JP2006062947A - Method and apparatus for growing group iii nitride crystal - Google Patents

Method and apparatus for growing group iii nitride crystal Download PDF

Info

Publication number
JP2006062947A
JP2006062947A JP2005186871A JP2005186871A JP2006062947A JP 2006062947 A JP2006062947 A JP 2006062947A JP 2005186871 A JP2005186871 A JP 2005186871A JP 2005186871 A JP2005186871 A JP 2005186871A JP 2006062947 A JP2006062947 A JP 2006062947A
Authority
JP
Japan
Prior art keywords
group iii
metal
iii metal
crystal growth
nitride crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005186871A
Other languages
Japanese (ja)
Other versions
JP4554448B2 (en
Inventor
Hiroyoshi Shoji
浩義 庄子
Hirokazu Iwata
浩和 岩田
Shoji Sarayama
正二 皿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005186871A priority Critical patent/JP4554448B2/en
Publication of JP2006062947A publication Critical patent/JP2006062947A/en
Application granted granted Critical
Publication of JP4554448B2 publication Critical patent/JP4554448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a large group III nitride crystal by a method and apparatus for growing the group III nitride crystal, in which the generation of clogging at the tip end of a supplying tube for supplying a group III metal can be suppressed. <P>SOLUTION: The method for growing the group III nitride crystal comprises reacting the group III metal and nitrogen in a melt containing an alkali metal. In the method for continuously growing the group III nitride crystal by supplying the group III metal from a vessel accommodating the group III metal 7 into the melt 11, the gas-liquid interface between the group III metal and nitrogen in a supplying member is moved to a site where the temperature is set to be lower than the crystal growth temperature of the group III nitride except a group III metal supply time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体発光素子、電子デバイスの結晶成長用基板などに利用されるIII族結晶の結晶成長方法及び結晶成長装置に関し、特にサイズの大きい結晶の得られる方法及び装置に関する。   The present invention relates to a crystal growth method and a crystal growth apparatus for a group III crystal used for a semiconductor light emitting element, a substrate for crystal growth of an electronic device, and the like, and more particularly to a method and an apparatus for obtaining a large crystal.

一般に、高品質の半導体層を基板上にエピタキシャル成長させる場合には、基板と半導体層の格子定数や熱膨張係数が同程度である必要がある。しかし、III族窒化物半導体のこれらを同時に満足する基板は現在存在しない。   In general, when a high-quality semiconductor layer is epitaxially grown on a substrate, the lattice constant and the thermal expansion coefficient of the substrate and the semiconductor layer must be approximately the same. However, there is currently no substrate that satisfies both of the group III nitride semiconductors at the same time.

従って、III族窒化物では、一般に、サファイアやGaAsのようなIII族窒化物半導体とは格子定数や熱膨張係数の大きく異なる異種基板上に、ELO等の結晶成長技術を用いて厚膜GaNを成長し、それを基板として半導体レーザー結晶を作製している。   Therefore, in the group III nitride, generally, a thick film GaN is formed on a heterogeneous substrate having a lattice constant and a thermal expansion coefficient greatly different from those of a group III nitride semiconductor such as sapphire and GaAs by using a crystal growth technique such as ELO. Growing, and using it as a substrate, a semiconductor laser crystal is produced.

しかるに、異種基板を用いて結晶成長されたGaN基板は、転位密度が107cm-2程度と非常に多くの結晶欠陥が含まれており、実用的な高出力のレーザー素子や電子デバイスを作製するには未だ十分な品質ではない。 However, a GaN substrate grown using a heterogeneous substrate contains a large number of crystal defects at a dislocation density of about 107 cm −2 , which is useful for producing practical high-power laser elements and electronic devices. Is still not of sufficient quality.

一方、高品質なGaN基板を作製するためのGaNバルク単結晶を作製する試みが様々な研究機関においてなされているが、いまだに数ミリ程度のものしか得られていないのが現状であり、実用化には程遠い状態である。   On the other hand, various research institutes have tried to produce a GaN bulk single crystal to produce a high-quality GaN substrate, but only a few millimeters are still available, and it has been put into practical use. It is far from the state.

従来では、Naをフラックスとして用いたGaN結晶成長方法が示されている(例えば、非特許文献1参照)。この方法は、フラックスとしてのアジ化ナトリウム(NaN3)と金属Gaとを原料として、ステンレス製の反応容器(容器内寸法;内径=7.5mm、長さ=100mm)に窒素雰囲気で封入し、この反応容器を600℃〜800℃の温度で24〜100時間保持することにより、GaN結晶を成長させるものである。この方法では、600℃〜800℃程度の比較的低温での結晶成長が可能であり、容器内圧も高々100kg/cm2程度と低く出来る点が特徴である。この方法で得られる結晶の大きさは1mmに満たない程度に小さく、デバイスを実用化するには小さすぎる。 Conventionally, a GaN crystal growth method using Na as a flux has been shown (for example, see Non-Patent Document 1). In this method, sodium azide (NaN 3 ) as a flux and metal Ga are used as raw materials, and sealed in a stainless steel reaction vessel (inner dimensions; inner diameter = 7.5 mm, length = 100 mm) in a nitrogen atmosphere, By holding this reaction vessel at a temperature of 600 ° C. to 800 ° C. for 24 to 100 hours, a GaN crystal is grown. This method is characterized in that crystal growth at a relatively low temperature of about 600 ° C. to 800 ° C. is possible, and the internal pressure of the container can be as low as about 100 kg / cm 2 at most. The size of the crystals obtained by this method is so small that it is less than 1 mm, which is too small for practical use of the device.

また、III族窒化物結晶の大きさを大きくするために、III族窒化物結晶の結晶成長に、III族金属を追加補充する方法が示されている(例えば、特許文献1参照)。この方法は、フラックスの収容された成長容器と、III族金属供給管を設け、III族金属の自重により成長容器にIII族金属を追加補給するようになっている。この方法ではIII族金属を追加補給することで、結晶成長時にIII族金属の枯渇を回避すると共に、多核発生を抑制し大きなIII族窒化物結晶を得ることが可能となる。   Further, in order to increase the size of the group III nitride crystal, a method of additionally supplementing the group III metal for crystal growth of the group III nitride crystal is shown (for example, see Patent Document 1). In this method, a growth container containing a flux and a group III metal supply pipe are provided, and the group III metal is additionally supplied to the growth container by its own weight. In this method, by additionally replenishing the Group III metal, it is possible to avoid the depletion of the Group III metal during crystal growth, and to suppress the generation of multinuclei and obtain a large Group III nitride crystal.

