付け、約60℃に15分間加温したこと以外は、実施例1に示す方法と同様に処理し、試験した結果、図3の実施例1と同様に、フィード開始直後から、濃度が安定して得られ、気相成長用原料として直ちに使用できることが確認された。
[Example 2]
As a result of processing and testing in the same manner as in Example 1 except that a tape heater was wound instead of using a warm air heater (dryer) and heating was performed at about 60 ° C. for 15 minutes, the results shown in FIG. In the same manner as in Example 1, it was confirmed that the concentration was obtained stably immediately after the start of feeding, and it could be used immediately as a raw material for vapor phase growth.

[比較例1]
真空ポンプにより減圧にし、配管を加熱しなかったこと以外は、実施例1に示す方法と同様に処理した。その結果、図3の比較例1に示す通り、濃度が安定化するまでに、1時間以上が経過し、その後も不安定であることが確認された。
[Comparative Example 1]
The treatment was performed in the same manner as in Example 1 except that the pressure was reduced by a vacuum pump and the piping was not heated. As a result, as shown in Comparative Example 1 in FIG. 3, it was confirmed that one hour or more passed until the concentration was stabilized, and it was unstable thereafter.

[比較例2]
真空ポンプを使用せず、全てのバルブが閉まった状態から、バルブ11,6,7,14を開けて、ヘリウムガスを100ml/分で流しながら、温風器(ドライヤー)を用いて、バルブ6,7、配管2,3を20分間処理を行ったこと以外は、実施例1に示す方法と同様に処理した。その結果、図3の比較例1と同様に、濃度が安定化するまでに、1時間以上が経過し、その後も不安定であることが確認された。
[Comparative Example 2]
Without using a vacuum pump, with all the valves closed, the valves 11, 6, 7, and 14 are opened, and helium gas is allowed to flow at 100 ml / min. 7 and pipes 2 and 3 were treated in the same manner as in Example 1 except that the treatment was performed for 20 minutes. As a result, as in Comparative Example 1 in FIG. 3, it was confirmed that one hour or more passed until the concentration was stabilized, and it was unstable thereafter.

本発明の固体有機金属化合物の充填方法に用いられる気化容器の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the vaporization container used for the filling method of the solid organometallic compound of this invention. 本発明の固体有機金属化合物の充填方法に用いられる装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the apparatus used for the filling method of the solid organometallic compound of this invention. フィード時間とトリメチルインジウムの濃度との関係を示すグラフである。It is a graph which shows the relationship between feed time and the density | concentration of trimethylindium.

符号の説明Explanation of symbols

1 気化容器
2 キャリアガス導入管
3 排出管
4 充填物
5 ノズル
6 バルブ
7 バルブ
8 ノズル
9 ノズル
10 真空ポンプ
11 バルブ
12 バルブ
13 バルブ
14 バルブ
15 ガスボンベ
16 圧力調整器
17 圧力計
DESCRIPTION OF SYMBOLS 1 Vaporization container 2 Carrier gas introduction pipe 3 Discharge pipe 4 Filling 5 Nozzle 6 Valve 7 Valve 8 Nozzle 9 Nozzle 10 Vacuum pump 11 Valve 12 Valve 13 Valve 14 Valve 15 Gas cylinder 16 Pressure regulator 17 Pressure gauge

Claims (3)

上部に各1か所以上のキャリアガス導入管及び混合ガス排出管をそれぞれ有し、かつ上記導入管及び排出管にそれぞれバルブが介装されてなる容器内に固体有機金属化合物を供給し、この固体有機金属化合物をその融点以上に加熱融解した後、冷却して固体有機金属化合物を前記容器内に充填する方法において、得られた固体有機金属化合物の容器上部の出口配管を減圧に引きながら、上記導入管に介装されたバルブを閉じ、排出管に介装されたバルブを開けた状態で上記導入管及び排出管並びにこれらの管に介装された各バルブをそれぞれ加熱して、上記導入管及び排出管並びにこれらの管に介装された各バルブ部分に付着した固体有機金属化合物を上記排出管から除去することを特徴とする固体有機金属化合物の充填方法。 Each one location or more carrier gas inlet and a gas mixture discharge pipe possess respectively the top, and supplies the solid organometallic compound to the inlet pipe and respectively the discharge tube container valve is being interposed, this In the method of heating and melting the solid organometallic compound above its melting point, and then cooling and filling the solid organometallic compound into the container, while pulling the outlet pipe at the top of the container of the obtained solid organometallic compound to a reduced pressure, Close the valve interposed in the introduction pipe, open the valve interposed in the discharge pipe, and heat the introduction pipe and the discharge pipe and each valve interposed in these pipes to introduce the introduction A solid organometallic compound filling method comprising removing a solid organometallic compound adhering to each valve portion interposed between a pipe and a discharge pipe and these pipes from the discharge pipe. 上記固体有機金属化合物が、トリメチルインジウムであることを特徴とする請求項1記載の固体有機金属化合物の充填方法。   2. The solid organometallic compound filling method according to claim 1, wherein the solid organometallic compound is trimethylindium. キャリアガス導入管が容器内に上部で開口し、混合ガス排出管が容器内に下部で開口している請求項1又は2記載の固体有機金属化合物の充填方法。3. The method of filling a solid organometallic compound according to claim 1, wherein the carrier gas introduction pipe is opened at the upper part in the container and the mixed gas discharge pipe is opened at the lower part in the container.
JP2007146527A 2007-06-01 2007-06-01 Filling method of solid organometallic compound Expired - Fee Related JP4873169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146527A JP4873169B2 (en) 2007-06-01 2007-06-01 Filling method of solid organometallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146527A JP4873169B2 (en) 2007-06-01 2007-06-01 Filling method of solid organometallic compound

Publications (2)

Publication Number Publication Date
JP2008300712A JP2008300712A (en) 2008-12-11
JP4873169B2 true JP4873169B2 (en) 2012-02-08

Family

ID=40173908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146527A Expired - Fee Related JP4873169B2 (en) 2007-06-01 2007-06-01 Filling method of solid organometallic compound

Country Status (1)

Country Link
JP (1) JP4873169B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222290A (en) * 2009-03-23 2010-10-07 Nippon Shokubai Co Ltd Method for filling borazine compound
JP5728772B2 (en) 2011-05-31 2015-06-03 株式会社ブイ・テクノロジー Raw material gas generator
CN108531885A (en) * 2018-05-31 2018-09-14 江苏南大光电材料股份有限公司 The solid metal-organic compound tandem temperature difference uses system and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538042B2 (en) * 1989-03-29 1996-09-25 株式会社エステック Method and apparatus for vaporizing and supplying organometallic compound
JP3582118B2 (en) * 1994-12-22 2004-10-27 住友化学工業株式会社 Organic metal filling method
JP2964313B2 (en) * 1995-03-09 1999-10-18 信越化学工業株式会社 Solid organometallic compound supply apparatus and method for producing the same
JPH09124658A (en) * 1995-10-31 1997-05-13 Sumitomo Chem Co Ltd Elimination of organometal

Also Published As

Publication number Publication date
JP2008300712A (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP5571712B2 (en) Large volume delivery method for producing gallium trichloride
US7435295B2 (en) Method for producing compound single crystal and production apparatus for use therein
CN100535200C (en) Apparatus for production of crystal of group iii element nitride and process for producing crystal of group III element nitride
JP4317174B2 (en) Raw material supply apparatus and film forming apparatus
JP5645718B2 (en) Heat treatment equipment
WO2005071143A1 (en) Process for producing single crystal of gallium-containing nitride
JP4873169B2 (en) Filling method of solid organometallic compound
JP2964313B2 (en) Solid organometallic compound supply apparatus and method for producing the same
CN106796872A (en) Semiconductor- fabricating device and semiconductor making method
JPH0883773A (en) Thin film forming device
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
JP2012530371A (en) Molecular beam epitaxy apparatus for manufacturing wafers of semiconductor materials
JP2004327534A (en) Organic metal material vapor phase epitaxy device
JP2005228757A (en) Apparatus and method for growing vapor phase
JP2015051888A (en) Apparatus for making single crystal
TWI793167B (en) Gallium Arsenide Compound Semiconductor Crystal and Wafer Group
JP2007277059A (en) Apparatus for manufacturing group iii nitride compound semiconductor
JP6091346B2 (en) Method for producing aluminum group III nitride single crystal
JPS6083324A (en) Manufacture of iii-v group compound semiconductor through organic metal thermal decomposition method
JP2000012469A (en) System and method for crystal growth
JP2003229364A (en) Ammonia gas supplying device
JP2013224250A (en) Method for producing periodic table group 13 metal nitride semiconductor bulk crystal
JPH0758023A (en) Method for filling vessel with organic metal compound
JPH01145398A (en) Method for liquid epitaxial growth of gallium phosphide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees