JP5265996B2 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
JP5265996B2
JP5265996B2 JP2008232934A JP2008232934A JP5265996B2 JP 5265996 B2 JP5265996 B2 JP 5265996B2 JP 2008232934 A JP2008232934 A JP 2008232934A JP 2008232934 A JP2008232934 A JP 2008232934A JP 5265996 B2 JP5265996 B2 JP 5265996B2
Authority
JP
Japan
Prior art keywords
oil
lubricating
bearings
iron
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008232934A
Other languages
Japanese (ja)
Other versions
JP2010065142A (en
Inventor
知美 桜井
祐治 設楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008232934A priority Critical patent/JP5265996B2/en
Publication of JP2010065142A publication Critical patent/JP2010065142A/en
Application granted granted Critical
Publication of JP5265996B2 publication Critical patent/JP5265996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は潤滑基油に合成カルシウムスルフォネートと合成亜鉛スルフォネートを併用して防錆能力を高めつつ、軸受油としての基本性能(潤滑性、酸化安定性)を有する潤滑油組成物に関し、特には、鉄を主成分とする軸受の潤滑油として用いられる鉄系軸受用潤滑油組成物に関する。   The present invention relates to a lubricating oil composition having basic performance (lubricity, oxidation stability) as a bearing oil while enhancing rust prevention ability by using synthetic calcium sulfonate and synthetic zinc sulfonate together in a lubricating base oil. Relates to a lubricating oil composition for iron bearings used as a lubricating oil for bearings mainly composed of iron.

近年、様々な潤滑システムの高度化、高性能化、多機能化が進められるとともに、低コスト化、高信頼性が求められている。軸受は、回転運動を円滑に精度良く制御する基本的な機械要素として多くの機械システムに用いられている。軸受の種類は多種多様で、転がり軸受、すべり軸受、焼結金属含油軸受などに大別される。特に焼結金属含油軸受は、微細な金属粉末を成型、焼結、サイジングなどの工程を経て製造され、転がり軸受などに比べ安価な軸受として幅広い用途に適用されている。燒結金属含油軸受自体が多孔質体であるため、通常、潤滑油を真空含浸して軸受内に体積にして20%ほど含ませて使用されている。含浸する潤滑油は、適正な粘度を有し、潤滑性、防錆性、酸化安定性などの軸受油としての基本的な性能を有していることが求められる。古くはタービン油、作動油、エンジン油などの汎用潤滑油が含浸されて用いられてきたが、最近では、用途や潤滑条件にあわせて含油軸受専用油が使用されている。特に冷蔵庫などの低温での運転条件、自動車の電装部品のように幅広い温度で安定した作動特性が求められる用途、または高速化のため低粘度化が求められる用途では、合成油を基油とした高性能含油軸受専用油が開発されている(特許文献1参照)。   In recent years, various lubrication systems have been advanced, enhanced in performance, and multifunctional, and cost reduction and high reliability have been demanded. A bearing is used in many mechanical systems as a basic mechanical element for controlling rotational motion smoothly and accurately. There are various types of bearings, which are roughly classified into rolling bearings, slide bearings, sintered metal oil-impregnated bearings, and the like. In particular, sintered metal oil-impregnated bearings are manufactured through processes such as molding, sintering, and sizing fine metal powder, and are applied to a wide range of applications as inexpensive bearings compared to rolling bearings. Since the sintered metal oil-impregnated bearing itself is a porous body, it is usually used by being vacuum impregnated with lubricating oil and containing about 20% in volume in the bearing. The impregnating lubricating oil is required to have an appropriate viscosity and have basic performance as a bearing oil such as lubricity, rust prevention, and oxidation stability. In the old days, general-purpose lubricating oils such as turbine oil, hydraulic oil, and engine oil have been impregnated, but recently, oils dedicated to oil-impregnated bearings have been used in accordance with applications and lubricating conditions. Synthetic oil is used as a base oil especially in low temperature operating conditions such as refrigerators, applications that require stable operating characteristics over a wide range of temperatures, such as automotive electrical components, or applications that require low viscosity for high speed. A special oil for high performance oil-impregnated bearings has been developed (see Patent Document 1).

現在、燒結金属含油軸受の材質は、銅系、鉄系に大別される。具体的には、純鉄系、鉄−銅系、鉄−炭素系、鉄−炭素−銅系、青銅系および鉛青銅系が規格化されている。これらの使い分けは、用途、使用条件・環境に依存し、高荷重低速度条件には鉄系、低荷重高速度条件には銅系が用いられている(非特許文献1参照)。   At present, the materials of sintered metal oil-impregnated bearings are roughly classified into copper and iron. Specifically, pure iron, iron-copper, iron-carbon, iron-carbon-copper, bronze, and lead bronze are standardized. The proper use of these depends on the application, use conditions and environment, and iron is used for high load and low speed conditions, and copper is used for low load and high speed conditions (see Non-Patent Document 1).

鉄は金属材料の中でも比較的安価であり、資源としても豊富にあり、機械的強度も高い反面、耐食性に劣るなどの課題がある。特に日本は湿度が高い環境にあり、鉄系軸受に用いる潤滑油には、高い防錆能力が求められている。従来の潤滑油には、防錆性を付与する目的でカルボン酸系、金属スルフォン酸塩系などの防錆剤が配合されている。しかし、従来の潤滑油では、非常に高い湿度、水に浸る様な過酷な環境下では、短期間で錆が発生する問題があった。そのため、有機スルフォン酸亜鉛塩を防錆剤として配合した潤滑油組成物も提案されている(特許文献2参照)。しかし、非常に厳しい使用環境を想定した過酷な防錆試験では、十分な防錆効果は得られなかった。
特開2003−261892号公報 トライボロジーハンドブック(養賢堂発行)、P438 特許第4008992号公報
Iron is relatively inexpensive among metal materials, has abundant resources, has high mechanical strength, but has problems such as poor corrosion resistance. In particular, Japan is in a high humidity environment, and lubricating oils used for iron bearings are required to have high rust prevention ability. Conventional lubricating oils are blended with rust inhibitors such as carboxylic acids and metal sulfonates for the purpose of imparting rust prevention properties. However, the conventional lubricating oil has a problem that rust is generated in a short period of time in a harsh environment such as being soaked in extremely high humidity and water. Therefore, a lubricating oil composition containing an organic sulfonic acid zinc salt as a rust preventive has also been proposed (see Patent Document 2). However, in a severe rust prevention test assuming a very severe use environment, a sufficient rust prevention effect was not obtained.
Japanese Patent Laid-Open No. 2003-261892 Tribology Handbook (published by Yokendo), P438 Japanese Patent No. 4008992

本発明は、高い防錆能力を有するとともに、潤滑性、酸化安定性に優れた鉄系軸受用潤滑油組成物を提供することを課題とするものである。     This invention makes it a subject to provide the lubricating oil composition for iron-type bearings which was excellent in lubricity and oxidation stability while having high antirust ability.

本発明者は、上記課題を解決するために鋭意研究を進めた結果、潤滑基油に、特定のCaスルフォネートと亜鉛スルフォネートの両方を、特定量配合することで、非常に高い防錆能力を有する潤滑油組成物が得られることを見出した。   As a result of conducting extensive research to solve the above problems, the present inventor has a very high rust prevention ability by blending a specific amount of both a specific Ca sulfonate and a zinc sulfonate into a lubricating base oil. It has been found that a lubricating oil composition can be obtained.

本発明は、かかる知見に基づきなされたもので、次のとおりである。
(1)鉱油系または合成油系の潤滑基油に、塩基価が1〜100mgKOH/gの合成カルシウムスルフォネートおよび合成亜鉛スルフォネートを、組成物全量基準で前記スルフォネートの合計量として3〜30質量%、かつカルシウムと亜鉛の元素比を2:8〜8:2で配合したことからなる潤滑油組成物。
(2)前記カルシウムスルフォネートおよび亜鉛スルフォネートの塩基価が2〜50mgKOH/gである上記(1)に記載の潤滑油組成物。
The present invention has been made based on such findings and is as follows.
(1) Mineral oil or synthetic oil base lubricant base oil of synthetic calcium sulfonate and synthetic zinc sulfonate having a base number of 1 to 100 mgKOH / g is 3 to 30 mass as the total amount of the sulfonate based on the total amount of the composition. %, And a lubricating oil composition comprising an element ratio of calcium and zinc of 2: 8 to 8: 2.
(2) The lubricating oil composition according to the above (1), wherein the calcium sulfonate and zinc sulfonate have a base number of 2 to 50 mgKOH / g.

(3)上記(1)または(2)に記載の潤滑油組成物を鉄を主成分とする軸受の潤滑油として用いることからなる鉄系軸受用潤滑油組成物。
(4)前記鉄を主成分とする軸受が、焼結金属含油軸受、転がり軸受、またはすべり軸受である上記(3)に記載の鉄系軸受用潤滑油組成物。
(3) A lubricating oil composition for an iron-based bearing comprising using the lubricating oil composition according to (1) or (2) above as a lubricating oil for a bearing containing iron as a main component.
(4) The lubricating oil composition for iron bearings according to (3), wherein the bearing containing iron as a main component is a sintered metal oil-impregnated bearing, a rolling bearing, or a sliding bearing.

本発明の潤滑油組成物は、高い防錆能力を有するとともに、潤滑性、酸化安定性に優れ、したがって、鉄を主成分とする軸受に用いることにより、例え、多湿な環境、水と接するような厳しい腐食環境においても軸受の発錆を防止し、軸受およびその装着装置に対して、長期に亘り安定性と信頼性を確保できる。   The lubricating oil composition of the present invention has a high rust prevention ability and is excellent in lubricity and oxidation stability. Therefore, when used in a bearing mainly composed of iron, for example, it is in contact with moisture and water. Even in a severe corrosive environment, rusting of the bearing can be prevented, and stability and reliability can be ensured for a long time with respect to the bearing and its mounting device.

[潤滑基油]
本発明に用いる潤滑基油は、通常の潤滑基油として用いられている鉱油系の潤滑基油でも、合成油系の潤滑基油のいずれをも用いることができる。また、鉱油系の潤滑基油と合成油系の潤滑基油とを混合して用いることもできる。
[Lubricating base oil]
The lubricating base oil used in the present invention may be either a mineral base lubricating base oil used as a normal lubricating base oil or a synthetic base lubricating base oil. Also, a mineral base lubricant base oil and a synthetic base lubricant base oil can be mixed and used.

前記鉱油系の潤滑基油は、一般に、原油を常圧蒸留し、あるいはさらに減圧蒸留して得られる留出物を各種の精製プロセスで精製した潤滑油留分を基油とし、これをそのまま、或いはこれに各種添加剤などを調合して調整される。前記精製プロセスとは、水素化精製、溶剤抽出、溶剤脱ロウ、水素化脱ロウ、硫酸洗浄、白土処理などである。これらのプロセスを適宜の順序で組み合わせて処理して、本発明に好適な鉱油系の潤滑基油を得ることができる。異なる原油あるいは留出油を、異なるプロセスの組み合わせ、順序により得られた、性状の異なる複数の精製油の混合油も好適な基油として用いることができる。   In general, the mineral base lubricant base oil is a base oil obtained by subjecting a distillate obtained by subjecting crude oil to atmospheric distillation or further distillation under reduced pressure by various purification processes as a base oil. Alternatively, it is adjusted by mixing various additives. Examples of the purification process include hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, and clay treatment. These processes can be combined and processed in an appropriate order to obtain a mineral oil-based lubricating base oil suitable for the present invention. A mixed oil of a plurality of refined oils having different properties obtained by combining different crude oils or distillate oils in different processes and sequences can be used as a suitable base oil.

合成油系の潤滑基油としては、加水分解安定性に優れる基材を用いることが好ましく、例えばポリ‐α‐オレフィン、ポリブテンや2種以上の各種オレフィンの共重合体などのポリオレフィン、さらにはポリエステル、ポリアルキレングリコール、アルキルベンゼン、アルキルナフタレンなどが挙げられる。なかでも、ポリ−α−オレフィンやポリエステルが、入手性、コスト面、粘度特性、酸化安定性、システム部材との適合性の面で好ましい。これらの合成油系の潤滑基油は、単独でも、あるいは2種以上を混合して用いることができる。   As the synthetic base oil, it is preferable to use a base material having excellent hydrolysis stability. For example, polyolefins such as poly-α-olefin, polybutene and copolymers of two or more kinds of olefins, and polyester , Polyalkylene glycol, alkylbenzene, alkylnaphthalene and the like. Among these, poly-α-olefin and polyester are preferable in terms of availability, cost, viscosity characteristics, oxidation stability, and compatibility with system members. These synthetic base oils can be used alone or in admixture of two or more.

これらの潤滑基油の物性は、用途に応じて適宜選定されるが、一般的には、40℃における動粘度が5〜600mm2/s、特には10〜580mm2/s、粘度指数が80〜150、流動点が−10℃以下のものが好適である。 The physical properties of these lubricating base oils are appropriately selected depending on the application, but in general, the kinematic viscosity at 40 ° C. is 5 to 600 mm 2 / s, particularly 10 to 580 mm 2 / s, and the viscosity index is 80. -150 and a pour point of -10 degrees C or less are suitable.

鉱油系、合成油系の潤滑基油を含めて、複数の潤滑基油の混合物を使用する場合、該基油混合物が上記物性を満足するものであれば、混合前の個々の基油がかかる物性の範囲を外れていても使用することができる。したがって、個々の鉱油系、合成油系の潤滑基油は、上記物性を必ずしも満足する必要はないが、上記物性の範囲内であることが好ましい。   When using a mixture of a plurality of lubricating base oils, including mineral oil-based and synthetic oil-based lubricating base oils, if the base oil mixture satisfies the above physical properties, the individual base oils before mixing are applied. It can be used even if out of the range of physical properties. Accordingly, the individual mineral oil-based and synthetic oil-based lubricating base oils do not necessarily satisfy the above-mentioned physical properties, but are preferably within the above-mentioned physical properties.

[スルフォネート]
本発明の潤滑油組成物では、合成カルシウムスルフォネートと合成亜鉛スルフォネートとは、併用する必要があり、これらは任意の割合で混合可能であるが、高い防錆効果を得るためには、この割合は、カルシウムと亜鉛の元素比で、2:8〜8:2の範囲とする必要がある。
[Sulfonate]
In the lubricating oil composition of the present invention, the synthetic calcium sulfonate and the synthetic zinc sulfonate need to be used in combination, and these can be mixed at an arbitrary ratio. The ratio needs to be in the range of 2: 8 to 8: 2 in terms of element ratio of calcium and zinc.

また、この合成カルシウムスルフォネートおよび合成亜鉛スルフォネートは、潤滑油に防錆剤として添加されるもののうち、塩基価が1〜100mgKOH/gと、低塩基価のものを用いなければ、高い防錆効果を得ることができない。好ましくは、2〜50mgKOH/gのものである。なお、このスルフォネートは、スルホン酸としてジノニルナフタレンスルホン酸、重質アルキルベンゼンスルホン酸のような合成スルホン酸を用いた合成スルフォネートを用いる必要がある。潤滑油留分中の芳香族炭化水素成分をスルホン化した石油スルホン酸を用いて得られた石油スルフォネートは防錆効果が悪く、使用できない。また,炭酸カルシウムなどをコロイド状に分散した塩基価200〜300mgKOH/gの高塩基性スルフォネートは,水の共存下で炭酸カルシウムコロイドが粗粒化し,スラッジとして析出するので好ましくはない.   Further, among these synthetic calcium sulfonates and synthetic zinc sulfonates, those having a base number of 1 to 100 mgKOH / g and those having a low base number among those added as a rust preventive agent to lubricating oils have high rust prevention. The effect cannot be obtained. Preferably, it is 2 to 50 mg KOH / g. In addition, as for this sulfonate, it is necessary to use the synthetic sulfonate using synthetic sulfonic acid like dinonyl naphthalene sulfonic acid and heavy alkylbenzene sulfonic acid as a sulfonic acid. Petroleum sulfonates obtained by using petroleum sulfonic acid obtained by sulfonating aromatic hydrocarbon components in the lubricating oil fraction have a poor antirust effect and cannot be used. In addition, a highly basic sulfonate having a base number of 200 to 300 mgKOH / g in which calcium carbonate or the like is colloidally dispersed is not preferable because the calcium carbonate colloid coarsens in the presence of water and precipitates as sludge.

これら低塩基性の合成カルシウムスルフォネートと合成亜鉛スルフォネートの併用効果についてのメカニズムは明らかではないが、金属表面への吸着活性、形成される防錆被膜の強度が最適化されたものと考えられる。これらの最適化処方によると、非常に厳しい環境においても十分な防錆効果が得られる。   Although the mechanism of the combined effect of these low basic synthetic calcium sulfonates and synthetic zinc sulfonates is not clear, it is thought that the adsorption activity to the metal surface and the strength of the rust-preventive coating formed are optimized. . According to these optimized formulations, a sufficient rust prevention effect can be obtained even in a very severe environment.

その配合量は、組成物全量基準で、前記カルシウムスルフォネートと亜鉛スルフォネートの合計量で3〜30質量%配合する必要があり、3質量%以下では十分な防錆効果が見られず、30質量%以上ではコストに応じた防錆効果が期待できない。   The blending amount is 3 to 30% by mass in terms of the total amount of the calcium sulfonate and zinc sulfonate, based on the total amount of the composition. If the content is greater than or equal to mass%, the rust prevention effect corresponding to the cost cannot be expected.

[その他添加剤]
なお、本発明の潤滑油組成物には、通常の潤滑油としての性能を付与するために、フェノール系やアミン系の酸化防止剤、リン酸エステル、有機硫黄化合物などの摩耗防止剤、リン系及びいおう系化合物の極圧剤、アルコール、高級脂肪酸類などの油性剤、シリコーンオイルなどの消泡剤、ベンゾトリアゾール誘導体などの金属不活性化剤などを適宜配合することができる。 これらの添加剤は、潤滑基油100質量部に対して、0.1〜10質量部、特には0.2〜5質量部、添加することが好ましい。
[Other additives]
In addition, in order to impart performance as a normal lubricating oil to the lubricating oil composition of the present invention, a phenol-based or amine-based antioxidant, a phosphate ester, an anti-wear agent such as an organic sulfur compound, a phosphorus-based In addition, an extreme pressure agent of sulfur compound, an oily agent such as alcohol and higher fatty acids, an antifoaming agent such as silicone oil, a metal deactivator such as benzotriazole derivative, and the like can be appropriately blended. These additives are preferably added in an amount of 0.1 to 10 parts by mass, particularly 0.2 to 5 parts by mass with respect to 100 parts by mass of the lubricating base oil.

[軸受]
本発明の潤滑油組成物は、油圧作動油、圧縮機油、工作機械油、金属加工油、軸受油、ギヤー油、冷凍機油及びタービン油等の工業用潤滑油、並びに自動車用潤滑油及び船舶用潤滑油等、各種の用途に用いることができるが、鉄を主成分とする軸受、特には焼結金属含油軸受、転がり軸受、すべり軸受に適用することが、本発明の効果を最も発揮できる。
[bearing]
The lubricating oil composition of the present invention comprises a hydraulic oil, a compressor oil, a machine tool oil, a metalworking oil, a bearing oil, a gear oil, a refrigerator oil, a turbine oil, and other industrial lubricating oils, as well as automotive lubricating oils and marine oils. Although it can be used for various applications such as lubricating oil, the effect of the present invention can be most exerted when applied to bearings mainly composed of iron, particularly sintered metal oil-impregnated bearings, rolling bearings, and sliding bearings.

焼結含油軸受は、銅、青銅、黄銅、鉄、亜鉛などの金属粉末を混合、成形、焼結、サイジング工程により製造される多孔質の焼結含油軸受で、一般的には5〜30%の空隙がある。本発明では、これら材質のうち、特に防錆効果を必要とする鉄系焼結含油軸受に適用することが好ましい。   Sintered oil-impregnated bearings are porous sintered oil-impregnated bearings manufactured by mixing, forming, sintering, and sizing metal powders such as copper, bronze, brass, iron, and zinc. Generally, 5-30% There are gaps. In the present invention, among these materials, it is particularly preferable to apply to an iron-based sintered oil-impregnated bearing that requires a rust prevention effect.

また転がり軸受は、2個の軌道輪(内輪及び外輪)、転動体(玉又はころ)及び保持器により構成され、内輪と外輪との間にある転動体は互いに接触しないように保持器によって一定の間隔に保たれ、転がり運動をする構造であり、ラジアル軸受とスラスト軸受に大別される。これら転がり軸受も鉄、セラミックスなどの材質で構成されたものがあるが、本発明では、特に防錆効果が求められる鉄を主成分とした転がり軸受に適用することが好ましい。   The rolling bearing is composed of two race rings (inner and outer rings), rolling elements (balls or rollers) and a cage, and the rolling elements between the inner ring and the outer ring are fixed by the cage so that they do not contact each other. It is a structure which is kept at the interval and performs a rolling motion, and is roughly classified into a radial bearing and a thrust bearing. Some of these rolling bearings are also made of a material such as iron or ceramics. However, in the present invention, it is preferable to apply to rolling bearings mainly composed of iron for which a rust prevention effect is particularly required.

さらにすべり軸受は、荷重のかかる方向や時間変動で呼び方が異なるが、ジャーナル軸受、スラスト軸受、静圧軸受、動圧軸受などに大別され、具体的には真円軸受、部分円弧軸受、ティルティングパッド軸受などが挙げられる。これら軸受を構成する材質としては、各種プラスチック、青銅、アルミ合金、鋳鉄などが挙げられる。このうち、本発明では、防錆性が必要な鉄系すべり軸受に適用することが好適である。   Sliding bearings are called differently depending on the direction in which the load is applied and the time variation, but they are broadly classified into journal bearings, thrust bearings, hydrostatic bearings, hydrodynamic bearings, etc., specifically round bearings, partial arc bearings, Examples include tilting pad bearings. Examples of materials constituting these bearings include various plastics, bronze, aluminum alloys, cast iron and the like. Among these, in the present invention, it is preferable to apply to an iron-based slide bearing that requires rust prevention.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.

[潤滑基油]
潤滑基油としては、以下に記載する4種類を用いた。
(1)鉱油(VG32):パラフィン系鉱油、動粘度(40℃)32mm2/s、粘度指数100、流動点−12.5℃
(2)PAO(VG32):ポリ‐α‐オレフィン重合体、動粘度(40℃)32mm2/s、粘度指数130、流動点−60℃
(3)PAO(VG100):ポリ‐α‐オレフィン重合体、動粘度(40℃)100mm2/s、粘度指数130、流動点−60℃
(4)エステル(VG32):ペンタエリスリトール系脂肪酸ポリオールエステル、動粘度(40℃)32mm2/s、粘度指数140、流動点−30℃
[Lubricating base oil]
As the lubricating base oil, the following four types were used.
(1) Mineral oil (VG32): paraffinic mineral oil, kinematic viscosity (40 ° C) 32mm 2 / s, viscosity index 100, pour point -12.5 ° C
(2) PAO (VG32): poly-α-olefin polymer, kinematic viscosity (40 ° C.) 32 mm 2 / s, viscosity index 130, pour point −60 ° C.
(3) PAO (VG100): poly-α-olefin polymer, kinematic viscosity (40 ° C.) 100 mm 2 / s, viscosity index 130, pour point −60 ° C.
(4) Ester (VG32): pentaerythritol fatty acid polyol ester, kinematic viscosity (40 ° C.) 32 mm 2 / s, viscosity index 140, pour point −30 ° C.

[添加剤]
添加剤として、次のものを用いた。
A.防錆剤
合成Caスルフォネート[25]:重質アルキルベンゼンスルホン酸カルシウム、塩基価25mgKOH/g
合成Znスルフォネート[28]:ジノニルナフタレンスルホン酸亜鉛、塩基価28mgKOH/g
合成Baスルフォネート[25]:ジノニルナフタレンスルホン酸バリウム、塩基価25mgKOH/g
合成Caスルフォネート[200]:ジノニルナフタレンスルホン酸カルシウム、塩基価200mgKOH/g
石油Caスルフォネート[20]:石油スルホン酸カルシウム、塩基価20mgKOH/g
コハク酸部分エステル:酸価160mgKOH/g
[Additive]
The following were used as additives.
A. Antirust agent Synthetic Ca sulfonate [25]: Heavy alkyl benzene sulfonate calcium, base number 25mgKOH / g
Synthetic Zn sulfonate [28]: zinc dinonylnaphthalenesulfonate, base number 28 mgKOH / g
Synthetic Basulfonate [25]: Barium dinonylnaphthalenesulfonate, base number 25mgKOH / g
Synthetic Ca sulfonate [200]: calcium dinonylnaphthalenesulfonate, base number 200 mgKOH / g
Petroleum Ca sulfonate [20]: Calcium petroleum sulfonate, base number 20mgKOH / g
Succinic acid partial ester: acid value 160mgKOH / g

B.その他添加剤
アミン系酸化防止剤:アルキル化フェニル‐α‐ナフチルアミン
リン系摩耗防止剤:トリクレジルフォスフェート
B. Other additives Amine-based antioxidants: alkylated phenyl-α-naphthylamine Phosphorus-based antiwear agents: tricresyl phosphate

[試験方法]
上記の基油及び添加剤を、表1、2の上部に示す割合で配合して、実施例、比較例の潤滑油組成物を調製した。これら潤滑油組成物を以下の実用性能を評価する試験に供した。
[Test method]
The above base oils and additives were blended in the proportions shown in the upper part of Tables 1 and 2 to prepare lubricating oil compositions of Examples and Comparative Examples. These lubricating oil compositions were subjected to the following tests for evaluating practical performance.

(外観)
各潤滑油組成物をガラス製110mlスクリュー瓶に入れ、外観を目視観察した。濁りが認められる場合は、配合した添加剤やそれらの反応物が均一に溶解していないことを示すので、潤滑油組成物としては好ましくはない。一方、透明であれば、潤滑油組成物として問題なく使用することができる。
(appearance)
Each lubricating oil composition was placed in a glass 110 ml screw bottle and the appearance was visually observed. When turbidity is observed, it indicates that the blended additives and their reactants are not uniformly dissolved, and therefore it is not preferred as a lubricating oil composition. On the other hand, if it is transparent, it can be used as a lubricating oil composition without problems.

(動粘度、粘度指数)
JIS K2283に規定された方法に従い、キャノン−フェンスケ粘度計を用いて、40℃および100℃における動粘度を測定した。また、粘度指数は、JIS K2283:6.4 B法に規定された方法により算出した。
(Kinematic viscosity, viscosity index)
According to the method prescribed | regulated to JISK2283, kinematic viscosity in 40 degreeC and 100 degreeC was measured using the Canon-Fenske viscometer. Moreover, the viscosity index was calculated by the method prescribed | regulated to JISK2283: 6.4B method.

(酸価)
JIS K2501に規定された方法に従い、電位差滴定法による各潤滑油組成物の酸価(mgKOH/g)を測定した。
(Acid value)
The acid value (mgKOH / g) of each lubricating oil composition was measured by potentiometric titration in accordance with the method defined in JIS K2501.

(防錆試験)
防錆性のスクリーニングとして次の方法で評価した。
各潤滑油組成物に洗浄、脱脂処理した鉄系焼結軸受部品を浸し、真空引きの状態にて25分間含浸させ、前記軸受部品を紙ウェス等の上に取り出し、15分間静置して表面の余分な油を自然吸収させることにより除く。次いで、ペトリ皿に上記軸受部品を置き、軸受が半分浸る量の水で満たし、上部は密閉せず空気に触れさせた形で室内・室温の環境に静置する。この際、蒸発した分の水は適時補充する。都度状態を観察し、試験開始から軸受部品に発錆が認められるまでの日数をカウントし、これを発錆日数とした。
(Rust prevention test)
The following method evaluated as a rust prevention screening.
Immerse the iron-based sintered bearing parts that have been cleaned and degreased in each lubricating oil composition, impregnate them for 25 minutes in a vacuumed state, take out the bearing parts on a paper waste or the like, and leave it for 15 minutes to stand. It is removed by absorbing natural excess oil. Next, the bearing part is placed on a Petri dish, filled with water in an amount so that the bearing is half-immersed, and the upper part is not sealed, but is left in a room / room temperature environment in contact with air. At this time, the evaporated water is replenished in a timely manner. The state was observed each time, and the number of days from when the test was started until rusting was observed on the bearing parts was counted, and this was defined as the number of rusting days.

この発錆日数が各潤滑油組成物の「防錆能力」となり、 また、長ければ長いほどその性能が優れていると言える。本試験は、油を含浸した鉄系軸受が水と空気(酸素)の双方に曝されるため、極めて錆が発生しやすい環境をシミュレートしている。一般的なタービン油や作動油では、1日経過で発錆が認められる。また一般的な防錆油では、40日程度で発錆が生じる。本発明では、一般的な防錆油の防錆効果に対し2倍の寿命を有する場合を「極めて高い防錆能力」とした。   This rusting days is the “rust prevention ability” of each lubricating oil composition, and the longer the rusting days, the better the performance. This test simulates an environment where rust is very likely to occur because the oil-impregnated iron bearing is exposed to both water and air (oxygen). In general turbine oil and hydraulic oil, rusting is observed after one day. Moreover, in general antirust oil, rusting occurs in about 40 days. In the present invention, a case where the life is twice as long as that of a general rust preventive oil is defined as “extremely high rust preventive ability”.

(酸化劣化試験)
酸化安定性を以下の方法で評価した。
ガラス製の100mlスクリュー瓶に各潤滑油組成物を80g量り入れ、洗浄、脱脂処理をした金属触媒(銅および鉄、棒状)を浸漬して、スクリュー瓶をアルミホイルで蓋をし、140℃に設定した空気浴槽中に静置して、240hr加熱し、各潤滑油組成物を強制劣化させた。各強制劣化後油に含まれるスラッジ発生量を、JIS B9931に規定された方法に従い、測定して、各潤滑油組成物の酸化安定性を評価した。値が小さいほど酸化安定性に優れており、実質的には5mg/100ml以下であれば問題なく潤滑油として使用可能である。
(Oxidation degradation test)
The oxidation stability was evaluated by the following method.
Weigh 80 g of each lubricating oil composition into a glass 100 ml screw bottle, immerse the washed and degreased metal catalyst (copper and iron, rod-shaped), cover the screw bottle with aluminum foil, and bring it to 140 ° C. It left still in the set air bathtub, and it heated for 240 hours, and forcedly deteriorated each lubricating oil composition. The amount of sludge generated contained in each forcedly deteriorated oil was measured according to the method specified in JIS B9931, and the oxidation stability of each lubricating oil composition was evaluated. The smaller the value, the better the oxidation stability. If it is substantially 5 mg / 100 ml or less, it can be used as a lubricating oil without any problem.

(シェル4球摩耗試験)
ASTM D4172−94に規定された方法に従い、ROXANA MACHINE WORKS社製 シェル4球摩耗試験機を用いて行った。なお、試験にはJIS B1501玉軸受用鋼球(20等級、1/2インチ)を使用し、条件は以下の通りとした。
回転数:1200rpm
荷重:30kgf/cm2
温度:室温開始、以降なりゆき
時間:30分
各潤滑油組成物の耐摩耗性は試験後の摩耗痕径の大小により評価し、その値は小さいほど好ましく、0.4mm以下であれば、潤滑性は良好と言える。
(Shell 4-ball wear test)
According to the method prescribed | regulated to ASTMD4172-94, it performed using ROXANA MACHINE WORKS shell 4 ball | bowl abrasion tester. In this test, JIS B1501 ball bearing steel balls (20 grade, 1/2 inch) were used, and the conditions were as follows.
Rotation speed: 1200rpm
Load: 30kgf / cm 2
Temperature: Start at room temperature, subsequent time: 30 minutes The wear resistance of each lubricating oil composition is evaluated based on the size of the wear scar diameter after the test. The smaller the value, the better. It can be said that the property is good.

以上の結果を表1および表2に示した。   The above results are shown in Tables 1 and 2.

Figure 0005265996
Figure 0005265996

Figure 0005265996
Figure 0005265996

表1の実施例1〜8の潤滑油組成物は、作油後の外観がいずれも透明であり、添加剤配合による問題は生じていない。粘度特性、酸価は、配合した防錆剤の種類、配合量に依存して改善されている。
防錆試験については、実施例1〜8は、いずれも発錆日数が80日を超え、最長で95日目での発錆を示し、実使用上、極めて高い防錆能力を有していることが分かる。
酸化劣化試験では、実施例1〜8は、いずれもスラッジ発生量が5mg/100ml以下であり、耐スラッジ性に優れている。
耐摩耗試験では、いずれの実施例においても、摩耗痕は0.3mm台であり、潤滑性も良好である。
In the lubricating oil compositions of Examples 1 to 8 in Table 1, the appearance after oil production is all transparent, and there is no problem due to the additive formulation. Viscosity characteristics and acid value are improved depending on the kind and blending amount of the blended rust inhibitor.
As for the rust prevention test, Examples 1 to 8 all have rusting days exceeding 80 days, showing rusting on the 95th day at the longest, and have extremely high rust prevention ability in actual use. I understand that.
In the oxidation degradation test, all of Examples 1 to 8 have a sludge generation amount of 5 mg / 100 ml or less, and are excellent in sludge resistance.
In the wear resistance test, the wear marks are on the order of 0.3 mm and the lubricity is good in any of the examples.

これに対して、表2の比較例1〜8の潤滑油組成物うち、比較例7、8は、作油後に濁りが認められ、防錆剤の反応や溶解性に問題があった。粘度特性、酸価は、実施例と同様に、配合した添加剤組成に依存した値であった。
防錆性は、比較例1〜6で、発錆日数15〜45日を示し、一般的な防錆油の防錆レベルにとどまった。比較例7、8は、5日以内で発錆した。
酸化劣化試験では、スラッジ量5mg/100ml以下を示したのは比較例1、2のみであり、比較例3〜8は実用に用いることができないレベルであった。
潤滑性については、比較例7、8の摩耗痕が大きい他は、いずれも問題ないレベルであった。
On the other hand, among the lubricating oil compositions of Comparative Examples 1 to 8 in Table 2, Comparative Examples 7 and 8 had turbidity after oil production and had problems with the reaction and solubility of the rust inhibitor. Viscosity characteristics and acid value were values depending on the blended additive composition, as in the examples.
Rust prevention property was comparative examples 1-6, showed rusting days 15-45 days, and stayed at the rust prevention level of general rust prevention oil. Comparative Examples 7 and 8 rusted within 5 days.
In the oxidation deterioration test, only Comparative Examples 1 and 2 showed a sludge amount of 5 mg / 100 ml or less, and Comparative Examples 3 to 8 were at a level that could not be used practically.
Regarding the lubricity, all of the comparative examples 7 and 8, except for the large wear marks, were at a level with no problem.

以上の実施例、比較例の評価より、低塩基性の合成カルシウムスルフォネートと合成亜鉛スルフォネートを併用することにより、極めて高い防錆能力、酸化安定性、潤滑性のいずれの性能をも満足することが分かった。
一方、比較例では、組成によっては酸化安定性や潤滑性に優れるものの、本試験条件での防錆性が一般的な防錆油のレベルと不十分であった。
From the evaluation of the above Examples and Comparative Examples, the combination of the low basic synthetic calcium sulfonate and the synthetic zinc sulfonate satisfies both extremely high antirust performance, oxidation stability, and lubricity. I understood that.
On the other hand, in the comparative example, although it was excellent in oxidation stability and lubricity depending on the composition, the rust prevention property under the test conditions was insufficient with the level of a general rust prevention oil.

本発明の潤滑油組成物は、高い防錆能力を有するとともに、潤滑性、酸化安定性に優れているので、油圧作動油、圧縮機油、工作機械油、金属加工油、軸受油、ギヤー油、冷凍機油及びタービン油等の工業用潤滑油、並びに自動車用潤滑油及び船舶用潤滑油等、各種の用途に利用することができ、鉄を主成分とする軸受、特には焼結金属含油軸受、転がり軸受、すべり軸受の潤滑油として好適である。
The lubricating oil composition of the present invention has a high anti-corrosion ability, and is excellent in lubricity and oxidation stability. Therefore, hydraulic oil, compressor oil, machine tool oil, metal working oil, bearing oil, gear oil, It can be used for various applications such as industrial lubricants such as refrigeration oil and turbine oil, automobile lubricants and marine lubricants, bearings mainly composed of iron, especially sintered metal oil-impregnated bearings, It is suitable as a lubricating oil for rolling bearings and sliding bearings.

Claims (2)

鉱油系または合成油系の潤滑基油に、塩基価が2〜50mgKOH/gの合成カルシウムスルフォネートおよび合成亜鉛スルフォネートを、組成物全量基準で前記スルフォネートの合計量として3〜30質量%、かつカルシウムと亜鉛の元素比を2:8〜8:2で配合したことを特徴とする鉄系軸受用潤滑油組成物。 Synthetic calcium sulfonate and synthetic zinc sulfonate having a base number of 2 to 50 mgKOH / g in a mineral or synthetic oil-based lubricating base oil, 3 to 30% by mass as a total amount of the sulfonate based on the total amount of the composition, And the lubricating oil composition for iron-type bearings characterized by mix | blending the element ratio of calcium and zinc by 2: 8-8: 2. 前記鉄軸受が、焼結金属含油軸受、転がり軸受、またはすべり軸受である請求項に記載の鉄系軸受用潤滑油組成物。




Wherein the iron-based bearing, sintered metal oil-impregnated bearings, roller bearings, or iron bearing lubricating oil composition of claim 1 which is a sliding bearing.




JP2008232934A 2008-09-11 2008-09-11 Lubricating oil composition Active JP5265996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232934A JP5265996B2 (en) 2008-09-11 2008-09-11 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232934A JP5265996B2 (en) 2008-09-11 2008-09-11 Lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2010065142A JP2010065142A (en) 2010-03-25
JP5265996B2 true JP5265996B2 (en) 2013-08-14

Family

ID=42191003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232934A Active JP5265996B2 (en) 2008-09-11 2008-09-11 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP5265996B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664890B2 (en) * 2009-10-15 2015-02-04 協同油脂株式会社 Grease composition for wind power generator bearings
JP5937446B2 (en) 2012-07-13 2016-06-22 Jxエネルギー株式会社 Working fluid composition for refrigerator
JP6100046B2 (en) * 2013-03-19 2017-03-22 Ntn株式会社 Fluid dynamic bearing device and motor including the same
JP6777361B2 (en) * 2016-03-30 2020-10-28 出光興産株式会社 Lubricating oil composition
JP6161766B2 (en) * 2016-05-12 2017-07-12 Jxtgエネルギー株式会社 Working fluid composition for refrigerator
BR112018068495A2 (en) * 2016-08-18 2019-01-22 Huntsman Petrochemical Llc adjuvant composition, agrochemical formulation, method for exterminating, inhibiting or repelling a pest, and container
JP7465765B2 (en) 2019-10-16 2024-04-11 Eneos株式会社 Rust-preventive oil composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177596B2 (en) * 2002-04-30 2008-11-05 協同油脂株式会社 Grease composition
JP4325484B2 (en) * 2003-05-19 2009-09-02 新日本理化株式会社 Lubricant
JP2007262300A (en) * 2006-03-29 2007-10-11 Kyodo Yushi Co Ltd Lubricant composition
JP5224571B2 (en) * 2006-10-26 2013-07-03 協同油脂株式会社 Grease composition and bearing

Also Published As

Publication number Publication date
JP2010065142A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5265996B2 (en) Lubricating oil composition
JP4810842B2 (en) Lubricant composition
EP2537914B1 (en) Lubricant composition for continuously variable transmission
JP5249584B2 (en) Lubricating composition
JP4946868B2 (en) Lubricating oil composition
KR20110033926A (en) Grease composition
JP5672631B2 (en) Lubricating oil composition
JP2008239840A (en) Lubricant composition and lubricating system using the same
JP4342034B2 (en) Lubricating oil composition
JP5766425B2 (en) Grease composition
JPH11269475A (en) Sintered oilless bearing unit
CN104342226A (en) Use of trimethylolpropane oleate, trimethylolpropane oleate containing composition and use of trimethylolpropane oleate containing composition
JP3925952B2 (en) Oil-impregnated bearing oil composition
RU2633350C1 (en) Plastic antifriction high-temperature water-resistant lubricant
JP3433402B2 (en) Oil composition for impregnated bearings
JP4177596B2 (en) Grease composition
JP5512234B2 (en) Lubrication method
JP6775770B1 (en) Lubricating grease composition
JP2008001734A (en) Lubricating oil composition
US20160272918A1 (en) Synthetic anti-friction & extreme pressure metal conditioner composition and method of preparation
JP4008992B2 (en) Sintered oil-impregnated bearing oil composition
JP2004018677A (en) Additive composition for lubricant oil and lubricant oil composition
JPH1036870A (en) Bearing oil composition
RU2391386C1 (en) Grease lubricant
JP2010184954A (en) Sintered oilless bearing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5265996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250