JP5278494B2 - Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability - Google Patents

Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability Download PDF

Info

Publication number
JP5278494B2
JP5278494B2 JP2011120444A JP2011120444A JP5278494B2 JP 5278494 B2 JP5278494 B2 JP 5278494B2 JP 2011120444 A JP2011120444 A JP 2011120444A JP 2011120444 A JP2011120444 A JP 2011120444A JP 5278494 B2 JP5278494 B2 JP 5278494B2
Authority
JP
Japan
Prior art keywords
bake hardenability
minutes
paint bake
aluminum alloy
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011120444A
Other languages
Japanese (ja)
Other versions
JP2011202284A (en
Inventor
孝 中森
正夫 菊池
誠 佐賀
学 高橋
俊康 浮穴
芳明 広田
史朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011120444A priority Critical patent/JP5278494B2/en
Publication of JP2011202284A publication Critical patent/JP2011202284A/en
Application granted granted Critical
Publication of JP5278494B2 publication Critical patent/JP5278494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法に関し、特に、自動車ボディパネル等、成形加工ならびに塗装焼付け処理を施して用いられる、塗装焼付け硬化性に優れた6000系アルミニウム合金板およびその製造方法に関するものである。   The present invention relates to a method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability, and in particular, a 6000 series aluminum excellent in paint bake hardenability, which is used after being subjected to forming processing and paint bake treatment, such as automobile body panels. The present invention relates to an alloy plate and a manufacturing method thereof.

近年、自動車の燃費向上を目的とした車体軽量化の要望が高まっており、軽量化手段の一つとして自動車ボディパネル等へのアルミニウム合金板が使用されている。熱処理型のAl−Mg−Si系合金(6000系アルミニウム合金といい、単に、6000系合金ともいう。)は、塗装焼付け工程の熱処理により降伏強度が上昇する性質(塗装焼付け硬化性という。)を有するため、板厚の薄肉化ひいては車体の軽量化に有利であり、ボディパネル材として使われることが多くなってきている。   In recent years, there has been an increasing demand for lighter vehicle bodies for the purpose of improving the fuel efficiency of automobiles, and aluminum alloy plates for automobile body panels and the like have been used as one of means for reducing the weight. A heat treatment type Al—Mg—Si alloy (referred to as a 6000 series aluminum alloy, also simply referred to as a 6000 series alloy) has a property of increasing the yield strength by heat treatment in a paint baking process (referred to as paint bake hardenability). Therefore, it is advantageous for reducing the thickness of the plate and thus reducing the weight of the vehicle body, and it is increasingly used as a body panel material.

従来、6000系合金の塗装焼付け硬化性については、溶体化・焼入れ後に熱処理を加えることによって降伏強度を上昇させる方法が種々開示されている。   Conventionally, regarding the bake hardenability of 6000 series alloys, various methods for increasing the yield strength by applying a heat treatment after solution treatment and quenching have been disclosed.

例えば、特許文献1では、溶体化焼入れ処理後、72時間以内に40〜120℃の温度で8〜36時間の最終熱処理を行う発明が開示されている。   For example, Patent Document 1 discloses an invention in which a final heat treatment is performed for 8 to 36 hours at a temperature of 40 to 120 ° C. within 72 hours after the solution hardening treatment.

また、特許文献2では、溶体化処理後室温以上の50〜130℃に温度に焼き入れて、その温度に1〜48時間の長時間熱処理を行った後、さらに140〜180℃の温度範囲で3〜10分間の低温加熱処理を行う発明が開示されている。   Moreover, in patent document 2, after solution-treating, it hardens to the temperature of 50-130 degreeC more than room temperature, and after performing the long-time heat processing for 1 to 48 hours at that temperature, in the temperature range of 140-180 degreeC further. An invention for performing low-temperature heat treatment for 3 to 10 minutes is disclosed.

また、特許文献3でも、溶体化焼き入れ後60分以内に40〜120℃の温度で50時間以上の熱処理を行う発明が開示されている。   Patent Document 3 also discloses an invention in which heat treatment is performed for 50 hours or more at a temperature of 40 to 120 ° C. within 60 minutes after solution hardening.

また、本系合金は製造工程中の溶体化処理をはじめとする高温下での処理によって、板表面にMgOの濃化層が形成されることが知られている。自動車ボディの組み立てにおける接着工程において、板表面にMgO濃化層が存在すると、MgO濃化層と下地のアルミとの結合が弱いために接着性が劣ってしまうという問題があった。また脱脂工程においても水濡れ性が悪くなるために均一な化成処理が行われず、その結果塗装後耐食性が劣化してしまうという問題もある。接着性や塗装後耐食性を向上させる必要が生じた場合は、この合金表面に形成されるMgO濃化層を除去することが行われる。その方法としては、酸に浸漬する方法(特許文献4)、アルカリ溶液に浸漬する方法(特許文献5)、pHが5〜8の水溶液に浸漬する方法(特許文献6)が開示されている。しかし、いずれの方法も材質を造り込む工程とは別に表面調整のための上記処理を行うものであり、コスト増という問題があった。   In addition, it is known that a concentrated layer of MgO is formed on the surface of the present alloy by a treatment at a high temperature such as a solution treatment in the manufacturing process. In the bonding process in assembling an automobile body, if an MgO concentrated layer is present on the plate surface, the bond between the MgO concentrated layer and the underlying aluminum is weak, resulting in poor adhesion. Further, in the degreasing process, water wettability is deteriorated, so that a uniform chemical conversion treatment is not performed, and as a result, there is a problem that the corrosion resistance after coating is deteriorated. When it is necessary to improve adhesion and post-coating corrosion resistance, the MgO concentrated layer formed on the alloy surface is removed. As the method, a method of immersing in an acid (Patent Document 4), a method of immersing in an alkaline solution (Patent Document 5), and a method of immersing in an aqueous solution having a pH of 5 to 8 (Patent Document 6) are disclosed. However, each method performs the above-described treatment for surface adjustment separately from the step of building the material, and there is a problem of an increase in cost.

特開平05−007460号公報JP 05-007460 A 特開平04−210456号公報Japanese Patent Laid-Open No. 04-210456 特開2003―105471号公報JP 2003-105471 A 特公平7−116629号公報Japanese Patent Publication No.7-116629 特開平4−214835号公報JP-A-4-214835 特開平10−195683号公報JP-A-10-195683

しかしながら、上記特許文献1〜3に記載の発明は、自動車ボディパネル用材料として塗装焼付け時に大きな強度上昇を図り、かつ板製造後から成形加工までの室温放置中の自然時効による強度上昇を抑えるためには、いずれの場合も溶体化処理以降に長時間の熱処理を行う必要があり、生産性を犠牲にして製造しなければならないという問題がある。自動車ボディパネル向けの6000系アルミニウム合金の需要は近年増加しつつあり、今後のさらなる需要増加に対応していくためには生産性に優れた製造方法が必要とされるようになってきた。   However, the inventions described in the above-mentioned Patent Documents 1 to 3 are intended to greatly increase the strength when baking a paint as a material for an automobile body panel, and to suppress the increase in strength due to natural aging during standing at room temperature from the production of the plate to the molding process However, in any case, it is necessary to perform heat treatment for a long time after the solution treatment, and there is a problem that it must be manufactured at the expense of productivity. The demand for 6000 series aluminum alloys for automobile body panels has been increasing in recent years, and in order to respond to the further increase in demand in the future, a manufacturing method with excellent productivity has been required.

また、上記特許文献4〜6に記載の発明のいずれも、材質を造り込む工程とは別に表面調整のための上記処理を行うものであり、生産性が悪化したり生産コストが嵩むという問題があった。   In addition, any of the inventions described in Patent Documents 4 to 6 performs the above-described processing for surface adjustment separately from the step of building the material, and there is a problem that productivity deteriorates and production cost increases. there were.

そこで、本発明は、上記従来技術の生産性の問題を有利に解決できる、特に自動車ボディパネルの外板等に好適な、塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法を提供することを目的とするものである。   Accordingly, the present invention provides a method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability, particularly suitable for an outer plate of an automobile body panel, which can advantageously solve the above-mentioned productivity problems. It is for the purpose.

また、板表面に存在するMgO濃化層をも製造工程内で除去し、良好な接着性をも併せ持たせることが可能な6000系アルミニウム合金板の製造方法を提供することを目的とする。   It is another object of the present invention to provide a method for producing a 6000 series aluminum alloy plate that can remove the MgO enriched layer present on the plate surface within the production process and also have good adhesion.

6000系合金における時効硬化性は、微細な析出物が高密度に形成されることによって生じる。そこで、本発明者らは、塗装焼き付けという170〜180℃程度で20〜30分の短時間の熱処理によって大きな強度上昇量を得るためには、塗装焼き付け処理前の材料はどのような状態にあるべきかについて鋭意検討を行った。   Age hardening in a 6000 series alloy is caused by the formation of fine precipitates at a high density. Therefore, in order to obtain a large increase in strength by short-time heat treatment at about 170 to 180 ° C., that is, about 170 to 180 ° C., the present inventors are in any state of the material before the coating baking process. We conducted an intensive study on what should be done.

塗装焼き付け処理のような温度で形成される析出物は、6000系合金の場合MgとSiから構成される金属間化合物(β”相と呼ばれる)である。このβ”相を板の製造段階で微細かつ高密度に形成させておくことができれば、塗装焼付け処理段階でこのβ”相を成長させて大きな強度上昇を得ることができるだけでなく、板製造後の室温放置中の経時変化をも抑制することができる。   In the case of a 6000 series alloy, a precipitate formed at a temperature such as a paint baking process is an intermetallic compound composed of Mg and Si (referred to as a β ″ phase). If it can be formed finely and with high density, this β ”phase can be grown at the paint baking process stage to obtain a large increase in strength, and also suppresses changes over time during standing at room temperature after plate production. can do.

本発明者らは、この微細高密度β”組織を短時間で形成させる方法についてさらに詳細に検討した。その結果、β”相の形成はMgおよびSiの拡散で律速される反応であり、β”相形成温度を高めればMgおよびSiの拡散が容易となり、β”相の形成を短時間で達成し得ること(以下、この高温でのβ”相析出熱処理を高温予備時効処理という。)、そして成分を適切に選択すれば、従来技術のように低温で長時間の熱処理を行うのとほぼ同等の塗装焼付け硬化性と室温放置中の経時変化抑制効果が得られることを見出した。   The present inventors examined in more detail a method for forming this fine high-density β ″ structure in a short time. As a result, the formation of the β ″ phase is a rate-controlled reaction due to diffusion of Mg and Si, and β “Diffusion of Mg and Si is facilitated by increasing the phase formation temperature, and β” phase formation can be achieved in a short time (hereinafter, this “β” phase precipitation heat treatment at high temperature is referred to as high temperature pre-aging treatment). Then, it has been found that if the components are appropriately selected, the paint bake hardenability and the effect of suppressing the change with time during standing at room temperature can be obtained as in the case of conventional heat treatment at a low temperature for a long time.

さらに、高温予備時効処理中のβ”相の析出を一層促進し、より短い処理時間で大きな塗装焼き付け硬化性を得るためには、高温予備時効処理を行う前に焼き入れ凍結空孔量を増やした状態にしておくこと、またβ”相析出の駆動力であるMgおよびSiの過飽和度が大きく確保される低温で短時間保持してさらに微細な析出物を形成させておくと、高温予備時効処理でのβ”相析出促進に対して非常に効果的であることを見出した。本発明者らは、これらの知見をもとに従来に比べて大幅な生産性向上を可能とする本発明を成すに至った。   Furthermore, in order to further promote the precipitation of β ”phase during the high temperature pre-aging treatment and obtain a large paint bake hardenability in a shorter processing time, the quenching freezing void amount is increased before performing the high temperature pre-aging treatment. In addition, it is possible to maintain a high degree of pre-aging by maintaining a high temperature pre-aging by keeping it at a low temperature for a short time at a low temperature at which the supersaturation degree of Mg and Si, which is the driving force for β ″ phase precipitation, is large. The present inventors have found that it is very effective for promoting the β ″ phase precipitation in the treatment. The present inventors have made it possible to greatly improve the productivity based on these findings as compared with the prior art. It came to make.

上述のような高温において短時間で形成されたβ”析出物密度は、低温長時間で形成された場合よりも低い傾向にある。しかしながら低密度ではあるが比較的大きい針状の析出物であるため、塗装焼付け処理によって耐力上昇が得られやすい状態にあるというのが高温予備時効処理によって得られるβ”析出状態の特徴である。この析出状態を定量的に表現する方法について本発明者は鋭意検討を行った。本発明によって得られたβ”析出組織は非常に微細な針状析出物から構成されており、この微細析出物の観察を行うには、通常の透過電子顕微鏡法では観察は困難である。そこで、このβ”析出物を成長させて観察を容易にすることを考え、熱処理中にβ”析出物が新たに形成されるよりも、熱処理前に存在した微細なβ”析出物が成長する現象が支配的であるような、適切な熱処理条件を実験的に見出した。すなわち、塗装焼付け温度に相当する温度である180℃で9時間の熱処理を施すと、β”析出物は数十nm程度の針状となり、明視野像観察による通常の透過電子顕微鏡法により20万倍程度の比較的低倍率でも十分に観察が行えるようになることがわかった。また、β”針状析出物はアルミ母相の{100}面に対して平行に析出するという特徴を考慮して、β”析出物の存在状況をより的確に観察するために透過電子顕微鏡観察の際に薄膜試料に対する電子線の入射方向を<001>と平行とする。本発明の合金に対して上記の熱処理を施した板より薄膜試料を作製して、[001]方向に電子線を入射して透過電子顕微鏡観察を行った例を図1に示す。写真は、透過電子線を用いて結像した明視野像である。写真中には[100]と[010]方向に平行に針状の析出物が明瞭に観察される。また黒い点状のコントラストを示すものは、紙面に対して垂直、すなわち[001]方向に平行に存在する針状析出物に相当する。この透過電子顕微鏡観察結果をもとに析出物の密度を簡便に調査する方法についても種々検討を行った。その結果、[001]方向に平行に存在する針状析出物に相当する黒い点状コントラストの数を測定し、[100]と[010]方向に平行な針状析出物はほぼ同等の確率で存在することを利用して、黒い点の数を3倍して3方向の析出物数を比較的間単に見積る方法を考案した。そして、この方法を用いて20万倍の倍率で16視野測定すれば、諸性能を規定するに足る析出物密度を求めることができることを実験的に明らかにした。   The density of β ″ precipitate formed in a short time at a high temperature as described above tends to be lower than that formed in a low temperature and a long time. However, it is a low-density but relatively large needle-like precipitate. Therefore, it is a feature of the β ”precipitation state obtained by the high-temperature pre-aging treatment that the yield strength can be easily increased by the paint baking treatment. The present inventor has intensively studied a method for quantitatively expressing the precipitation state. The β ″ precipitate structure obtained by the present invention is composed of very fine needle-like precipitates, and it is difficult to observe these fine precipitates by ordinary transmission electron microscopy. Considering the fact that this β ″ precipitate is grown to facilitate observation, the phenomenon that the fine β ″ precipitate existing before the heat treatment grows rather than the new β ″ precipitate formed during the heat treatment. Appropriate heat treatment conditions were found experimentally such that is dominant. That is, when heat treatment is performed at 180 ° C., which is a temperature corresponding to the coating baking temperature, for 9 hours, β ″ precipitates become needles of about several tens of nanometers, and 200,000 are obtained by ordinary transmission electron microscopy using bright field image observation. It has been found that sufficient observation is possible even at a relatively low magnification of about twice. In consideration of the feature that β ″ acicular precipitates are precipitated parallel to the {100} plane of the aluminum matrix. In order to more accurately observe the presence of β ″ precipitates, the incident direction of the electron beam to the thin film sample is made parallel to <001> in the observation with a transmission electron microscope. A thin film sample was prepared from a heat-treated plate, and an electron beam was incident in the [001] direction and observed with a transmission electron microscope, as shown in Fig. 1. The photograph was imaged using a transmission electron beam. It is a bright field image, with [100] and [ 10] Needle-like precipitates are clearly observed parallel to the direction, and black dots having contrast are perpendicular to the paper surface, that is, needle-like precipitates existing parallel to the [001] direction. Various studies were also conducted on a method for simply examining the density of the precipitate based on the observation result of the transmission electron microscope, and as a result, it corresponds to the acicular precipitate existing in parallel with the [001] direction. The number of black dot-shaped contrasts is measured, and the number of black dots is tripled to 3 directions by utilizing the fact that acicular precipitates parallel to the [100] and [010] directions exist with almost the same probability. We have devised a method for estimating the number of precipitates in a relatively short period of time, and if this method is used to measure 16 fields of view at a magnification of 200,000 times, it is possible to obtain a precipitate density sufficient to define various performances. Clarified experimentally.

また、このβ”析出物密度が同じであっても、析出物の平均サイズが異なれば耐力を変化する。すなわち機械的性質を規定し得るようなβ”析出状態を記述するために、耐力を用いる方法を検討した。しかし、本系合金は製造後に常温で保管された場合、溶質原子のクラスターが形成され耐力が製造直後から上昇してしまうという問題がある。そこで、クラスターは適切な熱処理を施すことによって再固溶させることできる(この熱処理は復元処理と呼ばれる)特徴を活用し、適切な復元処理によってクラスターの影響を排除した後の耐力を測定すれば、板のβ”析出状態を規定し得る、製造直後に相当する耐力を求めることができることを見出した。   Also, even if this β ″ precipitate density is the same, the yield strength changes if the average size of the precipitates is different. In other words, the yield strength is described to describe the β ″ precipitation state that can define the mechanical properties. The method used was examined. However, when this alloy is stored at room temperature after production, there is a problem that solute atom clusters are formed and the yield strength is increased immediately after production. Therefore, if the cluster can be re-dissolved by performing an appropriate heat treatment (this heat treatment is called a restoration process), and the strength after removing the influence of the cluster by an appropriate restoration process is measured, It has been found that the yield strength can be determined immediately after production, which can define the β ″ precipitation state of the plate.

すなわち、透過電子顕微鏡観察写真から上述の方法によって求めたβ”析出物密度と適切な復元処理後の耐力を用いれば、塗装焼付け硬化性を決定するβ”析出状態を規定することができる。   That is, by using the β ″ precipitate density obtained by the above-described method from a transmission electron microscope observation photograph and the proof strength after an appropriate restoration treatment, the β ″ precipitation state that determines the bake hardenability can be defined.

また、本発明の製造方法のうち、高温予備時効前に低温予備時効を施す場合、温水を用いて低温予備時効処理を行うのが有効な方法の一つである。この場合に処理温度は60〜100℃に限定されるが、この温水のpHを4〜7に調整することによって、材質造りこみと同時に板表面のMgO濃化層を除去することができ、接着性や塗装後耐食性を同時に改善することができるようになる。この際、板を温水中に浸漬してもよいし、板に対して温水をスプレー等により噴霧しても構わない。   Further, in the production method of the present invention, when low temperature pre-aging is performed before high temperature pre-aging, it is one of effective methods to perform low temperature pre-aging treatment using hot water. In this case, the treatment temperature is limited to 60 to 100 ° C., but by adjusting the pH of this hot water to 4 to 7, the MgO concentrated layer on the plate surface can be removed simultaneously with the material building, And corrosion resistance after painting can be improved at the same time. At this time, the plate may be immersed in warm water, or warm water may be sprayed on the plate by spraying or the like.

本発明の要旨は以下のとおりである。
(1)質量%で、Mg:0.2〜1.0%、Si:0.5〜1.5%を含有し、残部がAl及び不可避不純物からなる成分組成を有し、熱間圧延および冷間圧延によって所望の板厚とした圧延板を、480〜580℃の温度で5分以下保持した後5℃/s以上の冷却速度で冷却する溶体化焼入れ処理を行い、次いで、60〜120℃の温度域で5秒〜120分または120〜140℃の温度域で5秒〜5分保持する低温予備時効処理を行い、次いで、140〜150℃の温度域で5分〜30分間保持、150〜240℃の温度域で30秒〜30分間保持、240〜250℃の温度域で30秒〜10分間保持のうちいずれか一つの高温予備時効処理を施すことを特徴とする、塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法。
(2)成分組成が質量%で、さらに、Mn:0.01〜0.3%、Cr:0.001〜0.1%の1種または2種を含有することを特徴とする、(1)記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
(3)成分組成が質量%で、さらに、Ti:0.005〜0.15%、B :0.0001〜0.05%、Fe:0.03〜0.4%、Zn:0.03〜2.5%の1種または2種以上を含有することを特徴とする、(1)または(2)記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
(4)成分組成が質量%で、さらに、Cu:0.1〜1.0%を含有することを特徴とする、請求項(1)〜(3)いずれかの塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
(5)成分組成が質量%で、さらに、Sn:0.01〜0.3%を含有することを特徴とする、(1)〜(4)いずれかの塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法。
(6) 前記溶体化焼入れ処理の焼入れ温度を50℃以下とすることを特徴とする、上記(1)〜(5)のいずれかに記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法。
) 前記溶体化焼入れ処理の工程と前記高温予備時効処理の工程との間で、前記低温予備時効処理に代えて、不純物元素の総含有量が1000ppm以下であり、pHを4〜7に調整した60〜100℃の温水を用いて5秒〜5分の低温予備時効処理を行うことを特徴とする、(1)〜(5)のいずれかに記載の塗装焼付け硬化性ならびに接着性に優れた6000系アルミニウム合金板の製造方法
The gist of the present invention is as follows.
(1) By mass%, Mg: 0.2-1.0%, Si: 0.5-1.5%, the balance has a component composition consisting of Al and inevitable impurities , A rolled sheet having a desired sheet thickness by cold rolling is held at a temperature of 480 to 580 ° C. for 5 minutes or less, and then subjected to a solution hardening treatment for cooling at a cooling rate of 5 ° C./s or more, and then 60 to 120 Perform low temperature pre-aging treatment for 5 seconds to 120 minutes in the temperature range of 5 ° C or 5 seconds to 5 minutes in the temperature range of 120 to 140 ° C, and then hold in the temperature range of 140 to 150 ° C for 5 minutes to 30 minutes. Baking and hardening of paint , characterized in that any one of high temperature pre-aging treatment is performed in a temperature range of 150 to 240 ° C. for 30 seconds to 30 minutes and in a temperature range of 240 to 250 ° C. for 30 seconds to 10 minutes. Of 6000 series aluminum alloy plate with excellent properties .
(2) The component composition is mass%, and further contains one or two of Mn: 0.01 to 0.3% and Cr: 0.001 to 0.1%. ) A method for producing a 6000 series aluminum alloy plate having excellent paint bake hardenability.
(3) The component composition is mass%, and Ti: 0.005-0.15%, B: 0.0001-0.05%, Fe: 0.03-0.4%, Zn: 0.03 The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to (1) or (2), which comprises 1 to 2.5% or two or more.
(4) The component composition is mass%, and further contains Cu: 0.1 to 1.0%, which is excellent in paint bake hardenability according to any one of claims (1) to (3) A method for producing a 6000 series aluminum alloy plate.
(5) Component composition is mass%, and further contains Sn: 0.01 to 0.3%, (6000) which is excellent in paint bake curability of any one of (1) to (4) A method for producing an aluminum alloy plate .
(6 ) The quenching temperature of the solution hardening treatment is 50 ° C. or lower, and the 6000 series aluminum alloy plate excellent in paint bake hardenability according to any one of (1) to (5) above Production method.
( 7 ) Instead of the low temperature preliminary aging treatment, the total content of impurity elements is 1000 ppm or less, and the pH is set to 4 to 7 between the solution quenching treatment step and the high temperature preliminary aging treatment step. It is characterized by performing a low temperature pre-aging treatment for 5 seconds to 5 minutes using adjusted warm water of 60 to 100 ° C., (1) to (5) A method for producing an excellent 6000 series aluminum alloy plate .

本発明により、自動車のエンジンフード、トランクリッド等のパネル材として好適な、高い塗装焼付け硬化性を有する6000系アルミニウム合金板およびその生産性に優れた製造方法を提供することが可能になるとともに、良好な接着性をも兼備することができるため、産業上の貢献が極めて顕著である。特に(1)〜(7)で製造された合金板は180MPa以上の塗装焼付け硬化後の強度を得ることができる。 According to the present invention, it is possible to provide a 6000 series aluminum alloy plate having high paint bake hardenability and a manufacturing method excellent in its productivity, which is suitable as a panel material for automobile engine hoods, trunk lids, and the like. Since it can also have good adhesiveness, the industrial contribution is very remarkable. In particular, the alloy plate produced in (1) to (7) can obtain strength after paint bake hardening of 180 MPa or more .

本発明の合金に対して180℃で9時間の熱処理を施した板より薄膜試料を作製して、[001]方向に電子線を入射して透過電子顕微鏡観察を行って得られた明視野像の写真の一例である。A bright-field image obtained by fabricating a thin film sample from a plate that was heat-treated at 180 ° C. for 9 hours with respect to the alloy of the present invention, and observing a transmission electron microscope by entering an electron beam in the [001] direction. It is an example of no. 本発明のクラスターを再固溶させる熱処理(復元処理)後の耐力を決定するための予備検討の際に使用した測定であって、復元処理前のクラスター析出状態とこの復元処理直後のクラスター析出状態を、示差走査熱量計を用いて測定した結果の一例を示す図である。It is the measurement used in the preliminary examination for determining the yield strength after the heat treatment (restoration process) to re-dissolve the cluster of the present invention, and the cluster deposition state before the restoration process and the cluster deposition state immediately after the restoration process It is a figure which shows an example of the result of having measured this using the differential scanning calorimeter.

本発明者らは、6000系アルミニウム合金板の塗装焼付け硬化性を支配するβ”相形成挙動について鋭意検討を行った結果見出した知見に基づき、溶体化処理後の熱処理パターンおよび合金成分を適切に規定することによって、溶体化処理後の短時間の熱処理で良好な塗装焼付け硬化性を得ることが可能な本発明を成すに至った。   Based on the knowledge found out as a result of intensive studies on the β "phase formation behavior that governs the bake hardenability of 6000 series aluminum alloy sheets, the present inventors appropriately set the heat treatment pattern and alloy components after solution treatment. By prescribing, the present invention has been achieved in which good paint bake hardenability can be obtained by a short heat treatment after the solution treatment.

以下、本発明について詳細に説明する。
先ず、合金成分の限定理由を以下に示す。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the alloy components are shown below.

Mg、Siは、本発明の必須の基本成分であり、優れた塗装焼付け硬化性を得るために含有させる。本発明の熱処理においてはMgが0.2%未満、Siが0.5%未満では、塗装焼付け時に形成されるβ”相(Mg、Siからなる金属間化合物)の量が少なく、十分な強度上昇が得られない。また、Mgが1.0%超、Siが1.5%超では、板製造過程で粒界及び粒内に粗大なMg2Si相が形成され、加工性が大きく低下する。そのため、Mg量を0.2〜1.0%、Si量を0.5〜1.5%の範囲とした。 Mg and Si are essential basic components of the present invention, and are contained in order to obtain excellent paint bake hardenability. In the heat treatment of the present invention, when Mg is less than 0.2% and Si is less than 0.5%, the amount of β ″ phase (intermetallic compound composed of Mg and Si) formed during baking is small and sufficient strength In addition, when Mg exceeds 1.0% and Si exceeds 1.5%, coarse Mg 2 Si phases are formed in the grain boundaries and in the grains during the plate manufacturing process, and the workability is greatly reduced. Therefore, the Mg amount is set to 0.2 to 1.0% and the Si amount is set to 0.5 to 1.5%.

本発明は、必要に応じて以下に示す元素を含有させてもよい。   The present invention may contain the following elements as required.

Mn、Crは、最終板の結晶粒を微細化して肌荒れを防止し、成形性を向上させる元素である。Mn量が0.3%、Cr量が0.1%を超えると、粗大な金属間化合物が形成され、かえって成形性が損なわれてしまう。一方、Mnが0.01%未満、Crが0.001%未満では、結晶粒が粗大化して肌荒れを生じてしまう場合がある。したがってMn量を0.01〜0.15%、Cr量を0.001〜0.1%の範囲とした。   Mn and Cr are elements that refine the crystal grains of the final plate to prevent rough skin and improve formability. When the amount of Mn is 0.3% and the amount of Cr exceeds 0.1%, a coarse intermetallic compound is formed, and on the contrary, formability is impaired. On the other hand, if Mn is less than 0.01% and Cr is less than 0.001%, crystal grains may be coarsened to cause rough skin. Therefore, the Mn content is in the range of 0.01 to 0.15%, and the Cr content is in the range of 0.001 to 0.1%.

また、本発明では、Ti、B、Fe、Znの1種又は2種以上を必要に応じて含有させても良い。   Moreover, in this invention, you may contain 1 type, or 2 or more types of Ti, B, Fe, and Zn as needed.

Ti、Bは、微量添加により鋳塊の結晶粒を微細化し、成形性、肌荒れ等を改善する効果を有する。Tiが0.005%未満、Bが0.0001%未満では鋳塊の結晶粒を微細化する効果がやや不十分である。また、Tiが0.15%、Bが0.05%を超えると粗大な晶出物を形成し、成形性が劣化することがある。そのため、Ti量を0.005〜0.15%、B量を0.0001〜0.05%の範囲とすることが好ましい。   Ti and B have the effect of refining crystal grains of the ingot by adding a small amount and improving formability, rough skin, and the like. When Ti is less than 0.005% and B is less than 0.0001%, the effect of refining the crystal grains of the ingot is slightly insufficient. On the other hand, if Ti exceeds 0.15% and B exceeds 0.05%, a coarse crystallized product may be formed, and the formability may deteriorate. Therefore, it is preferable that the Ti amount is in the range of 0.005 to 0.15% and the B amount is in the range of 0.0001 to 0.05%.

Feは、強度向上と結晶粒の微細化によって成形性を向上させる元素であるが、その効果は、Fe量が0.03%未満ではやや不十分である。一方、Fe量が0.4%を超えると粗大晶出物が生成し、成形性を低下させることがある。したがって、Fe量を0.03〜0.4%の範囲とすることが好ましい。   Fe is an element that improves formability by improving strength and refining crystal grains, but the effect is somewhat insufficient when the Fe content is less than 0.03%. On the other hand, if the amount of Fe exceeds 0.4%, a coarse crystallized product is generated, and the formability may be lowered. Therefore, it is preferable to make the amount of Fe into the range of 0.03-0.4%.

Znは、強度向上により成形性を向上させる効果を有する。Zn量が0.03%未満では、効果がやや不十分であり、2.5%を超えると強度上昇が大きく、成形性を損なうことがある。そのため、Zn量を0.03〜2.5%の範囲とすることが好ましい。   Zn has the effect of improving moldability by improving strength. If the amount of Zn is less than 0.03%, the effect is slightly insufficient, and if it exceeds 2.5%, the strength increases greatly and the moldability may be impaired. Therefore, it is preferable to make Zn content into the range of 0.03-2.5%.

Cuは、成形性、特に張出し性、深絞り性の向上に寄与する元素である。Cu量が0.1%未満では、十分な成形性向上効果が得られず、1.0%超では、耐食性がやや低下し、ヘム曲げ性を損なうことがある。そのため、Cu量を0.1〜1.0%の範囲とすることが好ましい。   Cu is an element that contributes to improving the formability, particularly the stretchability and deep drawability. If the amount of Cu is less than 0.1%, sufficient effect of improving formability cannot be obtained, and if it exceeds 1.0%, the corrosion resistance may be slightly lowered and the hem bendability may be impaired. Therefore, it is preferable to make Cu amount into the range of 0.1 to 1.0%.

Snは、室温放置中の自然時効による強度上昇を抑制し、製造直後の成形加工性を長期間にわたって保持する効果を有する。Snが0.01%未満ではその効果が小さく、また0.3%を超えるとその効果が飽和して増大しない。そのため、Snの添加量を0.01〜0.3%とした。またSnの効果を有効に活用するためにはAl母相中にSnを均一に固溶させることが重要であり、そのためには溶解鋳造時にSnを、Al―Sn母合金として添加することが望ましい。なお、Al―Sn母合金中のSn含有量については特に規定する必要はない。   Sn suppresses an increase in strength due to natural aging during standing at room temperature, and has the effect of maintaining the molding processability immediately after production for a long period of time. If Sn is less than 0.01%, the effect is small, and if it exceeds 0.3%, the effect is saturated and does not increase. Therefore, the amount of Sn added is set to 0.01 to 0.3%. In order to effectively use the effect of Sn, it is important to uniformly dissolve Sn in the Al matrix, and for that purpose, it is desirable to add Sn as an Al—Sn master alloy during melt casting. . The Sn content in the Al—Sn master alloy need not be specified.

上記元素の他、不可避的不純物が含有されるが、本発明の効果を損なわない範囲の量であれば許容される。   In addition to the above elements, inevitable impurities are contained, but the amount is within the range that does not impair the effects of the present invention.

製造直後の製品に対して180℃×9hの熱処理を施した後のβ”析出物密度の規定理由について説明する。なお、析出物密度の測定は上述の[課題を解決するための手段]の欄で詳細に説明した方法で行う。   The reason for defining the β ″ precipitate density after heat treatment of 180 ° C. × 9 h for the product immediately after production will be described. The measurement of the precipitate density is based on the above [Means for Solving the Problems]. The method described in detail in the column is used.

β”析出物密度が3000個/μm2未満では、良好な塗装焼付け効果性が得られない。また7000個/μm2超の析出物密度では優れた塗装焼付け効果性を示すが、低温長時間の予備時効処理では得られるものの、高温短時間予備時効処理では得られ難い。そこで、β”析出物密度は3000〜7000個/μm2とした。なお、塗装焼付け硬化性と生産性の観点から、4000〜6000個/μm2が好ましい。 If the β ″ precipitate density is less than 3000 / μm 2 , good paint baking effect cannot be obtained. Also, if the precipitate density exceeds 7000 / μm 2 , excellent paint baking effect is exhibited, but low temperature and long time However, it is difficult to obtain by high-temperature short-time pre-aging treatment. Therefore, the β ″ precipitate density was set to 3000 to 7000 / μm 2 . From the viewpoint of productivity and painting-baking hardenability, is preferably 4000 to 6000 pieces / [mu] m 2.

また、復元処理後の耐力の規定理由について説明する。先ず適切な復元処理条件を以下の方法により見出さなければならない。復元処理の目安としては、オイルバスを用いて180〜280℃の温度に急熱して数秒から数分保持した後水冷する。クラスターが復元されたかどうかは次ぎの方法によって確認できる。復元処理前の析出状態と復元処理直後の析出状態を示差走査熱量計を用いて測定する。図2に測定結果例を示す。クラスターの存在を示す150〜270℃程度の範囲に認められる吸熱ピーク面積が0.3cal/g以下となり、270〜300℃あたりに認められるβ”の析出に対応したピーク面積が復元処理前の状態と0.1cal/g以下の範囲で変わっていなければ、β”析出状態をほぼ変えずにクラスターを再固溶させることができたと考えられる。この条件によって復元処理を施した後の耐力が90MPa未満では良好な塗装焼付け硬化性が得られず、140MPa超では塗装焼付け硬化性は十分に得られるが、室温保管中のクラスター形成による耐力上昇を考慮するとこの値では高すぎ、室温経時変化後は形状凍結性やヘム曲げ性が劣る恐れがある。そこで、90〜140MPaの範囲とした。   Also, the reason for specifying the proof stress after the restoration process will be described. First, an appropriate restoration process condition must be found by the following method. As a standard for the restoration process, the oil bath is used to rapidly heat to a temperature of 180 to 280 ° C., hold for several seconds to several minutes, and then cool with water. The following method can be used to check whether the cluster has been restored. The precipitation state before the restoration treatment and the precipitation state immediately after the restoration treatment are measured using a differential scanning calorimeter. FIG. 2 shows an example of measurement results. The endothermic peak area observed in the range of about 150 to 270 ° C. indicating the presence of the cluster is 0.3 cal / g or less, and the peak area corresponding to the precipitation of β ″ observed around 270 to 300 ° C. is the state before the restoration treatment If it is not changed within the range of 0.1 cal / g or less, it is considered that the β "precipitation state was hardly changed and the cluster could be dissolved again. If the yield strength after the restoration treatment is less than 90 MPa under this condition, good paint bake hardenability cannot be obtained. Considering this value, this value is too high, and there is a possibility that the shape freezing property and the hem bendability are inferior after the room temperature aging. Therefore, the range was 90 to 140 MPa.

次ぎに、本発明の製造方法に関して詳細に説明する。   Next, the production method of the present invention will be described in detail.

本発明のアルミニウム合金板は、従来の一般的な方法にしたがって溶解、鋳造、熱間圧延、冷間圧延によって製造された板に対して、本発明で規定した溶体化処理および高温予備時効処理、必要に応じて、さらに、その前処理としての低温予備時効処理を施すことによって製造される。ただし、鋳片に均質化焼鈍を施しても良く、また冷間圧延の途中に中間焼鈍を行ってもかまわない。   The aluminum alloy plate of the present invention is a solution produced by high temperature pre-aging treatment as defined in the present invention for a plate produced by melting, casting, hot rolling, cold rolling according to a conventional general method, If necessary, it is further produced by performing a low temperature pre-aging treatment as a pretreatment. However, the slab may be subjected to homogenization annealing, or intermediate annealing may be performed during the cold rolling.

先ず、溶体化処理について説明を行う。従来の一般的な方法にしたがって得られた冷間圧延板に対して溶体化処理を施すが、溶体化処理温度は480℃未満ではMg2SiやSi相の固溶が不十分であり、塗装焼付け硬化性が低下するだけでなく、ヘム曲げ性、成形性も劣化する。一方、溶体化処理温度が580℃超では、共晶融解が起きる場合がありヘム曲げ性及び成形性の低下を招く恐れがあり、また、結晶粒の粗大化による肌荒れが生じやすくなり好ましくない。溶体化処理温度に到達後、保持せずに直ちに冷却しても良いが、5分以内の所定時間保持することによりMg2SiやSi相の固溶が促進され、塗装焼付け硬化性、ヘム曲げ性、成形性が向上するため、5分以内の所定時間の保持が好ましい。しかし、溶体化処理温度での保持時間が5分を超えると、溶質の固溶は飽和し、結晶粒が粗大化する恐れがあり好ましくない。 First, the solution treatment will be described. Although the solution treatment is performed on the cold-rolled sheet obtained according to the conventional general method, the solution treatment temperature is less than 480 ° C., and solid solution of Mg 2 Si or Si phase is insufficient. Not only is the bake hardenability lowered, but the hem bendability and moldability are also deteriorated. On the other hand, if the solution treatment temperature is higher than 580 ° C., eutectic melting may occur, which may lead to a decrease in hem bendability and formability, and rough skin due to coarsening of crystal grains tends to occur. After reaching the solution treatment temperature, it may be cooled immediately without being held, but holding for a predetermined time within 5 minutes promotes solid solution of Mg 2 Si and Si phase, paint bake hardenability, hem bending Since the property and moldability are improved, it is preferable to hold for a predetermined time within 5 minutes. However, if the retention time at the solution treatment temperature exceeds 5 minutes, the solid solution of the solute is saturated and the crystal grains may become coarse, which is not preferable.

溶体化処理後の冷却速度は、5℃/s未満では冷却過程で結晶粒界にMg2Si相やSi相等が析出し、ヘム曲げ性、成形性、塗装焼付け硬化性が劣化するため、下限を5℃/sとした。粒界析出を抑制し、溶質原子の過飽和度を十分に確保する点で好ましい下限は10℃/s以上である。冷却速度の上限は特に規定はしないが、冷却速度が速すぎると板の形状を損なうため、()〜()の発明においては板が変形しやすい400℃までは30℃/s以下、400℃以下は300℃/s以下で冷却することが好ましいIf the cooling rate after solution treatment is less than 5 ° C / s, the Mg 2 Si phase, Si phase, etc. will precipitate at the grain boundaries during the cooling process, and the hem bendability, formability and paint bake hardenability will deteriorate. Was set to 5 ° C./s. A preferable lower limit is 10 ° C./s or more in terms of suppressing grain boundary precipitation and sufficiently ensuring the degree of supersaturation of solute atoms. The upper limit of the cooling rate is not particularly specified, but if the cooling rate is too high, the shape of the plate is impaired. Therefore, in the inventions of ( 1 ) to ( 7 ), the plate is easily deformed up to 400 ° C, up to 30 ° C / s, is 400 ° C. or less arbitrariness preferred to cool below 300 ° C. / s.

溶体化処理、焼入れ処理後に行う高温予備時効処理温度は140℃未満では十分な塗装焼付け硬化性が確保できるようなβ”相を短時間に形成させることができない。また、250℃超では初期強度が高くなり過ぎて、成形性、ヘム曲げ性等の加工性が劣化してしまう。また、保持時間については140℃から150℃で5分未満、150℃〜250℃で30秒未満では十分な塗装焼付け硬化性が確保できない。一方、140℃から240℃では30分,240℃から250℃では10分超の保持を行うと初期強度が高くなり過ぎて、成形性やヘム曲げ性等の加工性が劣化してしまうばかりでなく、本発明が目的とする生産性を損なう。上記の理由により、高温予備時効処理条件は、140〜150℃では5〜30分保持,150℃から240℃では30秒〜30分,240〜250℃の温度範囲において30秒〜10分間保持することを条件とした。   If the temperature of the high temperature pre-aging treatment after solution treatment and quenching is less than 140 ° C., a β ″ phase that can ensure sufficient bake hardenability cannot be formed in a short time. As a result, the processability such as formability, hem bendability, etc. deteriorates, and it is sufficient that the holding time is from 140 ° C. to 150 ° C. for less than 5 minutes and from 150 ° C. to 250 ° C. for less than 30 seconds. Paint bake hardenability cannot be ensured, while holding at 140 ° C to 240 ° C for 30 minutes and 240 ° C to 250 ° C for more than 10 minutes will increase the initial strength, resulting in processing such as formability and hem bendability. As a result, the high temperature pre-aging treatment conditions are maintained at 140 to 150 ° C. for 5 to 30 minutes, and from 150 to 24 ° C. ℃, 30 seconds to 30 minutes, and the condition to hold 30 seconds to 10 minutes in the temperature range of 240 to 250 ° C..

次ぎに、溶体化焼入れ処理の工程と高温予備時効処理の工程との間に差し挟む、高温予備時効処理におけるβ”相析出を促進するための低温予備時効処理条件の限定理由について説明する。   Next, the reason for limiting the low temperature pre-aging conditions for promoting β ″ phase precipitation in the high temperature pre-aging process, which is sandwiched between the solution hardening process and the high temperature pre-aging process, will be described.

この低温予備時効処理温度が60℃未満では、クラスター(6000系アルミニウム合金において常温近傍で形成される溶質原子の集合体で、この相が形成されると塗装焼付け硬化性が阻害される。)が形成されてしまい、引き続き行う高温予備時効処理でのβ”相の析出促進ならびに析出組織の微細化効果が不十分となってしまう。また、140℃超で5分超、120℃超で120分超、の保持をしても高温予備時効処理でのβ”相の析出促進効果が十分に得られない。保持時間については5秒未満では上述の効果が確保できず、一方、60〜120℃で120分超、120〜140℃で5分超、の保持を行うと高温予備時効処理後の初期強度が高くなり過ぎて、成形性やヘム曲げ性等の加工性が劣化してしまうばかりでなく、本発明が目的とする生産性を損なう。上記の理由により、低温予備時効処理条件は60〜120℃において5秒〜120分間、120〜140℃において5秒〜5分間保持することとした。この低温予備時効処理後に再加熱して前述の高温予備時効処理を施す。低温予備時効温度から高温予備時効温度までの加熱速度は特に規定しないが、生産性の点からは速い方が望ましい。   When this low temperature pre-aging temperature is less than 60 ° C., clusters (aggregates of solute atoms formed in the vicinity of room temperature in a 6000 series aluminum alloy. When this phase is formed, the bake hardenability of coating is hindered). In the subsequent high temperature pre-aging treatment, the precipitation of β ″ phase and the effect of refining the precipitate structure become insufficient. Further, the temperature exceeds 140 ° C. for more than 5 minutes, and the temperature exceeding 120 ° C. for 120 minutes. Even if it is kept above, the effect of promoting the precipitation of β ″ phase in the high temperature pre-aging treatment cannot be obtained sufficiently. Regarding the holding time, if the holding time is less than 5 seconds, the above-mentioned effect cannot be ensured. On the other hand, if holding is performed at 60 to 120 ° C. for more than 120 minutes and 120 to 140 ° C. for more than 5 minutes, the initial strength after high temperature pre-aging treatment is increased. When it becomes too high, workability such as formability and hem bendability is deteriorated, and productivity aimed at by the present invention is impaired. For the above reasons, the low temperature preliminary aging treatment conditions were held at 60 to 120 ° C. for 5 seconds to 120 minutes and at 120 to 140 ° C. for 5 seconds to 5 minutes. After the low-temperature pre-aging treatment, the above-described high-temperature pre-aging treatment is performed by reheating. Although the heating rate from the low temperature pre-aging temperature to the high temperature pre-aging temperature is not particularly defined, it is desirable that the heating rate is high from the viewpoint of productivity.

また、この低温予備時効処理を施す場合に、温水を用いて行うのが有効な方法の一つであり、板を温水中に浸漬してもよいし、また温水を板に対して噴霧してもよい。温水での低温予備時効を行う際、処理温度は60〜100℃に限定されるが、この温水のpHや不純物濃度を調整することによって、上述のような材質造りこみと同時に板表面のMgO濃化層を除去して接着性をも向上させることができる。pHが4未満ではMgO濃化層だけではなく、下地のAlも溶出してしまい、pHが7超ではMgO濃化層の除去が不十分である。そこで、pHの範囲を4〜7と規定した。また、不純物元素の総含有量が1000ppm超であると、MgO濃化層の溶解力が不足してしまうとともに板表面が汚染されてしまう。そこで、1000ppm以下と規定した。   In addition, when performing this low temperature preliminary aging treatment, it is one of the effective methods to use hot water, and the plate may be immersed in warm water, or the hot water is sprayed on the plate. Also good. When performing the low temperature preliminary aging with warm water, the treatment temperature is limited to 60 to 100 ° C. By adjusting the pH and impurity concentration of the warm water, the MgO concentration on the plate surface at the same time as the material building as described above is performed. The adhesive layer can also be improved by removing the chemical layer. If the pH is less than 4, not only the MgO concentrated layer but also the underlying Al is eluted, and if the pH exceeds 7, the removal of the MgO concentrated layer is insufficient. Therefore, the pH range was defined as 4-7. Further, if the total content of impurity elements exceeds 1000 ppm, the dissolving power of the MgO concentrated layer is insufficient and the plate surface is contaminated. Therefore, it was defined as 1000 ppm or less.

次ぎに、溶体化焼入れ処理の焼入れ温度条件について説明する。   Next, quenching temperature conditions for the solution hardening treatment will be described.

溶体化焼入れ処理後の焼入れ温度は、次工程となる高温予備時効処理または低温予備時効処理の処理温度域とすれば、追加の加熱、冷却処理を省略できるため好ましい。   It is preferable that the quenching temperature after the solution quenching process is within the processing temperature range of the high-temperature pre-aging treatment or the low-temperature pre-aging treatment, which will be the next step, because additional heating and cooling processes can be omitted.

また、溶体化焼入れ処理の焼入れ温度を50℃以下とすれば、焼入れ凍結空孔量を増やして引き続き行う高温予備時効処理におけるβ”相析出促進効果が十分に得られ好ましい。一旦25℃以下に5分以内の保持すれば更に良い。溶体化焼入れ処理の焼入れ温度が50℃超では、前記のような効果は十分に得られない。溶体化焼入れ処理の焼入れ温度の下限は特に限定しないが、工業的に可能な範囲で低温ほど望ましい。なお、この50℃以下の温度域では前記のクラスターが形成されてしまうので、この温度域に保持しないことが望ましい。そして,25℃以下にすると更に高温予備時効処理におけるβ”相析出促進効果が十分に得られ、その時間が5分程度ならばクラスター形成は少なく塗装焼付け硬化性を大きく阻害する恐れは少ない。この溶体化焼入れ処理後50℃以下まで冷却した後に再加熱して高温予備時効処理または低温予備時効処理を施すが、この際の加熱速度も上述のように特に規定しないが、クラスターの形成や生産性の点から速い方が望ましい。   Further, if the quenching temperature in the solution quenching process is set to 50 ° C. or less, the β ″ phase precipitation promoting effect can be sufficiently obtained in the high-temperature pre-aging treatment that is continuously performed by increasing the quenching freezing void amount. The above effect is not sufficiently obtained when the quenching temperature of the solution hardening treatment exceeds 50 ° C. Although the lower limit of the quenching temperature of the solution hardening treatment is not particularly limited, It is desirable that the temperature is as low as possible within the industrially possible range.Because the above clusters are formed in this temperature range of 50 ° C. or lower, it is desirable not to maintain this temperature range. If the β ″ phase precipitation promoting effect in the preliminary aging treatment is sufficiently obtained and the time is about 5 minutes, the cluster formation is small and there is little possibility of greatly hindering the paint bake hardenability. After this solution quenching treatment, it is cooled to 50 ° C. or lower and then reheated to give a high temperature pre-aging treatment or a low temperature pre-aging treatment. The heating rate at this time is not particularly specified as described above. Faster is desirable from the viewpoint of sex.

表1に示す成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊に530℃で10時間の均質化焼鈍を施した後、510℃で熱間圧延を開始し、250℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行い、表2に示す条件で溶体化処理および予備時効処理を施した。これらのアルミニウム合金板を、室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価した。また、本合金の主用途である自動車ボディパネル用材料として必要なヘム曲げ性および成形性についても評価を行った。   A 6000 series aluminum alloy having the component composition shown in Table 1 was melted and cast by a DC casting method. The obtained ingot was subjected to homogenization annealing at 530 ° C. for 10 hours, and then hot rolling was started at 510 ° C., and the hot rolling was finished at 250 ° C. with a plate thickness of 5 mm. Thereafter, cold rolling was performed to 1 mm, and solution treatment and preliminary aging treatment were performed under the conditions shown in Table 2. These aluminum alloy plates were naturally aged at room temperature for 1 month, and then evaluated for tensile properties and paint bake hardenability. We also evaluated the hem bendability and formability required for automotive body panel materials, which are the main uses of this alloy.

引張特性は、板圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向に直角な方向(C方向)を長手とする、JIS Z 2201に準拠した5号試験片を採取して、JIS Z 2241に準拠して引張試験を行い、3方向の面内異方性を考慮した平均値で評価した。   Tensile properties are obtained by measuring No. 5 test piece in accordance with JIS Z 2201, which has a plate rolling direction (L direction), a direction 45 ° from the rolling direction (D direction), and a direction perpendicular to the rolling direction (C direction) as the longitudinal direction. The samples were collected and subjected to a tensile test in accordance with JIS Z 2241, and evaluated with an average value considering in-plane anisotropy in three directions.

