JP5269974B2 - 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池 - Google Patents

酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
JP5269974B2
JP5269974B2 JP2011289133A JP2011289133A JP5269974B2 JP 5269974 B2 JP5269974 B2 JP 5269974B2 JP 2011289133 A JP2011289133 A JP 2011289133A JP 2011289133 A JP2011289133 A JP 2011289133A JP 5269974 B2 JP5269974 B2 JP 5269974B2
Authority
JP
Japan
Prior art keywords
titanium oxide
potassium
oxide compound
tetratitanate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011289133A
Other languages
English (en)
Other versions
JP2013136491A (ja
Inventor
健司 東
博 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011289133A priority Critical patent/JP5269974B2/ja
Priority to KR1020137006560A priority patent/KR101322559B1/ko
Priority to EP12829138.2A priority patent/EP2644570A4/en
Priority to CN201280002898.5A priority patent/CN103298743B/zh
Priority to PCT/JP2012/075028 priority patent/WO2013099380A1/ja
Priority to US13/822,390 priority patent/US9174854B2/en
Publication of JP2013136491A publication Critical patent/JP2013136491A/ja
Application granted granted Critical
Publication of JP5269974B2 publication Critical patent/JP5269974B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/001Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、酸化チタン化合物及びその製造方法に関するものであり、さらには酸化チタン化合物の合成に用いられる四チタン酸カリウム、酸化チタン化合物を負極活物質として用いた負極、及び、この負極を用いて成るリチウムイオン二次電池に関する。
従来から、リチウムイオン二次電池の負極には、カーボン系素材が一般に使用されているが、近年、このようなリチウムイオン二次電池の異常発熱や発火(いわゆる熱暴走)が度々報道されている。上記の熱暴走は、電池の内部短絡が原因の一つとして考えられている。電池の内部短絡が生じると、負極に向けて過大な突入電流が流れ、これが負極や他部材の発熱を引き起こすからである。
内部短絡の原因としては、外部からの衝撃のほか、負極表面に析出する柱状の金属リチウム結晶(デンドライト)によるセパレータの破壊が考えられる。負極としてカーボン系素材を用いたリチウムイオン二次電池において、上記の金属リチウム結晶が析出しやすい理由は、負極電位が0.08V(vs.Li)と低いためである。
一方、リチウムイオン二次電池の負極としては、上記カーボン系素材のほか、スピネル型チタン酸リチウム(S−LTO)を用いることも知られている。この負極を用いたリチウムイオン二次電池では、負極電位が1.55V(vs.Li)と高くなるので、負極表面に金属リチウム結晶が析出しにくくなり、内部短絡の危険性を低下させることができる反面、負極理論容量が175mAh/g程度しかないという欠点(カーボン系素材は372mAh/g)があった。
また、リチウムイオン二次電池の負極としては、ブロンズ型酸化チタン化合物を用いることも提案されている(例えば、特許文献1を参照)。この負極を用いたリチウムイオン二次電池では、S−LTOを用いた場合と同様に、負極電位が1.5V付近(vs.Li)と高くなるので、負極表面に金属リチウム結晶が析出しにくくなり、内部短絡の危険性を低下させることができる上、S−LTOを用いた場合に比べて、負極理論容量を335mAh/gまで高めることが可能となる。
特開2008−117625公報
しかしながら、従来の製造方法で得られた酸化チタン化合物は、これをリチウムイオン二次電池の負極として用いたときの負極容量が上記の理論値に対して実際値が小さく、さらなる改善の余地を残していた。
本発明は、上記の問題点に鑑み、TiO5三角両錘体が連鎖し層状構造を形成した先駆体を経由し、TiO6八面体が連鎖し層状構造を形成した結晶構造に特徴を持つ中間体を合成し、この中間体からTiO6八面体が連鎖した結晶構造を持つ酸化チタン化合物を合成することにより、従来方法よりも安全性が高く、高容量の負極として用いることが可能な酸化チタン化合物及びその製造方法並びにこれを用いてなるリチウムイオン二次電池を提供することを目的とする。
上記目的を達成すべく、本発明に係る酸化チタン化合物は、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Ia、(004)面のピーク強度Ic、及び、(31−3)面のピーク強度Ibとの間に、Ia>Ib>Icとなる関係が成立する、一般式K2Ti49で表される四チタン酸カリウム(4T)のカリウムを溶出し、熱処理することによって得られる構成(第1の構成)とされている。
なお、上記第1の構成から成る酸化チタン化合物は、前記四チタン酸カリウム(4T)が、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Iaと、(004)面のピーク強度Icとの間に、10.0>Ia/Ic>2.0となる関係が成立する構成(第2の構成)にするとよい。
また、上記第1または第2の構成から成る酸化チタン化合物は、前記四チタン酸カリウムが、一般式K2Ti25で表される二チタン酸カリウム(2T)のカリウムイオンの一部を溶出させて組成変換した後、熱処理することによって得られたものである構成(第3の構成)にするとよい。
また、上記第1〜第3いずれかの構成から成る酸化チタン化合物は、カリウム濃度が0を超えて2.0質量%以下である構成(第4の構成)にするとよい。
また、上記第1〜第4いずれかの構成から成る酸化チタン化合物は、BET法での比表面積が3以上80m2/g以下である構成(第5の構成)にするとよい。また、上記第1〜第5いずれかの構成から成る酸化チタン化合物は、ブロンズ型酸化チタン、又はブロンズ型酸化チタンを主体としアナターゼ型若しくは水和酸化チタンが微量に含まれている構成(第6の構成)にするとよい。
また、本発明に係る酸化チタン化合物の製造方法については、二チタン酸カリウムから四チタン酸カリウムを得る工程と、前記四チタン酸カリウムから水和四チタン酸化合物を得る工程と、前記水和四チタン酸化合物から酸化チタン化合物を得る工程と、を含む構成(第7の構成)にするとよい。
また、本発明に係る四チタン酸カリウムは、酸化チタン化合物の合成に用いられる四チタン酸カリウムであって、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Ia、(004)面のピーク強度Ic、及び、(31−3)面のピーク強度Ibとの間に、Ia>Ib>Icとなる関係が成立する構成(第8の構成)とされている。
なお、上記第7の構成から成る四チタン酸カリウムは、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Iaと、(004)面のピーク強度Icとの間に、10.0>Ia/Ic>2.0となる関係が成立する構成(第9の構成)にするとよい。
また、本発明に係る負極は、上記第1〜第6いずれかの構成から成る酸化チタン化合物、または、上記第7の構成から成る製造方法によって得られる酸化チタン化合物を負極活物質として用いた構成(第10の構成)とされている。
また、本発明に係るリチウムイオン二次電池は、上記第10の構成から成る負極を用いた構成(第11の構成)とされている。
本発明によれば、安全性が高く、高容量の負極活物質として用いることが可能な酸化チタン化合物及びその製造方法並びにこれを用いてなるリチウムイオン二次電池を提供することができる。
焼成法2Tから酸化チタン化合物を製造する工程の一例を示すフローチャート 溶融法2Tから酸化チタン化合物を製造する工程の一例を示すフローチャート 直接合成法4Tから酸化チタン化合物を製造する工程の一例を示すフローチャート チタン酸カリウムの結晶構造を示すテーブル 焼成法4TのX線回折スペクトル図 溶融法4TのX線回折スペクトル図 直接合成法4TのX線回折スペクトル図 四チタン酸カリウムのX線回折ピークの強度比を示すテーブル リチウムイオン二次電池の概略構成を示す模式図 電池性能評価に用いられるコイン型セルの模式図 実施例1〜7及び比較例1の初回放電容量を示すテーブル
以下では、本発明に係る酸化チタン化合物とその製造方法、並びに、これを用いたリチウムイオン二次電池の実施の形態について説明する。なお、酸化チタン化合物としては水和酸化チタン、ブロンズ型酸化チタン、アナターゼ型酸化チタン、ルチル型酸化チタンの1種及び2種以上の混合物が例として挙げられる。
<酸化チタン化合物の製造方法>
(概要)
本発明に係る酸化チタン化合物の製造方法は、二チタン酸カリウム(K2Ti25)から四チタン酸カリウム(K2Ti49)を得る工程と、四チタン酸カリウムから水和四チタン酸化合物(H2Ti49・nH2O)を得る工程と、水和四チタン酸化合物から酸化チタン化合物を得る工程と、を含む。
なお、上記の二チタン酸カリウムを得る工程については、所定の組成比で混合されたチタン化合物とカリウム化合物の混合体を焼成処理に付す方法や、前記チタン化合物とカリウム化合物に所定量の水を加え混合し、スプレードライ処理した後焼成処理に付す方法等の二チタン酸カリウムを得る工程(焼成法)を採用してもよいし、或いは、所定の組成比で混合されたチタン化合物とカリウム化合物の混合体を溶融処理及び固化処理に付して二チタン酸カリウムを得る工程(溶融法)を採用してもよい。
以下では、焼成法で得られた二チタン酸カリウム(焼成法2T)から四チタン酸カリウム及び水和四チタン酸化合物を経由して酸化チタン化合物を合成する第1の製造方法と、溶融法で得られた二チタン酸カリウム(溶融法2T)から四チタン酸カリウム及び水和四チタン酸化合物を経由して酸化チタン化合物を合成する第2の製造方法の2通りの場合に分けて、各々詳細に説明する。
(第1の製造方法)
図1は、焼成法2Tから酸化チタン化合物を製造する概略工程の一例を示したフローチャートである。第1の製造方法では、まず、所定の組成比で混合された二酸化チタン(TiO2)と炭酸カリウム(K2CO3)の混合溶液をスプレードライ処理(ステップS11)及び焼成処理(ステップS12)に付して、二チタン酸カリウム(K2Ti25;焼成法2T)を合成する。この二チタン酸カリウムは、図4に示すように、TiO5三角両錘体の連鎖が積層した層状構造を有しており、その層間部分にカリウムイオンを担持する空間が形成されている。
次に、上記した二チタン酸カリウムを脱カリウム処理(ステップS13)及び焼成処理(ステップS14)に付して、TiO5三角両錘体からTiO6八面体への構造変換を行うことにより、四チタン酸カリウム(K2Ti49;焼成法4T)を合成する。つまり、この四チタン酸カリウムは、一般式K2Ti25で表される二チタン酸カリウムのカリウムイオンの一部を溶出させて組成変換した後、焼成処理することによって得られたものである。この四チタン酸カリウムは、図4に示すように、TiO6八面体の連鎖が積層した層状構造を有しており、その層間部分にカリウムイオンを担持する空間が形成されている。
さらに、上記した四チタン酸カリウムを粉砕処理(粉砕処理は省略しても良い)(ステップS15)及びプロトン交換処理(ステップS16)に付して、水和四チタン酸化合物(H2Ti49・nH2O)を合成する。そして、水和四チタン酸化合物を200℃〜1000℃(より好ましくは、300℃〜550℃)の範囲で0.5時間〜5時間の範囲で熱処理(ステップS17)に付して、酸化チタン化合物を合成する。
(第2の製造方法)
図2は、溶融法2Tから酸化チタン化合物を製造する概略工程の一例を示したフローチャートである。第2の製造方法では、まず、所定の組成比で混合された二酸化チタン(TiO2)と炭酸カリウム(K2CO3)の混合体を溶融処理(ステップS21)及び固化処理(ステップS22)に付して、二チタン酸カリウム(K2Ti25;溶融法2T)を合成する。この二チタン酸カリウムは、図4に示すように、TiO5三角両錘体の連鎖が積層した層状構造を有しており、その層間部分にカリウムイオンを担持する空間が形成されている。
次に、上記した二チタン酸カリウムを脱カリウム処理(ステップS23)及び焼成処理(ステップS24)に付して、TiO5三角両錘体からTiO6八面体への構造変換を行うことにより、四チタン酸カリウム(K2Ti49;溶融法4T)を合成する。つまり、この四チタン酸カリウムは、一般式K2Ti25で表される二チタン酸カリウムのカリウムイオンの一部を溶出させて組成変換した後、焼成処理することによって得られたものである。この四チタン酸カリウムは、図4に示すように、TiO6八面体の連鎖が積層した層状構造を有しており、その層間部分にカリウムイオンを担持する空間が形成されている。
さらに、上記した四チタン酸カリウムを粉砕処理(粉砕処理は省略しても良い)(ステップS25)及びプロトン交換処理(ステップS26)に付して、水和四チタン酸化合物(H2Ti49・nH2O)を合成する。そして、水和四チタン酸化合物を200℃〜1000℃(より好ましくは、300℃〜550℃)の範囲で熱処理(ステップS27)に付して、酸化チタン化合物を合成する。
尚、第1の製造方法および第2の製造方法で得られる酸化チタン化合物は、中間体である四チタン酸カリウムの基本的な結晶構造の影響を受けたTiO6八面体の連鎖で構築された構造をなしている。
ここで、第1の製造方法および第2の製造方法で挙げた二チタン酸カリウム(K2Ti25)の製造方法は、あくまでも例でありこの限りではない。
(従来の製造方法)
一方、従来における酸化チタン化合物の製造方法は、所定の組成比で混合されたチタン化合物とアルカリ化合物の混合体から直接合成されたTiO6八面体の連鎖が積層した層状構造を有するチタン酸アルカリ化合物(例えば、三チタン酸ナトリウム、又は四チタン酸カリウム)を用いて、酸化チタン化合物を合成するものである。
図3は、直接合成された四チタン酸カリウム(直接合成法4T)から酸化チタン化合物を製造する概略工程の一例を示すフローチャートである。従来の製造方法では、まず、所定の組成比で混合された二酸化チタン(TiO2)と炭酸カリウム(K2CO3)の混合体を混錬処理(ステップS31)及び焼成処理(ステップS32)に付すことにより、二チタン酸カリウムを経由することなく、四チタン酸カリウム(K2Ti49;直接合成法4T)を直接的に合成する。
次に、上記した四チタン酸カリウムを粉砕処理(粉砕処理は省略しても良い)(ステップS35)及びプロトン交換処理(ステップS36)に付して、水和四チタン酸化合物(H2Ti49・nH2O)を合成する。そして、水和四チタン酸化合物を200℃〜1000℃の範囲で熱処理(ステップS37)に付して、酸化チタン化合物を合成する。
このように、本発明の製造方法(図1、図2を参照)と従来の製造方法(図3を参照)との最大の相違点は、酸化チタン化合物の製造工程に二チタン酸カリウム(焼成法2T、溶融法2Tを問わず)から四チタン酸カリウムを得る工程が含まれているか否かという点にあり、この相違点に起因して、酸化チタン化合物の製造工程に含まれる四チタン酸カリウムの結晶構造(延いては、最終生成物である酸化チタン化合物の結晶構造)には、以下で説明する差違が生じる。
<四チタン酸カリウムの構造上の差違>
図5〜図7は、それぞれ、焼成法4T、溶融法4T、及び、直接合成法4TのX線回折スペクトル図(X線源:Cu−Kα)である。
(1)いずれの製法で生成された四チタン酸カリウムについても、2θ=10.08°付近には、(200)面を示すX線回折ピークが現れる。この(200)面のピーク強度Iaは、アルカリ金属イオンを収容する層状面が積層されていく方向(a軸方向)の結晶成長度を示している。従って、アルカリ金属イオンの収容量を高めるためには、このピーク強度Iaが大きい方が望ましいと言える。
(2)いずれの製法で生成された四チタン酸カリウムについても、2θ=31.0°付近には、(004)面を示すX線回折ピークが現れる。この(004)面のピーク強度Icは、c軸方向の結晶成長度を示しており、このピーク強度Icが大きいほど、アルカリ金属イオンを収容する層状面の幅が広くなる(c軸方向の結晶の大きさを幅と表現する)。従って、アルカリ金属イオンの収容量を高めるためには、このピーク強度Icがある程度大きくなければならないが、ピーク強度Icが大き過ぎると、アルカリ金属イオンの挿入・脱離に要する移動距離が長くなるため、アルカリ金属イオンの移動易度が低下すると考えられる。
(3)いずれの製法で生成された四チタン酸カリウムについても、2θ=33.7°付近には、(31−3)面(h=3、k=1、l=−3)を示すX線回折ピークが現れる。この(31−3)面は、a軸、b軸、c軸のいずれにも交わる面であり、そのピーク強度Ibは、a軸方向の結晶成長度やc軸方向の結晶成長度よりも、b軸方向の結晶成長度への依存度が高いピークである。このピーク強度Ibが大きいほど、アルカリ金属イオンを収容する層状面の長さが長くなる(b軸方向の結晶の大きさを長さと表現する)。従って、アルカリ金属イオンの収容量を高めるためには、このピーク強度Ibがある程度大きくなければならないが、ピーク強度Ibが大き過ぎると、アルカリ金属イオンの挿入・脱離に要する移動距離が長くなるため、アルカリ金属イオンの移動易度が低下すると考えられる。
ここで、アルカリ金属イオンの高い収容度を確保し、さらに挿入・脱離性を向上させるための構造について考察する。まず、第1の条件として、高い収容度を確保するためには、アルカリ金属イオンを収容可能な層構造が十分に形成されていることが必要であると考えられる。その上で、挿入・脱離性を向上させるためには、層厚さ(a軸方向の結晶の大きさを厚さと表現する)に対し、層状面の幅・長さが小さい方がよいと考えられため、Ia>Ic, Ia >Ibとなる関係を満たしていることが望ましいと考えられる。
また、第2の条件として、挿入・脱離性をさらに向上させるためには、c軸方向の結晶成長度を示すピーク強度Icがb軸方向の結晶成長度への依存度の高いピーク強度Ibより小さい、つまりIb>Icとなる関係を満たしていることが望ましいと考えられる。
c軸方向はTiO6八面体の4連鎖構造毎にTiO6八面体の1辺分ずれながら結晶成長するため平面的な層状構造を有していない。一方、b軸方向は平面的な層状構造を有するため、アルカリ金属イオンの移動易度はc軸方向の方がb軸方向より低いと考えられる。よって、c軸方向の結晶成長を抑え、幅を小さくすることがアルカリ金属イオンの移動易性の向上に有効であると考えられる。
また、アルカリ金属イオンを収容する層状面の幅については、小さすぎるとアルカリ金属イオンの収容が不十分(不安定)な構造となり、逆に、大きすぎるとアルカリ金属イオンの移動距離が大きくなる。そのため、第3の条件としては、10.0>Ia/Ic>2.0となる関係(より望ましくは、5.0>Ia/Ic>2.0となる関係)を満たしていることが望ましいと考えられる。
図8は、各製法の四チタン酸カリウム毎に得られるX線回折ピークの強度比を示すテーブルである。なお、図8では、焼成法4T、溶融法4T、及び、直接合成法4Tの各々について、ピーク強度Iaを100とした場合のピーク強度Ic及びIb、並びに、ピーク強度Iaとピーク強度Icとの比(Ia/Ic)が示されている。なお、焼成法4Tについては、3回分の測定結果を示した。
図8に示した通り、焼成法4T及び溶融法4Tは、上記第1〜第3の条件を全て満たしているが、直接合成法4Tは、上記第2及び第3の条件を満たしていない。ここで、最終生成物である酸化チタン化合物は、先にも述べたように、中間体である四チタン酸カリウムの基本的な結晶構造の影響を受けたTiO6八面体の連鎖で構築される結晶構造をもっている。焼成法4Tや溶融法4Tを用いて製造される酸化チタン化合物は、四チタン酸カリウムの基本的な結晶構造から熱処理によって結晶構造が変化する場合に、上記に示す特徴を持つ四チタン酸カリウムの結晶構造が影響して、リチウムイオンの挿入・脱離に好ましい結晶構造、すなわちリチウムイオンの収容量及び移動易度が高い結晶構造になると推定される。従って、焼成法4Tや溶融法4Tを用いて製造される酸化チタン化合物は、直接合成法4Tを用いて製造される酸化チタン化合物に比べて、リチウムイオンの収容量を高め、且つ移動易度を高めることが可能であり、延いては、これを負極として用いたリチウムイオン二次電池の容量を高めることが可能になると考えられる。
<リチウムイオン二次電池への応用>
図9は、リチウムイオン二次電池の概略構成を示す模式図である。本構成例のリチウムイオン二次電池10は、正極11と、負極12と、非水電解質13と、セパレータ14と、を有する。
正極11は、例えば、正極集電体の片面または両面に正極合剤層が設けられた構造を有している。正極合剤層は、例えば、リチウムを吸蔵および脱離することが可能な正極材料を正極活物質として含み、必要に応じてカーボンブラック或いはグラファイトなどの導電剤と、ポリビニリデンフルオライドなどの結着剤と共に構成されている。
負極12は、例えば、負極集電体の片面または両面に負極合剤層が設けられた構造を有している。負極合剤層は、本実施の形態に係る負極材料(すなわち、先述した酸化チタン化合物)に加えて、他の負極活物質、または、導電剤などを含んでいてもよい。
非水電解質13は、電解質(リチウム塩)を有機溶媒に溶解することにより調製される液状非水電解質のほか、液状電解質と高分子材料を複合化したゲル状非水電解質などを用いることができる。電解質としては、例えば、LiClO4、LiPF6、LiBF4などが挙げられ、これらのいずれか1種または2種以上を混合して用いることができる。また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタンなどが挙げられ、これらのいずれか1種または2種以上を混合して用いることができる。
セパレータ14は、正極11と負極12とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータ14は、例えば、ポリテトラフルオロエタン、ポリプロピレン、或いは、ポリエチレンから成る合成樹脂製の多孔質膜、または、セラミック製の不織布などの無機材料から成る多孔質膜により構成されており、これらの2種以上の多孔質膜を積層した構造としてもよい。
上記したように、リチウムイオン二次電池10の負極12として、カーボン系素材ではなく、本実施の形態における負極材料(焼成法4Tや溶融法4Tを用いて製造される先述の酸化チタン化合物)を用いた構成であれば、下記に示した3重のメカニズムにより、リチウムイオン二次電池10の安全性を高めることが可能となる。
まず、第1に、デンドライト析出による内部短絡が発生しにくくなるというメリットがある。カーボン負極の場合、負極電位が低く、デンドライト析出反応(Li++e-→Li)が生じやすい。一方、酸化チタン化合物負極の場合、負極電位が高く、デンドライト析出電位に達しない。
第2に、内部短絡時の発熱を抑制することができるというメリットがある。酸化チタン化合物は、リチウムイオンを完全に放出した状態では絶縁性に変化する。従って、短絡箇所の酸化チタン化合物表面は絶縁化して放電反応の進行を抑制する。すなわち、カーボン負極を用いた一般的なリチウムイオン二次電池では、内部短絡時に急激な放電(発熱)が生じるのに対して、酸化チタン化合物負極を用いたリチウムイオン二次電池では、ゆっくり放電が進み、熱が上がらない。
第3に、熱的安定性が高いというメリットがある。酸化チタン化合物は電解液との反応が引き金となって熱暴走を生じる可能性が極めて低い。また、酸化チタン化合物はカーボンと異なり燃えないため、熱暴走から発火に至るおそれも極めて低い。
さらに、本実施の形態における負極材料(焼成法4Tや溶融法4Tを用いて製造される先述の酸化チタン化合物)を用いた構成であれば、S−LTOや従来製法の酸化チタン化合物より、リチウムイオン二次電池10の高容量化が可能である。
以下では、本発明の実施例についてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。すなわち、下記で説明する各種の処理方法や粉砕方法など、公知の一般的な技術を適用することが可能な部分については、下記の実施例に何ら限定されることなく、その内容を適宜変更することが可能であることは言うまでもない。
<実施例1[焼成法2Tからの合成]>
(1−1)二チタン酸カリウム(2T)の合成方法
水100重量部に対して酸化チタン(TiO2)を26.2重量部混合・攪拌した。その後、23.8重量部の炭酸カリウム(K2CO3)を加えてさらに攪拌した。混合した溶液を200℃で噴霧乾燥(スプレードライ)し、800℃で3時間熱処理し、二チタン酸カリウム(K2Ti25)を合成した。
(1−2)四チタン酸カリウム(4T)の合成方法
(1−1)で得られた二チタン酸カリウムを水に浸漬した後、攪拌機で攪拌することにより、脱カリウムを行い、脱水・乾燥後、850℃で2時間熱処理することにより、四チタン酸カリウム(K2Ti49)を合成した。この合成物のX線回折スペクトルは、先出の図5に示した通りであり、ピーク強度Ia,Ib,Icの関係は図8のD1の通りである。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、19.3質量%であった。
(1−3)水和四チタン酸化合物(水和4T)の合成方法
(1−2)で得られた四チタン酸カリウムをボールミルにて0.5時間粉砕し、続いてこの粉砕物を0.5M硫酸溶液に投入・攪拌することにより、脱カリウムを行った。これらの上澄みを除去後脱水することにより、水和四チタン酸化合物(H2Ti49・nH2O)を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.23質量%であった。
(1−4)酸化チタン化合物の合成方法
(1−3)で得られた水和四チタン酸化合物を350℃で熱処理することにより、酸化チタン化合物を合成した。この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.15質量%で、BET比表面積は、18.6m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例2[焼成法2Tからの合成]>
(2−1)二チタン酸カリウム(2T)の合成方法
(1−1)と同じ工程で二チタン酸カリウムを合成した。
(2−2)四チタン酸カリウム(4T)の合成方法
(2−1)で得られた二チタン酸カリウムを水に浸漬した後、酸を加え攪拌機で攪拌することにより、脱カリウムを行った。これらの上澄みを除去後、脱水・乾燥後、850℃で2時間熱処理することにより、四チタン酸カリウムを合成した。この合成物のX線回折ピーク強度Ia,Ib,Icの関係は図8のD2の通りである。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、19.2質量%であった。
(2−3)水和四チタン酸化合物(水和4T)の合成方法
(2−2)で得られた四チタン酸カリウムを用いたこと以外、(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.30質量%であった。
(2−4)酸化チタン化合物の合成方法
(2−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.23質量%で、BET比表面積は、19.0m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例3[焼成法2Tからの合成]>
(3−1)二チタン酸カリウム(2T)の合成方法
(1−1)と同じ工程で二チタン酸カリウムを合成した。
(3−2)四チタン酸カリウム(4T)の合成方法
(1−2)と同じ工程で四チタン酸カリウムを合成した。
(3−3)水和四チタン酸化合物(水和4T)の合成方法
(3−2)で得られた四チタン酸カリウムを用いて、硫酸溶液の濃度を1.0Mに変えたこと以外(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、0.15質量%であった。
(3−4)酸化チタン化合物の合成方法
(3−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、0.08質量%で、BET比表面積は、19.6m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例4[焼成法2Tからの合成]>
(4−1)二チタン酸カリウム(2T)の合成方法
(1−1)と同じ工程で二チタン酸カリウムを合成した。
(4−2)四チタン酸カリウム(4T)の合成方法
(1−2)と同じ工程で四チタン酸カリウムを合成した。
(4−3)水和四チタン酸化合物(水和4T)の合成方法
(4−2)で得られた四チタン酸カリウムを用いて、硫酸溶液の濃度を0.05Mに変えたこと以外(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.88質量%であった。
(4−4)酸化チタン化合物の合成方法
(4−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.78質量%で、BET比表面積は、17.9m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例5[焼成法2Tからの合成]>
(5−1)二チタン酸カリウム(2T)の合成方法
(1−1)と同じ工程で二チタン酸カリウムを合成した。
(5−2)四チタン酸カリウム(4T)の合成方法
(2−2)と同じ工程で四チタン酸カリウムを合成した。
(5−3)水和四チタン酸化合物(水和4T)の合成方法
(5−2)で得られた四チタン酸カリウムを用い、粉砕時間を2.5時間に延長したこと以外(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、0.52質量%であった。
(5−4)酸化チタン化合物の合成方法
(5−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、0.44質量%で、BET比表面積は、38.4m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例6[焼成法2Tからの合成]>
(6−1)二チタン酸カリウム(2T)の合成方法
(1−1)と同じ工程で二チタン酸カリウムを合成した。
(6−2)四チタン酸カリウム(4T)の合成方法
(2−2)と同じ工程で四チタン酸カリウムを合成した。
(6−3)水和四チタン酸化合物(水和4T)の合成方法
(6−2)で得られた四チタン酸カリウムを用い、粉砕処理を実施しなかったこと以外(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.62質量%であった。
(6−4)酸化チタン化合物の合成方法
(6−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.54量%で、BET比表面積は、12.1m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<実施例7[溶融法2Tからの合成]>
(7−1)二チタン酸カリウム(2T)の合成方法
炭酸カリウム(K2CO3)と、酸化チタン(TiO2)とをK2O:TiO2のモル比が1:2となるように混合し、1100℃で溶解した後、冷却することにより、二チタン酸カリウムを合成した。
(7−2)四チタン酸カリウム(4T)の合成方法
(7−1)で得られた二チタン酸カリウムを水に浸漬し、攪拌機で攪拌することにより、脱カリウムを行い、脱水・乾燥後、850℃で2時間熱処理することにより、四チタン酸カリウムを合成した。この合成物のX線回折スペクトルは、先出の図6に示した通りであり、ピーク強度Ia,Ib,Icの関係は図8のD4の通りである。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、18.9質量%であった。
(7−3)水和四チタン酸化合物(水和4T)の合成方法
(7−2)で得られた四チタン酸カリウムを用いて、粉砕処理を実施しなかったこと以外、(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.54質量%であった。
(7−4)酸化チタン化合物の合成方法
(7−3)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.48質量%で、BET比表面積は、14.3m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<比較例1[直接合成法4Tからの合成]>
(8−1)四チタン酸カリウム(4T)の合成方法
炭酸カリウム(K2CO3)と、酸化チタン(TiO2)とをK2O:TiO2のモル比が1:4となるように乳鉢で混合した。次に、粘土状になるまで水を加えさらに混合した。これを乾燥後、950℃で2時間熱処理することにより、四チタン酸カリウムを合成した。この合成物のX線回折スペクトルは、先出の図7に示した通りであり、ピーク強度Ia,Ib,Icの関係は図8のD5の通りである。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、19.6質量%であった。
(8−2)水和四チタン酸化合物(水和4T)の合成方法
(8−1)で得られた四チタン酸カリウムを用いたこと以外、(1−3)と同じ工程で水和四チタン酸化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、1.16質量%であった。
(8−3)酸化チタン化合物の合成方法
(8−2)で得られた水和四チタン酸化合物を用いたこと以外、(1−4)と同じ工程で酸化チタン化合物を合成した。なお、この合成物のカリウム濃度は、蛍光X線による組成分析の結果、0.98質量%で、BET比表面積は、22.6m2/gであった。また、この化合物のX線回折スペクトル(X線源:Cu−Kα)は、トンネル構造を有するブロンズ型酸化チタンを示すものであった。
<分析装置>
上記の実施例1〜7および比較例1で使用した分析装置は、下記の通りである。
X線回折装置:株式会社リガク、Ultima4、Cu−Kα線による測定
蛍光X線分析装置:株式会社リガク、RIX1000
<電極の作製>
活物質として実施例1〜7および比較例1で合成された酸化チタン化合物を用いて各電極を作製した。具体的には、まず、ポリフッ化ビニリデン10重量部をN−メチル−2−ピロリドンに溶解させ、次に導電助剤として導電性カーボンを10重量部、実施例1〜7および比較例1で得られた酸化チタン化合物80重量部を加え、自転公転攪拌機にて混錬することにより塗料を作成した。この塗料をアルミ箔上に塗布し、その後150℃で真空乾燥しプレスした後、円形状に打ち抜いた。
<セルの組み立て>
上記で作製した各電極を用い、図10に示すコイン型セル20を組み立てた。コイン型セル20は、上ケース25aと下ケース25bとの間に、電極21、対極22、非水電解質23、及びセパレータ24を挟み込み、上ケース25aと下ケース25bの周囲をガスケット26で封止して作製された。
対極22には金属リチウム箔を用いた。非水電解質23にはエチレンカーボネート:ジメチルカーボネート1:1v/v%にLiPF6を1mol/L溶解したものを用いた。セパレータ24にはポリプロピレン多孔膜を用いた。
<電池評価方法及び結果>
ここで、上記のようなコイン型セルでは、対極に金属リチウムを使用しているため、各電極の電位は対極に対して貴となる。よって充放電によるリチウムイオンの挿入・脱離の方向は各電極をリチウムイオン二次電池の負極として用いたときと反対になる。しかし、以下において、便宜的にリチウムイオンが各電極から脱離する方向を放電、各電極に挿入される方向を充電と表現する。
上記のコイン型セル20を用いて、充放電レート0.2Cで、室温にて金属リチウム基準で1.0〜3.0Vの電位範囲で充放電を行った。図11は、実施例1〜7および比較例1の初回放電容量を示すテーブルである。
実施例1〜7と比較例1とを比較すれば明らかなように、焼成法4Tや溶融法4Tを用いて製造される酸化チタン化合物は、直接合成法4Tを用いて製造される酸化チタン化合物に比べて、リチウムイオンの収容量を高め、且つ移動易度を高めることにより放電容量の向上が可能である。よって、本発明の酸化チタン化合物を負極活物質として使用した場合、正極にLiCoO2、LiNiO2、LiMn24、LiFePO4等のリチウム含有複合酸化物を用いて提供されるリチウムイオン二次電池の充放電特性の向上に寄与することが可能であることが実証された。
<残存カリウム量について>
なお、酸化チタン化合物に残存するカリウム濃度については、2.0質量%以下に抑えることが望ましく、0.1〜1.5質量%がより望ましい。通常、酸化チタン化合物にカリウムが残存すると言うことは、本来リチウムイオンが収まるべき置換場所がカリウムイオンにより奪われていることを意味し、電池の性能を低下させる原因になると考えられるが、カリウムイオンはリチウムイオンと比較してイオン半径が大きい(ポーリングのイオン半径:カリウムイオン133pm[pmはピコメートル]、リチウムイオン60pm)ため、結晶構造内に一定量が存在することによって、酸化チタン化合物の結晶構造を保持する作用を有し、イオン半径の小さなリチウムイオンの移動をより容易にする効果があると推定される。
<BET比表面積について>
また、酸化チタン化合物は、BET法での比表面積が3以上80m2/g以下(より好ましくは、5〜20m2/g)であることが望ましい。比表面積が大き過ぎる(平均粒度が小さ過ぎる場合も含む)と、酸化チタン化合物と非水電解質との反応活性が高くなり過ぎて、電池寿命が短くなると考えられるからである。
以上、本発明の実施の形態を説明したが、本発明の構成はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、特許請求の範囲によって示されるものであって、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
本発明に係る酸化チタン化合物は、例えば、リチウムイオン二次電池の負極として利用することが可能である。
10 リチウムイオン二次電池
11 正極
12 負極
13、23 非水電解質
14、24 セパレータ
20 コイン型セル
21 電極
22 対極
25a、25b 上ケース、下ケース
26 ガスケット

Claims (3)

  1. (a)二チタン酸カリウムを脱カリウム処理及び焼成処理に付して、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Ia、(004)面のピーク強度Ic、及び、(31−3)面のピーク強度Ibとの間に、Ia>Ib>Icかつ10.0>Ia/Ic>2.0となる関係を有している四チタン酸カリウムを得る工程と、
    (b)前記四チタン酸カリウムをプロトン交換に付して水和四チタン酸化合物を得る工程と、
    (c)前記水和四チタン酸化合物を300℃〜550℃の範囲で熱処理に付して酸化チタン化合物を得る工程と、
    を含むことを特徴とする酸化チタン化合物の製造方法。
  2. 次の(i)〜(v)のいずれかに記載の酸化チタン化合物、または、請求項1に記載の製造方法によって得られる酸化チタン化合物を負極活物質として用いた負極。
    (i)酸化チタン化合物であって、Cu−Kα線源を用いたX線回折スペクトルにおいて、(200)面のピーク強度Ia、(004)面のピーク強度Ic、及び、(31−3)面のピーク強度Ibとの間に、Ia>Ib>Icかつ10.0>Ia/Ic>2.0となる関係が成立する、一般式K 2 Ti 4 9 で表される四チタン酸カリウムのカリウムを溶出し、300℃〜550℃の範囲で熱処理することによって得られる酸化チタン化合物。
    (ii)ブロンズ型酸化チタン又はブロンズ型酸化チタンを主体とする酸化チタンである前記(i)に記載の酸化チタン化合物。
    (iii)前記四チタン酸カリウムが、一般式K 2 Ti 2 5 で表される二チタン酸カリウムのカリウムイオンの一部を溶出させて組成変換した後、熱処理することによって得られたものである前記(i)または前記(ii)に記載の酸化チタン化合物。
    (iv)カリウムが残存し、残留カリウム濃度が2.0質量%以下である前記(i)〜前記(iii)のいずれかに記載の酸化チタン化合物。
    (v)BET法での比表面積が3以上80m 2 /g以下である前記(i)〜前記(iv)のいずれかに記載の酸化チタン化合物。
  3. 請求項2に記載の負極を用いて成ることを特徴とするリチウムイオン二次電池。
JP2011289133A 2011-12-28 2011-12-28 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池 Active JP5269974B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011289133A JP5269974B2 (ja) 2011-12-28 2011-12-28 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池
KR1020137006560A KR101322559B1 (ko) 2011-12-28 2012-09-28 산화티타늄 화합물 및 그 제조 방법과 이것을 사용하여 이루어지는 리튬 이온 이차 전지 및 4티타늄산 칼륨 및 수화 4티타늄산 화합물
EP12829138.2A EP2644570A4 (en) 2011-12-28 2012-09-28 TITANIUM OXIDE COMPOUND, MANUFACTURING METHOD THEREOF, LITHIUM ION SECONDARY BATTERY USING THE SAME, POTASSIUM TETRATITANATE AND HYDRATED TETRATITANATE COMPOUND
CN201280002898.5A CN103298743B (zh) 2011-12-28 2012-09-28 氧化钛化合物及其制造方法和用其形成的锂离子充电电池以及四钛酸钾、水合钛酸化合物
PCT/JP2012/075028 WO2013099380A1 (ja) 2011-12-28 2012-09-28 酸化チタン化合物及びその製造方法並びにこれを用いてなるリチウムイオン二次電池並びに四チタン酸カリウム及び水和四チタン酸化合物
US13/822,390 US9174854B2 (en) 2011-12-28 2012-09-28 Bronze-type titanium oxide compound containing potassium, method of manufacturing the same, and lithium-ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289133A JP5269974B2 (ja) 2011-12-28 2011-12-28 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013097672A Division JP5314810B1 (ja) 2013-05-07 2013-05-07 酸化チタン化合物

Publications (2)

Publication Number Publication Date
JP2013136491A JP2013136491A (ja) 2013-07-11
JP5269974B2 true JP5269974B2 (ja) 2013-08-21

Family

ID=48696886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289133A Active JP5269974B2 (ja) 2011-12-28 2011-12-28 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US9174854B2 (ja)
EP (1) EP2644570A4 (ja)
JP (1) JP5269974B2 (ja)
KR (1) KR101322559B1 (ja)
CN (1) CN103298743B (ja)
WO (1) WO2013099380A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102330929B1 (ko) * 2016-06-29 2021-11-24 스미토모 오사카 세멘토 가부시키가이샤 산화 타이타늄 입자와, 그것을 이용한 산화 타이타늄 입자 분산액 및 화장료
JP7441720B2 (ja) * 2020-05-19 2024-03-01 株式会社クボタ チタンニオブ複合酸化物の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678810B2 (ja) * 1990-07-06 1997-11-19 株式会社クボタ 八チタン酸カリウム多結晶繊維の製造方法
US5383963A (en) * 1993-02-22 1995-01-24 Kubota Corporation Composite fibers of potassium hexatitanate and titanium dioxide
JP4319285B2 (ja) * 1999-04-28 2009-08-26 大塚化学ホールディングス株式会社 粒状8チタン酸カリウムの製造方法
JP4435929B2 (ja) * 2000-03-14 2010-03-24 大塚化学株式会社 板状6チタン酸カリウム並びにその製造方法及び摩擦材
FR2902577B1 (fr) * 2006-06-20 2009-04-24 Commissariat Energie Atomique Accumulateur lithium-ion comprenant tio2-b comme materiau actif d'electrode negative
JP5093643B2 (ja) 2006-11-02 2012-12-12 独立行政法人産業技術総合研究所 リチウム二次電池活物質及びその製造方法、並びにそれを用いたリチウム二次電池
KR101428833B1 (ko) * 2007-04-04 2014-08-08 오츠카 가가쿠 가부시키가이샤 티탄산칼륨, 그의 제조 방법, 마찰재 및 수지 조성물
EP2184797A4 (en) * 2007-08-28 2016-11-09 Ishihara Sangyo Kaisha TITANIC ACID COMPOUND, PROCESS FOR PREPARING THE TITANIC ACID COMPOUND, ACTIVE ELECTRODE MATERIAL WITH THE TITANIC ACID COMPOUND AND MEMORY DEVICE WITH THE ACTIVE ELECTRODE MATERIAL
WO2011013254A1 (ja) 2009-07-31 2011-02-03 株式会社 東芝 非水電解質電池、それに用いる活物質、その製造方法、チタン酸アルカリ化合物の製造方法、及び電池パック
JP5980472B2 (ja) * 2010-05-14 2016-08-31 日立化成株式会社 二酸化チタン、二酸化チタンの製造方法、リチウムイオン電池、及びリチウムイオン電池用電極
JP5546971B2 (ja) * 2010-06-30 2014-07-09 株式会社クボタ リチウムチタン複合酸化物及びその製造方法並びにこれを用いてなるリチウムイオン二次電池

Also Published As

Publication number Publication date
JP2013136491A (ja) 2013-07-11
CN103298743B (zh) 2014-06-25
US20140127509A1 (en) 2014-05-08
EP2644570A4 (en) 2013-12-25
WO2013099380A1 (ja) 2013-07-04
KR20130086348A (ko) 2013-08-01
KR101322559B1 (ko) 2013-10-28
US9174854B2 (en) 2015-11-03
EP2644570A1 (en) 2013-10-02
CN103298743A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5787469B2 (ja) 負極活物質及びその製造方法、非水電解質電池及び電池パック
JP6076928B2 (ja) 電池用活物質材料、非水電解質電池、電池パック及び自動車
JP6340791B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
WO2011013254A1 (ja) 非水電解質電池、それに用いる活物質、その製造方法、チタン酸アルカリ化合物の製造方法、及び電池パック
JP2015084321A (ja) 電池用活物質材料及びその製造方法、非水電解質電池、並びに電池パック
JP7276324B2 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP5597662B2 (ja) 負極活物質、非水電解質電池及び電池パック
JP2018067549A (ja) 非水系電解質二次電池用正極活物質、及びこれを用いた非水系電解質二次電池
JP5511873B2 (ja) 四チタン酸カリウム及び水和四チタン酸化合物
JP5546971B2 (ja) リチウムチタン複合酸化物及びその製造方法並びにこれを用いてなるリチウムイオン二次電池
JP5847204B2 (ja) 正極活物質、正極及び非水系二次電池
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
JP5269974B2 (ja) 酸化チタン化合物の製造方法、負極、及びリチウムイオン二次電池
US10559819B2 (en) Titanium oxide, and electrode and lithium ion secondary battery each manufactured using same
JP5314810B1 (ja) 酸化チタン化合物
JP5928954B2 (ja) 遷移金属を含むオリビン型シリケート化合物の製造法
KR100326456B1 (ko) 리튬 이차 전지용 양극 활물질 및 그 제조 방법
WO2022249937A1 (ja) 非水電解液二次電池
Arote Positive electrode materials for Li-ion batteries

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Ref document number: 5269974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03