また、工程を複雑化せず、高価な反応容器を用いることもなく、かつ結晶の大きさを小さくせずに実用的なIII族窒化物結晶を提供する方法が示されている(例えば、特許文献2参照)。この方法は、反応容器内で、III族金属を含む溶液とフラックスと窒素原料とが接する領域から、種結晶を用いてIII族窒化物結晶を成長させるものであり、III族窒化物の種結晶を、融液と窒素原料とが接することができる領域に移動させるものである。   In addition, a method for providing a practical group III nitride crystal without complicating the process, without using an expensive reaction vessel, and without reducing the size of the crystal is shown (for example, patents). Reference 2). In this method, a group III nitride crystal is grown using a seed crystal from a region where a solution containing a group III metal, a flux, and a nitrogen raw material are in contact in a reaction vessel. Is moved to a region where the melt and the nitrogen raw material can come into contact with each other.

さらに、高品質で実用的な大きさのIII族窒化物結晶を作製する方法が示されている(例えば、特許文献3参照)。この方法は、結晶成長容器内の温度を上昇させて、容器内上部のGaNをIII族金属(Ga)と窒素とに分解し、メッシュを通過した後、容器内下部のNa溶液に供給し反応させてGaNを再成長させるものである。
特開2003−160398号公報 特開2001−064098号公報 特開2003−160399号公報 Chemistry of Materials Vol.9 (1997) p.413-416
Furthermore, a method for producing a high-quality and practical size group III nitride crystal is shown (for example, see Patent Document 3). In this method, the temperature in the crystal growth vessel is raised, GaN in the upper part of the vessel is decomposed into Group III metal (Ga) and nitrogen, passed through the mesh, and then supplied to the Na solution in the lower part of the vessel to react. GaN is regrown.
JP 2003-160398 A JP 2001-064098 A JP 2003-160399 A Chemistry of Materials Vol.9 (1997) p.413-416

しかしながら、例えば、非特許文献1の方法では、フラックスとしてのアジ化ナトリウム(NaN3)と金属Gaとを原料として、ステンレス製の反応容器内で反応させることでGaN結晶成長を行っているが、この状態ではIII族金属とアジ化ナトリウムとの混合融液からIII族窒化物が形成されると、原料が消費された分III族金属が少なくなるので大きな結晶が得られなくなる。III族金属を大量に仕込んでIII族金属原料の枯渇をなくすようにすると、反応容器内では多核成長が起きるため結晶サイズは1mmと小さなものしか得られていないという問題もある。 However, for example, in the method of Non-Patent Document 1, GaN crystal growth is performed by reacting in a stainless steel reaction vessel using sodium azide (NaN 3 ) as a flux and metal Ga as raw materials. In this state, when a group III nitride is formed from a mixed melt of a group III metal and sodium azide, a large crystal cannot be obtained because the amount of the group III metal consumed for the raw material is reduced. If a large amount of group III metal is charged to eliminate the depletion of the group III metal raw material, multinuclear growth occurs in the reaction vessel, so that there is also a problem that a crystal size as small as 1 mm is obtained.

III族金属の枯渇を抑え、多核成長が発生しないで大きな結晶が得られる特許文献1の方法では、III族金属を供給するための供給管先端にIII族窒化物結晶が成長して供給管先端が詰まるという不具合が発生することが判明した。これは、供給管先端のIII族金属にアルカリ金属蒸気が付着し、N2とIII族金属が反応してIII族窒化物が形成されることで供給管先端の穴が詰まるものである。供給管先端の穴が詰まるとIII族金属の供給がストップし、結晶成長することができなくなり大きな結晶を得ることができなくなる。 In the method of Patent Document 1 in which depletion of group III metal is suppressed and a large crystal can be obtained without occurrence of multinuclear growth, a group III nitride crystal grows on the tip of the supply tube for supplying the group III metal, and the tip of the supply tube It has been found that the problem of clogging occurs. This is because the alkali metal vapor adheres to the Group III metal at the tip of the supply pipe, and N 2 and the Group III metal react to form Group III nitride, thereby filling the hole at the tip of the supply pipe. When the hole at the tip of the supply pipe is clogged, the supply of the group III metal is stopped, so that crystal growth cannot be performed and a large crystal cannot be obtained.

本発明は、上述した実情を考慮してなされたもので、III族金属を供給する供給管先端の詰まりが発生しない結晶成長方法及び結晶成長装置により、大きなIII族窒化物結晶を得ることを目的とする。   The present invention has been made in consideration of the above-described circumstances, and an object thereof is to obtain a large group III nitride crystal by a crystal growth method and a crystal growth apparatus that do not cause clogging of a supply pipe tip for supplying a group III metal. And

上記の課題を解決するために、請求項1に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、III族金属を収容している容器からIII族金属を融液中に供給することで継続的にIII族窒化物結晶を成長する方法において、III族金属の供給時以外には供給部材内のIII族金属と窒素との気液界面をIII族窒化物の結晶成長温度以下になる場所に移動させるIII族窒化物結晶成長方法を特徴とする。   In order to solve the above problems, the invention described in claim 1 is a crystal growth method in which a group III metal and nitrogen are reacted in a melt containing an alkali metal to grow a group III nitride crystal, and III In a method of continuously growing a group III nitride crystal by supplying a group III metal into a melt from a container containing a group metal, the group III in the supply member is supplied except when the group III metal is supplied. A group III nitride crystal growth method is characterized in that a gas-liquid interface between a metal and nitrogen is moved to a place where the temperature is lower than the group III nitride crystal growth temperature.

また、請求項2に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、原料であるIII族金属を収容している容器からIII族金属を前記アルカリ金属を含む融液中に供給することにより、継続的にIII族窒化物結晶を成長する方法において、前記III族金属の供給時以外には、該III族金属の供給部材先端をIII族窒化物の成長温度以下になる場所に移動させるIII族窒化物結晶成長方法を特徴とする。   The invention according to claim 2 is a crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and containing the group III metal as a raw material. In the method of continuously growing a group III nitride crystal by supplying a group III metal from a container in the melt containing the alkali metal, the III group metal is supplied except when the group III metal is supplied. A Group III nitride crystal growth method is characterized in that the tip of the Group metal supply member is moved to a location that is lower than the Group III nitride growth temperature.

また、請求項3に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、III族金属を収容している容器からIII族金属を融液中に供給することにより継続的にIII族窒化物結晶を成長する方法において、III族金属の供給時以外にはIII族金属を供給する供給管先端のIII族金属とアルカリ金属及び窒素の接触を遮断するようにしたIII族窒化物結晶成長方法を特徴とする。   The invention according to claim 3 is a crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and contains the group III metal. In a method of continuously growing a group III nitride crystal by supplying a group III metal from a vessel into a melt, a group III metal at the tip of a supply pipe for supplying a group III metal except when the group III metal is supplied The group III nitride crystal growth method is characterized in that the contact between the alkali metal and nitrogen is cut off.