塗装焼付け硬化性は、C方向を長手として、引張試験機で2%の塑性歪を与えた後、170℃で20分の熱処理を行い、再び引張試験を行い、0.2%耐力を測定し、熱処理後の耐力が180MPa以上のものを良好として評価した。   The paint bake hardenability is determined by measuring the 0.2% proof stress by applying a 2% plastic strain with a tensile tester with the C direction as the longitudinal direction, then performing a heat treatment at 170 ° C for 20 minutes, performing a tensile test again. The one having a proof stress after heat treatment of 180 MPa or more was evaluated as good.

ヘム曲げ性は、L方向、D方向、C方向を長手とするJIS Z 2201に準拠した5号試験片に、引張試験機により各試験片に5%の予歪を与え、その後JIS Z 2248に準拠して、曲げ半径Rを板厚の0.5倍として180°まで曲げた後、更に1mm厚の板を挟んで密着させるように曲げて、曲げ部の頂点近傍における割れ発生の有無で評価した。曲げ表面にカラーチェックを施して、ルーペを用いて割れを目視観察した。なお、カラーチェックは、JIS Z 2343に準拠した浸透探傷試験である。3方向で割れ発生の認められない場合をヘム曲げ性良好として○印を付し、1方向でも割れが認められた場合は不良とし、×印を付した。   The hem bendability is determined by applying a pre-strain of 5% to each test piece with a tensile tester on a No. 5 test piece based on JIS Z 2201 having the L direction, D direction, and C direction as the longitudinal direction. In accordance with this, the bending radius R is 0.5 times the plate thickness, bent to 180 °, and then bent so as to be in close contact with a 1 mm thick plate, and evaluated by the presence or absence of cracks near the apex of the bent portion. did. A color check was performed on the bent surface, and the cracks were visually observed using a loupe. The color check is a penetrant flaw detection test based on JIS Z 2343. A case where cracks were not observed in three directions was marked as ◯ with good hem bendability, and a case where cracks were also observed in one direction was marked as poor, and a mark x was given.

成形性は、塩化ビニルフィルムとワックスを組み合わせた潤滑条件において、φ100mmの球頭張出試験を行い、破断限界高さにより評価した。この破断限界高さが34mm以上を良好とした。   The moldability was evaluated by performing a bulge head test with a diameter of 100 mm under lubrication conditions in which a vinyl chloride film and a wax were combined, and evaluating the limit height at break. This breaking limit height was determined to be 34 mm or more.

表3に評価結果を示す。   Table 3 shows the evaluation results.

合金No.3〜9は、合金成分および製造条件が本発明の範囲内であり、塗装焼付け硬化性に優れ、良好なヘム曲げ性と成形性を示した。一方、合金No.12はMg、Si量が本発明の範囲よりも少ないため、塗装焼付け硬化性が低く、成形性にも劣る。合金No.13は、Si量およびCr量が本発明の範囲よりも多く、第2相粒子が多くなりヘム曲げ性が低下した。合金No.14は、Si量が本発明の範囲よりも少ないため、塗装焼付け硬化性が低く、成形性にも劣る。合金No.15は、Mg添加量が本発明の範囲よりも多く、Si量が少ないために、塗装焼付け硬化性およびヘム曲げ性が低い。合金No.16は、Mgの添加量が本発明の範囲よりも少ないため、塗装焼付け硬化性が低く、成形性も低い。合金No.17は、Mg、Si、Cu、Mn量が本発明範囲よりも多く、第2相粒子数が多くなり、ヘム曲げ性が低下した。合金No.18はFe、Sn添加量が本発明範囲よりも多く、第2相粒子数が増えたために、ヘム曲げ性が低下した。 Alloy No. In Nos. 3 to 9 , the alloy components and the production conditions were within the scope of the present invention, the paint bake hardenability was excellent, and good hem bendability and formability were exhibited. On the other hand, Alloy No. No. 12 has a lower amount of Mg and Si than the range of the present invention, so the paint bake curability is low and the moldability is also poor. Alloy No. In No. 13, the amount of Si and Cr was larger than the range of the present invention, the second phase particles increased, and the hem bendability decreased. Alloy No. No. 14 has a Si content less than the range of the present invention, and therefore has low paint bake curability and inferior moldability. Alloy No. No. 15 has a Mg addition amount larger than the range of the present invention and a small Si amount, so that the paint bake hardenability and the hem bendability are low. Alloy No. No. 16 has an additive amount of Mg that is less than the range of the present invention, so that the paint bake curability is low and the moldability is also low. Alloy No. In No. 17, the amount of Mg, Si, Cu, Mn was larger than the range of the present invention, the number of second phase particles was increased, and the hem bendability was lowered. Alloy No. No. 18 had more Fe and Sn additions than the range of the present invention, and the number of second phase particles increased, resulting in a decrease in hem bendability.

表1の本発明合金6および8をDC鋳造法により鋳造し、実施例1と同様の製造方法により1mmの冷間圧延板とした。この冷間圧延板に対して、表4に示す条件で溶体化処理および予備時効処理を施した。このようにして作製したアルミニウム合金板を、室温で1ヶ月間自然時効させた後、実施例1と同様な方法で引張特性、塗装焼付け硬化性、ヘム曲げ性、成形性を評価して、その結果を表5に示した。   Inventive alloys 6 and 8 in Table 1 were cast by a DC casting method, and a 1 mm cold-rolled plate was produced by the same production method as in Example 1. The cold rolled sheet was subjected to solution treatment and preliminary aging treatment under the conditions shown in Table 4. After the aluminum alloy plate thus produced was naturally aged at room temperature for 1 month, the tensile properties, paint bake hardenability, hem bendability and formability were evaluated in the same manner as in Example 1. The results are shown in Table 5.

製造番号〜シは、製造条件が本発明の範囲内であり、塗装焼付け硬化性に優れ、良好なヘム曲げ性と成形性を示した。 The production numbers of KU to SH were within the scope of the present invention, were excellent in paint bake curability, and exhibited good hem bendability and formability.

一方、製造番号エは予備時効温度が本発明範囲よりも低く、また製造番号オは予備時効温度が本発明範囲よりも高いために塗装焼付け硬化性が劣った。製造番号オはヘム曲げ性も低下した。製造番号スは予備時効時間が本発明範囲よりも長いために初期強度が高くなりすぎ、ヘム曲げ性、成形性が低かった。製造番号セは、溶体化温度が本発明範囲よりも低いために、また製造番号ソは溶体化処理後の冷却速度が本発明範囲よりも小さいために、塗装焼付け硬化性、ヘム曲げ性、成形性が低下した。   On the other hand, the production number D had a preliminary aging temperature lower than the range of the present invention, and the production number O had a preliminary aging temperature higher than the range of the present invention, so the paint bake curability was inferior. The production number O also decreased hem bendability. Since the pre-aging time of the production number was longer than the range of the present invention, the initial strength was too high, and the hem bendability and moldability were low. The production number S is because the solution temperature is lower than the range of the present invention, and the production number S0 is the cooling rate after the solution treatment is smaller than the range of the present invention. Decreased.

表1の本発明合金1〜11をDC鋳造法により鋳造し、実施例1と同様の製造方法により1mmの冷間圧延板とした。この冷間圧延板に対して、表6に示す条件で溶体化処理および予備時効処理を施した。このようにして作製した、製造直後のアルミニウム合金板の引張試験を行い、また180℃×9hの熱処理を施し、透過電子顕微鏡観察を行って析出物密度を評価した。一方、室温で1ヶ月間自然時効させた後、実施例1と同様な方法で引張特性、塗装焼付け硬化性、ヘム曲げ性、成形性を評価した。また、各試料に対して適切な条件で復元処理を施してクラスターの影響を排除した後に引張試験を行って耐力を求めた。この耐力値は製造直後に引張試験を行って得た値とほぼ一致した。以上の結果を表7に示した。表7における合金3、8、9は、製造条件が本発明の範囲内であり、塗装焼付け硬化性に優れ、良好なヘム曲げ性と成形性を示した。一方、合金5、10、11は高温予備時効温度が本発明範囲よりも高く、保持時間も短いために析出物密度が本発明範囲よりも低くなってしまい、塗装焼付け硬化性が劣った。また合金7は予備時効温度が本発明範囲よりも低いために復元処理後耐力が低く、塗装焼付け硬化性が劣ってしまった。 Inventive alloys 1 to 11 in Table 1 were cast by a DC casting method, and 1 mm cold-rolled plates were produced by the same production method as in Example 1. The cold-rolled sheet was subjected to solution treatment and preliminary aging treatment under the conditions shown in Table 6. A tensile test was performed on the aluminum alloy plate produced immediately after manufacturing as described above, heat treatment at 180 ° C. × 9 h was performed, and observation with a transmission electron microscope was performed to evaluate the precipitate density. On the other hand, after natural aging at room temperature for 1 month, tensile properties, paint bake hardenability, hem bendability and moldability were evaluated in the same manner as in Example 1. In addition, each sample was subjected to a restoration process under appropriate conditions to eliminate the influence of the cluster, and then a tensile test was performed to determine the yield strength. This proof stress value almost coincided with the value obtained by conducting a tensile test immediately after production. The above results are shown in Table 7. Alloys 3, 4 , 8 , and 9 in Table 7 had production conditions within the scope of the present invention, were excellent in paint bake hardenability, and exhibited good hem bendability and formability. On the other hand, Alloys 5, 10, and 11 had a high temperature pre-aging temperature higher than the range of the present invention and a short holding time, so that the density of precipitates was lower than the range of the present invention and the paint bake hardenability was poor. Moreover, since the pre-aging temperature of the alloy 7 was lower than the range of the present invention, the yield strength after the restoration treatment was low, and the paint bake hardenability was inferior.

表1の本発明合金1をDC鋳造法により鋳造し、実施例1と同様の製造方法により1mmの冷間圧延板とした。この冷間圧延板に対して、520℃×20sの溶体化処理を施した後、表8に示す条件で焼入れ処理および低温予備時効処理を施し、200℃×100sの高温予備時効処理を行った。このようにして作製した各アルミニウム合金板を室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価、ならびに接着性の評価を行った。評価に用いた接着剤は自動車の構造接着に一般的に使用されている一液硬化型エポキシ系の接着剤とした。接着性試験としてはJISK6854に従った剥離試験とJISK6850に従った引張せん断試験を行った。接着性の評価は、剥離形態の観察に基づいて行った。アルミニウム合金板表面と接着剤間の密着力が十分に確保されおり、接着剤層の内部で凝集破壊が生じて破壊しているものを良◎、アルミニウム合金板と接着剤との界面剥離が部分的に生じているが、界面剥離面積率が50%未満のものを可○、50%以上界面剥離が生じているものを不可△とする3段階の評価を行った。評価結果を表9に示す。本発明例の(1)〜(3)は、良好な塗装焼付け硬化性を有するとともに、良好な接着性を示した。また、比較例(4)は、温水中で低温予備時効処理を行ったが、pHが本発明範囲を超えて高かったために、塗装焼付け硬化性は良好であったが、十分な接着性が得られなかった。比較例(5)は、不純物濃度が本発明範囲を超えて高かったために、接着性が不十分であった。比較例(6)は大気中で低温予備時効処理を行ったために、十分な接着性を得ることができなかった。   The alloy 1 of the present invention shown in Table 1 was cast by a DC casting method, and a 1 mm cold-rolled plate was produced by the same production method as in Example 1. The cold-rolled sheet was subjected to a solution treatment at 520 ° C. × 20 s, then subjected to a quenching treatment and a low temperature pre-aging treatment under the conditions shown in Table 8, and a high temperature pre-aging treatment at 200 ° C. × 100 s was performed. . Each aluminum alloy plate thus produced was naturally aged at room temperature for 1 month, and then evaluated for tensile properties, paint bake hardenability, and adhesion. The adhesive used for the evaluation was a one-part curable epoxy adhesive generally used for structural bonding of automobiles. As the adhesion test, a peel test according to JISK6854 and a tensile shear test according to JISK6850 were performed. Evaluation of adhesiveness was performed based on observation of a peeling form. Adhesive strength between the surface of the aluminum alloy plate and the adhesive is sufficiently secured, and it is good if the adhesive layer is broken due to cohesive failure inside, part of the interface peeling between the aluminum alloy plate and the adhesive is partial However, a three-stage evaluation was performed in which an interface peeling area ratio of less than 50% was acceptable, and an interface peeling of 50% or more was deemed unacceptable. Table 9 shows the evaluation results. Examples (1) to (3) of the present invention had good paint bake hardenability and good adhesion. Further, Comparative Example (4) was subjected to a low temperature pre-aging treatment in warm water, but because the pH was higher than the range of the present invention, the paint bake curability was good, but sufficient adhesion was obtained. I couldn't. In Comparative Example (5), the impurity concentration was high beyond the range of the present invention, so that the adhesiveness was insufficient. In Comparative Example (6), a low temperature pre-aging treatment was performed in the atmosphere, so that sufficient adhesion could not be obtained.

Al−0.6Mg−1.0Si成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊に530℃で10時間の均質化焼鈍を施した後、510℃で熱間圧延を開始し、250℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行い、表10に示す溶体化処理条件を変化させた条件で溶体化処理および予備時効処理を施した。これらのアルミニウム合金板を、室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価した。   A 6000 series aluminum alloy having an Al-0.6Mg-1.0Si component composition was melted and cast by a DC casting method. The obtained ingot was subjected to homogenization annealing at 530 ° C. for 10 hours, and then hot rolling was started at 510 ° C., and the hot rolling was finished at 250 ° C. with a plate thickness of 5 mm. Thereafter, cold rolling was performed to 1 mm, and solution treatment and preliminary aging treatment were performed under the conditions in which the solution treatment conditions shown in Table 10 were changed. These aluminum alloy plates were naturally aged at room temperature for 1 month, and then evaluated for tensile properties and paint bake hardenability.

引張特性は、板圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向に直角な方向(C方向)を長手とする、JIS Z 2201に準拠した5号試験片を採取して、JIS Z 2241に準拠して引張試験を行い、3方向の面内異方性を考慮した平均値で評価した。尚、耐力は成形性の観点より140MPa以下のものを良好として評価した。塗装焼付け硬化性は、C方向を長手として、引張試験機で2%の塑性歪を与えた後、170℃で20分の熱処理を行い、再び引張試験を行い、2%耐力を測定し、熱処理後の耐力が190MPa以上のものを良好として評価した。この実施例を表11に示す。   Tensile properties are obtained by measuring No. 5 test piece in accordance with JIS Z 2201, which has a plate rolling direction (L direction), a direction 45 ° from the rolling direction (D direction), and a direction perpendicular to the rolling direction (C direction) as the longitudinal direction. The samples were collected and subjected to a tensile test in accordance with JIS Z 2241, and evaluated with an average value considering in-plane anisotropy in three directions. In addition, the proof stress was evaluated as good at 140 MPa or less from the viewpoint of moldability. Paint bake hardenability is set to the C direction as the longitudinal direction, 2% plastic strain is given with a tensile tester, heat treatment is performed at 170 ° C. for 20 minutes, tensile test is performed again, 2% proof stress is measured, heat treatment Those having a yield strength of 190 MPa or more were evaluated as good. This example is shown in Table 11.

Al−0.6Mg−1.0Si成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊に530℃で10時間の均質化焼鈍を施した後、510℃で熱間圧延を開始し、250℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行い、表12に示す溶体化処理後の焼入れ条件を変化させた条件で溶体化処理および予備時効処理を施した。これらのアルミニウム合金板を、室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価した。   A 6000 series aluminum alloy having an Al-0.6Mg-1.0Si component composition was melted and cast by a DC casting method. The obtained ingot was subjected to homogenization annealing at 530 ° C. for 10 hours, and then hot rolling was started at 510 ° C., and the hot rolling was finished at 250 ° C. with a plate thickness of 5 mm. Thereafter, cold rolling was performed to 1 mm, and solution treatment and preliminary aging treatment were performed under the conditions in which the quenching conditions after the solution treatment shown in Table 12 were changed. These aluminum alloy plates were naturally aged at room temperature for 1 month, and then evaluated for tensile properties and paint bake hardenability.

引張特性は、板圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向に直角な方向(C方向)を長手とする、JIS Z 2201に準拠した5号試験片を採取して、JIS Z 2241に準拠して引張試験を行い、3方向の面内異方性を考慮した平均値で評価した。尚、耐力は成形性の観点より140MPa以下のものを良好として評価した。塗装焼付け硬化性は、C方向を長手として、引張試験機で2%の塑性歪を与えた後、170℃で20分の熱処理を行い、再び引張試験を行い、2%耐力を測定し、熱処理後の耐力が190MPa以上のものを良好として評価した。この実施例を表13に示す。   Tensile properties are obtained by measuring No. 5 test piece in accordance with JIS Z 2201, which has a plate rolling direction (L direction), a direction 45 ° from the rolling direction (D direction), and a direction perpendicular to the rolling direction (C direction) as the longitudinal direction. The samples were collected and subjected to a tensile test in accordance with JIS Z 2241, and evaluated with an average value considering in-plane anisotropy in three directions. In addition, the proof stress was evaluated as good at 140 MPa or less from the viewpoint of moldability. Paint bake hardenability is set to the C direction as the longitudinal direction, 2% plastic strain is given with a tensile tester, heat treatment is performed at 170 ° C. for 20 minutes, tensile test is performed again, 2% proof stress is measured, heat treatment Those having a yield strength of 190 MPa or more were evaluated as good. This example is shown in Table 13.

Al−0.6Mg−1.0Si成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊に530℃で10時間の均質化焼鈍を施した後、510℃で熱間圧延を開始し、250℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行い、表14に示す低温予備時効条件を変化させた条件で溶体化処理および予備時効処理を施した。これらのアルミニウム合金板を、室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価した。   A 6000 series aluminum alloy having an Al-0.6Mg-1.0Si component composition was melted and cast by a DC casting method. The obtained ingot was subjected to homogenization annealing at 530 ° C. for 10 hours, and then hot rolling was started at 510 ° C., and the hot rolling was finished at 250 ° C. with a plate thickness of 5 mm. Thereafter, cold rolling was performed to 1 mm, and solution treatment and preliminary aging treatment were performed under the conditions where the low temperature preaging conditions shown in Table 14 were changed. These aluminum alloy plates were naturally aged at room temperature for 1 month, and then evaluated for tensile properties and paint bake hardenability.

引張特性は、板圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向に直角な方向(C方向)を長手とする、JIS Z 2201に準拠した5号試験片を採取して、JIS Z 2241に準拠して引張試験を行い、3方向の面内異方性を考慮した平均値で評価した。尚、耐力は成形性の観点より140MPaのものを良好として評価した。塗装焼付け硬化性は、C方向を長手として、引張試験機で2%の塑性歪を与えた後、170℃で20分の熱処理を行い、再び引張試験を行い、2%耐力を測定し、熱処理後の耐力が190MPa以上のものを良好として評価した。この実施例を表15に示す。   Tensile properties are obtained by measuring No. 5 test piece in accordance with JIS Z 2201, which has a plate rolling direction (L direction), a direction 45 ° from the rolling direction (D direction), and a direction perpendicular to the rolling direction (C direction) as the longitudinal direction. The samples were collected and subjected to a tensile test in accordance with JIS Z 2241, and evaluated with an average value considering in-plane anisotropy in three directions. The proof stress was evaluated as 140 MPa from the viewpoint of moldability. Paint bake hardenability is set to the C direction as the longitudinal direction, 2% plastic strain is given with a tensile tester, heat treatment is performed at 170 ° C. for 20 minutes, tensile test is performed again, 2% proof stress is measured, heat treatment Those having a yield strength of 190 MPa or more were evaluated as good. This example is shown in Table 15.

Al−0.6Mg−1.0Si成分組成を有する6000系アルミニウム合金を溶解し、DC鋳造法により鋳造した。得られた鋳塊に530℃で10時間の均質化焼鈍を施した後、510℃で熱間圧延を開始し、250℃で板厚を5mmとして熱間圧延を終了した。その後1mmまで冷間圧延を行い、表16に示す高温予備時効条件を変化させた条件で溶体化処理および予備時効処理を施した。これらのアルミニウム合金板を、室温で1ヶ月間自然時効させた後、引張特性、塗装焼付け硬化性を評価した。   A 6000 series aluminum alloy having an Al-0.6Mg-1.0Si component composition was melted and cast by a DC casting method. The obtained ingot was subjected to homogenization annealing at 530 ° C. for 10 hours, and then hot rolling was started at 510 ° C., and the hot rolling was finished at 250 ° C. with a plate thickness of 5 mm. Thereafter, cold rolling was performed to 1 mm, and solution treatment and preliminary aging treatment were performed under the conditions where the high temperature preaging conditions shown in Table 16 were changed. These aluminum alloy plates were naturally aged at room temperature for 1 month, and then evaluated for tensile properties and paint bake hardenability.

引張特性は、板圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向に直角な方向(C方向)を長手とする、JIS Z 2201に準拠した5号試験片を採取して、JIS Z 2241に準拠して引張試験を行い、3方向の面内異方性を考慮した平均値で評価した。尚、耐力は成形性の観点より140MPaのものを良好として評価した。塗装焼付け硬化性は、C方向を長手として、引張試験機で2%の塑性歪を与えた後、170℃で20分の熱処理を行い、再び引張試験を行い、2%耐力を測定し、熱処理後の耐力が190MPa以上のものを良好として評価した。この実施例を表17に示す。   Tensile properties are obtained by measuring No. 5 test piece in accordance with JIS Z 2201, which has a plate rolling direction (L direction), a direction 45 ° from the rolling direction (D direction), and a direction perpendicular to the rolling direction (C direction) as the longitudinal direction. The samples were collected and subjected to a tensile test in accordance with JIS Z 2241, and evaluated with an average value considering in-plane anisotropy in three directions. The proof stress was evaluated as 140 MPa from the viewpoint of moldability. Paint bake hardenability is set to the C direction as the longitudinal direction, 2% plastic strain is given with a tensile tester, heat treatment is performed at 170 ° C. for 20 minutes, tensile test is performed again, 2% proof stress is measured, heat treatment Those having a yield strength of 190 MPa or more were evaluated as good. This example is shown in Table 17.

Claims (7)

質量%で、
Mg:0.2〜1.0%、
Si:0.5〜1.5%
を含有し、残部がAl及び不可避不純物からなる成分組成を有し、
熱間圧延および冷間圧延によって所望の板厚とした圧延板を、480〜580℃の温度で5分以下保持した後5℃/s以上の冷却速度で冷却する溶体化焼入れ処理を行い、次いで、60〜120℃の温度域で5秒〜120分または120〜140℃の温度域で5秒〜5分保持する低温予備時効処理を行い、次いで、140〜150℃の温度域で5分〜30分間保持、150〜240℃の温度域で30秒〜30分間保持、240〜250℃の温度域で30秒〜10分間保持のうちいずれか一つの高温予備時効処理を施すことを特徴とする、塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法。
% By mass
Mg: 0.2-1.0%
Si: 0.5 to 1.5%
And the balance has a component composition consisting of Al and inevitable impurities ,
A rolled sheet having a desired thickness by hot rolling and cold rolling is held at a temperature of 480 to 580 ° C. for 5 minutes or less and then cooled at a cooling rate of 5 ° C./s or more, and then a solution hardening treatment is performed. , A low temperature pre-aging treatment for 5 seconds to 120 minutes in a temperature range of 60 to 120 ° C. or 5 seconds to 5 minutes in a temperature range of 120 to 140 ° C., and then in a temperature range of 140 to 150 ° C. for 5 minutes to It is characterized by performing a high temperature pre-aging treatment of any one of holding for 30 minutes, holding for 30 seconds to 30 minutes in a temperature range of 150 to 240 ° C, and holding for 30 seconds to 10 minutes in a temperature range of 240 to 250 ° C. , A method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability.
成分組成が質量%で、さらに、
Mn:0.01〜0.3%、
Cr:0.001〜0.1%
の1種または2種を含有することを特徴とする、請求項1記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
Ingredient composition is mass%,
Mn: 0.01 to 0.3%
Cr: 0.001 to 0.1%
The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to claim 1, wherein one or two of the above are contained.
成分組成が質量%で、さらに、
Ti:0.005〜0.15%、
B :0.0001〜0.05%、
Fe:0.03〜0.4%、
Zn:0.03〜2.5%
の1種または2種以上を含有することを特徴とする、請求項1または2記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
Ingredient composition is mass%,
Ti: 0.005 to 0.15%,
B: 0.0001 to 0.05%,
Fe: 0.03-0.4%,
Zn: 0.03-2.5%
The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to claim 1 or 2, characterized by containing one or more of the following.
成分組成が質量%で、さらに、
Cu:0.1〜1.0%
を含有することを特徴とする、請求項1〜3いずれかの一項記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
Ingredient composition is mass%,
Cu: 0.1 to 1.0%
The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to any one of claims 1 to 3, comprising :
成分組成が質量%で、さらに、
Sn:0.01〜0.3%
を含有することを特徴とする、請求項1〜4いずれかの一項記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
Ingredient composition is mass%,
Sn: 0.01-0.3%
The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to any one of claims 1 to 4, comprising :
前記溶体化焼入れ処理の焼入れ温度を50℃以下とすることを特徴とする、請求項1〜5のいずれかに記載の塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法。 The method for producing a 6000 series aluminum alloy plate excellent in paint bake hardenability according to any one of claims 1 to 5, wherein a quenching temperature in the solution hardening treatment is 50 ° C or lower. 前記溶体化焼入れ処理の工程と前記高温予備時効処理の工程との間で、前記低温予備時効処理に代えて、不純物元素の総含有量が1000ppm以下であり、pHを4〜7に調整した60〜100℃の温水を用いて5秒〜5分の低温予備時効処理を行うことを特徴とする、請求項1〜5のいずれかに記載の塗装焼付け硬化性ならびに接着性に優れた6000系アルミニウム合金板の製造方法。 Between the solution quenching process and the high temperature pre-aging process, instead of the low temperature pre-aging process, the total content of impurity elements was 1000 ppm or less, and the pH was adjusted to 4-7 60 6000 series aluminum excellent in paint bake hardenability and adhesiveness according to any one of claims 1 to 5 , characterized in that low temperature pre-aging treatment is performed for 5 seconds to 5 minutes using warm water of ~ 100 ° C. Manufacturing method of alloy plate.
JP2011120444A 2004-01-07 2011-05-30 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability Expired - Fee Related JP5278494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120444A JP5278494B2 (en) 2004-01-07 2011-05-30 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004001898 2004-01-07
JP2004001898 2004-01-07
JP2004082087 2004-03-22
JP2004082087 2004-03-22
JP2004157269 2004-05-27
JP2004157269 2004-05-27
JP2011120444A JP5278494B2 (en) 2004-01-07 2011-05-30 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005002134A Division JP4794862B2 (en) 2004-01-07 2005-01-07 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability

Publications (2)

Publication Number Publication Date
JP2011202284A JP2011202284A (en) 2011-10-13
JP5278494B2 true JP5278494B2 (en) 2013-09-04

Family

ID=44879212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120444A Expired - Fee Related JP5278494B2 (en) 2004-01-07 2011-05-30 Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability

Country Status (1)

Country Link
JP (1) JP5278494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373576A (en) * 2019-08-07 2019-10-25 安庆市泽烨新材料技术推广服务有限公司 A kind of cable Al-alloy and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2631317A1 (en) * 2012-02-23 2013-08-28 AMAG rolling GmbH Annealable aluminium alloy and method for improving artificial ageing ability
JP5839588B2 (en) * 2012-10-02 2016-01-06 株式会社神戸製鋼所 Press forming method for automotive panel material
JP6315582B2 (en) * 2014-08-27 2018-04-25 株式会社神戸製鋼所 Aluminum alloy sheet for forming
CN105369072A (en) * 2015-09-23 2016-03-02 广州市美伦建材有限公司 Forming method for light metal plate
JP6306123B2 (en) * 2016-03-30 2018-04-04 株式会社神戸製鋼所 Aluminum alloy plate and method for producing aluminum alloy plate
CN109722572B (en) * 2018-12-30 2020-06-23 精美铝业有限公司 High-performance aluminum alloy for power transmission and transformation equipment and preparation method thereof
CN114703407B (en) * 2022-03-11 2022-10-11 吉林大学 High-performance Al-Mg-Si-Cu-Sn aluminum alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230604A (en) * 1992-02-20 1993-09-07 Furukawa Alum Co Ltd Manufacture of aluminum alloy for baking and hardening formation
JPH05230605A (en) * 1992-02-20 1993-09-07 Furukawa Alum Co Ltd Manufacture of aluminum alloy for baking and hardening formation
JPH08253832A (en) * 1995-03-14 1996-10-01 Furukawa Electric Co Ltd:The Aluminum-magnesium-silicon type aluminum alloy sheet minimal in secular change and excellent in baking hardenability and its production
JPH0941062A (en) * 1995-07-27 1997-02-10 Furukawa Electric Co Ltd:The Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JP3752140B2 (en) * 2000-10-03 2006-03-08 株式会社神戸製鋼所 Al-Mg-Si Al alloy plate with excellent bending workability
JP2003231955A (en) * 2002-02-07 2003-08-19 Nippon Steel Corp Process for manufacturing aluminum alloy plate with excellent hemmability and bake-hardening property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373576A (en) * 2019-08-07 2019-10-25 安庆市泽烨新材料技术推广服务有限公司 A kind of cable Al-alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2011202284A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP5278494B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
KR101656419B1 (en) Aluminium alloy for producing semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip consisting of this aluminium alloy, and an aluminium alloy strip and use for same
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP2006257506A (en) Aluminum alloy sheet having excellent extension flange formability and bending workability and method for producing the same
JP6506678B2 (en) Aluminum alloy sheet for automobile structural member and method of manufacturing the same
EP2612938A1 (en) Heat exchanger aluminum alloy fin material and method for producing same
JP4799294B2 (en) Method for producing high formability Al-Mg alloy plate
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
JP5432632B2 (en) Aluminum alloy plate with excellent formability
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
KR101159410B1 (en) Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2007186747A (en) Aluminum alloy material to be formed at high temperature and a high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2023514331A (en) Control of aluminum alloy microstructure for improved corrosion resistance and bonding performance
JPH09125184A (en) Welding structural material made of aluminum alloy and its production
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP2004211176A (en) Aluminum alloy sheet superior in formability, paint baking hardenability and corrosion resistance, and manufacturing method therefor
JP2018154869A (en) Aluminum alloy sheet excellent in press moldability, ridging mark property and bh property

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5278494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees