JP5274483B2 - ヒートポンプ、小規模発電装置、及び熱を移動させる方法 - Google Patents

ヒートポンプ、小規模発電装置、及び熱を移動させる方法 Download PDF

Info

Publication number
JP5274483B2
JP5274483B2 JP2009548616A JP2009548616A JP5274483B2 JP 5274483 B2 JP5274483 B2 JP 5274483B2 JP 2009548616 A JP2009548616 A JP 2009548616A JP 2009548616 A JP2009548616 A JP 2009548616A JP 5274483 B2 JP5274483 B2 JP 5274483B2
Authority
JP
Japan
Prior art keywords
pressure
water
working fluid
liquefier
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009548616A
Other languages
English (en)
Other versions
JP2010518348A (ja
Inventor
ホルゲル・ゼドラック
オリベル・クニフラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efficient Energy GmbH
Original Assignee
Efficient Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efficient Energy GmbH filed Critical Efficient Energy GmbH
Publication of JP2010518348A publication Critical patent/JP2010518348A/ja
Application granted granted Critical
Publication of JP5274483B2 publication Critical patent/JP5274483B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Description

本発明は、ヒートポンプに関し、特に発電性を有するヒートポンプに関する。
図8は、非特許文献1に記載されているような公知のヒートポンプを示している。このヒートポンプは、R134aなどの作動物質が循環する密閉サイクルを備えている。第1の熱交換器80及び蒸発器によって、作動物質を気化させるような大量の熱が、土壌又は地下水から取り出される。そしてエネルギーを豊富に含む作動物質が、吸入管を介して圧縮機によって引き出される。圧縮機81において作動物質の圧縮が行われ、圧力及び温度が上昇する。この圧縮は、ピストン圧縮機によって実行される。圧縮されて高温を呈している作動物質が、次に第2の熱交換器82、すなわち液化装置へと渡される。液化装置において、高圧及び高温になりやすい冷却剤を液化させるような大量の熱が、加熱又はプロセス水サイクルによって作動物質から取り出される。チョーク又は膨張器83において、作動物質が膨張し、すなわち作動物質の圧力が緩められる。ここで、圧力及び温度が、作動物質が蒸発器において土壌又は地下水からのエネルギーを再び吸収できる程度にまで下げられる。以上でサイクルが完結し、再び開始される。
ここから理解できるとおり、作動物質が、土壌又は地下水から熱を取り上げ、それらの熱を液化装置において加熱サイクルへと与えるエネルギーの運搬体として機能する。このプロセス管理においては、熱又はエネルギーは、「それ自身では」より高温レベルからより低い温度レベルへと移動することしかできず、この反対は、外部からのエネルギーの供給(ここでは、圧縮機の駆動の仕事による)によって生じることができるという熱力学の第二法則が守られる。
図7は、典型的なh−log(p)線図(hはエンタルピーであり、pは物質の圧力である)を示している。低い圧力及び温度の値(p1、T1)での作動物質の等圧気化が、図7の点4と点1の間で生じる。その際、熱Q81が供給される。
理想的には、作動物質の蒸気のp2という圧力への可逆の圧縮が、断熱圧縮機において、点1及び点2の間で実行される。このプロセスにおいて、温度がT2へと上昇する。そこでは、圧縮という仕事が供給されるべきである。
次いで、高圧p2にて点2から点2’への作動物質の蒸気の等圧冷却が実行されて過熱が軽減され、次いで作動物質が液化する。全体として、熱Q25の放出が可能になる。
チョーク83において、作動物質が高圧p2から低い圧力p1へ断熱的に下げられる。このプロセスにおいて、液体である作動物質の一部が気化し、温度が気化温度T1へと低下する。h−log(p)線図において、このプロセスのエネルギー及び特性を、エンタルピーによって計算することができ、図7に示されているように図示することができる。
このように、ヒートポンプの作動流体が、蒸発器において周囲(すなわち、空気、水、廃水又は土壌)から熱を取り出す。液化装置が加熱物質を加熱するための熱交換器として機能する。温度T1は周囲の温度よりもわずかに低く、温度T2は必要とされる加熱温度よりもはるかに高く、温度T2’は必要とされる加熱温度よりもわずかに高い。求められる温度差が大きいほど、より多くの仕事を圧縮機によってもたらさなければならない。したがって、温度の上昇を可能な限り小さく保つことが望まれる。
したがって、図7に関して、作動物質の蒸気の圧縮は、理想的な場合には、点2までエントロピーs=一定の曲線に沿って実行される。ここから点3までの間に作動物質が液化する。距離2−3の長さが、利用できる熱Qを表わしている。点3から点4へと作動物質は膨張し、点4から点1へ作動物質は気化する。距離4−1が熱源から取り出される熱を反映している。T−s図と異なり、熱及び仕事の大きさを、h−log(p)線図の距離として理解することができる。バルブ内、圧力及び吸入の配管内、圧縮機などにおける圧力損失が、h−log(p)線図における循環プロセスの理想的な曲線を変化させ、プロセス全体の有効性を低下させる。
ピストン圧縮機においては、吸い込まれた作動物質の蒸気は、最初は圧縮機のシリンダの壁よりも低い温度を有しており、したがって圧縮機のシリンダの壁から熱を吸収する。圧縮が増すにつれ、作動物質の蒸気の温度は、最終的にシリンダの壁の温度を超えるまで高まり、作動物質の蒸気がシリンダの壁へ熱を与える。その結果、ピストンが再び蒸気を吸い込んで圧縮するとき、ピストンの壁の温度が、最初に作動物質の蒸気温度を下回り、次いで超える。これが一定の損失につながる。さらに、吸い込まれた作動物質の蒸気を過熱することは、圧縮機が液体の作動物質を吸い込まないために必要不可欠である。さらに、特に、潤滑のために欠くことができないピストン圧縮機の油サイクルにおける熱交換も不利である。
圧縮時の熱損失、バルブにおける圧力損失、ならびに液化のための圧力配管内及び液化装置内における流れの損失など、あらゆる不可逆のプロセスが、エントロピーを増大させ、すなわち回収できない熱を増加させる。さらに、温度T2も液化温度を超える。そのような「過熱エンタルピー」は望ましくない。その理由は、特にプロセスにおいて生じる高温が圧縮機の経年劣化、特にピストン圧縮機の潤滑油の経年劣化を加速するからであり、また、プロセスの有効性も低下するからである。
液化装置から出る低温の液化した作動物質は、圧縮前の温度及び圧力下の状態に比べて存在した余分なエネルギーを利用するために、理想的な循環サイクルという面では、例えばタービンなどのエンジンを介して膨張させられなければならないだろう。しかしこれには大きな費用が必要であるので、この手段は省略され、チョーク83によって作動物質が低圧及び低温へ急激に下げられる。このプロセスにおいて作動物質のエンタルピーはほぼ同じままである。急激な圧力の低下により、作動物質はその温度を低下させるために部分的に気化しなければならない。必要な気化熱は超過温度を呈する作動物質から引き出されるのであり、熱源から取り出されるのではない。チョーク83(図8)における膨張によって生じる損失全体が膨張損失と呼ばれる。これらは、温度Tの熱が温度T0の熱へ変換されることによるエネルギー損失である。これらの損失は、液体の作動物質が自身の温度Tの熱を温度Tよりも低温の媒体へ放出できるならば、少なくすることができる。この過冷却エンタルピーは、内部熱交換によって利用することができるが、設備に追加費用が必要になる。また、蒸気の圧縮において加熱温度T2が上昇し、それによって、達成される利益の一部が相殺されてしまうために、さらには装置及び潤滑油に加わる熱負荷が大きくなるために、内部熱交換は原理的に固有の限界を有している。結局のところ、過熱が蒸気の体積を増加させ、それによって体積あたりの熱出力を減少させる。この熱は、作動媒体の蒸気に含まれるすべての液滴を蒸気へと変換させるために必要な程度に限り、圧縮機へと流れる作動物質のそれら蒸気の予熱に利用される。
一般に、h−log(p)線図の点1及び点4の間のエンタルピーの差と、点2及び点1の間のエンタルピーの差との比を、ヒートポンププロセスの経済的効率の指標と言うことができる。
現時点において一般的な作動物質は、R134aであり、その化学式は、CF3−CH2Fである。この作動物質は、もはやオゾン層を傷めることはないにせよ、それでもなお、温室効果という点で、二酸化炭素よりも1000倍も大きい影響を有している。しかしながら、作動物質R134aは、約150kJ/kgという比較的大きいエンタルピー差を有しているため、広く使用されている。
この作動物質は、もはや「オゾンキラー」ではないにせよ、温室効果によって相当な被害を引き起こしかねないため、ヒートポンプサイクルの完全性に対し、作動物質の1分子たりともこの密封サイクルから逃がさないという趣旨の相当な要件を課す。この密閉性はヒートポンプの構築に相当なコスト高を招く。
また、京都議定書の次の段階が施行されるときまでに、R134aは温室効果ゆえに2015年までに禁止されると考えなければならない。これまでのより大幅に不都合な物質も禁止されてきた。
したがって、既存のヒートポンプにおける不都合な点は、作動物質が有害であるという事実の他に、ヒートポンプサイクルにおける多数の損失ゆえに、ヒートポンプの効率係数が典型的には3倍を超えることがないという事実にもある。言い換えると、圧縮機のために使用されたエネルギーの2倍は、地下水又は土壌などといった熱源から取り出すことができる。圧縮機が電流によって駆動されるヒートポンプを考えると同時に、電流の生成における効率係数がおそらくは40%であることを考えると、全体としてのエネルギーバランスに関して、ヒートポンプの使用ははなはだ疑問であることに気が付くであろう。一次エネルギー源に関して、熱エネルギーの120%=3×40%がもたらされる。バーナを用いる従来からの加熱システムが少なくとも90〜95%の効率係数を達成するので、ヒートポンプは大きな技術的、かつそれ故に金銭的な支出をともなって25〜30%の改善が達成されるにすぎない。
改善されたシステムは、一次エネルギーを圧縮機の駆動に使用する。その場合は、ガス又は油が燃やされ、燃焼によって放出されるエネルギーに対して圧縮機の定格が規定される。この方法における利点は、エネルギーバランスが実際にはよりプラスの方向になる点にある。その理由は、たとえ一次エネルギー源の約30%を駆動のエネルギーとして利用できるにすぎなくても、この場合には約70%の廃熱を加熱のためにも使用できる点にある。したがって、もたらされる加熱エネルギーは、一次エネルギー源の160%=3×30%+70%にのぼる。しかしながら、この方法における欠点は、たとえ家庭がもはや古典的な加熱システムを有していなくても、家庭に燃焼エンジン及び燃料貯蔵場所を必要とする点にある。エンジン及び燃料貯蔵場所のための費用も、やはり冷却剤が気候に対して有害であるがゆえに高度に密封されたサイクルであるヒートポンプのためになされる費用に加えられなければならない。
これらのことがすべて、ヒートポンプが他の種類の加熱システムとの競争において限られた成功しか収めてこなかったという結果をもたらしている。
結果として、ヒートポンプは、機械的なエネルギーが系へ入力され、より高温レベルにある熱エネルギーが出力されることを特徴とする。ヒートポンプの結果は、高温レベルでのエネルギーの出力が、少なくとも圧縮に使用される電気エネルギーよりも大きいときプラスである。このような関係においては、一次エネルギーの消費を基本として考えたときに、当然ながら、電気エネルギーの生成も、例えば燃焼プロセスにより、限られた効率係数でしか行われないことも考慮されなければならない。
他方、熱エネルギーが冷却プラントの密封サイクルにおいて冷媒が気化することによって熱源から取り出され、この熱エネルギーが機械的なエネルギーを使用して圧縮機によってより高温レベルへと移され、最終的に再び凝縮させられて、熱エネルギーが機械的エネルギーに加えてヒートシンクへと放出されるものもある。これもヒートポンプと称される。典型的には、使用される圧力は、大気圧に対して超過圧力である。
例えば原子力発電所などの大規模プラントにおいても、一次エネルギーが水を気化させるための熱へ変換される点で水が気化させられるのであり、その結果として蒸気タービンが駆動され、次いで蒸気タービンが発電機を駆動する。水蒸気が、巨大な冷却塔において凝縮させられ、水が回収される。電気的又は機械的なエネルギー及び廃熱がこのプロセスにおいて形成される。さらに、政治的な問題に加え、そのような発電所の本質的欠点は、莫大な製造コスト及び分散化した運転である。
特許文献1が、質量流束が熱交換器において加熱され、液体又は飽和蒸気として膨張装置へ供給されるヒートポンプ又は冷却装置の駆動方法を開示している。膨張装置が、蒸発器を経て吸い込まれた蒸気を圧縮する圧縮装置を駆動する。圧縮された蒸気がキャパシタへ供給される。膨張装置及び圧縮装置は機械的に接続されている。
ドイツ特許出願公開第2745127号明細書
"Technische Thermodynamik", Theoretische Grundlagen und praktische Anwendungen, 14th revised edition, Hanser Verlag, 2005, pp.278-279. "Stroemungsmaschinen", C.Pfleiderer, H.Petermann, Springer-Verlag, 2005, pp. 82-83
本発明の目的は、効率的かつ柔軟な方法で使用することができるヒートポンプ及び小規模発電装置を提供することにある。
この目的は、請求項1に記載のヒートポンプ、請求項52に記載の熱を移動させる方法、請求項53に記載の建物を暖房するための小規模発電装置、請求項54に記載の建物の暖房方法、及び請求項56に記載のコンピュータプログラムによって達成される。
本発明は、機械的なエネルギーを使用して蒸気を圧縮することによって比較的高温レベルにある熱エネルギーを得るための第1の部分を有しているヒートポンプを、液体の作動流体を圧縮し、比較的高圧下にある液体の作動流体を外部のエネルギー源を使用して気化させる第2の部分に、理想的に組み合わせることができるという知見にもとづいている。次いで、この高圧に加圧された蒸気が、タービンによって緩和され、電気エネルギーをもたらす。次いで、タービンを出る蒸気(低圧及び比較的低温にある)が、ヒートポンプの第1の部分においても液化装置として機能する同じ液化装置へ送られる。このように、本発明のヒートポンプは、3つの異なる圧力ゾーンを有している。第1の圧力ゾーンは、最も低い圧力を有するゾーンであり、作動流体が低圧、かつ、したがって低温で気化させられる。本発明の好ましい実施の形態においては、この低圧ゾーンの圧力は、20hPa未満の値を呈する。
蒸気の圧縮は、第2のより高圧の圧縮された水蒸気をもたらす。蒸気の圧縮により蒸気の温度がより高温レベルへと上昇し、圧縮された蒸気の液化により蒸気から熱が抽出されて、その熱を例えば建物の暖房に使用することができる。第2の圧力は、第1の圧力よりも少なくとも5hPaは高く、典型的には第1の圧力の約2倍ですらある。
第1の部分と異なり、ヒートポンプの第2の部分においては、蒸気ではなくて液体の作動流体が圧縮される。これを実現するのは、蒸気の圧縮とは対照的に、比較的低コストの装置で充分であり、すなわち典型的には、電力消費が数ワットの水ポンプで充分である。加圧された水が呈する第3の圧力は、0.5〜3MPaになり、これは、水の場合には約120〜235℃の気化温度に相当する。
外部エネルギーが供給され、加圧された水が気化させられる。この外部エネルギーは、バーナの廃ガスの流れ又は太陽集熱器の熱放散である。その高温蒸気は、高圧で、例えば特に液化装置が呈する低圧の領域とくらべてきわめて高い(例えば、500倍も高い)ものである。その高温蒸気はタービンによって低圧領域へ緩和される。その低圧領域は温度も低く、床下暖房システムへの供給に容易に使用することができる30〜40度程度の温度を呈する。
したがって、本発明によれば、ヒートポンプの第2の部分において、外部からもたらされるエネルギーが電流(この電流を電力供給網へ送ってもよく、ヒートポンプの第1の部分の圧縮機を駆動するために使用してもよく、又は一部を電力供給網へ送り、一部を圧縮機の駆動に使用してもよい)を生成するために使用される一方で、さらには熱エネルギーが液化装置において得られ、この熱エネルギーを建物の暖房に容易に使用することができる。タービンの出力に作動流体の蒸気が存在し、この蒸気が、温度及び圧力の特性に関して、第1の低い圧力を呈する圧力領域から圧縮によって生成される作動流体の蒸気に比較的類似している点が、とくに好都合である。
このように、本発明によれば、エネルギーが気化によって熱源から抽出される。このヒートポンプにとって、その熱源は太陽集熱器、薪オーブン、ペレットオーブン又は他の任意のバーナであることが可能である。このエネルギーの一部が機械的なエネルギーに変換され、残りが、液化の際にヒートシンクへ供給される。このヒートシンクは、例えば建物の暖房に好都合であるような、蒸気の圧縮にもとづくヒートポンプの典型的なヒートシンクと同じものである。
好ましくは、水が作動液体又は冷媒として使用される。低圧領域がヒートポンプの第1の部分によってすでに存在しており、この低圧領域が大きな圧力差が得られることを保証する。すなわち外部からの熱の供給により生成される蒸気が呈する高圧と、液化装置内に存在する低圧との間の大きな圧力差である。この低圧の領域は、使用されるプロセスを小規模で、すなわち建物の暖房に利用することを可能にするとともに、このように分散した方法ですべての利点とともに利用することを可能にする。
さらに、ヒートポンプの第1の部分において切り換えること、及びそれゆえに達成でき、一次エネルギー源に含まれている暖房エネルギーを3倍にすることが好ましい。これは、燃焼によって放出される熱が、水を加熱するために直接使用されるのではなく、高圧に加圧された水を気化させるために使用され、これが第2の圧力へ緩和されることで電流の生成をもたらし、次いでこの電流の少なくとも一部がヒートポンプの第1の部分において使用される蒸気を圧縮するために用いられることで達成される。
好ましい実施の形態においては、水が、第1及び第2の部分において使用される。今日において頻繁に使用されている作動物質R134aと比べ、水はさらに、エンタルピー差に関しかなり大きい比を有している。エンタルピー差はヒートポンププロセスがいかに効果的であるかに関して重要であるが、水のエンタルピー差は約2500kJ/kgに達し、R134aの使用可能なエンタルピー差の約16倍の大きさである。対照的に、消費されるべき圧縮機のエンタルピーは、動作点に応じて変わるが、わずかに4〜6倍の大きさである。
さらに、水は気候にとって有害でなく、すなわちオゾンキラーでもなく、温室効果を増大させることもない。このことが、ヒートポンプを大幅に簡単な方法で製作することを可能にする。なぜならば、サイクルの完結性に課される要件が高くないからである。それのみか、好ましくは、全く閉鎖プロセスにしないで、地下水又は外部熱源となる水を直接気化させる開放プロセスとすることさえできる。
好ましくは、蒸発器は、水が18℃未満、好ましくは15℃未満の温度で気化するよう、気化圧力が20hPa(ヘクトパスカル)未満である気化室を備えるように構成される。北半球においては、典型的な地下水は、8〜12℃の間の温度を有しており、したがって、地下水の気化によって地下水の温度の低下、したがって熱の取り出し(この熱で、床暖房システムなどといった建物の暖房システムを動作させることができる)を達成できるようにするために、地下水が気化するために20hPa未満の圧力が必要である、
さらに、水は、水蒸気がきわめて大きな体積を占める点、及び水蒸気を圧縮するためにピストンポンプなどといった容積型の機械にもはや頼る必要がなく、ラジアルフロー圧縮機などといったダイナミック型圧縮機の形態の高性能の圧縮機(このような圧縮機は、その技術に関してきわめて制御性に富み、かつ、大量に存在しており、例えば小型のタービン又は自動車のターボ圧縮機としてこれまでに使用されてきているため、製造に関して費用対効率に優れる)を使用できる点で、好都合である。
容積型の機械と比べたとき、ダイナミック型圧縮機の系列の有名な代表は、例えばラジアルフローホイールを備えるターボ圧縮機の形態のラジアルフロー圧縮機である。
ラジアルフロー圧縮機又はダイナミック型圧縮機は、少なくともラジアルフロー圧縮機から出る出力圧力が、ラジアルフロー圧縮機への入力圧力よりも少なくとも5hPaは高いような圧縮の水準を達成しなければならない。しかしながら、好ましくは、圧縮が、1:2よりも大きく、さらには1:3よりも大きい比を有する。
閉鎖サイクルにおいて典型的に使用されるピストン圧縮機と比べて、ダイナミック型圧縮機は、ダイナミック型圧縮機において存在する温度勾配によって、容積型の機械(ピストン圧縮機)(そのような静止の温度勾配が存在しない)に比べて、圧縮機の損失が大いに低減されるというという利点をさらに有している。とくに好都合な点は、油サイクルを完全になくすことができる点である。
さらに、寒い冬の日においても暖房システムに充分な前進流温度を達成するために、8〜10倍という倍率を有さなければならない比較的高いレベルの圧縮を実現するために、多段のダイナミック型圧縮機がとくに好ましい。
好ましい実施の形態においては、地下水が前記低圧を有するようにされる完全な開放サイクルが使用される。地下水のために20hPa未満の圧力を生成するための好ましい実施の形態は、単に気密な気化室へとつながる揚水管を使用することである。揚水管が9〜10mの間の高さを乗り越えるならば、気化室は地下水が7〜12℃の間の温度で気化するのに必要な低圧を有する。典型的な建物は少なくとも高さが6〜8mであり、多くの地域において地下水はすでに地表面の下方2〜4mに存在するため、このようなパイプの設置が、大きな追加の出費につながることはない。なぜならば、家の基礎よりもわずかに深く掘るだけでよく、典型的な建物の高さが、揚水管又は気化室が建物の上へと突き出さないほどすでに充分高いからである。
短い揚水管しか可能でない用途の場合には、揚水管の長さを、ポンプ/タービンの組み合わせによって容易に短縮することができ、そのようなポンプ/タービンの組み合わせは、タービンが高圧を低圧へ変換するために使用され、ポンプが低圧を高圧へ変換するために使用されるという事実によって、外部からの追加の仕事をわずかしか必要としない。
このように、一次熱交換器が使用されず、気化させられた地下水が作動蒸気又は作動物質として直接使用されるため、一次熱交換器損失というものがなくなる。
好ましい実施の形態においては、液化装置においても熱交換器が使用されない。代わりに、圧縮により加熱された水蒸気が液化装置内の暖房システムの水へ直接送り込まれ、水中で水蒸気の液化が生じるので、二次の熱交換器の損失もなくなる。
このようにして、好ましく使用される水蒸発器/ダイナミック型圧縮機/液化装置の組み合わせが、一般的なヒートポンプに比べて少なくとも6倍という効率係数を可能にする。すなわち、地下水から、圧縮に費やされる電気エネルギーの量の少なくとも5倍を取り出すことができ、したがって、たとえダイナミック型圧縮機が電流で運転される場合でも、一次エネルギーの供給源に関して、240%=6×40%という暖房エネルギーがもたらされる。これは、従来技術と比べて、少なくとも2倍の効率又は半分のエネルギーコストであることを示す。これは、気候に関係する二酸化炭素の排出にとくに当てはまる。
本発明のヒートポンプの基本的なブロック図である。 種々の圧力及びそれらの圧力に関する気化温度を説明するための表である。 小規模発電装置の概略図である。 一実施形態による第1の部分及び第2の部分を有しているヒートポンプの概略図である。 地下水、海水などで運転される第1の部分と、発電に使用することができる第2の部分とを有している本発明のヒートポンプの好ましい実施形態のブロック図である。 図2の液化装置の他の実施形態である。 オフ動作時の逆流を減少させてなる液化装置の他の実施形態である。 気体分離器を有する液化装置の概略図である。 図2の蒸発器の好ましい実施例である。 液化装置のドレインを沸騰の補助に使用している蒸発器の他の実施形態である。 地下水を沸騰の補助に使用するための熱交換器を有している蒸発器の他の実施形態である。 横からの供給及び中央の排水を備えている蒸発器の他の実施形態である。 好ましい寸法が表示された膨張器の概略図である。 揚水管の高さを短くするための蒸発器の他の実施例である。 タービン/ポンプの組合せを備えた液化装置への暖房配管の接続の他の実現方法を示す実施例である。 互いに前後に配置された複数のダイナミック型圧縮機によって実行される圧縮機の概略図である。 縦列の2つのダイナミック型圧縮機の回転数の設定を目標温度の関数として概略的に示した図である。 本発明の好ましい実施形態によるダイナミック型圧縮機のラジアルフローホイールの概略上面図である。 ラジアルフローホイールの半径に関する羽根のさまざまな延伸を説明するための概略断面図であり、ラジアルホイールの羽根が概略的にのみ示されている。 典型的なh−log(p)線図である。 図7の左手のサイクルを実行する公知のヒートポンプである。
本発明の好ましい実施形態を添付の図面を参照しつつ以下にさらに詳しく説明する。
図1C及び1Dならびに図2を参照して本発明の主題のさらに詳細な説明を提示する前に、本発明のヒートポンプの第1の部分を、図1A及び1Bを参照して提示する。
図1Aは最初に水蒸発器10を備えている本発明のヒートポンプを示しており、蒸発器10が、作動流体としての水を気化させ、出力側において、作動蒸気配管12内に蒸気を生成する。蒸発器は、気化室(図1Aには示されていない)を備えており、水が気化室において15℃未満の温度で気化するよう、気化室内に20hPa未満の蒸発圧力を生成するように構成されている。水は、好ましくは地下水であるか、土壌内もしくは収集パイプ内を自由に循環する塩水、すなわち特定の塩分を有する水であるか、又は川の水、湖水もしくは海水である。本発明によれば、あらゆる種類の水、すなわち石灰分を含む水、石灰分を含まない水、塩水、又は真水を、好ましく使用することができる。その理由は、すべての種類の水、すなわちこれらの「水物質」のすべてが、水の好都合な特性(水は、「R718」としても知られるが、ヒートポンププロセスのために使用できる6というエンタルピー差の比を有しており、これは、例えばR134aなどの典型的に使用できるエンタルピー差の比の2倍超に相当する)を有しているからである。
水蒸気が、吸入管12によって、例えば図1Aに16で示されているターボ圧縮機の形態のラジアルフロー圧縮機などのダイナミック型圧縮機を備える圧縮機/液化装置システム14へと送られる。ダイナミック型圧縮機は、作動蒸気を少なくとも25hPaを超える蒸気圧へと圧縮するように構成されている。25hPaは、約22℃の液化温度に相当し、これはすでに、少なくとも比較的暖かい日には、床暖房システムの充分な暖房システム前進流温度でありうる。より高い前進流温度を生成するために、30hPaを超える圧力を、ダイナミック型圧縮機16を使用して生成することができる。30hPaの圧力は24℃という液化温度を有し、60hPaの圧力は36℃という液化温度を有し、100hPaの圧力は45℃という液化温度に相当する。床暖房システムは、きわめて寒い日でも、45℃の前進流温度を有する充分な暖房を提供できるように設計される。
ダイナミック型圧縮機は、圧縮された作動蒸気を液化させるように構成された液化装置18へ接続されている。液化によって、作動蒸気に含まれているエネルギーが液化装置18へもたらされ、前進流20aを介して暖房システムへ送られる。戻り流20bを介して、作動流体が液化装置へ流れて戻る。
本発明によれば、高エネルギーの水蒸気から熱(熱エネルギー)をより低温の暖房水によって直接抽出することが好ましく、この熱(熱エネルギー)が、暖房システムの水によって取り上げられ、この水を加熱する。このプロセスにおいて、蒸気が液化し、さらに暖房サイクルに加わるような大量のエネルギーが蒸気から抽出される。
このように、液化装置又は暖房システムへの物質の導入が生じ、この導入はドレイン22によって調節されるので、水蒸気、したがって凝縮物の不断の供給にもかかわらず液化装置の液化室の水位が、常に最大レベルの下方に保たれる。
すでに説明したとおり、開放サイクルをとること、すなわち熱源を呈する水を熱交換器なしで直接気化させることが好ましい。しかしながら、気化させるべき水を、最初に外部の熱源によって熱交換器を介して加熱してもよい。しかしながら、その場合は、この熱交換器が、やはり損失と装置費用を意味することを、考慮すべきである。
さらに、液化装置側に今までのところ必然的に存在していた第2の熱交換器のための損失を避けるために、そこでも媒体を直接使用することが好ましい。すなわち、床暖房システムを備える家を考慮する場合、蒸発器から来る水を床暖房システム内に直接循環させることが好ましい。
しかしながら、液化装置側に熱交換器を配置してもよい。そのような熱交換器は、前進流20aの供給を受けるとともに戻り流20bを有しており、液化装置に存在する水を冷却し、したがって典型的には水である別の床暖房用液体を加熱する。
使用される作動媒体が水であり、地下水のうちの気化した部分のみがダイナミック型圧縮機へと送られるという事実から、水の純度は重要でない。液化装置及び場合によっては直接接続される床暖房システムと同じように、ダイナミック型圧縮機には常に蒸留された水が供給されるので、今日のシステムと比べると、システムの保守のための費用が少なくてすむ。言い換えると、システムには蒸留された水しか供給されず、したがってドレイン22内の水が汚染されることがないため、システムは自浄式である。
さらに、ダイナミック型圧縮機は、航空機のタービンと同様に、圧縮された媒体を油などの問題ある物質に接触させることがないという特性を有していることに注意すべきである。それのみか、水蒸気が、タービン又はターボ圧縮機によってのみ圧縮され、水蒸気の純度に悪影響を及ぼす油又は他の媒体に触れることがなく、したがって汚染されることがない。
したがって、ドレインを通って排出される蒸留された水を、他の規制が妨げとならないのであれば、再び地下水へと容易に送り込むことができる。また、しかし、規制が許すのであれば、例えば庭又は空き地などに染み込ませても、あるいは下水道を介して廃水浄化プラントへと送ってもよい。
作動物質としての水とR134aに比べて2倍に改善された有用なエンタルピー差の比との本発明の組合せ、ならびに結果として軽減されるシステムの密封性に課される要件(むしろ、開放システムが好ましい)、及び必要な圧縮倍率を純度に悪影響を及ぼすことなく効率的に達成できるダイナミック型圧縮機の使用よって、環境破壊に関して中立な効率的なヒートポンププロセスがもたらされる。このヒートポンププロセスは、水蒸気が液化装置において直接液化させられる場合には、ヒートポンププロセスの全体においてただ1つの熱交換器さえ必要でなくなるため、さらに効率的になる。
また、ピストン圧縮につきものの損失もなくなる。さらに、水の場合にはきわめて少なく、さもなければ絞りにおいて生じる損失を、気化プロセスを改善するために使用することができる。なぜならば、典型的には地下水の温度よりも高いドレイン温度を有しているドレイン水が、気化の効率を高めるために、後で図4Aにおいて説明されるようなドレイン配管204の構造206によって蒸発器における気泡の気化を引き起こすために好都合に使用されるからである。
図1Cは、本発明のヒートポンプの第2の部分を示しているが、図1Aに示した第1の部分を必要とせずに建物を暖房するための小型の発電装置として使用することも可能である。
特に、この第2の部分は、図1Aによって示され、暖房用の前進流20a及び暖房用の戻り流20bへ接続された同じ液化装置18を備えている。液化装置のドレイン22は、本発明のヒートポンプの第2の部分によれば、もはや水路又は一次側へは供給されておらず、液化装置18によって出力された水を例えば2MPaの圧力へ高める水ポンプ1100へ供給されている。この2MPaの圧力は20barに相当する。水ポンプ1100は、液体の圧縮のみを達成するため、水ポンプの働きによって水の温度が変化することはない。
水(広くは、液体)である作動流体は、簡単な方法で加圧できるため、必要とされる水ポンプは、電力消費が数ワット(1〜2ワットなど)である低コストのポンプでよい。
加圧された水は水蒸発器1102へ供給される。水蒸発器1102は、エネルギー供給の線1104によって概念的に示されているように、一次加熱(木材、木材ペレット、油、ガス、などのためのバーナなど)又は太陽集熱器からエネルギーを得る。高圧に加圧された水を気化させるために必要な高温を、燃焼プロセスによって容易に生成することができる。現代の太陽集熱器も、150℃よりも高温、又は約200℃にもなる温度を容易にもたらす。これらの温度は、16barの圧力に保たれ、又は水ポンプ1100によって16barの水準まで加圧された水を気化させるためには充分である。
したがって、高圧に加圧された高温の蒸気が水蒸発器1102の出力に存在し、この蒸気が、好ましくはステージタービンとして構成されるタービン手段によって緩和されるのによく適している。ステージタービンによる緩和を、対応する装置(例えば、公知の発電機)を使用しつつ電流へと変換することができ、この電流が電力供給線1108を介してタービン1106から出力される。このようにして、気化した作動流体が、タービン/発電機の組合せ1106(以下では、単に「タービン」と称する)の出力に存在する。この気化した作動流体は、低い第2の圧力を有しており、さらには液体の形態で存在する作動流体(凝縮又は液化によって液化装置に存在する)を加熱するために適した温度を有している。
タービン1106の出力に生成する蒸気によって液化装置18内に放出されるこの熱エネルギーを、暖房用の前進流20a及び/又は暖房用の戻り流20bを介して建物内の暖房システムに伝えるために容易に使用することができる。建物内の暖房システムを熱交換器なしで機能させることができるが、それは、熱交換器によって液化装置内の液体から隔てられた液体サイクルをもたないラジエータ又は床下ヒータなどの暖房システムへ作動流体を液体の形態で直接供給する場合に可能である。
しかしながら、熱交換器を設けてもよく、それは、後で図1Dに関して説明されるように、水以外の作動流体が使用される場合に有用である。しかしながら、建物を暖房するための小型の発電装置においては、作動液体として水を使用することが好ましく、対応する圧力における水の気化温度に対応する圧力範囲を有することが好ましい。
規模に関する例が図1Cに示されている。水の体積流量が毎秒4mLであり、液化装置のドレインが36℃という温度を有すると仮定されている。したがって、液化装置における結果としての圧力は、図1Bに示されるとおり60mbar又は60hPaである。60mbarの圧力を有する水が水ポンプ1100によって20bar又は2MPaの圧力とされるが、これは333倍に相当する。この圧力差は、本発明のプロセスを、電流を生成すべくタービン1106の駆動に使用するためには充分に大きい。一般に、50倍を超える圧力差が、電気エネルギーの好都合な結果につながる。圧力差がきわめて大きな値をとることも、水ポンプ1100がそれに合わせて設計され、概念的なエネルギー供給の線1104によるエネルギーの供給が、高圧に加圧された水を気化させるために充分な高温を有するならば可能である。そして、その場合には、水蒸発器1102の出力に高温及び高圧を有していてタービンの駆動(すなわち、電流1108の生成)に理想的に適する蒸気を生成することも可能になる。図1Cに示した例では、蒸気が、215℃という温度及び2MPa又は20barという圧力を有している。タービン1106は、36℃という温度及び60mbarという圧力を有する作動蒸気を出力するような大きさに作られている。上述の体積流量及び上述の圧力差及び/又は温度差によれば、1.5kW程度の電流を生成することができる。また、同時に、液化装置の液体が凝縮した蒸気によって加熱され、したがって電流が得られることに加えて、建物の好都合な暖房も達成される。
好ましい実施の形態においては、配管22内の作動流体について、システムを通過する体積流の速度、すなわち体積流量が、毎秒1mL〜毎秒100mLの範囲にある。第2の圧力、すなわち液化装置内の蒸気が呈し、液化装置の出力における水が呈する圧力は、好ましくは25hPa〜0.1MPaの範囲にあり、水ポンプによって生成される圧力が、好ましくは約5barを超え、とくに好ましい実施の形態においては、約12barを超える範囲にある。
水蒸発器1102の出力及び/又はステージタービン1106の出力において蒸気が呈する温度は、図1Bの表に示されており、さらにはいくつかの作動点に関してより高圧について図1Dのさらなる表にも示されているように、対応する蒸気の圧力からもたらされる。
好ましい実施の形態においては、適切な冷媒が適切な作動圧力に組み合わせられる。水は、26mbarという低い圧力の雰囲気において早くも22℃で凝縮し、約1.01barでは100℃で凝縮する。凝縮させられることにより、水は、自身の凝縮エネルギーを、好ましくは建物の暖房のために直接使用される暖房システムの水へと渡す。暖房の戻り流の過冷却された水が、送りポンプ1100によって高い作動圧力へと加圧される。好ましくは熱交換器を備えている水蒸発器において、水が気化し、圧力に対応する温度となる。100℃において圧力は1barである。200℃において圧力は16barであり、300℃において圧力は90barである。超過圧力が、ガスの流れによって吸収された機械的なエネルギーを例えば電気エネルギーへ変換するように、タービン1106を駆動するために使用される。蒸気が、高圧側から低圧側へと流れ、サイクルが再び始まる。凝縮熱が建物を暖房するために充分でない場合には、第1のヒートポンプ部分をさらに動作させることが好ましく、この目的のために、タービン1106によって生成される電流が使用されるか、又は電流が電力供給網から得られる。電力供給網から得られる電流のコストが、電力供給網への電流の出力よりも低コストである場合には、後者の事例がより好ましいであろう。
このように、木片を燃やすことによって、木材を建物の暖房に直接使用する場合に比べ、約3倍の量の熱エネルギーを、建物を暖房するためにもたらすことができる。これは、木片に含まれるエネルギーがヒートポンプの第1の部分を駆動するために使用されるからである。
図1Cは、建物を暖房するための小型発電装置の好ましい実施の形態を示しているが、図1Dは、第1の部分及び第2の部分を含んでいる本発明のヒートポンプの好ましい実施の形態を示している。
第1の部分は、第1の(低い)圧力の作動流体を気化させるための蒸発器10を備えている。さらに、第1の部分は、気化した作動流体を第2のより高圧へと圧縮するためのダイナミック型圧縮機16を備えている。最後に、第1の部分は、圧縮された作動流体を液化させるための液化装置18をさらに備えている。
本発明によれば、液体の作動流体を第2の圧力よりも高い第3の圧力へと圧縮するための水ポンプ1100による第2の部分がさらに設けられている。加えて、第2の部分は、第3の圧力へと圧縮された作動流体を、蒸発器又は熱交換器1102によって気化させるように機能する。さらに、第2の部分は、気化した作動流体を、タービン1106によって第3の圧力よりも低い圧力へと緩和して、配線1108を介して出力できる電流を生成するように機能する。さらに、第2の部分は、液化装置18も含んでおり、気化及び緩和後の作動流体を液化装置18において液化させる。
本発明によれば、図1Dに示されているように液化装置において作動流体の接触が存在する場合、すなわち図1Dに示されているように液化装置18に関して熱交換器が使用されていない場合、図1Dのヒートポンプの第1及び第2の部分の作動流体は同一である。しかしながら、第2及び第1の部分の作動流体のサイクルが互いに異なる流体をもち、液化装置において両方のサイクルが熱的に結合される場合も液化は明らかに生じる。しかしながら、1つの同じ作動流体を使用し、液化装置18において熱的な結合だけでなく、流体の結合も生じさせることが好ましい。なぜならば、その場合には、熱交換器が不要になり、タービン1106の出力配管を液化装置へ直接接続でき、又は単純なカプラ1110を介して接続できるからである。
カプラ1110は、入力側において第1の部分のダイナミック型圧縮機16の出力配管及び第2の部分のタービン1106の出力配管の両者を受け取り、カプラ1110の出力が液化装置18へ接続されるように構成されている。実施の形態によっては、カプラはダイナミック型圧縮機16の出力もしくはタービン1106の出力のいずれかを出力へ接続し、又はダイナミック型圧縮機の要件及び実施形態によっては、カプラは両方の出力を並列に液化装置18へ接続することができる。
さらに、液化装置18は、ヒートポンプの第2の部分が作動していないときに通常のドレインを呈するように構成することができるスイッチ1114を介して、水蒸発器10へ接続されている。
また、第2の部分が作動していないとき、図2に示されているように、ドレイン水22を一次側の蒸発器サイクルへ直接送ることができる。
さらに、スイッチ1140を、水ポンプ1100及び水蒸発器10の両者に液体を供給するように実施してもよい。これは、作動流体が環境(例えば、地下水)から取られ環境のどこかに戻されるために第1の部分の好ましい実施例が開放サイクルを呈する一方で、液化装置の水が圧縮、気化、緩和及び液化を何度も繰り返すために第2の部分において生じるサイクルが密封サイクルであるからである。しかしながら、また、第1の部分及び第2の部分のそれぞれの第1のサイクル及び第2のサイクルの両者を、開放サイクルとして構成してもよい。これは作動流体が水であり、すなわち汚染が生じない場合に可能であるが、当てはまらない場合もある。特にラジアルフローホイールがダイナミック型圧縮機として使用され、好ましくはラジアルフローホイールが設けられた段階式のタービンがタービンとして使用される場合には当てはまらない。
本発明のヒートポンプの第2の部分は、出力線1108に生成される電流を利用するために、好ましくはコントローラ1112をさらに備えている。実施の形態によっては、電流をダイナミック型圧縮機16を駆動するために直接利用することができる。あるいは、タービン1108によって生成される電流を電力供給網へ売ることができる一方で、ダイナミック型圧縮機で使用する電流を電力供給網から買うこともできる。この手法は、特に電力供給網へ電流を送り込むことによって得られる代金が、電力供給網から得る電流について支払わなければならない代金よりも高い場合に経済的に有用である。
さらに、タービンによって生成された電流を、少なくとも部分的に、水ポンプ1100を駆動するために使用することができる。
本発明の好ましい実施の形態を、以下で図2を参照して詳しく説明する。水蒸発器が、気化室100及び揚水管102を備えており、揚水管102を地下水リザーバ104からの地下水が矢印106の方向に気化室100へと上方に移動する。揚水管102は、比較的細いパイプの断面を拡大して可能な限り大きい気化面積をもたらすように構成された膨張器108へとつながっている。膨張器108は、漏斗の形状を有することができ、すなわち任意の形状の回転放物体の形状を有することができる。膨張器108は丸い推移部又は角張った推移部をもつことができる。気化のプロセスを改善するために、気化室100へ向けられた断面、又は気化室100に面する面積が、揚水管の断面積よりも大きいことだけが重要である。毎秒約1Lが揚水管を通って気化室へと上向きに流れると仮定すると、毎秒約4mLが約10kWの加熱力で気化器において気化させられる。残りは、約2.5℃だけ冷却されて膨張器108を介して出て、気化室内の閉じ込め収集容器110に行き着く。閉じ込め収集容器110は、毎秒1Lから気化した毎秒4mLを引いた量を好ましくは地下水リザーバ104へと再び放出するドレイン112を備えている。この目的のため、ポンプ114又はオーバーフロー制御のためのバルブが設けられる。バルブ114のポンプが開かれたならば、重力によって水が蒸発器の閉じ込め収集容器110から戻り流パイプ113を介して地下水リザーバへと下方に流れるため、積極的なポンプ動作を実行する必要がないことに注意すべきである。このようにして、ポンプ又はバルブ114が、閉じ込め収集容器内の水位が過剰に高くなることがないように保証し、又は水蒸気がドレインパイプ112へと進入することがないように保証し、さらには気化室が戻り流パイプ113の「下」端の状況から確実に切り離されるように保証する。
揚水管は揚水管容器116内に配置され、揚水管容器116は好ましくは設けられるポンプ118によって水で満たされる。揚水管容器116及び膨張器108における水位は、水が揚水管容器116から膨張器108へ運ばれることを保証する連通管の原理、重力ならびに揚水管容器116及び膨張器108における差圧に従って互いに関係づけられている。揚水管容器116に存在する水位は、好ましくは、たとえ異なる気圧においても、空気が進入することがないように水位が決して揚水管102の入り口を下回ることがないように調整される。
好ましくは、蒸発器10は気体分離器を備えており、その気体分離器は気化させるべき水に溶存しているガスの少なくとも一部(例えば、少なくとも50%)を気化させるべき水から取り除き、取り除いた気体が気化室を介して圧縮機によって吸い込まれることがないように構成されている。好ましくは、その気体分離器は、取り除いた気体を気化していない水へ送り、その気化していない水によって運び去るように構成される。溶存ガスとしては酸素、二酸化炭素、チッ素などを挙げることができる。これらのガスは、大部分は水の気化よりも高圧で気化するので、気体分離器を、気体分離器において気化させられた酸素などが、まだ気化していない水から出て、好ましくは戻りパイプ113へと送り込まれるように、膨張器108の下流に配置することができる。戻りパイプ113への送り込みは、好ましくは、気体が戻り水によって地下水へと再び連れ戻されるように圧力が低い戻りパイプ113の位置において実行される。あるいは、分離した気体を収集し、特定の間隔で廃棄してもよく、あるいは常時排気、すなわち大気へ放出してもよい。
典型的には、地下水、海水、川の水、湖水、塩水又は他の天然に生じる水溶液は8〜12℃の間の温度を有する。1Lの水の温度を1℃だけ下げることによって、4.2kWの電力を生成できる。水が2.5℃だけ冷却されるならば、10.5kWの電力が生成される。好ましくは、この例では毎秒1Lである熱出力に応じた流れの強度を有する水の流れが、揚水管を通って流れる。
ヒートポンプが比較的高い負荷で動作する場合、蒸発器が、毎秒約6mLを気化させるが、これは毎秒約1.2立方メートルという蒸気の体積に相当する。必要とされる暖房システムの水温に応じて、ダイナミック型圧縮機がその圧縮力に応じて制御される。たとえ極端に寒い日でもおおむね充分である45℃という暖房用の前進流の温度が望まれる場合には、ダイナミック型圧縮機が、10hPaでよかった圧力を100hPaの圧力へと高めなければならないであろう。他方で、例えば25°という前進流の温度が床暖房システムにとって充分であるならば、ダイナミック型圧縮機によって達成しなければならない圧縮は、わずかに3倍にすぎない。
このように、生成される電力は、圧縮機の定格によって決定され、すなわち一方では、圧縮倍率(すなわち、圧縮機による圧縮の程度)によって決定され、他方では、圧縮機によって生成される体積流量によって決定される。体積流量が増すと、蒸発器がより多くを気化させなければならず、より多くの地下水が気化室へと送られるよう、ポンプ118がより多くの地下水を揚水管容器116へと運ぶ。他方で、ダイナミック型圧縮機のもたらす圧縮倍率がより小さい場合には、下部から上部へと流れる地下水はより少ない。
しかしながら、ここで、ポンプ118を通る地下水の通過を制御することが好ましいことにも、注意すべきである。連通管の原理に従い、容器116内の充填レベル又はポンプ118の押し出し能力が、揚水管を通る流れの量を決める。したがって、流れの制御がダイナミック型圧縮機の吸引力から切り離されるため、プラントの効率の向上を達成することができる。
地下水を下方から気化室100へと送るために、ポンプは不要である。むしろ、これが「自動的」に生じる。この排気された気化室への自動的な上昇は、20hPaという負圧を容易に達成できるという事実も裏付ける。この目的のために、排気ポンプなどは不要である。むしろ、9mを超える高さを有する揚水管のみが必要である。その結果、純粋に受動的な負圧の生成が達成される。しかしながら、必要な負圧を、例えば図5Aの実施例が使用される場合に、大幅に短い揚水管を使用して生成することもできる。図5Aには、大幅に短い「揚水管」が示されている。高圧から負圧への変換が、タービン150によって達成され、この場合、タービンが作動媒体からエネルギーを取り出す。同時に、戻り流側の負圧が高圧へと再び戻され、これに必要なエネルギーはポンプ152によって供給される。ポンプ152及びタービン150は、タービンが具体的には媒体から取り出したエネルギーを使用してポンプを駆動するように、力の結合154によって互いに接続されている。モータ156が、単に、システムが不可避的に有する損失を補償するため、及び循環を達成するため、すなわちシステムを休止位置から図5Aに示したダイナミックモードにするために、依然として必要である。
好ましい実施の形態においては、ダイナミック型圧縮機は、回転車輪を備えるラジアルフローの圧縮機として構成され、車輪は、先行技術において知られているとおり、低速ラジアルフローホイール、中速ラジアルフローホイール、半軸流ホイールもしくは軸流ホイール、又はプロペラとすることができる。ラジアルフローの圧縮機は、非特許文献2に記載されている。したがって、そのようなラジアルフローの圧縮機は、いわゆるセンターランナーを回転可能な車輪として備えており、その形態は、個々の要件に応じて決まる。一般に、ターボ圧縮機、ファン、ブロア又はターボコンデンサとして知られるとおり、任意のダイナミック型圧縮機を使用することができる。
本発明の好ましい実施の形態においては、ラジアルフローの圧縮機16が複数の別個独立のダイナミック型圧縮機として構成される。それらのダイナミック型圧縮機は、2つのダイナミック型圧縮機が異なる回転数を有することができるように、少なくとも回転数に関して独立に制御することができるものである。そのような実施例が、図6Aに示されており、圧縮機が、n個のダイナミック型圧縮機の縦列として構成されている。第1のダイナミック型圧縮機の下流の種々の位置に、好ましくは、例えば符号170によって示され、処理された水を加熱するための1つ以上の熱交換器が設けられる。これらの熱交換器は、先行のダイナミック型圧縮機172によって加熱(及び圧縮)されたガスを冷却するように構成されている。ここで、過熱エンタルピーが、全圧縮プロセスの効率係数を向上させるためにうまく利用される。次いで、冷却されたガスが、1つ以上の下流の圧縮機を使用してさらに圧縮され、あるいは液化装置へと直接送られる。例えば処理済みの水を例えば40℃よりも高温へ過熱するために、圧縮された水蒸気から熱が抽出される。しかしながら、これは、ヒートポンプの全体としての効率係数を低下させず、向上させさえする。というのは、間にガス冷却が接続されたより長い寿命を有する2つの連続的に接続されたダイナミック型圧縮機が、減らされた熱負荷によって液化装置において必要なガス圧を達成しつつ、ガス冷却のないただ1つのダイナミック型圧縮機が存在する場合よりも少ないエネルギーしか必要としないからである。
図2は、第2のヒートポンプ部分の構成要素1100、1102、1106をさらに示している。蒸発器1102における気化に必要なエネルギーは、地下水とは対照的に、もはや低い温度を有する媒体から由来せず、極めて高温を有する媒体、すなわち例えばバーナの廃ガスの流れ又は太陽集熱器の放熱から由来する。
この場合、北半球において、太陽集熱器が、特に夏と冬との間及び冬と夏との間の移行時期において高い効率を生成すること、そして、そのことが、太陽集熱器が処理された水の加熱のためだけでなく、暖房システムの支援のためにも運転される場合にいっそう真実であることに、特に注意すべきである。真夏において、太陽集熱器は、きわめて大量の温水を生成する。しかしながら、真夏には需要がそれほど大きくないので、典型的な太陽集熱器の能力が、真夏においては最適な様相で利用されない。というのは、太陽集熱器によって生成されるエネルギーの供給の全体を貯蔵することができず、あるいはきわめて高い費用をかけなければ貯蔵することができず、すなわち巨大な温水タンクを設けなければ貯蔵することができないからである。本発明によれば、この問題は、太陽集熱器がもはや水を加熱するためには使用されず、高圧に加圧された水を気化させるために使用されることにより解決される。これに必要とされる高温は、特には真夏においてきわめて上手く達成されるが、冬期には入手できない。しかしながら、夏期において、太陽集熱器を使用して、すなわちタービンによってもたらされるエネルギーの形態で、高い効率係数で電気エネルギーを生成することも可能である。このサイクルを動作させるためにヒートシンクが必要な場合には、暖房用の前進流及び/又は暖房の戻り流を、もはや建物の暖房に入力しなくてもよく、液化装置の温度が過剰な水準へと上昇することを許さないように、例えば土中のヒートシンクへと接続することができる。
このように、エネルギーを、太陽集熱器によって夏期においても最適な方法、特に貴重な電気エネルギーとして生成することができる。電気エネルギーは電力供給網へ出力することができ、かつ個人の家庭に貯蔵する必要がなく、高い代金を報酬に電力供給網へと出力することができる。
冬期において、太陽集熱器が水の気化に必要な高温をもたらさない場合には、バーナを動作させることによって容易に高温を得ることができる。バーナは、例えば木材を燃やす暖炉の形態で快適の理由のために多数の家庭によっていずれにせよ利用されるものである。暖房の快適さに加え、今や「経済的な」快適も存在する。というのは、燃料の燃焼による高温での水の気化によって、生成される電流をヒートポンプの第1の部分の形態の建物の実際の暖房システムのダイナミック型圧縮機を駆動するために使用することができ、又は電力供給網への供給を実現して経済的な収入を得るために使用することができるからである。このように、本発明の考え方は、夏期だけでなく冬期にも、電力消費コストの削減をもたらし、したがって暖房コストの削減をもたらす。光起電ではなく水の気化による電流の生成によって、太陽輻射が充分である場合に、夏期における電力の送り込みがコストに関して冬期の電力消費を切り下げることさえできるため、全体的な観点から見て暖房をほとんどコストなしで得ることができる。
ヒートポンプのとくに第1の部分の好ましい実施例を以下に説明する。
本発明の好ましい実施の形態においては、2つのダイナミック型圧縮機が異なる回転数を有することができるように、ラジアルフローの圧縮機16は、少なくとも回転数に関して独立に制御することができる複数の別個独立のダイナミック型圧縮機として構成される。そのような実施例が、図6Aに示されており、圧縮機がn個のダイナミック型圧縮機の縦列として構成されている。第1のダイナミック型圧縮機の下流の種々の位置に、好ましくは、例えば符号170によって示され処理された水を加熱するための1つ以上の熱交換器が設けられる。これらの熱交換器は、先行のダイナミック型圧縮機172によって加熱(及び圧縮)されたガスを冷却するように構成されている。ここで、過熱エンタルピーが、全圧縮プロセスの効率係数を向上させるためにうまく利用される。次いで、冷却されたガスが、1つ以上の下流の圧縮機を使用してさらに圧縮され、あるいは液化装置へと直接送られる。例えば処理済みの水を例えば40℃よりも高温へ過熱するために、圧縮された水蒸気から熱が抽出される。しかしながら、このことは、ヒートポンプの全体としての効率係数を低下させず、向上させさえする。それというのも、間にガス冷却が接続されたより長い寿命を有する2つの連続的に接続されたダイナミック型圧縮機が、減らされた熱負荷によって液化装置において必要なガス圧を達成しつつ、ガス冷却のないただ1つのダイナミック型圧縮機が存在する場合よりも少ないエネルギーしか必要としないからである。
別個独立に運転される縦列にされたダイナミック型圧縮機は、好ましくは、入力側において暖房回路内の目標温度を維持し、状況によっては暖房回路内の実際の温度も維持するコントローラ250によって制御される。所望される目標温度に応じて、例えば縦列の上流に配置されてn1によって示されるダイナミック型圧縮機の回転数、及び縦列において下流に配置されたダイナミック型圧縮機の回転数n2が、図6Bによって示されるように変更される。より高い目標温度がコントローラ250へ入力される場合、両方の回転数が高められる。しかしながら、図6Bにおいてn1によって示されている上流に配置されたダイナミック型圧縮機の回転数が、縦列の下流に配置されたダイナミック型圧縮機の回転数n2よりも小さな勾配で高められる。これにより、2つの回転数の比n2/n1をプロットしたときに、図6Bの図のように正の傾きを有する直線となる。
個々にプロットされる回転数n1及びn2の間の交差の点が、任意の点、すなわち任意の目標温度において生じることができ、あるいは場合によっては、生じなくてもよい。しかしながら、一般に、より高い目標温度が望まれる場合には、縦列において液化装置側により近く配置されたダイナミック型圧縮機の回転数を、縦列の上流に配置されたダイナミック型圧縮機よりも大きく増加させることが好ましい。
この理由は、縦列において下流に配置されたダイナミック型圧縮機は、その縦列において上流に配置されたダイナミック型圧縮機によって圧縮された既に圧縮済みのガスをさらに処理しなければならない点にある。さらに、このことは、図6C及び6Dを参照してさらに検討されるとおり、ラジアルフローホイールの羽根の羽根角度が、圧縮すべきガスの速度に関して、常に可能な限り好都合な状態にあることを保証する。したがって、羽根角度の設定は、可能な限り渦の少ない流入ガスの圧縮の最適化のみとなる。通常であれば羽根角度の選択において技術的妥協を可能にすると考えられ、したがって目標温度においてのみ最適な効率係数を可能にすると考えられるガスの処理量及び圧縮比などといった角度設定のさらなるパラメータは、本発明によれば、独立した回転の制御によって最適な動作点へともたらされ、したがってもはや羽根角度の選択に影響を有さない。したがって、固定して設定された羽根角度にかかわらず、常に最適な効率係数がもたらされる。
この点に関し、さらには、縦列において、より液化装置側に配置されるダイナミック型圧縮機について、ラジアルフローホイールの回転方向が、縦列の上流に配置されるラジアルフローホイールの回転方向に対して反対であることが好ましい。その結果、ガス流において両方の軸流車輪の羽根のほぼ最適な進入角度を達成できるので、ダイナミック型圧縮機の縦列の好都合な効率係数が、小さな目標温度の範囲においてのみならず、典型的な暖房の用途に最適な範囲である20〜50度の間という大幅に幅広い目標温度範囲においても生じる。このように、本発明の回転制御と、場合によっては反対回転の軸流車輪の使用とが、一方、すなわち変化する目標温度における可変のガス流と、他方、すなわち軸流車輪の固定の羽根角度との間の最適な適合をもたらす。
本発明の好ましい実施の形態においては、すべてのダイナミック型圧縮機の軸流車輪のうちの少なくとも1つ、好ましくはすべてが、80MPaを超える引っ張り強さを有するプラスチックで製作される。この目的のために好ましいプラスチックは、炭素繊維が埋め込まれたポリアミド6.6である。このプラスチックは、高い引っ張り強さを有するという利点を有しており、したがって外乱圧縮機の軸流車輪をこのプラスチックから製造でき、それにもかかわらず高速の回転数で動作させることができる。
好ましくは、軸流車輪は、本発明によれば、例えば図6Cに参照番号260で示されているようなものが採用される。図6Cはそのようなラジアルフローホイールの概略上面図を示しており、図6Dはそのようなラジアルフローホイールの概略断面図を示している。従来技術において知られているとおり、ラジアルフローホイールは、内側から外側へと延びる複数の羽根262を備えている。羽根は、ラジアルフローホイールの軸に関して、中心軸264の或る距離(rWによって示されている)から外側に向かって完全に延びている。詳しくは、ラジアルフローホイールは、ベース266と、吸入パイプ又は前段の圧縮機へと向けられたカバー268とを備えている。ラジアルフローホイールは、ガスを吸い込むために、r1によって示された吸入開口を備えており、次いでこのガスが、図6Dに符合270にて示されているとおり、ラジアルフローホイールによって横方向に出力される。
図6Cに目を向けると、ガスは、回転方向において、羽根262の前ではより高い相対速度を有し、羽根262の背後では減速された速度を有する。しかしながら、高い効率及び高い効率係数のためには、ガスがラジアルフローホイールから横方向に、すなわち図6Dの符号270の方向にて、いずれの場所においても可能な限り一様な速度で排出されることが好ましい。この目的のため、羽根262を可能な限り密に取り付けることが望ましい。
しかしながら、技術的理由のため、内側(すなわち、半径rW)から外側へと延びる羽根を可能な限り密に取り付けることは不可能である。なぜならば、半径r1を有する吸入開口が、ますます遮られることになるからである。
したがって、本発明によれば、それぞれ羽根262の長さよりも短い長さにわたって延びる羽根272、274及び276を設けることが好ましい。詳しくは、羽根272は、rWから完全に外側まで延びるのではなく、ラジアルフローホイールに関してrWよりも大きいR1から外側へと延びている。これと同様に、図6Cに例として示されているように、羽根274がR2から外側へと延びているにすぎず、羽根276はR3から外部へと延びているにすぎない。R2はR1よりも大きく、R3はR2よりも大きい。
これらの比が図6Dに概略的に示されている。例えば図6Dの領域278の二重斜線は、重なり合いしたがって二重斜線の領域によって標識される2つの羽根がこの領域に存在することを示している。例えば、領域278に示されている左下から右上への斜線はrWから最も外側まで延びる羽根262を示しており、領域278の左上から右下へと延びる斜線はラジアルフローホイールに関してわずかにr1から外側まで延びている羽根272を示している。
このように、それほどは内側に向かって延びてはいない少なくとも1つの羽根が、好ましくはそれよりも内側へとさらに延びている2つの羽根の間に配置されている。この結果として、吸入領域が塞がれることがなく、さらに/又は、より小さな半径を有する領域に羽根が過剰に密集することがない一方で、より大きな半径を有する領域には羽根がより密に密集する。その結果、ラジアルフローホイールの出力、すなわち圧縮されたガスがラジアルフローホイールから離れる場所において出るガスの速度分布が、可能な限り一様になる。図6Cの本発明の好ましいラジアルフローホイールにおいては、羽根の「積み重ね」配置により、例えば最も内側から最も外側まで延びる羽根262だけが存在する場合(必然的に、ラジアルフローホイールの外側端において間隔が極めて大きく、間隔が図6Cに示したような本発明のラジアルフローホイールに比べて大幅に大きくなる)に比べて、ガスを加速させる羽根の間隔が大幅に小さいため、出て行くガスの速度分布が外周において極めて一様である。
この点において、図6Cのラジアルフローホイールの比較的高価かつ複雑な形状を、プラスチックの射出成型によってきわめて好都合な方法で製造でき、特に、最も内側から最も外側まで延びてはいない羽根(すなわち、羽根272、274、276)を含むすべての羽根のしっかりとした固定を簡単に実現できることに注意すべきである。それというのも、それらの羽根は図6Dのカバー268及びベース266の両方へ接続されるからである。プラスチックを特にプラスチック射出成型技法とともに使用することで、所望の任意の形状を、精密な方法で、低いコストにて製造することができるが、これは、金属製の軸流ホイールにおいては、容易には不可能であるか、又はきわめて高い費用をかけた場合にのみ可能であるか、又は全く不可能である。
この点で、ラジアルフローホイールの極めて高い回転数が好ましく、結果として羽根に作用する加速度が極めて大きな値をとることに注意すべきである。この理由で、ラジアルフローホイールが生じる加速度に容易に耐えることができるように、特により短い羽根272、274、276が、ベースだけにではなく、カバーにも固定して接続されることが好ましい。
さらに、この場合、プラスチックの使用が、プラスチックの優れた衝撃強度という理由でも好都合であることに注意すべきである。例えば、氷の結晶又は水滴が少なくとも第1の圧縮機段のラジアルフローホイールに衝突することを必ずしも排除することができない。大きな加速度のために、きわめて大きな衝突力がここに生じるが、プラスチックがこれに容易に耐える充分な衝撃強度を有している。さらに、液化装置における液化が、好ましくはキャビテーションの原理にもとづいて生じる。ここでは、この原理にもとづき、水中で小さな蒸気の気泡が潰れる。微視的な観点から、きわめて大きな速度及び力がそこに生じ、これが長期の動作において材料の疲労につながる可能性があるが、これを、充分な衝撃強度を有するプラスチックが使用される場合に、容易に抑制することができる。
最後の圧縮機174によって出力される圧縮ガス、すなわち圧縮された水蒸気は、次に液化装置18へと送られる。液化装置18は、図2に示したように構成されてよいが、好ましくは図3Aに示したように構成される。液化装置18は、水180と、好ましくは蒸気182とを収容している。蒸気182は所望のとおりに少なくてよい。液化装置18は、圧縮された蒸気を水180へ送るように構成され、符号184で概略的に示されているように、蒸気が液体へ進入する所で凝縮がすぐに生じる。この目的のために、ガスが液化装置の水180において可能な限り広い領域に分散するように、ガス供給用に膨張領域186を有することが好ましい。典型的には、温度層のために、水タンク内の最高の温度が上部に位置し、最も低い温度が底部に位置する。したがって、暖房用の前進流は、常に液化装置の水180から最も温かい水を取り出すように、浮き188によって可能な限り水180の表面の近くに配置される。暖房の戻り流は、底部において液化装置へと供給され、その結果、液化させるべき蒸気が、可能な限り冷たく、暖房用の循環ポンプ312を用いた循環によって再び底部から膨張器186の蒸気−水の境界の方向に移動する水に接する。
重力によってすべての暖房パイプが液化装置内における圧力よりも大きい圧力を有するように、暖房すべき領域が液化装置よりも下方に位置するように液化装置が建物に配置されている場合には、簡単な循環ポンプ312のみが存在する図2の実施の形態で充分である。
対照的に、図5Bは、タービン/ポンプの組み合わせを有する液化装置への暖房配管の接続の実施例を、液化装置が暖房配管の高さよりも低い高さに配置される場合、又はより高圧を必要とする従来からの暖房が接続される場合について示している。このように、液化装置がより低い高さに配置され、すなわち暖房対象の領域の下方及び/又は暖房配管300の下方に配置される場合、ポンプ312が、図5Bに符号312で示されるように被駆動ポンプとして構成される。さらに、タービン310が、ポンプ312を駆動すべく暖房の戻り流20bに設けられ、タービン310が、力の接続314を介してポンプ312へとつながれる。その結果、暖房システムに高圧が存在し、液化装置に低い圧力が存在する。
液化装置における水位が、液化装置へ常に導入される蒸気によってますます上昇することが考えられるため、ドレイン22が設けられ、液化装置の水位が基本的に不変であるようにするために、ドレイン22を介して、やはり例えば毎秒約4mLが排水されなければならない。この目的のため、圧力損失なしで、必要な量、すなわち圧縮機が動作しているときに液化装置へ送られる水蒸気の量(例えば、毎秒4mL)を再び排水するように、圧力調節のためのドレインポンプ又はドレインバルブ192が設けられている。実施の形態によっては、符号194で示されているようにドレインを揚水管へ導入してもよい。1barと気化室内に存在する圧力との間のあらゆる種類の圧力が、揚水管102に沿って存在するため、ドレイン22を、ポンプ192又はバルブ192の下流から出るときとおおむね同じ圧力が存在する位置194において、揚水管へ入れることが好ましい。その結果、ドレイン水を揚水管へと再供給するために仕事を行う必要がない。
図2に示した実施の形態は全く熱交換器なしで動作する。すなわち、地下水が気化させられ、次いで蒸気が液化装置において液化させられ、液化させられた蒸気が、最終的に暖房システムを通って送られ、再び揚水管へと送られる。しかしながら、揚水管を通って流れる水のうちのすべてではなく、(きわめてわずかな)一部分のみが気化させられるため、床暖房システムを通って流れた水が、地下水へと送られる。このようなことが自治体の規制によって禁止されている場合には、たとえ本発明がいかなる汚染も引き起こすことがないにせよ、ドレインを毎秒4mLの量(おおむね1日当たり345Lに相当する)を下水道へと送るように構成してもよい。これは、建物の暖房システムに存在したいかなる媒体も、地下水へと直接戻されることがないように保証するであろう。
しかしながら、蒸発器からの戻り流112を、いかなる問題もなく地下水へと送ることができる。なぜならば、そこを流れ戻る水は、揚水管及び戻りの配管にしか接触しておらず、気化の膨張器108とダイナミック型圧縮機への出力との間の「気化の境界」を超えていないからである。
図2に示した実施の形態において、気化室ならびに液化装置、又は液化装置の蒸気室182が、密封されなければならないことに注意すべきである。気化室内の圧力が、揚水管を通って送られる水が気化するために必要な水準を超えるとすぐに、ヒートポンププロセスが「停止」に至る。
以下では、液化装置18の好ましい実施の形態を表わしている図3Aを参照する。圧縮された蒸気のための送り配管198が、蒸気が液化装置の水180の水面のすぐ下方において水180中へ出ることができるように液化装置内に位置決めされている。この目的のため、蒸気供給配管の端部が、パイプの外周を巡って配置されたノズルを備えており、これらのノズルを通って蒸気が水中へ出ることができる。混合が可能な限り徹底的に生じるように、すなわち蒸気を可能な限り冷たい水に接触させて、可能な限り迅速かつ効率的に液化させるために、膨張器200が設けられる。この膨張器は、液化装置の水180の中に配置される。膨張器は、最も狭い地点において、液化装置の底部の低温の水を吸い込み、それを膨張器によって上方に向けられてより幅広くなる流れに向かって移動させるように構成された循環ポンプ202を有している。これは、可能な限り大量の蒸気を液化装置の水180へと進入させ、循環ポンプ202によってもたらされる可能な限り冷たい水に接触させることを目的としている。
さらに、液化装置の周囲に、能動的又は受動的な方法で構成することができる遮音部208を設けることが好ましい。受動的な遮音部は、熱絶縁と同様に、液化によって生じる音の周波数を可能な限り絶縁する。システムの他の構成要素にも、やはり遮音を施すことが好ましい。
又は、遮音部を能動的であるように構成することも可能であり、その場合には、例えば音を測定するためのマイクロホンを有し、測定に応答して、例えば圧電手段によって液化装置の外壁を振動させるなど、音の打ち消し作用を生じさせることができる。
図3Aに示した実施の形態は、液化装置内に位置する液体180が、ヒートポンプが停止しているときに通常であれば圧縮された蒸気が存在しているパイプ198へ進入する点で、いくらか問題である。一実施例においては、逆止バルブを配管198に、例えば液化装置からみてその配管の出力付近に設けることができる。あるいは、配管198を、特に圧縮機の停止時に液体が圧縮機に逆流することがないような高さまで上方へ向けることができる。圧縮機が再び作動するとき、蒸気配管198からの水が、最初に圧縮された蒸気によって液化装置へ押し出される。
水の充分な部分が配管198から取り除かれた後、蒸気が液化装置において凝縮させられる。したがって、そのような形式の実施の形態は、水180が圧縮された蒸気によって再び加熱されるまでに必要な特定の遅延時間を有している。加えて、配管198へ進入した水を再び配管198から取り除くために必要な仕事は、もはや回収できず、したがって暖房システムに関しては「損失」である。したがって効率係数に関する小さな損失は受け入れられなければならない。
この問題を克服する別の実施の形態が、図3Bに示されている。図3Aと異なり、ここでは圧縮された蒸気が液化装置内の水位の下方のパイプに送られるのではない。代わりに、蒸気が、実際には、液化装置内の液体へと表面から「送り」込まれる。この目的のため、液化装置がノズル板210を備えており、ノズル板210はノズル板210の平面に対して突き出しているノズル212を備えている。ノズル212は液化装置の水180の水位の下方に延びている。対照的に、図3Bにおいて符号214で示された、2つのノズルの間の凹部は液化装置の水180の水位の上方へと延びており、したがって液化装置の水の水面(ノズルによって中断されている)が常に2つのノズルの間に位置している。ノズル212は、配管198から蒸気室182へと広がる圧縮された水蒸気を通過させて液化装置の水へと進入させる(矢印216によって概略的に示されているとおり)ことができるノズル開口を有している。
図3Bの実施例において圧縮機が停止した場合、結果として液体がノズル板210のノズル212へと進入するが、その程度はわずかであり、したがって再びヒートポンプが作動させられるときにノズルから水を再び押し出すために行わなければならない仕事はきわめて小さい。いずれにせよ、膨張器200を介する供給であるために、ポンプ202によって上方へと運ばれる液体が常に可能な限り低温であって暖かい蒸気に接触することを膨張器200が保証する。次いで、温かい水が、すみやかに前進流20aへと進入し、あるいは矢印218によって示されるとおり膨張器の縁において水中に広がり、特に膨張器の形状のために乱れが可能な限り少ない温度の層化が、膨張器の外側で液化装置内に生じる。
膨張器の縁、すなわち矢印218が示されている場所に存在する流量は、中央よりも大幅に少ない。液化装置を温度層の保存として動作させることが好ましいので、例えば油バーナによって動作する通常の暖房設備の場合と同様に、ヒートポンプ、特に圧縮機を、中断なしで動作させなくてもよく、必要がある場合にのみ動作させればよい。
図3Cは、液化装置のさらなる好ましい実施例を概略的に示している。特に、液化装置が、液化装置内の気体空間182へ接続された気体分離器220を備えている。液化装置において漏れうる酸素又は他のガスなど、液化装置内に生じるあらゆる気体が、気体分離器容器220内に集まる。次いで、ポンプ222を好ましくは特定の間隔で作動させる(常時のガスの排気は、生じるガスの量が少ないがために不要であるため)ことによって、このガスを大気へと送り出すことができる。あるいは、ガスを、再び図2の戻り流112又は113へとドッキングさせ、流れ戻る地下水と一緒に再び地下水リザーバへ戻してもよく、地下水リザーバにおいてガスが再び地下水に溶解し、あるいは地下水リザーバへの進入時に大気へと吸収される。
本発明のシステムは水で動作し、ガスが生じず、大きなガス漏れがあってもそのようなガスはもともと地下水に溶存していないのであるから、分離されるガスが、いかなる環境の問題も引き起こさない。本発明のダイナミック型圧縮機による圧縮及び作動流体としての水の使用により、いかなる点においても油サイクルに起因する合成冷却剤もしくは油による汚染又は汚損が存在しないことを、再び強調しておかなければならない。作動媒体として、本発明のシステムは、あらゆる点において、元の地下水と少なくとも同程度に清浄であり、又は蒸発器における蒸発により地下水よりも清浄(水が、圧縮された蒸気が液化装置において再び液化させられた蒸留水であるため)である水又は蒸気を有している。
以下では、気化のプロセスを加速するために液化装置のドレインを好都合に使用するための蒸発器の好ましい実施の形態を、図4Aを参照して説明する。この目的のため、公知のとおり暖房システムの戻り流の温度、すなわち地面からくみ上げられる地下水よりもはるかに高温を有しているドレインが、ドレインパイプ204の壁が核沸騰のための核として機能するように、蒸発器の膨張器108に通される。その結果、そのような核となる作用が用意されない場合に比べて、大幅に効率的な蒸気が蒸発器によって生成される。さらに、ドレインパイプ204の壁を、少なくとも膨張器内において、符号206にて示されているように、可能な限り核沸騰のための核生成をさらに向上させるように構造化されるように構成することが好ましい。ドレインパイプ204の表面が粗いほど、核沸騰のためにより多くの核が生成される。ここでは、1つの動作モードにおいて液化装置へ送られる毎秒4mLだけが取り扱われるため、ドレインパイプ22を通過する流れがきわめてわずかでしかないことに注意すべきである。それでもなお、この少ない量で、かつ地下水に比べて比較的高温により、ヒートポンプの効率を保ちつつ蒸発器のサイズを小さくするために大幅に効率的な核沸騰を生じさせることが可能である。
上記に代え、あるいは上記に加えて、気化のプロセスを加速するために、気化させるべき水が位置している蒸発器の領域、すなわち膨張器の表面又はその一部を、核沸騰のための核をもたらすための粗い材料から構成することができる。これに代え、あるいはこれに加えて、気化させるべき水の水面の下方(の近く)に粗い格子を配置してもよい。
図4Bは、蒸発器の別の実施例を示している。図4Aにおけるドレインは、単に効率的な気化のための核形成の「通過型」の補助として使用され、図4Aの図の左手側に示されているように、ひとたび蒸発器を通過したならば排水される。それに対し、図4Bにおけるドレインは、それ自身が核形成を補強するために使用される。この目的のため、図2の液化装置のドレイン22が、おそらくはポンプ192を介してノズルパイプ230へ接続され、あるいは条件が許すのであればポンプなしでノズルパイプ230へと接続される。ノズルパイプ230は、一端にシール232を有し、さらにノズル開口234を有している。例えば毎秒4mLの速度でドレイン22を介して液化装置から排出される暖かい液化装置の水が、今度は蒸発器へ送り込まれる。ノズルパイプ230内のノズル開口234への経路又はノズルの出口のすぐ近くにおいて、実際に、ドレイン水の温度にとって低すぎる圧力のために蒸発器の水の水面の下方ですでに気化が生じる。
そこで形成される上記の気泡が、すぐに、流入102によって送り込まれる蒸発器の水のための沸騰の核として機能する。このようにして、効率的な核沸騰を、いかなる大きな追加の手段もとることなく、蒸発器において引き超すことができる。この核沸騰は、図4Aと同様に、図4Aの粗い領域206の付近又はノズル開口234の付近の温度が、存在する圧力に鑑みて気化が速やかに生じるほどにすでに高いという事実によって引き起こされる。この気化が、小さな蒸気の気泡を生じさせ、これが、条件が好都合に選択されたならば、再び潰れる確率がきわめて小さくなり、表面へと進む蒸気の気泡への発達の確率がきわめて高くなり、ひとたび気化室内の蒸気の空間へと進入したならば、吸入配管12を介して圧縮機によって吸い出される。
図4Bに示した実施の形態は、ノズルパイプ230から出る媒体が、最終的に蒸発器のオーバーフローを介して戻り流112へと再び入り、地下水に接触するため、液化装置の水を地下水サイクルへともたらすことを必然的に伴う。
水の規制が規定されている場合、あるいは上記が許されない他の理由が存在する場合、図4Cに示した実施の形態を使用することができる。液化装置のドレイン22によってもたらされる暖かい液化装置の水が、例えば毎秒4mLの速度で熱交換器236へ導入され、自身の熱を、配管102内の主たる地下水の流れから分岐配管238及び分岐ポンプ240を介して分岐された地下水へと与える。次いで、分岐された地下水が、熱交換器236において液化装置のドレインの熱を基本的に引き取り、予熱された地下水が、例えば33℃の温度でノズルパイプ230へ導入され、地下水に比べて高温によって、蒸発器における核沸騰を効果的に引き起こし、あるいは支援する。他方で、熱交換器は、比較的大きく冷却されたドレイン水をドレイン配管238を介してもたらし、次いでこれが、ドレインポンプ240を介して下水道へと送られる。分岐配管238及び分岐ポンプ240ならびに熱交換器236の組み合わせにもとづき、地下水のみが、他のいかなる媒体とも接触することなく、蒸発器において使用され又は蒸発器へ導入される。このようにして、図4Cに示した実施の形態に関しては、水の規制に該当することがない。
図4Dは、縁部に供給部を備えた蒸発器の別の実施例を示している。ここでは、図2と異なり、蒸発器の膨張器200が、蒸発器内の水位110の下方に配置されている。これは、中心線112にて戻されるように「外側から」膨張器の中央に向かう水の流れを生じさせる。図2における中心線が蒸発器への供給のために機能しているのに対し、図4Dにおける中心線は気化していない地下水を排水するように機能する。対照的に、図2に示した線112が、気化していない地下水を排水するように機能していた。図4Dにおいては、対照的に、縁に位置するこの線が、地下水の供給として機能する。
図4Eは、蒸発器において使用することができるような膨張器200、あるいは例えば液化装置において使用することができ、例えば図2、図3A又は3Bにそれぞれ示されるような膨張器の実施例を示している。膨張器は、好ましくは、自身の小さな直径が「大きな」膨張器領域の中央において膨張器へと入るように構成されている。この流入又はドレイン(図4Dの場合)の直径は、好ましくは3〜10cmの間の範囲であり、とくに好ましい実施の形態においては、4〜6cmの間である。
膨張器の大きな直径d2は、好ましい実施の形態において、15〜100cmの範囲にあり、とくに好ましい実施の形態においては、25cmよりも小さい。蒸発器の小型な構成は、上述したように、核沸騰を引き起こして補助するための効率的な手段が使用される場合に、可能である。小さな半径d1及び大きな半径d2は、それらの間に位置する膨張器の湾曲の領域を有しており、この湾曲領域は、好ましくはこの領域において、好ましくは毎秒7〜40cmの範囲にある速い流速から膨張器の縁に位置する比較的小さな流速まで減速される層流がもたらされるように構成される。例えば湾曲の線の領域における渦や、膨張器を上方から眺めた場合の流入の上方の「気泡発生作用」など、流速の大きな不連続は、それらが効率係数に負の影響を及ぼしかねないため、好ましくは回避される。
とくに好ましい実施の形態においては、膨張器が、膨張器表面の上方の水位の高さが、15mmよりも小さく、好ましくは1〜5mmの間であるような結果をもたらす形状を有している。したがって、上方から見たときに膨張器の面積の50%超において15mmよりも小さい水位が存在するように構成された膨張器200を使用することが好ましい。その結果、効率的な気化を全領域にわたって保証することができ、その効率は、核沸騰を引き起こすための手段が使用される場合には、さらに高められる。
このように、本発明のヒートポンプは、建物に効率的に熱を供給するように機能し、もはや世界の気候に悪影響を及ぼすいかなる作動物質も必要としない。本発明によれば、水が、きわめて低い圧力のもとで気化させられ、1つ又は互いに前後に配置された複数のダイナミック型圧縮機によって圧縮され、再び水へと液化させられる。運ばれるエネルギーが、暖房に使用される。本発明によれば、好ましくは開放系を呈するヒートポンプが使用される。ここで、開放系とは、熱エネルギーを運んでいる地下水又は他の任意の利用可能な水媒体が、気化させられ、圧縮され、低い圧力のもとで液化させられることを意味する。その水が、作動物質として直接使用される。したがって、含まれているエネルギーが、閉鎖系へ伝えられることがない。その液化させられた水が、好ましくは暖房システムにおいて直接使用され、その後に地下水へと戻される。暖房システムを容量的に切り離すために、熱交換器を終端に位置させてもよい。
本発明の効率及び有用性を数値例によって表す。30,000kWhという年間の暖房の要件を仮定すると、本発明によれば、これを達成するために、最大で約3,750kWhの電流をダイナミック型圧縮機を動作させるために消費しなければならない。なぜならば、ダイナミック型圧縮機は、必要な熱の量の全体の約8分の1の供給のみを必要とするからである。
この8分の1は次の事実からもたらされる。すなわち、きわめて低温の場合に限って6分の1を消費する必要があり、例えば3月又は10月の終わりなどの移行期の温度においては、効率係数が12を超える値にまで上昇でき、したがって1年にわたる平均では、最大で8分の1が消費されなければならないという事実である。
電気について達することがありうる1kWh当たり約10ユーロセントという電気の価格において、本発明の発電装置において中断のない動作を保証するための電気を購入する場合、これは、おおむね375ユーロの年間コストに相当する。30,000kWhを油を使用して生成しようとすると、約4,000Lが必要であると考えられ、これは、現在の油の価格(将来において下落する可能性は極めて低い)にもとづくと、2,800ユーロという価格に相当する。したがって、本発明によれば、年間2,425ユーロもの節約が可能である。さらに、暖房目的で油又はガスを燃やすことに比べ、本発明の考え方によれば、放出されるCO2の量の最大70%が削減されることを、指摘しておかなければならない。
製造コストを削減し、さらには維持及び組み立てのコストも削減するために、蒸発器、圧縮機及び/又は液化装置のハウジング、ならびに特にはダイナミック型圧縮機のラジアルフローホイールを、プラスチックから構成することが好ましく、特には射出成型プラスチックから構成することが好ましい。プラスチックは水に関して耐腐食性であり、本発明によれば、従来からの暖房システムに比べ、好ましいことに最大温度が利用可能なプラスチックの変形温度を明らかに下回るため、プラスチックはよく適している。さらに、蒸発器、圧縮機及び液化装置で構成されるシステムに負圧が存在するため、組み立てがきわめて単純である。したがって、全体の大気圧がハウジングを漏れがないように保つことを助けるため、封止に課される要件が大幅に低い。さらに、本発明のシステムのどこにも高価な特殊プラスチック、金属又はセラミックの使用を必要とするような高温が存在しないため、プラスチックは特によく適している。さらに、プラスチックの射出成型によって、ラジアルフローホイールの形状を、所望の任意の方法で最適化することができる一方で、複雑な形状にもかかわらず簡単な方法かつ低コストで製造することができる。
状況に応じ、本発明の方法を、ハードウェア又はソフトウェアにて実現することができる。実現は、当該方法を実行するようにプログラム可能なコンピュータシステムと相互作用できる電子的に読み出し可能な制御信号を有するデジタル記録媒体(特には、ディスク又はCD)上であってよい。したがって、本発明は、一般的には、プログラムコードを含んでいるコンピュータプログラム製品であって、機械で読み取ることができる担体上に保存され、コンピュータ上で実行されたときに本発明の方法を実行するためのコンピュータプログラム製品でもある。すなわち、すなわち、本発明を、コンピュータ上で実行されたときに本方法を実行するためのプログラムコードを有しているコンピュータプログラムとして実現することができる。
本発明のヒートポンプの一実施形態は、前記第1の部分が、熱源へと接続できる蒸発器10と、電流を消費するように構成されたダイナミック型圧縮機16と、液化装置18とを備えており、蒸発器10に接続される前記熱源が、作動流体が第1の圧力において気化するような大きさとされている。
本発明のヒートポンプの好ましい一実施形態において、蒸発器100が、地下水、海水、川の水、湖水又は塩水の形態で環境に存在する水を気化させるように構成され、液化装置18が、液化させた水を前記蒸発器、土壌、又は水処理プラントへと送るように構成されている。
本発明のヒートポンプの好ましい一実施形態において、圧縮機16が、作動蒸気を25hPaよりも高い作動圧力へと圧縮するように構成されている。
本発明のヒートポンプの好ましい一実施形態において、ダイナミック型圧縮機が、ラジアルフロー圧縮機として構成されている。
本発明のヒートポンプの好ましい一実施形態において、蒸発器10が、気化室100へ接続された揚水管102を備えており、揚水管102の一端が液体で満たされた作動液体用容器116へ接続され、揚水管102の他端が重力の作用によって気化室100内に気化圧力がもたらされるように気化室100へ接続されている。
本発明のヒートポンプの好ましい一実施形態において、揚水管102が8mを超える長さを有するように構成されている。
本発明のヒートポンプの好ましい一実施形態において、蒸発器が、上流の作動流体の圧力を低下させ、そのプロセスにおいて作動流体からエネルギーを抽出するタービン150を備えており、タービン150が、下流の作動流体を気化室内に存在する圧力から上流の作動流体の圧力にするためのポンプ152へ作用可能に接続されており、この作用的接続154は、タービンが抽出したエネルギーの少なくとも一部をポンプ152が使用するように構成されている。
本発明のヒートポンプの好ましい一実施形態において、蒸発器10が、気化室において気化室への供給配管の直径の少なくとも3倍へと広がっている膨張器108、膨張器108の縁を越えてあふれ出る作動液体を受け取るように構成された受け取り装置110、及びあふれ出る作動液体を運び去るように構成されたドレイン手段112を備えている。
本発明のヒートポンプの好ましい一実施形態において、ドレイン手段112が、流れ制御手段114へ接続され、流れ制御手段114を、受け取り装置110にあふれ出る作動液体の水位を所定の範囲内に保つように制御することができる。
本発明のヒートポンプの好ましい一実施形態において、蒸発器10が、気化させるべき水に溶存しているガスの少なくとも一部を、気化室を介して圧縮機によって吸い込まれることがないように、気化させるべき水から取り除くように構成された気体分離器を備えている。
本発明のヒートポンプの好ましい一実施形態において、気体分離器が、取り除いた分のガスを、気化していない水によって運び去られるよう、気化していない水へと送るように配置されている。
本発明のヒートポンプの好ましい一実施形態において、蒸発器10が、気化室100において気化室の外側のドレイン112の直径の少なくとも3倍へと広がっている膨張器200、気化室へと供給された作動液体を受け取るように構成された受け取り装置、及び前記受け取り装置に地下水を供給するための流入手段を備えており、前記膨張器が、作動流体が大きな直径を有している膨張器の縁を越えて小さい直径を有している膨張器の領域へと流れ、そこから排水路を介して流れ出るように、前記気化室に配置されている。
本発明のヒートポンプの好ましい一実施形態において、液化装置が、気体分離器220、222を備えており、該気体分離器が、液化装置に蓄積する、水蒸気とは異なるガスを分離器の空間220から排出する。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、液化した作動液体を排出するためのドレイン22を備えており、ドレイン22が、蒸発器において気泡気化のための核生成効果をもたらすための部分204を、該蒸発器内に備えている。
本発明のヒートポンプの好ましい一実施形態において、液化装置からの水のためのドレインの一部分204が、少なくとも核形成のための核生成効果が一般的パイプ形態のドレインの滑らかな表面と比べて増加するような表面粗さを有する粗い領域206を含んでいる。
本発明のヒートポンプの好ましい一実施形態において、ドレイン22が、ノズル開口234を備えているノズルパイプ230へと接続されており、ノズル開口234が、ノズルパイプ230内に位置する作動流体を蒸発器内に位置する気化させるべき水へと送り込むことで、該蒸発器における気泡気化のために核生成効果をもたらす。
本発明のヒートポンプの好ましい一実施形態において、蒸発器が、熱交換器236と、該熱交換器への供給のための分岐管238と、ノズル開口234を備えているノズルパイプ230に接続された熱交換器ドレインとを備えており、熱交換器236が、入力側において、液化装置のドレイン22へと接続され、液化装置のドレイン22によって送り出される液体の暖かさが、ノズルパイプ230へと供給される作動流体へと伝えられて、蒸発器における気泡気化のために核生成効果がもたらされる。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、液化した作動液体を排出するためのドレイン22を備えており、該ドレインが、接続位置194において揚水管102又は戻り流パイプ113へと接続され、接続位置194において、揚水管内又は戻り流パイプ113内の液体の圧力がドレイン22に存在する圧力以下となっている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、液化した作動液体を排出するためのドレイン22と圧力補償手段192を備えており、該ドレインは接続位置194において揚水管102又は戻り流パイプ113へと接続されており、圧力補償手段192は液化装置18からのドレイン22と接続位置194との間に配置され、かつ圧力補償手段192は液化装置18から排出される水の圧力を、水が揚水管102又は戻り流パイプ192へと進入するように制御するように構成されている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、該液化装置から排出される水の圧力を、排出される水が下水道へと進入でき、あるいは土壌へと浸透できるような圧力まで高めるように構成されたポンプ192を備えたドレイン22を備えている。
本発明のヒートポンプの好ましい一実施形態において、圧縮機16が、ラジアルフローホイール、半軸流ホイール、軸流ホイール、又はプロペラとして構成され、作動蒸気を圧縮すべく駆動することができる回転可能なホイールを備えている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が少なくとも液化装置の水180によって途中まで満たすことができ、かつ最低レベルを上回る水位を保つように構成されている液化装置室を備えている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、圧縮機16の出力へと接続された蒸気供給配管198を備えており、該蒸気供給配管が、蒸気が最新の水位の直下で水180へと進入できるように水180の中に配置されている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、圧縮された蒸気が液化装置内の水面の下方に配置されたパイプを介して液化装置へと送られるように構成されており、前記パイプが、ノズル開口を備えており、蒸気が該ノズル開口によって定められる領域を介して液化装置内の水へと進入する。
本発明のヒートポンプの好ましい一実施形態において、液化装置が、突き出しているノズル開口212を備えたノズル板210を備えており、該ノズル板が、液化装置内の水180の水位が突き出しているノズル開口212とノズル板210との間に位置するように液化装置内に配置されている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、冷たい作動液体を凝縮点へと運ぶため、又は熱を冷たい作動液体へと運ぶために、液化した作動液体を循環させる循環ポンプ202を備えている。
本発明のヒートポンプの好ましい一実施形態において、液化装置が、暖房用の前進流20aと、液化装置の水180への暖房の戻り流20bとを備えている。
本発明のヒートポンプの好ましい一実施形態において、暖房の戻り流20bの一部分にタービン310が配置されており、タービン310によって暖房システム300内の高圧が液化装置180の水180の低い圧力へ下げられ、このプロセスにおいて暖房用の水からエネルギーが抽出され、さらにタービン310が、暖房用の水を液化装置における低い圧力から暖房システム300における高圧にするためのポンプ312へ作用可能に接続されており、この作用的接続314はタービン310が抽出したエネルギーの少なくとも一部をポンプ312が使用するように構成されている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、暖房システム300と液化装置とを液体に関して切り離すための熱交換器を備えている。
本発明のヒートポンプの好ましい一実施形態において、液化装置18が、狭い開口及び広い開口を備える膨張器200を備えており、循環ポンプ202が前記狭い開口内に配置され、圧縮された蒸気を前記広い開口198へと送ることができるように、膨張器が液化装置の内部に配置されている。
本発明のヒートポンプの好ましい一実施形態において、圧縮機16が、互いに前後に配置された複数のダイナミック型圧縮機によって構成されており、作動蒸気が第1のダイナミック型圧縮機172によって中間の圧力へと圧縮され、最後のダイナミック型圧縮機174によって作動圧力へと圧縮される。
本発明のヒートポンプの好ましい一実施形態において、互いに前後に配置された少なくとも2つのダイナミック型圧縮機が、互いに反対方向の回転方向にて駆動される軸流ホイールを備えている。
本発明のヒートポンプの好ましい一実施形態において、1つ以上の熱交換器170が、作動蒸気から熱を取りだしてその熱で水を加熱するために、第1のダイナミック型圧縮機172又はさらなるダイナミック型圧縮機174の下流に配置されている。
本発明のヒートポンプの好ましい一実施形態において、熱交換器が、作動蒸気の温度を、最大で、先立つ圧縮機段172の前の温度よりも高温へと低下させる。
本発明のヒートポンプの好ましい一実施形態において、液化装置、蒸発器又は圧縮機における騒音を少なくとも6dB減衰させるように構成された遮音208をさらに備えている。
本発明のヒートポンプの好ましい一実施形態において、目標温度を維持し、実際の温度を検出し、目標温度が実際の温度よりも高い場合に圧縮機16の出力圧力又は出力量を大きくし、目標温度が実際の温度よりも低い場合に出力圧力又は出力量を小さくするように前記圧縮機を制御する制御部250を備えている。
本発明のヒートポンプの好ましい一実施形態において、少なくとも気化室、圧縮機のハウジング、液化装置のハウジング又はダイナミック型圧縮機のラジアルフローホイールが、プラスチックで作られている。
本発明のヒートポンプの好ましい一実施形態において、ダイナミック型圧縮機16が、1つ以上の内側半径から1つ以上の外側半径まで延びる複数の羽根262、272、274、276を備えているラジアルフローホイール260を備えたラジアルフロー圧縮機を備えており、前記羽根が、前記ラジアルフローホイールに関して、該ラジアルフローホイールの異なる半径R 1 、R 2 、R 3 、r 1 から外側へと延びている。
本発明のヒートポンプの好ましい一実施形態において、少なくとも1つの羽根272が、ラジアルフローホイール260に関して半径r W から外側へと延びている2つの羽根262の間に配置され、少なくとも1つの羽根272が、ラジアルフローホイール260に関してより大きい半径R 1 から外側へと延びている。
本発明のヒートポンプの好ましい一実施形態において、ラジアルフローホイール260が、ベース266及びカバー268を備えており、ラジアルフローホイール260において他の羽根262よりも大きな半径R 1 から外側へと延びている少なくとも1つの羽根272が、カバー268及びベース266の両方に一体に接続されている。
本発明のヒートポンプの好ましい一実施形態において、圧縮のステップにおいて圧縮される水の温度が80℃よりも低く、気化のステップにおいて生成される蒸気の温度が120℃よりも高い。
本発明の好ましい一実施形態において、コンピュータプログラムは演算装置上で作動するときに本発明の方法を実行するためのプログラムコードを有している。

Claims (11)

  1. 第1の圧力の作動流体を気化(10)させ、気化した作動流体を第2のより高圧へと圧縮(16)し、圧縮された気化作動流体を液化装置(18)において液化(18)させる第1の部分と、
    液体の作動流体を第2の圧力よりも高い第3の圧力へと圧縮(1100)し、第3の圧力へと圧縮された作動流体を気化(1102)させ、気化した作動流体を電流を生成すべく緩和(1106)し、気化及び緩和後の作動流体を前記液化装置(18)において液化させる第2の部分とを備え
    前記第1の部分は、作動流体の気化(10)を20hPaよりも小さい第1の圧力で実行し、気化した作動流体を前記第1の圧力を上回ること5hPa超の第2の圧力へと圧縮するように構成されており、
    前記第2の部分は、0.2MPaよりも高い前記第3の圧力への圧縮を行うように構成されており、
    前記作動流体は水であり、前記気化した作動流体は水蒸気であり、前記圧縮された気化作動流体は圧縮された水蒸気であり、前記液化装置(18)において液化した作動流体は水であるヒートポンプ。
  2. 前記第1の部分が、前記気化した作動流体を圧縮するために、前記第2の部分又は外部の電力供給網から来る電流を使用するように構成され、
    前記第2の部分が、電流の少なくとも一部を外部の電力供給網へと送るように構成されている請求項1に記載のヒートポンプ。
  3. 前記第2の部分が、前記液化装置(18)から由来する液化後の作動流体を第3の圧力(1100)へと圧縮するように構成されている請求項1又は2に記載のヒートポンプ。
  4. 前記第2の部分が、第3の圧力へと圧縮された前記液体の作動流体を、一次エネルギー源(1102)を使用しつつ気化させるように構成されており、
    前記一次エネルギー源は、太陽集熱器の熱放散手段の燃焼プロセスの廃ガス流を含んでいる請求項1から3のいずれか一項に記載のヒートポンプ。
  5. 前記液化装置(18)が、2つの供給配管を備えており、第1の供給配管が前記第1の部分のダイナミック型圧縮機へ接続され、第2の供給配管が前記第2の部分のタービン(1106)へ接続されている請求項1から4のいずれか一項に記載のヒートポンプ。
  6. カプラ(1110)が設けられており、
    該カプラ(1110)が、入力側に2つの供給配管を有しており、第1の供給配管が前記第1の部分のダイナミック型圧縮機(16)へ接続され、第2の供給配管が前記第2の部分のタービン(1106)へ接続されており、
    該カプラ(1110)が、出力側において前記液化装置(18)へ接続されており、
    該カプラ(110)が、前記第1の供給配管もしくは前記第2の供給配管を前記液化装置(18)へ接続し、又は両方の供給配管を同時に前記液化装置(18)へ接続するように構成されている請求項1から4のいずれか一項に記載のヒートポンプ。
  7. 制御信号に応答して前記第2の部分のタービン(1106)の電流の出力を前記第1の部分のダイナミック型圧縮機(16)の電気エネルギーの入力へと接続するためのコントローラを備えている請求項1から6のいずれか一項に記載のヒートポンプ。
  8. 前記第2の部分が、液体ポンプ(1100)と、熱源へと接続できる蒸発器(1102)と、電流をもたらすためのタービン(1106)と、前記液化装置(18)とを備えており、前記熱源が、作動流体が第3の圧力において気化するような大きさとされている請求項1から7のいずれか一項に記載のヒートポンプ。
  9. 熱を移動させる方法であって、
    第1の部分を動作させるステップ及び第2の部分を動作させるステップを含んでおり、
    前記第1の部分を動作させるステップは、第1の圧力の作動流体を気化させるステップ、気化した作動流体を第2のより高圧へと圧縮するステップ、及び圧縮された気化作動流体を液化装置(18)において液化させるステップを含んでおり、
    前記第2の部分を動作させるステップは、液体の作動流体を第2の圧力よりも高い第3の圧力へと圧縮するステップ、第3の圧力へと圧縮された作動流体を気化させるステップ、気化した作動流体を電流を生成すべく第3の圧力よりも小さい圧力へと緩和するステップ、ならびに気化及び緩和後の作動流体を液化装置(18)において液化させるステップを含んでおり
    前記第1の部分は、作動流体の気化を20hPaよりも小さい第1の圧力で実行し、気化した作動流体を前記第1の圧力を上回ること5hPa超の第2の圧力へと圧縮するように構成されており、
    前記第2の部分は、0.2MPaよりも高い前記第3の圧力への圧縮を行うように構成されており、
    前記作動流体は水であり、前記気化した作動流体は水蒸気であり、前記圧縮された気化作動流体は圧縮された水蒸気であり、前記液化装置(18)において液化した作動流体は水である、熱を移動させる方法。
  10. 建物を暖房するための小規模な発電装置であって、
    水を0.2MPaを超える第1の圧力へと圧縮する水ポンプ(1100)、
    前記圧縮された水を、燃焼プロセス又は太陽集熱器からの一次エネルギーを使用して気化させ、第1の圧力の水蒸気をもたらす蒸発器(1102)、
    電流を生成するためのタービン(1106)であって、電流を出力する際に水蒸気を50kPaよりも低い第2の圧力にするように構成されているタービン(1106)、及び
    前記冷やされた水蒸気を液化させるための液化装置(18)であって、建物を暖房するための暖房用の前進流(20a)及び暖房の戻り流(20b)を備えている液化装置
    を備えている発電装置。
  11. 建物を暖房する方法であって、
    水を0.2MPaを超える第1の圧力へと圧縮するステップ、
    前記圧縮された水を、燃焼プロセス又は太陽集熱器からの一次エネルギーを使用しつつ気化させ、第1の圧力の水蒸気をもたらすステップ、
    前記第1の圧力の水蒸気を50kPaよりも低い第2の圧力へと緩和させることによって電流を生成するステップ、及び
    前記電流を生成するステップによって出力された水蒸気を、建物を暖房するための暖房用の前進流(20a)及び暖房の戻り流(20b)へと接続された液化装置の水において液化させるステップを含んでいる、建物を暖房する方法。
JP2009548616A 2007-02-06 2008-02-04 ヒートポンプ、小規模発電装置、及び熱を移動させる方法 Active JP5274483B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007005930.4 2007-02-06
DE102007005930A DE102007005930A1 (de) 2007-02-06 2007-02-06 Wärmepuppe, Kleinkraftwerk und Verfahren zum Pumpen von Wärme
PCT/EP2008/000875 WO2008095676A2 (de) 2007-02-06 2008-02-04 Wärmepumpe, kleinkraftwerk und verfahren zum pumpen von wärme

Publications (2)

Publication Number Publication Date
JP2010518348A JP2010518348A (ja) 2010-05-27
JP5274483B2 true JP5274483B2 (ja) 2013-08-28

Family

ID=39358078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548616A Active JP5274483B2 (ja) 2007-02-06 2008-02-04 ヒートポンプ、小規模発電装置、及び熱を移動させる方法

Country Status (7)

Country Link
US (2) US9316422B2 (ja)
EP (1) EP2115365B1 (ja)
JP (1) JP5274483B2 (ja)
AT (1) ATE553340T1 (ja)
DE (1) DE102007005930A1 (ja)
ES (1) ES2386307T3 (ja)
WO (1) WO2008095676A2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007005930A1 (de) * 2007-02-06 2008-08-07 Efficient Energy Gmbh Wärmepuppe, Kleinkraftwerk und Verfahren zum Pumpen von Wärme
DE102008016663A1 (de) 2008-04-01 2009-10-08 Efficient Energy Gmbh Verflüssiger für eine Wärmepumpe und Wärmepumpe
NO330757B1 (no) * 2008-09-02 2011-07-04 Ola Heggen Metode for fordampning og eventuell destillering av vaesker ved hjelp av varmepumpe
KR101183463B1 (ko) 2010-09-06 2012-09-17 비아이피 주식회사 유체의 압력에너지를 이용한 발전 시스템
FR2977016B1 (fr) * 2011-06-27 2013-07-26 Dcns Systeme d'energie thermique et procede pour le faire fonctionner
RU2474765C1 (ru) * 2011-08-09 2013-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ работы открытой системы теплоснабжения
DE102012208174B4 (de) * 2012-05-16 2016-09-01 Efficient Energy Gmbh Wärmepumpe und verfahren zum pumpen von wärme im freikühlungsmodus
WO2016036369A1 (en) * 2014-09-04 2016-03-10 Regal Beloit America, Inc. Energy recovery apparatus for a refrigeration system
DE102016204152A1 (de) * 2016-03-14 2017-09-14 Efficient Energy Gmbh Wärmepumpenanlage mit Wärmetauschern, Verfahren zum Betreiben einer Wärmepumpenanlage und Verfahren zum Herstellen einer Wärmepumpenanlage
DE102016204153B4 (de) * 2016-03-14 2020-08-20 Efficient Energy Gmbh Wärmepumpenanlage mit Pumpen, Verfahren zum Betreiben einer Wärmepumpenanlage und Verfahren zum Herstellen einer Wärmepumpenanlage
CA2963725A1 (en) * 2016-04-07 2017-10-07 James R. Hardin Data center geothermal cooling
US10072637B2 (en) * 2016-06-08 2018-09-11 David William Stauffer Zero-fossil-fuel-using heating and cooling apparatus for residences and buildings
CN112283968B (zh) * 2020-07-20 2022-06-03 中国建筑股份有限公司 一种地热水梯级利用系统
CN111895477A (zh) * 2020-08-03 2020-11-06 石家庄耐波万信息技术有限公司 一种工业余热二次利用系统及方法
RU2764348C1 (ru) * 2020-11-25 2022-01-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Способ работы открытой системы теплоснабжения
CN112879996A (zh) * 2021-02-03 2021-06-01 上海电力大学 一种火电厂循环冷却水余热综合利用系统
CN112901296B (zh) * 2021-02-04 2022-01-18 浙江大学 一种实现无泵过程热回收的有机朗肯循环发电方法及装置
CN113375213B (zh) * 2021-06-15 2022-05-17 南京工业大学 一种基于双机组运行模式的新型热电联产系统及方法
CN115200260A (zh) * 2022-06-29 2022-10-18 上海发电设备成套设计研究院有限责任公司 一种移动式空气源的高温蒸汽热泵系统及其运行方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031712A (en) * 1975-12-04 1977-06-28 The University Of Delaware Combined absorption and vapor-compression refrigeration system
DE2745127A1 (de) * 1977-10-07 1979-04-12 Bauer Bernhard Dr Ing Habil Verfahren zum antrieb einer waermepumpe oder kaeltemaschine
CH635415A5 (de) * 1978-09-13 1983-03-31 Sulzer Ag Absorptions-waermepumpenanlage.
US4256536A (en) * 1979-06-08 1981-03-17 Tyrtyshny Vladilen M Evaporator
US4438881A (en) * 1981-01-27 1984-03-27 Pendergrass Joseph C Solar assisted heat pump heating system
DE3116624C2 (de) * 1981-04-27 1985-08-29 Daimler-Benz Ag, 7000 Stuttgart Energieversorgungssystem für Wärme und Elektrizität
US4424667A (en) * 1982-06-07 1984-01-10 Fanning Arthur E Apparatus for increasing the efficiency of a gas turbine engine
JPS60147067A (ja) * 1984-01-10 1985-08-02 協和醗酵工業株式会社 ヒ−トポンプ
US4638462A (en) 1985-01-31 1987-01-20 International Business Machines Corporation Self-timed precharge circuit
DE3601973A1 (de) * 1986-01-23 1987-07-30 Walter Baumann Vorrichtung zum klimatisieren eines wintergartens
US4779427A (en) * 1988-01-22 1988-10-25 E. Squared Incorporated Heat actuated heat pump
US5321944A (en) * 1992-01-08 1994-06-21 Ormat, Inc. Power augmentation of a gas turbine by inlet air chilling
US5205133A (en) * 1992-01-16 1993-04-27 R & D Technologies, Inc. High efficiency pool heating system
IL106945A (en) * 1993-09-08 1997-04-15 Ide Technologies Ltd Centrifugal compressor and heat pump containing it
US6254734B1 (en) * 1995-03-14 2001-07-03 Hugo H Sephton Barometric evaporation process and evaporator
US5634515A (en) * 1995-12-28 1997-06-03 Lambert; Kenneth W. Geothermal heat-pump system and installation of same
TW325516B (en) * 1996-04-25 1998-01-21 Chugoku Electric Power Compression/absorption combined type heat pump
US5669224A (en) * 1996-06-27 1997-09-23 Ontario Hydro Direct expansion ground source heat pump
JP3925985B2 (ja) 1997-05-07 2007-06-06 株式会社東芝 コンバインドサイクル発電プラント
JP2001074322A (ja) * 1999-09-03 2001-03-23 Daikin Ind Ltd 冷凍装置
FR2800159B1 (fr) * 1999-10-25 2001-12-28 Electricite De France Installation de pompage de chaleur, notamment a fonction frigorifique
WO2002072378A1 (en) * 2001-03-08 2002-09-19 Hebert Thomas H Solar-based power generating system
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
US7280700B2 (en) * 2002-07-05 2007-10-09 Microsoft Corporation Optimization techniques for data compression
DE10231265A1 (de) 2002-07-10 2004-01-22 Enginion Ag Absorptionswärmepumpe
US6892522B2 (en) 2002-11-13 2005-05-17 Carrier Corporation Combined rankine and vapor compression cycles
SE525918C2 (sv) 2003-09-10 2005-05-24 Eta Entrans Ab System för värmeförädling
DE102004001927A1 (de) * 2004-01-14 2005-08-04 York Deutschland Gmbh Verfahren zur Wärmerückgewinnung
JP4034291B2 (ja) * 2004-04-26 2008-01-16 株式会社デンソー 流体機械
JP2006169995A (ja) * 2004-12-14 2006-06-29 Takuma Co Ltd マイクロガスタービン発電システム及び捕機電力供給方法
BRPI0516416A (pt) * 2004-12-24 2008-09-02 Renewable Energy Systems Ltd métodos e aparelho para geração de energia
RU2004138727A (ru) 2004-12-28 2006-06-10 Марк Григорьевич Видуецкий (RU) Флотационная пневматическая колонная машина
JP2006188156A (ja) 2005-01-06 2006-07-20 Denso Corp 蒸気圧縮式冷凍機
JP2008531965A (ja) * 2005-02-23 2008-08-14 アイ・ディ・イー・テクノロジーズ・リミテッド 冷媒として水を使用する小型ヒートポンプ
JP2006292273A (ja) * 2005-04-11 2006-10-26 Sanden Corp 熱電併給システム
JP2006349211A (ja) * 2005-06-13 2006-12-28 Nippon Soken Inc 複合サイクル装置およびその制御方法
JP2007024488A (ja) * 2005-06-16 2007-02-01 Hitachi Metals Ltd 冷却装置
JP5151014B2 (ja) * 2005-06-30 2013-02-27 株式会社日立製作所 ヒートポンプ装置及びヒートポンプの運転方法
DE502006009456D1 (de) * 2006-04-04 2011-06-16 Efficient Energy Gmbh Wärmepumpe
DE102006056798B4 (de) * 2006-12-01 2008-10-23 Efficient Energy Gmbh Wärmepumpe mit einem Kühlmodus
DE102007005930A1 (de) * 2007-02-06 2008-08-07 Efficient Energy Gmbh Wärmepuppe, Kleinkraftwerk und Verfahren zum Pumpen von Wärme
DE102008016664A1 (de) * 2008-04-01 2009-10-29 Efficient Energy Gmbh Vertikal angeordnete Wärmepumpe und Verfahren zum Herstellen der vertikal angeordneten Wärmepumpe
DE102013216457A1 (de) * 2013-08-20 2015-02-26 Efficient Energy Gmbh Thermodynamisches gerät und verfahren zum herstellen eines thermodynamischen geräts

Also Published As

Publication number Publication date
WO2008095676A3 (de) 2008-12-18
US9316422B2 (en) 2016-04-19
EP2115365B1 (de) 2012-04-11
DE102007005930A1 (de) 2008-08-07
EP2115365A2 (de) 2009-11-11
US20160195314A1 (en) 2016-07-07
WO2008095676A2 (de) 2008-08-14
US20100147965A1 (en) 2010-06-17
US10473368B2 (en) 2019-11-12
JP2010518348A (ja) 2010-05-27
ES2386307T3 (es) 2012-08-16
ATE553340T1 (de) 2012-04-15

Similar Documents

Publication Publication Date Title
JP5274483B2 (ja) ヒートポンプ、小規模発電装置、及び熱を移動させる方法
US10337746B2 (en) Heat pump
US8484991B2 (en) Heat pump comprising a cooling mode
JP5184211B2 (ja) 復水器及び発電設備
JP5358670B2 (ja) ヒートポンプおよびその製造方法
CN109154457B (zh) 具有两个级的热泵系统,用于运行热泵系统的方法和用于制造热泵系统的方法
JP4659601B2 (ja) エネルギー供給システム、エネルギー供給方法、エネルギー供給システムの改造方法
WO2011046458A1 (en) The compression heat pump with thermal accelerator
US20070157659A1 (en) Multi-stage refrigerant turbine
JP6151634B2 (ja) ヒートポンプおよびその製造方法
EP3036485B1 (en) Thermodynamic device and method of producing a thermodynamic device
KR101091818B1 (ko) 압축기의 폐열을 이용한 냉방장치
JP2008164204A (ja) ヒートポンプシステム
CN109073289B (zh) 具有马达冷却装置的热泵
US7805942B2 (en) Thermodynamic cycle with power unit and venturi and a method of producing a useful effect therewith
JP2009180396A (ja) 蒸気製造装置
JP2012007882A (ja) ヒートポンプ
RU2285132C1 (ru) Тепловая электростанция
JP2004060924A (ja) 給湯システム
CZ27122U1 (cs) Diferenční termodynamický modul
AU2011201222A1 (en) A heat exchange arrangement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120426

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113