また、請求項4に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、III族金属を収容している容器からIII族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、III族金属の供給時以外には供給部材先端はIII族窒化物の結晶成長温度以下になる場所に待避するIII族窒化物結晶成長装置を最も主要な特徴とする。   The invention according to claim 4 is a crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and contains the group III metal. In the group III nitride crystal growth apparatus having a structure capable of supplying the group III metal from the container into the melt, the tip of the supply member is placed at a temperature below the crystal growth temperature of the group III nitride except when the group III metal is supplied. The evacuated group III nitride crystal growth apparatus is the main feature.

請求項5に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、III族金属を収容している容器からIII族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、III族金属の供給時以外にはIII族金属とアルカリ金属蒸気を接触させないよう供給部材先端に蓋をするIII族窒化物結晶成長装置を主要な特徴とする。   The invention according to claim 5 is a crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, from a container containing the group III metal. In a Group III nitride crystal growth apparatus having a structure capable of supplying a Group III metal into the melt, the supply member tip is covered so that the Group III metal and the alkali metal vapor do not come into contact with each other except when the Group III metal is supplied. Group nitride crystal growth equipment is the main feature.

請求項6に記載の発明は、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、III族金属を収容している容器からIII族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、III族金属を収容する容器はシリンダーであり、シリンダー内部にはピストンとロッドが具備され、ロッドはピストンと接続された構造となっており、耐圧容器外部からロッドを操作することでピストンを駆動してIII族金属を反応容器内に供給できる構造を有していることを特徴とするIII族窒化物結晶成長装置を特徴とする。   The invention according to claim 6 is a crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, from a container containing the group III metal. In a group III nitride crystal growth apparatus having a structure capable of supplying a group III metal into a melt, a container for storing a group III metal is a cylinder, a piston and a rod are provided inside the cylinder, and the rod is connected to the piston. Group III nitride crystal growth characterized in that it has a structure in which a piston can be driven by operating a rod from the outside of the pressure vessel to supply Group III metal into the reaction vessel Features the device.

請求項7に記載の発明は、請求項4または請求項5記載のIII族窒化物結晶成長装置において、III族金属を供給する供給部材先端は反応容器内の混合融液液面方向に向いているIII族窒化物結晶成長装置を主要な特徴とする。   The invention according to claim 7 is the group III nitride crystal growth apparatus according to claim 4 or claim 5, wherein the tip of the supply member for supplying the group III metal is directed to the mixed melt liquid surface direction in the reaction vessel. The group III nitride crystal growth apparatus is the main feature.

本発明によれば、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、原料であるIII族金属を収容している容器からIII族金属を前記アルカリ金属を含む融液中に供給することにより、継続的にIII族窒化物結晶を成長する方法において、前記III族金属の供給時以外には、III族金属と窒素との気液界面をIII族窒化物の結晶成長温度以下になる場所に移動させることを特徴とするIII族窒化物結晶成長方法により、III族金属の供給時以外にはIII族金属と窒素との気液界面、III族窒化物の成長温度以下になる場所に移動させる方法をとることで、供給管先端でのIII族金属とN2の反応を抑えることができ、供給管の詰まりをなくすことができるIII族窒化物結晶成法することが可能となる。 According to the present invention, there is provided a crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, from a container containing a group III metal as a raw material. In the method of continuously growing a group III nitride crystal by supplying a group III metal into the melt containing the alkali metal, the group III metal and nitrogen are mixed except when the group III metal is supplied. According to the Group III nitride crystal growth method, the gas-liquid interface is moved to a place where the temperature is lower than the Group III nitride crystal growth temperature. By adopting a method of moving the liquid interface to a place where the temperature is lower than the growth temperature of the group III nitride, the reaction between the group III metal and N 2 at the tip of the supply pipe can be suppressed, and clogging of the supply pipe can be eliminated. so It is possible to that III-nitride crystal growth method.

本発明の第1の実施形態は、III族金属の供給時以外には供給管内のIII族金属と窒素との気液界面をIII族窒化物の成長温度以下になる場所に移動させる方法をとっている。これを実現するため、III族金属を収容している容器はシリンダーであり、シリンダー内部にはピストンとロッドが具備され、ロッドはピストンと接続された構造となっており、耐圧容器外部からロッドを操作することでピストンを駆動してIII族金属を反応容器内に供給できる構造を有している。   The first embodiment of the present invention employs a method of moving the gas-liquid interface between the group III metal and nitrogen in the supply pipe to a place where the temperature is lower than the group III nitride growth temperature except when the group III metal is supplied. ing. In order to realize this, the container containing the Group III metal is a cylinder, and a piston and a rod are provided inside the cylinder, and the rod is connected to the piston. By operating, the piston can be driven to supply the Group III metal into the reaction vessel.

III族金属の供給は、一例では10ccのIII族金属を500時間で供給するもので、1時間あたりの供給量は0.02ccとかなり少量である。III族金属は液体状態だと表面張力が発生し、例えば0.02ccであれば供給管先端に留まり滴下できない。滴下するための一つの方法として5時間毎に0.1cc供給するように操作している。   The supply of the Group III metal is, for example, supplying 10 cc of the Group III metal in 500 hours, and the supply amount per hour is as small as 0.02 cc. When the group III metal is in a liquid state, surface tension is generated. As one method for dripping, it operates so that 0.1cc may be supplied every 5 hours.

つまり、供給時間より待機時間(供給しない時間)が長くなり、その間III族金属と窒素との気液界面にアルカリ金属蒸気が付着し、N2が拡散することでIII族窒化物が結晶成長して供給管先端の穴を塞いでしまう。また、III族金属を供給する供給管先端は反応容器内の混合融液の液面方向に向いているため、供給時にはIII族金属の自重により反応容器内に滴下しやすくなる。供給管内のIII族金属と窒素との気液界面を結晶成長温度以下になる場所に移動させることで、例えばアルカリ金属蒸気が供給管内に入り込んだとしても結晶成長が起こらないので供給管先端の詰まりをなくすことができる。 In other words, the standby time (non-supply time) becomes longer than the supply time, and during that time, alkali metal vapor adheres to the gas-liquid interface between the group III metal and nitrogen, and N 2 diffuses to cause group III nitride crystal growth. As a result, the hole at the tip of the supply pipe is blocked. Moreover, since the tip of the supply pipe for supplying the Group III metal faces the liquid surface direction of the mixed melt in the reaction vessel, it is easy to drop into the reaction vessel due to the weight of the Group III metal during supply. By moving the gas-liquid interface between the group III metal and nitrogen in the supply pipe to a place below the crystal growth temperature, for example, even if alkali metal vapor enters the supply pipe, crystal growth does not occur. Can be eliminated.

本発明の第2の実施形態は、待機時間(供給しない時間)はIII族窒化物が結晶成長しない温度領域(およそ700℃以下)に供給管先端を移動させることで、供給管先端でIII族金属がN2と反応しないよう工夫したものであり、それを実現するため、供給管先端を結晶成長温度以下になる場所に移動できる構造を有している装置を提案するものである。 According to the second embodiment of the present invention, the supply pipe tip is moved to a temperature region (about 700 ° C. or less) where the group III nitride does not grow during standby time (non-supply time). are those metal is devised so as not to react with N 2, to realize it, it is to propose a device having a structure capable of moving to a location consisting of supply tube tip below the crystal growth temperature.

本発明の第3の実施形態は、III族金属の供給時以外には供給管先端部のIII族金属とアルカリ金属蒸気又はN2を接触しないように工夫したものである。III族金属がIII族窒化物の結晶成長温度にあっても、アルカリ金属蒸気又はN2と接触しなければIII族窒化物が結晶成長しないため供給管先端の穴が塞がることがない。これを実現したものが、III族金属の供給時以外に供給管先端に蓋ができる構造を有している装置である。供給管先端に蓋をすることで、待機時(供給しない時間)にIII族金属とアルカリ金属又はN2との接触を避けられるのでIII族窒化物の結晶成長は発生しない。 The third embodiment of the present invention is devised so that the group III metal at the tip of the supply pipe and the alkali metal vapor or N 2 do not come into contact except when the group III metal is supplied. Even if the group III metal is at the crystal growth temperature of the group III nitride, the group III nitride does not grow unless it comes into contact with the alkali metal vapor or N 2 , so that the hole at the tip of the supply pipe is not blocked. What has realized this is an apparatus having a structure in which a lid can be provided at the tip of the supply pipe other than when the group III metal is supplied. By covering the tip of the supply pipe, contact between the group III metal and the alkali metal or N 2 can be avoided during standby (time during which supply is not performed), so that group III nitride crystal growth does not occur.

本実施例は図1に示すように、耐圧容器1内には反応容器2とIII族金属を供給する供給管4とN2ガスを供給するN2ガス供給管9が設置されている。III族金属を供給する供給管4はシリンダー3と接続され、シリンダー3内にはIII族金属7が収容されており、ピストン5をロッド6で押すことでIII族金属7を供給できる構造になっている。反応容器2内にはアルカリ金属とIII族金属からなる融液11が収容されており、ヒーター10により加熱できるようになっている。結晶成長時には耐圧容器1内にN2ガスを導入し、ヒーターにより反応容器2を加熱し、III族金属とN2ガスを反応させてIII族窒化物の結晶成長を行うものである。この時、反応容器2内のIII族金属がN2ガスとの反応によって消費されるとIII族金属が枯渇するため、III族金属7を収容するシリンダー3から供給管4を通して反応容器2内に供給できる構造となっている。また、供給管4先端は混合融液11液面方向を向いているため、III族金属の自重で滴下しやすくなっている。 This embodiment, as shown in FIG. 1, the supply pipe 4 and N 2 gas supplied N 2 gas supply pipe 9 is installed to supply reaction chamber 2 and the group III metal in a pressure vessel 1. The supply pipe 4 for supplying the group III metal is connected to the cylinder 3, and the group III metal 7 is accommodated in the cylinder 3, so that the group III metal 7 can be supplied by pushing the piston 5 with the rod 6. ing. A melt 11 made of an alkali metal and a group III metal is accommodated in the reaction vessel 2 and can be heated by a heater 10. During crystal growth, N 2 gas is introduced into the pressure-resistant vessel 1, the reaction vessel 2 is heated by a heater, and the group III metal and N 2 gas are reacted to perform group III nitride crystal growth. At this time, when the group III metal in the reaction vessel 2 is consumed by the reaction with the N 2 gas, the group III metal is depleted, so that the cylinder 3 containing the group III metal 7 enters the reaction vessel 2 through the supply pipe 4. It has a structure that can be supplied. Moreover, since the front-end | tip of the supply pipe | tube 4 has faced the liquid melt 11 liquid surface direction, it becomes easy to dripping with the own weight of a group III metal.

本実施例では図2に示すように、III族金属の供給時以外には供給管内のIII族金属と窒素との気液界面をGaNの結晶成長温度以下になる場所に移動させるようにしている。III族金属と窒素との気液界面をGaN結晶成長温度以下になる場所に移動させるためにはロッド6を操作してピストン5を引くだけで良い。ただし、気液界面の位置は耐圧容器1の外からは判別できないため、シリンダー3の内径と供給管4の穴径やロッド6の位置を正確に把握して気液界面の位置を制御する必要がある。   In this embodiment, as shown in FIG. 2, the gas-liquid interface between the group III metal and nitrogen in the supply pipe is moved to a place where the temperature is lower than the crystal growth temperature of GaN except when the group III metal is supplied. . In order to move the gas-liquid interface between the group III metal and nitrogen to a place where the temperature is lower than the GaN crystal growth temperature, it is only necessary to operate the rod 6 and pull the piston 5. However, since the position of the gas-liquid interface cannot be determined from the outside of the pressure vessel 1, it is necessary to accurately grasp the inner diameter of the cylinder 3, the hole diameter of the supply pipe 4, and the position of the rod 6 to control the position of the gas-liquid interface. There is.

本実施例では、シリンダー3の内径をφ20mm、長さ40mmとしており、供給管4の穴径はφ1mmである。供給管4先端からGaN結晶成長温度以下になる場所までの距離が100mmである。   In this embodiment, the cylinder 3 has an inner diameter of 20 mm and a length of 40 mm, and the hole diameter of the supply pipe 4 is 1 mm. The distance from the tip of the supply tube 4 to the place where the temperature is below the GaN crystal growth temperature is 100 mm.

GaN結晶成長温度以下の場所に移動させるためには100mm以上後退する必要があり、シリンダー3内径面積(およそ314mm2)と供給管4穴面積(およそ0.78mm2)の比(402倍)からピストン5の移動量はおよそ0.25mm以上となる。ピストン5を正確に制御するためには、例えばロッド6をネジの回転で動作させる機構を設け、ピッチ3mmのネジを用いてピストン5を0.25mm移動させるためには30°ネジを回転させれば良く、供給管4内のIII族金属と窒素との気液界面を制御することができる。 To move to the following location GaN crystal growth temperature has to be retracted over 100 mm, from the cylinder 3 the inner diameter area ratio (approximately 314 mm 2) and the supply pipe 4 hole area (approximately 0.78 mm 2) (402-fold) The moving amount of the piston 5 is about 0.25 mm or more. In order to accurately control the piston 5, for example, a mechanism for operating the rod 6 by rotating a screw is provided, and in order to move the piston 5 by 0.25 mm using a screw having a pitch of 3 mm, a 30 ° screw can be rotated. The gas-liquid interface between the group III metal and nitrogen in the supply pipe 4 can be controlled.

より詳しく説明すると、III族金属をGaとし、アルカリ金属をNaとしている。BN(ボロンナイトライド)製の反応容器2内に予めGaとNaを重量比が、1:1となるようそれぞれ3g仕込み混合融液11とし、SUS製の耐圧容器1内に配置すると共に、耐圧容器1のフランジ8を取付ける。SUS製のシリンダー3内にはGaを10cc仕込んで供給管4をフランジ8から挿入することで図1に示すようになる。   More specifically, the group III metal is Ga, and the alkali metal is Na. Into a reaction vessel 2 made of BN (boron nitride), 3 g of Ga and Na were charged in advance so that the weight ratio was 1: 1 respectively to form a mixed melt 11 and placed in the pressure vessel 1 made of SUS. Install the flange 8 of the container 1. The SUS cylinder 3 is charged with 10 cc of Ga and the supply pipe 4 is inserted through the flange 8 as shown in FIG.

GaN結晶成長は、耐圧容器1内にN2ガスを8MPaになるようN2ガス供給管9から導入し、ヒーター10により温度が800℃となるよう加熱する。反応容器2内ではGaとN2が反応してGaN結晶が成長するため、原料のGaが消費されるのでロッド6の操作によりGa7を反応容器2内に供給する。結晶成長時間は500時間であり、Gaを10cc結晶成長時間内に使いきるとすると1時間あたり0.02ccとなる。前記したように0.02ccでは表面張力の影響で供給管先端に留まり滴下できないため、5時間毎に0.1ccずつ供給している。供給が終了するとロッドを操作してGaと窒素との気液界面をGaN結晶の成長温度以下になる場所(図2中A−A'より上の部分)に移動させGaとN2が反応するのを防いでいる。 In the GaN crystal growth, N 2 gas is introduced into the pressure vessel 1 from the N 2 gas supply pipe 9 so as to be 8 MPa, and heated by the heater 10 so that the temperature becomes 800 ° C. Since Ga and N 2 react to grow GaN crystals in the reaction vessel 2, the raw material Ga is consumed, so that Ga 7 is supplied into the reaction vessel 2 by operating the rod 6. The crystal growth time is 500 hours, and when Ga is used up within the 10 cc crystal growth time, it becomes 0.02 cc per hour. As described above, at 0.02 cc, 0.1 cc is supplied every 5 hours because it remains at the tip of the supply pipe and cannot be dropped due to the effect of surface tension. When the supply is completed, the rod is operated to move the gas-liquid interface between Ga and nitrogen to a place where the temperature is lower than the growth temperature of the GaN crystal (the portion above AA ′ in FIG. 2), and Ga and N 2 react. Is prevented.

本実施例は、図1を用いて説明すると、III族金属7を供給するために供給管4を反応容器2内に先端を差込み、ロッド6を操作することでピストン5を動作させてIII族金属7を反応容器2内に供給する。供給が終了したら図3に示すように供給管4を移動させ、III族窒化物が結晶成長しない温度領域(図3A−A'より上)に供給管4の先端が来るようにする。待機時間(供給しない時間)に供給管4の先端をIII族窒化物が結晶成長しない温度領域に置くことにより、供給管4先端のIII族金属とN2ガスが反応しないため詰まりを解消することができる。 The present embodiment will be described with reference to FIG. 1. In order to supply the group III metal 7, the tip of the supply pipe 4 is inserted into the reaction vessel 2, and the piston 6 is operated by operating the rod 6 to operate the group III. Metal 7 is supplied into the reaction vessel 2. When the supply is completed, the supply pipe 4 is moved as shown in FIG. 3 so that the tip of the supply pipe 4 comes to a temperature region (above FIG. 3A-A ′) where the group III nitride does not grow. By placing the tip of the supply pipe 4 in a temperature region where the group III nitride does not grow during the standby time (non-supply time), the group III metal at the tip of the supply pipe 4 and the N 2 gas do not react to eliminate clogging. Can do.

より詳しく説明すると、III族金属をGaとし、アルカリ金属をNaとしている。BN(ボロンナイトライド)製の反応容器2内に予めGaとNaを重量比が、1:1となるようそれぞれ3g仕込み混合融液11とし、SUS製の耐圧容器1内に配置すると共に、耐圧容器1のフランジ8を取付ける。SUS製のシリンダー3内にはGaを10cc仕込んで供給管4をフランジ8から挿入することで図3に示すようになる。   More specifically, the group III metal is Ga, and the alkali metal is Na. Into a reaction vessel 2 made of BN (boron nitride), 3 g of Ga and Na were charged in advance so that the weight ratio was 1: 1 respectively to form a mixed melt 11 and placed in the pressure vessel 1 made of SUS. Install the flange 8 of the container 1. When 10 cc of Ga is charged in the SUS cylinder 3 and the supply pipe 4 is inserted from the flange 8, the structure shown in FIG. 3 is obtained.

GaN結晶成長は、耐圧容器1内にN2ガスを8MPaになるようN2ガス供給管9から導入し、ヒーター10により温度が800℃となるよう加熱する。反応容器2内ではGaとN2が反応してGaN結晶が成長するため、原料のGaが消費されるので供給管4を反応容器2内に移動させ、ロッド6の操作によりGa7を反応容器2内に供給する。結晶成長時間は500時間であり、Gaを10cc結晶成長時間内に使いきるとすると1時間あたり0.02ccとなる。前記したように0.02ccでは表面張力の影響で供給管先端に留まり滴下できないため、5時間毎に0.1ccづつ供給している。供給が終了すると供給管4の先端をGaN結晶の成長温度以下になる場所(図3中A−A'より上の部分)に移動させ、供給管4の先端でGaとN2が反応するのを防いでいる。 In the GaN crystal growth, N 2 gas is introduced into the pressure vessel 1 from the N 2 gas supply pipe 9 so as to be 8 MPa, and heated by the heater 10 so that the temperature becomes 800 ° C. Since Ga and N 2 react to grow GaN crystals in the reaction vessel 2, the raw material Ga is consumed. Therefore, the supply pipe 4 is moved into the reaction vessel 2, and the operation of the rod 6 causes Ga 7 to be added to the reaction vessel 2. Supply in. The crystal growth time is 500 hours, and when Ga is used up within the 10 cc crystal growth time, it becomes 0.02 cc per hour. As described above, at 0.02 cc, it stays at the tip of the supply pipe due to the effect of surface tension and cannot be dropped, so that 0.1 cc is supplied every 5 hours. When the supply is completed, the tip of the supply tube 4 is moved to a place where the temperature is lower than the growth temperature of the GaN crystal (a portion above AA ′ in FIG. 3), and Ga and N 2 react at the tip of the supply tube 4. Is preventing.

本実施例では図4及び図5に示すように、シリンダー3を耐圧容器1の中に収容したもので、供給管4の先端を移動させるにはフランジ8の外に伸びたシリンダー支持具12によりシリンダー3及び供給管4を同時に移動させるものである。   In this embodiment, as shown in FIGS. 4 and 5, the cylinder 3 is accommodated in the pressure vessel 1, and the tip of the supply pipe 4 is moved by a cylinder support 12 extending outside the flange 8. The cylinder 3 and the supply pipe 4 are moved simultaneously.

図4はGa7を供給している図であり、シリンダー支持具12を押し込み供給管4の先端を反応容器2に近づけ、ロッド6の操作でピストン5を押し込みGaを反応容器2内に供給している。図5は待機時(供給しない時間)の様子を表したもので、供給が終了したらシリンダー支持具12を引き抜き供給管4の先端をGa窒化物が結晶成長しない温度領域(図5A−A'より上の部分)に移動させるようにしている。   FIG. 4 is a diagram in which Ga 7 is supplied. The cylinder support 12 is pushed in, the tip of the supply pipe 4 is brought close to the reaction vessel 2, the piston 5 is pushed by operating the rod 6, and Ga is supplied into the reaction vessel 2. Yes. FIG. 5 shows a state during standby (non-supply time). When the supply is completed, the cylinder support 12 is pulled out, and the tip of the supply pipe 4 is temperature range where no Ga nitride crystal grows (from FIG. 5A-A ′). (Upper part).

シリンダー3を耐圧容器1の中に収容することで、耐圧容器1外部の突起物などを減らすことができ、装置外形寸法を小さくすることが可能となる。   By accommodating the cylinder 3 in the pressure vessel 1, projections and the like outside the pressure vessel 1 can be reduced, and the external dimensions of the apparatus can be reduced.

本実施例では図6に示すように、供給管4の先端に蓋14ができるようにしたもので、蓋14を操作する開閉棒13により開閉することができる。蓋14と開閉棒13はSUS製で、蓋14の形状を図7のように突起状とすることでNa蒸気又はN2をガスとの接触を少なくすることができる。蓋14は供給管4先端に固定した棒15の先で開閉棒13の動作によって開閉できる構造となっている。ここで、開閉棒13をフランジ8外部から押すと図7(a)に示すように供給管4の先端の蓋は閉じ、開閉棒13をフランジ8の外部から引くと図7(b)に示すように供給管4の先端の蓋14が開く構造になっている。 In this embodiment, as shown in FIG. 6, a lid 14 is formed at the tip of the supply pipe 4, and can be opened and closed by an opening / closing bar 13 that operates the lid 14. The lid 14 and the open / close bar 13 are made of SUS, and the contact of Na vapor or N 2 with the gas can be reduced by making the lid 14 have a protruding shape as shown in FIG. The lid 14 has a structure that can be opened and closed by the operation of the opening / closing bar 13 at the tip of a bar 15 fixed to the tip of the supply pipe 4. Here, when the opening / closing bar 13 is pushed from the outside of the flange 8, the lid at the tip of the supply pipe 4 is closed as shown in FIG. 7A, and when the opening / closing bar 13 is pulled from the outside of the flange 8, it is shown in FIG. In this way, the lid 14 at the tip of the supply pipe 4 is open.

待機時(供給していない時間)図7(a)には開閉棒13を押し込むことで供給管4の先端に蓋14がされ、供給時には開閉棒13を引くことで蓋14を供給管4の先端から離し、ロッド6の操作によりピストン5を動作させてGa7を反応容器2に供給する。   During standby (non-supply time), in FIG. 7A, the lid 14 is pushed to the tip of the supply pipe 4 by pushing the open / close bar 13, and the lid 14 is pulled out of the supply pipe 4 by pulling the open / close bar 13 during supply. The piston 5 is moved by operating the rod 6 away from the tip, and Ga 7 is supplied to the reaction vessel 2.

この蓋14はNa蒸気又はN2ガスとの接触を完全に断つことはできないが、5時間毎の供給で蓋14が開閉する動作の繰返しにより供給管4の先端の詰まりは発生しない。 Although this lid 14 cannot completely cut off contact with Na vapor or N 2 gas, clogging of the tip of the supply pipe 4 does not occur due to repeated opening and closing of the lid 14 by supply every 5 hours.

III族金属7を収容する容器は図8に示すような構成からなり、III族金属7を収容するシリンダー3とピストン5と接続したロッド6が耐圧容器の外に設置され、供給管4がフランジ8を介して反応容器内に挿入されている。シリンダー3とピストン5とロッド6はステンレス製であり、ピストン5にはパッキン(図示せず)が装着されIII族金属7が洩れないようになっている。   The container for containing the group III metal 7 has a structure as shown in FIG. 8, the cylinder 3 for containing the group III metal 7 and the rod 6 connected to the piston 5 are installed outside the pressure vessel, and the supply pipe 4 is flanged. 8 is inserted into the reaction vessel. The cylinder 3, the piston 5 and the rod 6 are made of stainless steel, and a packing (not shown) is attached to the piston 5 so that the group III metal 7 does not leak.

供給管4はパッキン(図示せず)によりフランジ8に装着され、ロッド6を上下することでシリンダー3内のIII族金属7を反応容器2内に供給することが可能となる。   The supply pipe 4 is attached to the flange 8 by packing (not shown), and the group III metal 7 in the cylinder 3 can be supplied into the reaction vessel 2 by moving the rod 6 up and down.

供給管4は耐圧容器1に挿入する部分がステンレス製であるが、反応容器2内で接続管17によりBN(窒化ボロン)製の供給管と接続されている。本実施例ではIII族金属材料としてGaを用いているが、Gaはおよそ400℃以上でFeと反応し合金化するため、先端の高温(800℃)に曝される部分にはGaと反応しないBN製の供給管16としている。   The supply pipe 4 is made of stainless steel at a portion to be inserted into the pressure resistant container 1, but is connected to a supply pipe made of BN (boron nitride) by a connection pipe 17 in the reaction container 2. In this embodiment, Ga is used as the group III metal material. However, since Ga reacts with Fe at about 400 ° C. or higher and forms an alloy, it does not react with Ga at the portion exposed to the high temperature (800 ° C.) at the tip. A supply pipe 16 made of BN is used.

本実施例ではシリンダー3の内径はφ20mm、長さ40mmであり、供給管4は1/4インチ管であり、BN製供給管16は外形が1/4インチで内径はφ1mmとしている。   In this embodiment, the cylinder 3 has an inner diameter of 20 mm and a length of 40 mm, the supply pipe 4 is a 1/4 inch pipe, the BN supply pipe 16 has an outer diameter of 1/4 inch and an inner diameter of 1 mm.

III族窒化物結晶成長の供給時にはロッド6を押しこんでIII族金属7を反応容器2内に供給し、待機時(供給しない時間)にはロッド6を引くことでIII族金属7と窒素ガスとの気液界面をGaとN2が反応しない温度領域に移動するものである。 At the time of supply of group III nitride crystal growth, the rod 6 is pushed in to supply the group III metal 7 into the reaction vessel 2, and at the time of standby (non-supply time), the rod 6 is pulled so that the group III metal 7 and nitrogen gas are supplied. Is moved to a temperature region where Ga and N 2 do not react.

また、請求項2記載の方法であれば、供給時にはシリンダー3を下げて供給管先端16を反応容器内に挿入し、ロッド6を押してIII族金属7を反応容器2内に供給し、待機時(供給しない時間)にはシリンダー3を上げて供給管先端をGaとN2が反応しない温度領域に移動することで供給管先端の詰まりを防ぐことができる。 According to the method of claim 2, when supplying, the cylinder 3 is lowered and the supply tube tip 16 is inserted into the reaction vessel, the rod 6 is pushed to supply the group III metal 7 into the reaction vessel 2, In the (non-supply time), the clogging of the supply pipe tip can be prevented by raising the cylinder 3 and moving the supply pipe tip to a temperature region where Ga and N 2 do not react.

本発明のIII族窒化物結晶を成長させる反応装置の断面図である。It is sectional drawing of the reactor which grows the group III nitride crystal of this invention. 本発明のIII族金属の供給時以外における反応装置の断面図である。It is sectional drawing of the reaction apparatus except the time of supply of the group III metal of this invention. 本発明の結晶成長反応でのIII族金属供給装置移動の説明図である。It is explanatory drawing of group III metal supply apparatus movement in the crystal growth reaction of this invention. 本発明の窒化物結晶を成長させる他の反応装置の断面図である。It is sectional drawing of the other reactor which grows the nitride crystal of this invention. 本発明の結晶成長反応での他の供給装置移動の説明図である。It is explanatory drawing of the other supply apparatus movement by the crystal growth reaction of this invention. 本発明の結晶成長装置の蓋付金属供給装置の断面説明図である。It is sectional explanatory drawing of the metal supply apparatus with a lid | cover of the crystal growth apparatus of this invention. 本発明の成長装置の蓋付供給装置の蓋操作機構の説明図である。It is explanatory drawing of the lid | cover operation mechanism of the supply apparatus with a lid | cover of the growth apparatus of this invention. 本発明のIII族金属を収容する容器を示す拡大図である。It is an enlarged view which shows the container which accommodates the group III metal of this invention.

符号の説明Explanation of symbols

1 耐圧容器
2 反応容器
3 シリンダー
4,16 供給管
5 ピストン
6 ロッド
7 III族金属
8 フランジ
9 N2ガス供給管
10 ヒーター
11 融液
12 シリンダー支持具
13 開閉棒
14 蓋
15 棒
17 接続管
1 pressure-resistant container 2 reactor 3 cylinders 4,16 supply pipe 5 the piston 6 rod 7 III metals 8 flange 9 N 2 gas feed pipe 10 Heater 11 melt 12 cylinder support 13 closing bars 14 cover 15 bar 17 connecting pipe

Claims (7)

アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、前記III族金属を収容している容器から前記III族金属を融液中に供給することで継続的に前記III族窒化物結晶を成長する方法において、
前記III族金属の供給時以外には供給部材内の前記III族金属と窒素との気液界面をIII族窒化物の結晶成長温度以下になる場所に移動させることを特徴とするIII族窒化物結晶成長方法。
A crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, wherein the group III metal is contained in the melt from a container containing the group III metal. In the method of continuously growing the group III nitride crystal by supplying to
The group III nitride is characterized in that the gas-liquid interface between the group III metal and nitrogen in the supply member is moved to a place below the crystal growth temperature of the group III nitride except when the group III metal is supplied. Crystal growth method.
アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、原料であるIII族金属を収容している容器からIII族金属を前記アルカリ金属を含む融液中に供給することにより、継続的にIII族窒化物結晶を成長する方法において、
前記III族金属の供給時以外には、該III族金属の供給部材先端をIII族窒化物の成長温度以下になる場所に移動させることを特徴とするIII族窒化物結晶成長方法。
A crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, wherein the group III metal is introduced into the alkali from a container containing the group III metal as a raw material. In a method for continuously growing a group III nitride crystal by supplying it into a melt containing a metal,
A Group III nitride crystal growth method, wherein the tip of the Group III metal supply member is moved to a place where the temperature is lower than the Group III nitride growth temperature except when the Group III metal is supplied.
アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長方法であり、前記III族金属を収容している容器から前記III族金属を融液中に供給することにより継続的に前記III族窒化物結晶を成長する方法において、
前記III族金属の供給時以外にはIII族金属を供給する供給管先端の前記III族金属とアルカリ金属及び窒素の接触を遮断するようにしたことを特徴とするIII族窒化物結晶成長方法。
A crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, wherein the group III metal is contained in the melt from a container containing the group III metal. In the method of continuously growing the group III nitride crystal by supplying to
A Group III nitride crystal growth method characterized in that contact between the Group III metal, alkali metal and nitrogen at the tip of a supply pipe for supplying a Group III metal is interrupted except when the Group III metal is supplied.
アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、前記III族金属を収容している容器から前記III族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、
前記III族金属の供給時以外には供給部材先端はIII族窒化物の結晶成長温度以下になる場所に待避することを特徴とするIII族窒化物結晶成長装置。
A crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and the group III metal from a container containing the group III metal in the melt In a group III nitride crystal growth apparatus having a structure that can be supplied to
The group III nitride crystal growth apparatus characterized in that the tip of the supply member is retracted to a place where the temperature is lower than the group III nitride crystal growth temperature except when the group III metal is supplied.
アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、前記III族金属を収容している容器から前記III族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、
前記III族金属の供給時以外にはIII族金属とアルカリ金属蒸気を接触させないよう供給部材先端に蓋をすることを特徴とするIII族窒化物結晶成長装置。
A crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and the group III metal from a container containing the group III metal in the melt In a group III nitride crystal growth apparatus having a structure that can be supplied to
A III-nitride crystal growth apparatus characterized in that the tip of the supply member is covered so that the group III metal and the alkali metal vapor are not brought into contact except during the supply of the group III metal.
アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させる結晶成長装置であり、前記III族金属を収容している容器から前記III族金属を融液中に供給できる構造を有するIII族窒化物結晶成長装置において、III族金属を収容する容器はシリンダーであり、シリンダー内部にはピストンとロッドが具備され、ロッドはピストンと接続された構造となっており、耐圧容器外部からロッドを操作することでピストンを駆動してIII族金属を反応容器内に供給できる構造を有していることを特徴とするIII族窒化物結晶成長装置。   A crystal growth apparatus for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal, and the group III metal from a container containing the group III metal in the melt In a group III nitride crystal growth apparatus having a structure that can be supplied to a cylinder, a container for storing a group III metal is a cylinder, a piston and a rod are provided inside the cylinder, and the rod is connected to the piston. A group III nitride crystal growth apparatus characterized by having a structure in which a piston can be driven by operating a rod from the outside of a pressure vessel to supply a group III metal into the reaction vessel. 前記III族金属を供給する供給部材先端は反応容器内の混合融液液面方向に向いていることを特徴とする請求項4または5記載のIII族窒化物結晶成長装置。   The group III nitride crystal growth apparatus according to claim 4 or 5, wherein a tip of a supply member for supplying the group III metal faces a mixed melt liquid surface direction in a reaction vessel.
JP2005186871A 2004-07-29 2005-06-27 Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus Expired - Fee Related JP4554448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186871A JP4554448B2 (en) 2004-07-29 2005-06-27 Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004221803 2004-07-29
JP2005186871A JP4554448B2 (en) 2004-07-29 2005-06-27 Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2006062947A true JP2006062947A (en) 2006-03-09
JP4554448B2 JP4554448B2 (en) 2010-09-29

Family

ID=36109740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186871A Expired - Fee Related JP4554448B2 (en) 2004-07-29 2005-06-27 Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4554448B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236075A (en) * 2010-05-10 2011-11-24 Ihi Corp Method and apparatus for supplying gallium to apparatus for producing gallium nitride crystal
JP2011241127A (en) * 2010-05-20 2011-12-01 Ihi Corp Method and device for preventing clogging of gallium feeding tube of gallium nitride crystal production device
JP2012140282A (en) * 2010-12-28 2012-07-26 Ihi Corp Apparatus for crystal growth
WO2019031501A1 (en) * 2017-08-09 2019-02-14 東京エレクトロン株式会社 Method for manufacturing gallium nitride microcrystalline aggregate, and device for manufacturing gallium nitride microcrystalline aggregate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147898A (en) * 1986-12-12 1988-06-20 Nippon Telegr & Teleph Corp <Ntt> Method for growing compound semiconductor single crystal
JP2001058900A (en) * 1999-06-09 2001-03-06 Ricoh Co Ltd Crystal of nitride of group iii, crystal growth crystal growth apparatus and semiconductor device of nitride of group iii

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147898A (en) * 1986-12-12 1988-06-20 Nippon Telegr & Teleph Corp <Ntt> Method for growing compound semiconductor single crystal
JP2001058900A (en) * 1999-06-09 2001-03-06 Ricoh Co Ltd Crystal of nitride of group iii, crystal growth crystal growth apparatus and semiconductor device of nitride of group iii

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236075A (en) * 2010-05-10 2011-11-24 Ihi Corp Method and apparatus for supplying gallium to apparatus for producing gallium nitride crystal
JP2011241127A (en) * 2010-05-20 2011-12-01 Ihi Corp Method and device for preventing clogging of gallium feeding tube of gallium nitride crystal production device
JP2012140282A (en) * 2010-12-28 2012-07-26 Ihi Corp Apparatus for crystal growth
WO2019031501A1 (en) * 2017-08-09 2019-02-14 東京エレクトロン株式会社 Method for manufacturing gallium nitride microcrystalline aggregate, and device for manufacturing gallium nitride microcrystalline aggregate

Also Published As

Publication number Publication date
JP4554448B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4094780B2 (en) Crystal growth method, crystal growth apparatus, group III nitride crystal production method, and crystal production apparatus
KR101103107B1 (en) Process for producing group iii element nitride crystal, and group iii element nitride crystal
JP4603498B2 (en) Group III nitride crystal manufacturing method and manufacturing apparatus
JP4856934B2 (en) GaN crystal
US20120137961A1 (en) Method for growing single crystal of group iii metal nitride and reaction vessel for use in same
JP4554448B2 (en) Group III nitride crystal manufacturing method and group III nitride crystal manufacturing apparatus
JP4278330B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP4014411B2 (en) Group III nitride crystal manufacturing method
JP2002068897A (en) Method and device for growing group iii nitride crystal, the group iii nitride crystal and semiconductor element
JP4053336B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP2009126771A (en) Method and apparatus for growing crystal
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
JP4381638B2 (en) Method for producing crystal of group III nitride crystal
KR100564265B1 (en) Apparatus and Method of Hydride Vapor Phase Epitaxy for AlGaN Growth
JP2009007207A (en) Crystal growth method and crystal growth apparatus
JP5375690B2 (en) Method for producing group III nitride crystal
KR100892329B1 (en) Method and apparatus for producing group ? nitride crystal
JP2005132663A (en) Group iii nitride crystal growth method, group iii nitride crystal, and crystal growth apparatus
JP4522836B2 (en) Group III nitride crystal production method and group III nitride crystal growth apparatus
JP4615327B2 (en) Group III nitride crystal manufacturing method
JP5299367B2 (en) Method for manufacturing group III nitride substrate
JP4722471B2 (en) Group III nitride crystal production method and group III nitride crystal growth apparatus
JP2007254206A (en) Method for growing nitride single crystal
JP5621870B2 (en) Method for producing group III nitride crystal
JP2007191390A (en) Group iii nitride crystal and group iii nitride crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees