JP2004327534A - Organic metal material vapor phase epitaxy device - Google Patents

Organic metal material vapor phase epitaxy device Download PDF

Info

Publication number
JP2004327534A
JP2004327534A JP2003117013A JP2003117013A JP2004327534A JP 2004327534 A JP2004327534 A JP 2004327534A JP 2003117013 A JP2003117013 A JP 2003117013A JP 2003117013 A JP2003117013 A JP 2003117013A JP 2004327534 A JP2004327534 A JP 2004327534A
Authority
JP
Japan
Prior art keywords
refrigerant
raw material
cooling medium
temperature
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117013A
Other languages
Japanese (ja)
Inventor
Hidetake Watanabe
秀健 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003117013A priority Critical patent/JP2004327534A/en
Publication of JP2004327534A publication Critical patent/JP2004327534A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein, since a thermostatic chamber 3 has an open top in the material gas feeder 1 of a conventional organic metal vapor phase epitaxy device, heat radiates into the air from the surface of a cooling medium 2 to reduce the cooling medium in temperature uniformity, and it is hard to keep the cooling medium 2 where a temperature change occurs due to radiation of heat high in temperature stability (temperature is restrained from changing with time). <P>SOLUTION: The material gas feeder 101 of the organic metal vapor phase epitaxy device is equipped with a closed thermostatic chamber 102 filled with the cooling medium 2, a material case 5 housing an organic metal material 4, a carrier gas feeding tube 7 feeding carrier gas 6a, material gas extracting piping 8 extracting the carrier gas 6b containing the material gas, cooling medium feeding piping 103 successively feeding a new cooling medium 2 which is controlled and kept at a previously set temperature into the thermostatic chamber 102 from outside, and cooling medium discharging piping 104 successively discharging the cooling medium 2 from the thermostatic chamber 102. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、半導体基板上にエピタキシャル成長させる有機金属原料を収容した原料容器を冷媒で冷却しながら、その原料容器内にキャリアガスを導入して原料ガスを取出す原料ガス供給部を具備する有機金属気相成長装置に関する。
【0002】
例えば、GaAs,AlGaAs,GaAsP,InGaAsなどの化合物半導体の結晶薄膜を所定の半導体基板上にエピタキシャル成長させる場合、これらの化合物半導体を構成する各元素の有機金属原料を気体の状態で反応炉内に供給する原料ガス供給部を具備する有機金属気相成長装置が使用される。
【0003】
また、一般に有機金属原料は、空気と反応すると発火する性質を有するため密閉された専用の原料容器に収容されて取扱われるとともに、原料ガスを発生させる際には、有機金属原料表面の蒸気圧を極力一定にするために冷媒で冷却される。
【0004】
従来の有機金属気相成長装置の原料ガス供給部の一例の断面図を図2に示す。
【0005】
原料ガス供給部1は、例えば、水、あるいは、フッ素系不活性液体などの冷媒2が満たされた上方開放型の恒温槽3と、その冷媒2内に浸漬され、有機金属原料4を収容して密閉された原料容器5と、その原料容器5内にキャリアガス6aを供給するキャリアガス供給配管7と、原料容器5から原料ガスを含んだキャリアガス6bを取出す原料ガス取出配管8とで構成されている。
【0006】
また、原料容器5には、元々、2本の配管が取付けられている。1本は、ガス導入配管9であり、原料容器5内の有機金属原料4に一端を浸漬し、キャリアガス6aのバブルを発生させる役目をする。他の1本は、ガス導出配管10であり、有機金属原料4表面から発生する原料ガスを含んだキャリアガス6bを取出す役目をする。これらの配管9,10は、ニップル11を介して、それぞれキャリアガス供給配管7と原料ガス取出配管8に接続されている。また、各配管7,8,9,10の途中には、それぞれ開閉バルブ12が設けられており、キャリアガス6a,6bの流通および停止が自在となっている。
【0007】
尚、恒温槽3が上方開放となっているのは、冷媒2や原料容器5の出し入れを容易にするためと、冷媒2から大気への放熱を可能にし冷媒2の温度上昇を低減させるためである。
【0008】
この原料ガス供給部1で常温で固体あるいは液体である有機金属原料4を気化させる方法は、密閉された原料容器5内にキャリアガス6aとして、例えば、水素(H)を送り込み、そのキャリアガス6aによって液体原料を泡立てて気化させたり、あるいは、固体原料を昇華させたりして気化するものである。ここで、原料容器5内の有機金属原料4は冷媒2で冷却され、収容された冷媒2の液量で決定される冷却能力の範囲において極力、温度均一性および温度安定性(経時的に温度を一定に保つこと)が確保されるようになっている。そして、気化した原料ガスを含むキャリアガス6bは反応炉(図示せず)に輸送され熱分解などを利用して、半導体基板(図示せず)上に結晶薄膜(図示せず)をエピタキシャル成長させる。
【0009】
ここで、結晶薄膜(図示せず)の厚さを均一な厚さに成長させるには、原料ガスが安定して反応炉(図示せず)に供給されることが重要であり、このためには、原料容器5内の蒸気圧が安定している必要があり、さらに、この蒸気圧を安定させるためには、有機金属原料4の表面温度を常に一定に保つことが重要となる。
【0010】
このため、例えば、冷媒2中に熱電対13を配置し、その測定値に基づいて、冷媒2を攪拌子14で攪拌するなどして、冷媒2の温度均一性を向上させる工夫が為されてきた(例えば、特許文献1。)。
【0011】
【特許文献1】
特開平9−227283号公報 (第2頁、0008段落,図3)
【0012】
【発明が解決しようとする課題】
しかしながら、従来の有機金属気相成長装置の原料ガス供給部1では、恒温槽3が上方開放となっているため、冷媒2表面から大気への放熱が生じ、どうしても、冷媒2の上側と下側とで無視できない温度差が生じ温度均一性を低下させた。また、このように放熱による温度変化が生じた冷媒2を攪拌子14で攪拌しても、温度均一性は改善できても、温度安定性(経時的に温度を一定に保つこと)を確保することは困難であった。
【0013】
本発明の目的は、有機金属原料を収容した原料容器を冷却する冷媒の温度均一性および温度安定性をより向上させ、結晶基板上に均一な厚さの結晶薄膜を成長させることができる原料ガス供給部を具備した有機金属気相成長装置を提供することである。
【0014】
【課題を解決するための手段】
本発明の有機金属気相成長装置は、
少なくとも、
冷媒が満たされた恒温槽と、
冷媒内に浸漬され、エピタキシャル成長させる有機金属原料を収容した原料容器と、
原料容器内にキャリアガスを供給するキャリアガス供給配管と、
原料容器から原料ガスを含んだキャリアガスを取出す原料ガス取出配管とを備えた原料ガス供給部を具備する有機金属気相成長装置において、
恒温槽内に冷媒を順次供給する冷媒供給配管と、
恒温槽内の冷媒を順次排出する冷媒排出配管とを備え、
恒温槽内の冷媒を入換え可能としたことを特徴とする有機金属気相成長装置である。
【0015】
【発明の実施の形態】
本発明の有機金属気相成長装置の原料ガス供給部の一例の断面図を図1に示す。尚、図2と同一部分には同一符号を付す。
【0016】
原料ガス供給部101は、例えば、水、あるいは、フッ素系不活性液体などの冷媒2が満たされた本発明の特徴である密閉型の恒温槽102と、冷媒2内に浸漬され、有機金属原料4を収容して密閉された原料容器5と、その原料容器5内にキャリアガス6aを供給するキャリアガス供給配管7と、原料容器5から原料ガスを含んだキャリアガス6bを取出す原料ガス取出配管8と、恒温槽102内に外部から新しい冷媒2を順次供給する本発明の特徴である冷媒供給配管103と、恒温槽102内から冷媒2を順次排出する本発明の特徴である冷媒排出配管104と、恒温槽102に供給する冷媒2の温度を所望の温度に制御する本発明の特徴である冷媒温度制御部105とで構成されている。
【0017】
また、原料容器5には、元々、2本の配管が取付けられている。1本は、ガス導入配管9であり、原料容器5内の有機金属原料4に一端を浸漬し、キャリアガス6aのバブルを発生させる役目をする。他の1本は、ガス導出配管10であり、有機金属原料4表面から発生する原料ガスを含んだキャリアガス6bを取出す役目をする。これらの配管9,10は、ニップル11を介して、それぞれキャリアガス供給配管7と原料ガス取出配管8に接続されている。また、各配管7,8,9,10の途中には、それぞれ開閉バルブ12が設けられ、キャリアガス6a,6bの流通および停止が自在となっている。
【0018】
また、恒温槽102は、有底筒状の容器部102aと蓋部102bとで構成されており、容器部102aに対して例えば、Oリング106などのシーリング材を介して、付属の止具107を用いて蓋部102bを装着することで恒温槽102を密閉できるようになっている。また、容器部102aおよび蓋部102bの壁材は、壁材内部に空間102cを設けた2重構造となっており、その空間102cは真空状態とし、全面に亘って均一な優れた断熱効果が得られるようになっている。
【0019】
また、冷媒供給配管103および冷媒排出配管104の途中には、それぞれ開閉バルブ12が設けられ、冷媒2の流通および停止が自在となっている。尚、原料ガス供給作業中は、流通状態とし恒温槽102内の冷媒2を温度制御された新たな冷媒2と入換えながら作業できるようになっている。
【0020】
この原料ガス供給部101で常温で固体あるいは液体である有機金属原料4を気化させる方法は、密閉された原料容器5内にキャリアガス6aとして例えば、水素(H)を送り込み、そのキャリアガス6aによって液体原料を泡立てて気化させたり、あるいは、固体原料を昇華させたりして気化するものである。ここで、恒温槽102は、従来のように上方開放型ではなく密閉型であるため、冷媒2表面から大気への放熱がなく、冷媒2に放熱による温度差を生じさせることがない。また、恒温槽102内の冷媒2は、常に予め設定した温度に制御された新たな冷媒2と入換えられるため、従来のように恒温槽に収容された冷媒2の液量によって冷却能力が限定されてしまうことがない。そして、気化した原料ガスを含むキャリアガス6bは反応炉(図示せず)に輸送され熱分解などを利用して、半導体基板(図示せず)上に結晶薄膜(図示せず)をエピタキシャル成長させる。
【0021】
このようにして、原料容器5内の有機金属原料4を冷却する冷媒2の温度均一性および温度安定性(経時的に温度を一定に保つこと)を向上させることで、有機金属4表面の蒸気圧を一定させ、より品質のよい原料ガスの供給が可能となる。
【0022】
尚、上記では、恒温槽102内に順次供給する冷媒2の温度を予め設定した温度に制御して供給する方法で説明したが、恒温槽102内に温度センサ(図示せず)を配置して、その温度センサ(図示せず)の信号に基づいて制御する構成としてもよい。また、恒温槽102の壁材内部を真空状態とすることで説明したが、例えば、ポリウレタンやグラスウールや発泡ポリエチレンなどの断熱材で装填する構成であってもよいことは言うまでもない。
【0023】
【発明の効果】
本発明の有機金属原料気相成長装置の原料ガス供給部101によれば、冷媒2を満たした恒温槽102が密閉型であるため、冷媒2表面から大気への放熱がなく、冷媒2の上側と下側の温度ばらつきが少なく温度均一性が向上する。また、恒温槽102内の冷媒2を順次、所望の温度に制御された新たな冷媒2に入換えるため、温度安定性(経時的に温度を一定に保つこと)に優れている。また、恒温槽102の壁材を2重構造とし壁材内部の空間102cを真空状態とすると全面に亘って優れた断熱効果が得られ、温度均一性および温度安定性(経時的に温度を一定に保つこと)を維持できる。
【図面の簡単な説明】
【図1】本発明の有機金属気相成長装置の原料ガス供給部の一例の断面図
【図2】従来の有機金属気相成長装置の原料ガス供給部の一例の断面図
【符号の説明】
1 従来の原料ガス供給部
2 冷媒
3 従来の上方開放型の恒温槽
4 有機金属原料
5 原料容器
6a キャリアガス
6b 原料ガスを含んだキャリアガス
7 キャリアガス供給配管
8 原料ガス取出配管
9 ガス導入配管
10 ガス導出配管
11 ニップル
12 開閉バルブ
13 熱電対
14 攪拌子
101 本発明の原料ガス供給部
102 本発明の密閉型の恒温槽
102a 容器部
102b 蓋部
103 冷媒供給配管
104 冷媒排出配管
105 冷媒温度制御部
106 Oリング
107 止具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides, for example, an organic apparatus having a source gas supply unit for introducing a carrier gas into a source container and extracting the source gas while cooling a source container containing an organic metal source to be epitaxially grown on a semiconductor substrate with a refrigerant. The present invention relates to a metal vapor deposition apparatus.
[0002]
For example, when a crystal thin film of a compound semiconductor such as GaAs, AlGaAs, GaAsP, or InGaAs is epitaxially grown on a predetermined semiconductor substrate, an organic metal raw material of each element constituting these compound semiconductors is supplied into the reaction furnace in a gaseous state. A metal organic chemical vapor deposition apparatus having a raw material gas supply unit is used.
[0003]
In general, an organometallic raw material has a property of igniting when it reacts with air, so that it is housed and handled in a closed dedicated raw material container.When generating a raw material gas, the vapor pressure of the surface of the organic metal raw material is reduced. It is cooled with a refrigerant to keep it as constant as possible.
[0004]
FIG. 2 is a cross-sectional view of an example of a source gas supply unit of a conventional metal organic chemical vapor deposition apparatus.
[0005]
The raw material gas supply unit 1 stores an organic metal raw material 4 immersed in the upper open-type constant temperature bath 3 filled with a refrigerant 2 such as water or a fluorine-based inert liquid. A raw material container 5, a carrier gas supply pipe 7 for supplying a carrier gas 6 a into the raw material container 5, and a raw gas extraction pipe 8 for extracting a carrier gas 6 b containing the raw material gas from the raw material container 5. Have been.
[0006]
The raw material container 5 is originally provided with two pipes. One is a gas introduction pipe 9, which has one end immersed in the organometallic raw material 4 in the raw material container 5, and serves to generate bubbles of the carrier gas 6 a. The other one is a gas outlet pipe 10, which serves to take out a carrier gas 6 b containing a source gas generated from the surface of the organic metal source 4. These pipes 9 and 10 are connected to a carrier gas supply pipe 7 and a source gas extraction pipe 8 via a nipple 11, respectively. Further, an opening / closing valve 12 is provided in the middle of each of the pipes 7, 8, 9, 10 so that the flow and stop of the carrier gas 6a, 6b can be freely performed.
[0007]
The reason why the thermostatic bath 3 is opened upward is to facilitate putting the refrigerant 2 and the raw material container 5 in and out, and to release heat from the refrigerant 2 to the atmosphere and reduce the temperature rise of the refrigerant 2. is there.
[0008]
In the method of vaporizing the organometallic raw material 4 which is solid or liquid at normal temperature in the raw material gas supply unit 1, for example, hydrogen (H 2 ) is sent as a carrier gas 6a into a closed raw material container 5 and the carrier gas is supplied. The liquid material is bubbled and vaporized by 6a, or the solid material is vaporized by sublimation. Here, the organometallic raw material 4 in the raw material container 5 is cooled by the refrigerant 2 and the temperature uniformity and the temperature stability (temperature over time) as much as possible within the range of the cooling capacity determined by the amount of the stored refrigerant 2. Is kept constant). Then, the carrier gas 6b containing the vaporized source gas is transported to a reaction furnace (not shown) and a crystal thin film (not shown) is epitaxially grown on a semiconductor substrate (not shown) by utilizing thermal decomposition or the like.
[0009]
Here, in order to grow the thickness of the crystal thin film (not shown) to a uniform thickness, it is important that the source gas is supplied to the reaction furnace (not shown) stably. It is necessary that the vapor pressure in the raw material container 5 be stable, and it is important to keep the surface temperature of the organometallic raw material 4 constant at all times in order to stabilize the vapor pressure.
[0010]
For this reason, for example, a device has been devised to improve the temperature uniformity of the refrigerant 2 by disposing the thermocouple 13 in the refrigerant 2 and stirring the refrigerant 2 with the stirrer 14 based on the measured value. (For example, Patent Document 1).
[0011]
[Patent Document 1]
JP-A-9-227283 (page 2, paragraph 0008, FIG. 3)
[0012]
[Problems to be solved by the invention]
However, in the source gas supply unit 1 of the conventional metal-organic vapor phase epitaxy apparatus, since the thermostat 3 is open upward, heat is released from the surface of the refrigerant 2 to the atmosphere, and the upper and lower sides of the refrigerant 2 are inevitably. And the temperature difference which cannot be ignored was generated, and the temperature uniformity was reduced. In addition, even if the temperature uniformity can be improved by stirring the refrigerant 2 having undergone the temperature change due to the heat radiation with the stirrer 14, the temperature stability (keeping the temperature constant over time) is ensured. It was difficult.
[0013]
An object of the present invention is to improve the temperature uniformity and temperature stability of a coolant for cooling a raw material container containing an organometallic raw material, and to increase the temperature of a raw material gas capable of growing a crystal thin film having a uniform thickness on a crystal substrate. An object of the present invention is to provide a metal organic chemical vapor deposition apparatus provided with a supply unit.
[0014]
[Means for Solving the Problems]
The metal organic chemical vapor deposition apparatus of the present invention is:
at least,
A thermostat bath filled with refrigerant,
A raw material container containing an organic metal raw material to be immersed in a coolant and epitaxially grown,
A carrier gas supply pipe for supplying a carrier gas into the raw material container,
In a metal organic chemical vapor deposition apparatus including a source gas supply unit having a source gas extraction pipe for extracting a carrier gas containing a source gas from a source container,
A refrigerant supply pipe for sequentially supplying the refrigerant into the constant temperature bath,
A refrigerant discharge pipe for sequentially discharging the refrigerant in the constant temperature bath,
An organometallic vapor phase epitaxy apparatus characterized in that a refrigerant in a thermostat can be exchanged.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a cross-sectional view of an example of the source gas supply unit of the metal organic chemical vapor deposition apparatus of the present invention. The same parts as those in FIG.
[0016]
The raw material gas supply unit 101 is, for example, a closed type thermostatic bath 102 characterized by the present invention filled with a refrigerant 2 such as water or a fluorinated inert liquid, and immersed in the refrigerant 2, A raw material container 5 containing and sealing the raw material 4, a carrier gas supply pipe 7 for supplying a carrier gas 6 a into the raw material container 5, and a raw gas extraction pipe for extracting a carrier gas 6 b containing the raw material gas from the raw material container 5. 8, a refrigerant supply pipe 103 for sequentially supplying new refrigerant 2 from outside to the thermostat 102, and a refrigerant discharge pipe 104 for sequentially discharging the refrigerant 2 from the thermostat 102. And a refrigerant temperature control unit 105 that controls the temperature of the refrigerant 2 supplied to the constant temperature bath 102 to a desired temperature, which is a feature of the present invention.
[0017]
The raw material container 5 is originally provided with two pipes. One is a gas introduction pipe 9, which has one end immersed in the organometallic raw material 4 in the raw material container 5, and serves to generate bubbles of the carrier gas 6 a. The other one is a gas outlet pipe 10, which serves to take out a carrier gas 6 b containing a source gas generated from the surface of the organic metal source 4. These pipes 9 and 10 are connected to a carrier gas supply pipe 7 and a source gas extraction pipe 8 via a nipple 11, respectively. Further, an opening / closing valve 12 is provided in the middle of each of the pipes 7, 8, 9, 10 so that the flow and stop of the carrier gas 6a, 6b can be freely performed.
[0018]
The constant temperature bath 102 includes a bottomed cylindrical container portion 102a and a lid portion 102b, and the attached stopper 107 is attached to the container portion 102a via a sealing material such as an O-ring 106, for example. The thermostat 102 can be hermetically closed by attaching the lid 102b using the. Further, the wall material of the container portion 102a and the lid portion 102b has a double structure in which a space 102c is provided inside the wall material, and the space 102c is in a vacuum state, and uniform excellent heat insulating effect is obtained over the entire surface. You can get it.
[0019]
In the middle of the refrigerant supply pipe 103 and the refrigerant discharge pipe 104, an opening / closing valve 12 is provided, respectively, so that the refrigerant 2 can flow and stop freely. During the source gas supply operation, the operation is performed while the refrigerant 2 in the constant temperature bath 102 is being replaced with a new refrigerant 2 whose temperature is controlled during the supply operation.
[0020]
In the method of vaporizing the organometallic raw material 4 which is solid or liquid at room temperature in the raw material gas supply unit 101, for example, hydrogen (H 2 ) is sent as a carrier gas 6a into a closed raw material container 5, and the carrier gas 6a The liquid raw material is vaporized by bubbling, or the solid raw material is vaporized by sublimation. Here, since the thermostat 102 is not an open top type but a closed type as in the prior art, there is no heat radiation from the surface of the refrigerant 2 to the atmosphere, and no temperature difference occurs in the refrigerant 2 due to heat radiation. Further, since the refrigerant 2 in the thermostat 102 is always replaced with a new refrigerant 2 controlled to a preset temperature, the cooling capacity is limited by the amount of the refrigerant 2 stored in the thermostat as in the conventional case. It will not be done. Then, the carrier gas 6b containing the vaporized source gas is transported to a reaction furnace (not shown) and a crystal thin film (not shown) is epitaxially grown on a semiconductor substrate (not shown) by utilizing thermal decomposition or the like.
[0021]
In this way, by improving the temperature uniformity and temperature stability (keeping the temperature constant over time) of the refrigerant 2 that cools the organometallic raw material 4 in the raw material container 5, the vapor on the surface of the organic metal 4 is improved. The pressure is kept constant, so that a higher quality source gas can be supplied.
[0022]
In the above description, the method has been described in which the temperature of the refrigerant 2 sequentially supplied into the constant temperature bath 102 is controlled and supplied to a preset temperature, but a temperature sensor (not shown) is disposed in the constant temperature bath 102. The control may be performed based on a signal from a temperature sensor (not shown). In addition, although the description has been made by setting the inside of the wall material of the thermostat 102 to a vacuum state, it is needless to say that the wall material may be loaded with a heat insulating material such as polyurethane, glass wool, or foamed polyethylene.
[0023]
【The invention's effect】
According to the source gas supply unit 101 of the metal organic vapor phase epitaxy apparatus of the present invention, since the thermostatic bath 102 filled with the refrigerant 2 is a closed type, there is no heat radiation from the surface of the refrigerant 2 to the atmosphere, and And temperature uniformity at the lower side is small and temperature uniformity is improved. Further, since the refrigerant 2 in the thermostat 102 is sequentially replaced with a new refrigerant 2 controlled to a desired temperature, the temperature stability (keeping the temperature constant over time) is excellent. Further, when the wall material of the thermostat 102 has a double structure and the space 102c inside the wall material is in a vacuum state, an excellent heat insulating effect can be obtained over the entire surface, and the temperature uniformity and the temperature stability (the temperature is kept constant over time). Can be maintained).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of a source gas supply unit of a metal organic chemical vapor deposition apparatus of the present invention. FIG. 2 is a cross-sectional view of an example of a source gas supply unit of a conventional metal organic chemical vapor deposition apparatus.
DESCRIPTION OF SYMBOLS 1 Conventional raw material gas supply part 2 Refrigerant 3 Conventional upward-opening constant temperature bath 4 Organometallic raw material 5 Raw material container 6a Carrier gas 6b Carrier gas containing raw material gas 7 Carrier gas supply piping 8 Raw material gas extraction piping 9 Gas introduction piping REFERENCE SIGNS LIST 10 gas outlet pipe 11 nipple 12 on-off valve 13 thermocouple 14 stirrer 101 raw material gas supply section 102 of the present invention closed type constant temperature bath 102 a container section 102 b lid section 103 of the present invention refrigerant supply pipe 104 refrigerant discharge pipe 105 refrigerant temperature control Part 106 O-ring 107 Stopper

Claims (5)

少なくとも、
冷媒が満たされた恒温槽と、
前記冷媒内に浸漬され、エピタキシャル成長させる有機金属原料を収容した原料容器と、
前記原料容器内にキャリアガスを供給するキャリアガス供給配管と、
前記原料容器から原料ガスを含んだキャリアガスを取出す原料ガス取出配管とを備えた原料ガス供給部を具備する有機金属気相成長装置において、
前記恒温槽内に前記冷媒を順次供給する冷媒供給配管と、
前記恒温槽内の前記冷媒を順次排出する冷媒排出配管とを備え、
前記恒温槽内の前記冷媒を入換え可能としたことを特徴とする有機金属気相成長装置。
at least,
A thermostat bath filled with refrigerant,
A raw material container that is immersed in the refrigerant and contains an organic metal raw material to be epitaxially grown,
A carrier gas supply pipe for supplying a carrier gas into the raw material container,
In an organometallic vapor phase epitaxy apparatus including a source gas supply unit having a source gas extraction pipe for extracting a carrier gas containing a source gas from the source container,
A refrigerant supply pipe for sequentially supplying the refrigerant into the constant temperature bath,
A refrigerant discharge pipe for sequentially discharging the refrigerant in the constant temperature bath,
An organometallic vapor phase epitaxy apparatus wherein the refrigerant in the thermostat is exchangeable.
前記恒温槽内に順次供給する前記冷媒の温度を制御する冷媒温度制御部を、さらに配置したことを特徴とする請求項1に記載の有機金属気相成長装置。2. The metal organic chemical vapor deposition apparatus according to claim 1, further comprising a refrigerant temperature control unit that controls a temperature of the refrigerant sequentially supplied into the constant temperature bath. 3. 前記恒温槽は、密閉型の恒温槽であることを特徴とする請求項1、または、請求項2に記載の有機金属気相成長装置。3. The metal organic chemical vapor deposition apparatus according to claim 1, wherein the constant temperature bath is a closed type constant temperature bath. 前記恒温槽の壁材は、壁材内部に空間を設けた2重構造とすることを特徴とする請求項1、乃至、請求項3に記載の有機金属気相成長装置。The metal organic chemical vapor deposition apparatus according to claim 1, wherein the wall material of the constant temperature bath has a double structure in which a space is provided inside the wall material. 前記恒温槽の壁材内部の空間は真空状態、あるいは、断熱材が装填されていることを特徴とする請求項4に記載の有機金属気相成長装置。The metalorganic vapor phase epitaxy apparatus according to claim 4, wherein the space inside the wall material of the constant temperature bath is in a vacuum state or is filled with a heat insulating material.
JP2003117013A 2003-04-22 2003-04-22 Organic metal material vapor phase epitaxy device Pending JP2004327534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117013A JP2004327534A (en) 2003-04-22 2003-04-22 Organic metal material vapor phase epitaxy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117013A JP2004327534A (en) 2003-04-22 2003-04-22 Organic metal material vapor phase epitaxy device

Publications (1)

Publication Number Publication Date
JP2004327534A true JP2004327534A (en) 2004-11-18

Family

ID=33497051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117013A Pending JP2004327534A (en) 2003-04-22 2003-04-22 Organic metal material vapor phase epitaxy device

Country Status (1)

Country Link
JP (1) JP2004327534A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099619A2 (en) 2005-03-17 2006-09-21 Noah Precision, Llc Temperature control unit for bubblers
JP2012089546A (en) * 2010-10-15 2012-05-10 Tokyo Electron Ltd Deposition method, deposition equipment and method for manufacturing semiconductor device
KR101466484B1 (en) * 2013-04-15 2014-12-02 데이스타 유한회사 Chiller for canister
KR101693842B1 (en) * 2016-02-17 2017-01-09 주식회사 제타 Air flow chiller and method of controlling it
KR20200063946A (en) * 2018-11-27 2020-06-05 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound with double structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099619A2 (en) 2005-03-17 2006-09-21 Noah Precision, Llc Temperature control unit for bubblers
EP1866458A2 (en) * 2005-03-17 2007-12-19 Noah Precision, LLC Temperature control unit for bubblers
JP2008533746A (en) * 2005-03-17 2008-08-21 ノア プレシジョン リミテッド ライアビリティ カンパニー Temperature control device for bubbler
EP1866458A4 (en) * 2005-03-17 2010-10-20 Noah Prec Llc Temperature control unit for bubblers
JP2012089546A (en) * 2010-10-15 2012-05-10 Tokyo Electron Ltd Deposition method, deposition equipment and method for manufacturing semiconductor device
KR101466484B1 (en) * 2013-04-15 2014-12-02 데이스타 유한회사 Chiller for canister
CN105247655A (en) * 2013-04-15 2016-01-13 晨星原料有限责任公司 Chiller for canister
EP2988319A4 (en) * 2013-04-15 2017-02-08 Daystar Materials LLC Chiller for canister
KR101693842B1 (en) * 2016-02-17 2017-01-09 주식회사 제타 Air flow chiller and method of controlling it
KR20200063946A (en) * 2018-11-27 2020-06-05 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound with double structure
KR102286480B1 (en) * 2018-11-27 2021-08-06 주식회사 레이크머티리얼즈 Apparatus for supplying organometallic compound with double structure

Similar Documents

Publication Publication Date Title
US8029621B2 (en) Raw material feeding device, film formation system and method for feeding gaseous raw material
WO2011119195A2 (en) Modern hydride vapor-phase epitaxy system &amp; methods
JPH02255595A (en) Method and device for vaporizing and supplying organometallic compound
US20090249997A1 (en) Method of producing group iii nitride crystal, apparatus for producing group iii nitride crystal, and group iii nitride crystal
JP2003313099A (en) Apparatus for growing group iii nitride crystal
JP2004327534A (en) Organic metal material vapor phase epitaxy device
JP4414253B2 (en) Group III nitride crystal manufacturing method
Voronenkov et al. Hydride Vapor‐Phase Epitaxy Reactor for Bulk GaN Growth
Shin et al. High temperature nucleation and growth of GaN crystals from the vapor phase
JP2003286099A (en) Apparatus and method for growing group iii nitride crystal
JP2006062947A (en) Method and apparatus for growing group iii nitride crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2719283B2 (en) Knudsen cell for low temperature
KR101412507B1 (en) Supplier of Gas Phase Organometal Compound
JPH11513352A (en) Method for epitaxially growing an object and apparatus for such growth
JP4522836B2 (en) Group III nitride crystal production method and group III nitride crystal growth apparatus
JP5182758B2 (en) Method and apparatus for producing nitride single crystal
JP2018177587A (en) Method and apparatus for manufacturing group iii nitride crystal
JP2628761B2 (en) Constant temperature device
JPH11513353A (en) Method for epitaxially growing objects and apparatus for performing such growth
TW200835808A (en) Apparatus of supplying organometallic compound
JP2719282B2 (en) Knudsen cell for low temperature
JP2719281B2 (en) Knudsen cell for low temperature
JPH0439922A (en) Evaporator for vapor phase growth
JP4732146B2 (en) Crystal growth apparatus and manufacturing method