JP6161766B2 - Working fluid composition for refrigerator - Google Patents

Working fluid composition for refrigerator Download PDF

Info

Publication number
JP6161766B2
JP6161766B2 JP2016096001A JP2016096001A JP6161766B2 JP 6161766 B2 JP6161766 B2 JP 6161766B2 JP 2016096001 A JP2016096001 A JP 2016096001A JP 2016096001 A JP2016096001 A JP 2016096001A JP 6161766 B2 JP6161766 B2 JP 6161766B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
refrigerating machine
hfc
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096001A
Other languages
Japanese (ja)
Other versions
JP2016164274A (en
Inventor
正典 齋藤
正典 齋藤
聡一郎 今野
聡一郎 今野
邦子 阿出川
邦子 阿出川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2016096001A priority Critical patent/JP6161766B2/en
Publication of JP2016164274A publication Critical patent/JP2016164274A/en
Application granted granted Critical
Publication of JP6161766B2 publication Critical patent/JP6161766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Description

本発明は冷凍機用作動流体組成物に関し、より詳しくは、モノフルオロエタン(「HFC−161」または「R161」とも呼ばれる)を含有する冷媒を含有する冷凍機用作動流体組成物に関する。   The present invention relates to a working fluid composition for a refrigerator, and more particularly to a working fluid composition for a refrigerator containing a refrigerant containing monofluoroethane (also referred to as “HFC-161” or “R161”).

近年のオゾン層破壊の問題から、従来冷凍機器の冷媒として使用されてきたCFC(クロロフルオロカーボン)およびHCFC(ハイドロクロロフルオロカーボン)が規制の対象となり、これらに代わってHFC(ハイドロフルオロカーボン)が冷媒として使用されつつある。   Due to the problem of ozone layer destruction in recent years, CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon), which have been used as refrigerants in conventional refrigeration equipment, are subject to regulation, and HFC (hydrofluorocarbon) is used as a refrigerant instead. It is being done.

HFC冷媒のうち、HFC−134a、R407C、R410Aは、カーエアコン用、冷蔵庫用またはルームエアコン用の冷媒として標準的に用いられている。しかし、これらのHFC冷媒は、オゾン破壊係数(ODP)がゼロであるものの地球温暖化係数(GWP)が高いため、規制の対象となりつつある。これら冷媒の代替候補の一つとしてジフルオロメタンが検討されているが、地球温暖化係数が充分に低くはなく、沸点が低すぎて熱力学的特性が現行の冷凍システムにはそのまま適用できなく、また従来のHFC冷媒に使用されているポリオールエステルやポリビニルエーテルなどの潤滑油(冷凍機油)と相溶しにくいという問題点がある。一方、不飽和フッ化炭化水素類は、ODPおよびGWPの双方が非常に小さく、構造によっては不燃性であり、なかでもHFO−1234yfは冷媒性能の尺度である熱力学的特性がHFC−134aとほぼ同等かそれ以上であることから、冷媒としての使用が提案されている(特許文献1〜3)。   Among HFC refrigerants, HFC-134a, R407C, and R410A are standardly used as refrigerants for car air conditioners, refrigerators, and room air conditioners. However, these HFC refrigerants are becoming subject to regulation because of their high global warming potential (GWP) although their ozone depletion potential (ODP) is zero. Difluoromethane has been studied as one of the alternative candidates for these refrigerants, but the global warming potential is not sufficiently low, the boiling point is too low, and the thermodynamic characteristics cannot be applied to the current refrigeration system as it is, In addition, there is a problem that it is difficult to be compatible with lubricating oil (refrigeration machine oil) such as polyol ester and polyvinyl ether used in conventional HFC refrigerants. On the other hand, unsaturated fluorinated hydrocarbons are very small in both ODP and GWP, and are nonflammable depending on the structure. Among them, HFO-1234yf has a thermodynamic characteristic that is a measure of refrigerant performance as HFC-134a. Since it is substantially the same or more, use as a refrigerant | coolant is proposed (patent documents 1-3).

また、第1成分として1,1−ジフルオロエタン(HFC−152a)、1,1,1−トリフルオロ−2−モノフルオロエタン(HFC−134a)、1,1,1−トリフルオロ−2,2−ジフルオロエタン(HFC−125)から選ばれる1種以上の第1成分80質量%以上、第2成分として二酸化炭素(R744)20質量%以下から成る作動媒体が提案されている(特許文献4)。   In addition, as the first component, 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoro-2-monofluoroethane (HFC-134a), 1,1,1-trifluoro-2,2- There has been proposed a working medium composed of 80% by mass or more of one or more first components selected from difluoroethane (HFC-125) and 20% by mass or less of carbon dioxide (R744) as the second component (Patent Document 4).

また、可燃性ではあるものの、ODPが0でありGWPが約3と極めて小さい、イソブタン(R600a)やプロパン(R290)のような炭化水素も検討されている(特許文献5〜7)。   In addition, hydrocarbons such as isobutane (R600a) and propane (R290) that are flammable but have an ODP of 0 and an extremely low GWP of about 3 have been studied (Patent Documents 5 to 7).

国際公開WO2004/037913号パンフレットInternational Publication WO2004 / 037913 Pamphlet 国際公開WO2005/105947号パンフレットInternational Publication WO2005 / 105947 Pamphlet 国際公開WO2009/057475号パンフレットInternational Publication WO2009 / 057475 Pamphlet 特開平10−265771号公報JP-A-10-265771 特開2000−044937号公報JP 2000-044937 A 特開2000−274360号公報JP 2000-274360 A 特開2010−031728号公報JP 2010-031728 A

冷凍・空調システムにおける課題は、冷媒については、地球温暖化係数(GWP)が小さくて環境への悪影響が少なく、燃焼・爆発しにくくて安全に使用でき、熱力学特性が用途に好適であり、化学構造がシンプルで安価に大量な供給が可能であることであり、冷媒と冷凍機油が共存する系の特性としては、相互に溶解し(相溶性)、安定性に優れ、摩耗しない油膜が維持される(潤滑性)という、多くの特性をすべて満足する作動流体を見出すことである。   The problem with the refrigeration and air conditioning system is that the refrigerant has a low global warming potential (GWP), has little adverse effect on the environment, is difficult to burn and explode, can be used safely, and has thermodynamic characteristics suitable for the application. The chemical structure is simple and a large amount can be supplied at low cost. The characteristics of the system in which refrigerant and refrigerating machine oil coexist are mutually soluble (compatible), excellent in stability, and maintain an oil film that does not wear. Is to find a working fluid that satisfies all of the many properties of being lubricated.

GWPが大きな現行のHFC冷媒に代わる、低GWPの次世代冷媒としては、前述のようにHFC−32(GWP:675)、HFO−1234yf(GWP:4)、HFC−152a(GWP:120)、プロパン(R290、GWP:3)などが有力な候補として検討されているが、それぞれに課題をかかえている。   As described above, HFC-32 (GWP: 675), HFO-1234yf (GWP: 4), HFC-152a (GWP: 120), as the low-GWP next-generation refrigerant, which replaces the existing HFC refrigerant with a large GWP, Propane (R290, GWP: 3) and the like have been studied as promising candidates, but each has a problem.

冷凍・空調機器の冷媒循環サイクルにおいては、冷媒圧縮機を潤滑する冷凍機油が冷媒とともにサイクル内を循環するため、冷凍機油には冷媒との相溶性が要求される。しかし、HFC−32を用いる冷凍・空調システムにおいては冷凍機油と相溶しにくいという課題がある。冷凍・空調機器において、冷媒に使用する冷凍機油の選択によっては、冷媒と冷凍機油との十分な相溶性が得られず、冷媒圧縮機から吐出された冷凍機油がサイクル内の温度の低い所に滞留しやすくなる。その結果、冷媒圧縮機内の油量が低下して潤滑不良による摩耗や、内径が1mm以下の細管であるキャピラリ等の膨張機構を閉塞するといった問題を生じる。また、HFC−32の沸点は−52℃であり、ルームエアコン、パッケージエアコン等に使用されている現行冷媒のHCFC−22より約10℃低く、同じ温度においてはより高圧となることから吐出温度が上りすぎるという熱力学特性の問題もあり、さらに、GWPも675と充分には小さくない。   In the refrigerant circulation cycle of the refrigeration / air conditioning equipment, since the refrigeration oil that lubricates the refrigerant compressor circulates in the cycle together with the refrigerant, the refrigeration oil is required to have compatibility with the refrigerant. However, the refrigeration / air conditioning system using HFC-32 has a problem that it is difficult to be compatible with refrigeration oil. In refrigeration and air conditioning equipment, depending on the selection of the refrigeration oil used for the refrigerant, sufficient compatibility between the refrigerant and the refrigeration oil is not obtained, and the refrigeration oil discharged from the refrigerant compressor is placed at a low temperature in the cycle. It becomes easy to stay. As a result, the amount of oil in the refrigerant compressor decreases, causing problems due to wear due to poor lubrication and closing of an expansion mechanism such as a capillary that is a narrow tube having an inner diameter of 1 mm or less. Moreover, HFC-32 has a boiling point of −52 ° C., which is about 10 ° C. lower than the current refrigerant HCFC-22 used in room air conditioners, packaged air conditioners, etc., and the discharge temperature is higher at the same temperature. There is also a problem of thermodynamic characteristics that it is too high, and GWP is not sufficiently small as 675.

不飽和フッ化炭化水素であり、GWPも極めて小さなHFO−1234yfを用いる冷凍・空調システムにおいては、現行のHFCに使用されているポリオールエステル、エーテル化合物などの冷凍機油と相溶性があり、適用可能であると考えられてきた。しかし、本発明者らの検討によれば、不飽和フッ化炭化水素は分子内に不安定な二重結合を有することから、熱・化学的安定性が劣るという安定性面での課題が明らかになった。また、HFO−1234yfの沸点は−25℃であり、沸点が−26℃のHFC−134aが使用されているカーエアコン、冷蔵庫分野には適用できるが、沸点が−41℃であり、比較的圧力の高いHCFC−22等が使われている冷媒使用量の多いルームエアコン、パッケージエアコン、産業用冷凍機等の分野には、効率が悪くなりすぎるため適用できない。   In refrigeration and air conditioning systems using HFO-1234yf, which is an unsaturated fluorohydrocarbon and extremely small GWP, it is compatible with refrigeration machine oils such as polyol esters and ether compounds currently used in HFC, and can be applied. Has been considered. However, according to the study by the present inventors, since the unsaturated fluorinated hydrocarbon has an unstable double bond in the molecule, the problem in terms of stability is inferior in thermal and chemical stability. Became. HFO-1234yf has a boiling point of −25 ° C. and can be applied to the car air conditioner and refrigerator fields where HFC-134a having a boiling point of −26 ° C. is used. The high efficiency of HCFC-22 or the like in which the amount of refrigerant is used is not applicable to room air conditioners, packaged air conditioners, industrial refrigerators, etc., because the efficiency is too low.

HFC−152aは可燃性である点を除けば、GWPも小さく特性バランスの良い冷媒である。しかし、沸点が−25℃であり、その熱力学特性からHFC−134a分野にしか適用できない。HFC−134aが使われている主な分野のうち、冷媒チャージ量の少ない冷蔵庫分野においては、既にGWPが3と小さなイソブタン(R600a)への切り替えが進んでいる。しかし、イソブタンにも、熱力学特性、安全性の面から冷媒チャージ量の多い用途には適用できないという問題がある。   HFC-152a is a refrigerant with a small GWP and a good balance of properties, except that it is flammable. However, it has a boiling point of −25 ° C. and is applicable only to the field of HFC-134a because of its thermodynamic characteristics. Among the main fields where HFC-134a is used, in the refrigerator field where the refrigerant charge amount is small, switching to isobutane (R600a) having a small GWP of 3 is already in progress. However, isobutane also has a problem that it cannot be applied to uses with a large amount of refrigerant charge in terms of thermodynamic characteristics and safety.

プロパンは沸点が−42℃でありGWPも極めて小さく、HCFC−22やその代替としてODPが0で、HFC−32とHFC−125が各50質量%の混合冷媒であるR410Aが使われている分野での冷媒特性に優れている。しかし、強燃性であり爆発性も高く、安全面の課題がある。   Propane has a boiling point of -42 ° C, GWP is very small, HCFC-22 and its alternative ODP is 0, and R410A, a mixed refrigerant with 50% by mass of HFC-32 and HFC-125, is used. Excellent refrigerant characteristics. However, it is highly flammable and highly explosive, and there are safety issues.

なお、特許文献4に記載されているような、第1成分としての1,1−ジフルオロエタン等80質量%以上と第2成分として二酸化炭素20質量%以下とからなる冷媒の場合、ODPは0であるものの、GWPは充分には小さくはない。   In the case of a refrigerant composed of 80% by mass or more such as 1,1-difluoroethane as the first component and 20% by mass or less of carbon dioxide as the second component as described in Patent Document 4, the ODP is 0. Although there is GWP, it is not small enough.

本発明は、このような実情に鑑みてなされたものであり、環境への悪影響が少なく、高効率なシステムにおいて、相溶性、熱・化学的安定性および潤滑性を高水準で達成することが可能な冷凍機用作動流体組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and can achieve compatibility, thermal / chemical stability, and lubricity at a high level in a highly efficient system with little adverse effect on the environment. An object is to provide a working fluid composition for a refrigerator.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、モノフルオロエタン(HFC−161)を含有する冷媒と、特定の鉱油及び/又は合成炭化水素油を基油とした冷凍機油とを組み合わせて用いることにより、冷媒相溶性と熱・化学的安定性との双方を高い水準で達成できることを見出し、本発明を完成するに至った。   As a result of intensive investigations to achieve the above object, the present inventors have found that a refrigerant containing monofluoroethane (HFC-161) and a refrigerating machine oil based on a specific mineral oil and / or synthetic hydrocarbon oil. It was found that the refrigerant compatibility and the thermal / chemical stability can be achieved at a high level by using in combination, and the present invention has been completed.

すなわち、本発明は、
モノフルオロエタンを含有する冷媒と、
n−d−M環分析における%Cが10〜60且つ流動点が−15℃以下の鉱油及び流動点が−15℃以下の合成炭化水素油から選ばれる少なくとも1種を基油として含有し、40℃における動粘度が3〜500mm/sである冷凍機油と、
を含有する冷凍機用作動流体組成物を提供する。
That is, the present invention
A refrigerant containing monofluoroethane;
n-d-M% in ring analysis C N 10-60 and mineral oil pour point of -15 ° C. or less and pour point are contained as base oil at least one kind of selected from -15 ° C. or less of the synthetic hydrocarbon oil A refrigerating machine oil having a kinematic viscosity at 40 ° C. of 3 to 500 mm 2 / s,
The working fluid composition for refrigerators containing the is provided.

上記冷媒と上記冷凍機油の質量比は90:10〜30:70であることが好ましい。   The mass ratio of the refrigerant to the refrigerating machine oil is preferably 90:10 to 30:70.

上記冷媒中のモノフルオロエタンの含有割合は50質量%以上であることが好ましく、また、上記冷媒の地球温暖化係数は300以下であることが好ましい。   The content ratio of monofluoroethane in the refrigerant is preferably 50% by mass or more, and the global warming potential of the refrigerant is preferably 300 or less.

上記冷媒は二酸化炭素をさらに含有することが好ましい。   The refrigerant preferably further contains carbon dioxide.

上記基油が合成炭化水素油を含有する場合、該合成炭化水素油はアルキルベンゼン、アルキルナフタレン及びポリ−α−オレフィンから選ばれる少なくとも1種であることが好ましい。   When the base oil contains a synthetic hydrocarbon oil, the synthetic hydrocarbon oil is preferably at least one selected from alkylbenzene, alkylnaphthalene and poly-α-olefin.

本発明によれば、モノフルオロエタンを含有する冷媒を用いる冷凍・空調システムにおいて、既存システムの大幅な変更を必要とせずに、相溶性、熱・化学的安定性及び潤滑性を高水準で達成することが可能な冷凍・空調機用の作動流体組成物を提供することが可能となる。   According to the present invention, in a refrigeration / air conditioning system using a refrigerant containing monofluoroethane, compatibility, thermal / chemical stability, and lubricity are achieved at a high level without requiring significant changes to existing systems. It is possible to provide a working fluid composition for a refrigeration / air conditioner that can be used.

また、本発明の冷凍機用作動流体組成物によれば、冷媒の低GWP化及び不燃化を達成することができ、冷凍・空調システムを安全に且つ高効率で運転することができる。   In addition, according to the working fluid composition for a refrigerator of the present invention, it is possible to achieve low GWP and non-combustibility of the refrigerant, and to operate the refrigeration / air conditioning system safely and with high efficiency.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の実施形態に係る冷凍機用作動流体組成物は、
モノフルオロエタンを含有する冷媒と、
n−d−M環分析における%Cが10〜60且つ流動点が−15℃以下の鉱油及び流動点が−15℃以下の合成炭化水素油から選ばれる少なくとも1種を基油として含有し、40℃における動粘度が3〜500mm/sである冷凍機油と、
を含有する。
A working fluid composition for a refrigerator according to an embodiment of the present invention,
A refrigerant containing monofluoroethane;
n-d-M% in ring analysis C N 10-60 and mineral oil pour point of -15 ° C. or less and pour point are contained as base oil at least one kind of selected from -15 ° C. or less of the synthetic hydrocarbon oil A refrigerating machine oil having a kinematic viscosity at 40 ° C. of 3 to 500 mm 2 / s,
Containing.

本実施形態に係る冷凍機用作動流体組成物において、冷媒と冷凍機油との配合割合は特に制限されないが、冷媒と冷凍機油の質量比が90:10〜30:70であることが好ましく、より好ましくは80:20〜40:60である。   In the working fluid composition for a refrigerator according to this embodiment, the mixing ratio of the refrigerant and the refrigerator oil is not particularly limited, but the mass ratio of the refrigerant and the refrigerator oil is preferably 90:10 to 30:70, and more Preferably it is 80: 20-40: 60.

次に、冷凍機用作動流体組成物の含有成分について詳述する。   Next, the components contained in the working fluid composition for refrigerators will be described in detail.

[冷媒]
本実施形態における冷媒はモノフルオロエタン(HFC−161)を含有する。モノフルオロエタンは分子内にフッ素を1個有し、特徴的な特性を示す。
[Refrigerant]
The refrigerant in this embodiment contains monofluoroethane (HFC-161). Monofluoroethane has one fluorine in its molecule and exhibits characteristic properties.

すなわち、まず、冷媒としてHCFC−22が使用されてきた分野において、低GWP冷媒として熱力学特性から最も適しているのはプロパン(R290)である。しかし、プロパンは強燃性であることから安全面の大きな問題と、かつ冷凍機油と共存した場合、冷凍機油に溶けすぎて油の粘度を大幅に下げ、潤滑性を低下させるという課題がある。   That is, first, in the field where HCFC-22 has been used as a refrigerant, propane (R290) is most suitable as a low GWP refrigerant because of its thermodynamic characteristics. However, since propane is highly flammable, there is a big problem in safety, and when coexisting with refrigerating machine oil, there is a problem that it is excessively dissolved in refrigerating machine oil and drastically lowers the viscosity of the oil and lowers lubricity.

これに対してモノフルオロエタンは、GWPが100以下と小さく、沸点が−37℃であり、HCFC−22の沸点−41℃と接近しており熱力学特性が類似で、単独でも冷媒としての熱力学特性、冷凍機油との相溶性、安定性が良好である。また、可燃性ではあるものの、プロパンの爆発下限値である2.1容量%に対しHFC−161の爆発下限値は5.0容量%であり、さらにプロパンより沸点が5℃高く、低圧であり冷媒リークを起こしにくくはるかに安全性が高い。室内の冷媒濃度が5.0容量%に達することは殆ど無い。また、分子内にフッ素を有することから冷凍機油への溶解量がプロパンよりはるかに少なく、冷凍・空調装置1つあたりの冷媒チャージ量が少なくて済み、相応の安全対策をすることにより実用化は可能であると考えられる。共存する冷凍機油への溶解量が少ないことにより、冷凍機油の粘度低下も小さく、潤滑性に関しても有利な方向であり、分子内に二重結合が無いことから安定性も問題はない。   On the other hand, monofluoroethane has a GWP as small as 100 or less, a boiling point of −37 ° C., close to the boiling point of −41 ° C. of HCFC-22, has similar thermodynamic characteristics, and can be used alone as a refrigerant. Good mechanical properties, compatibility with refrigerating machine oil, and stability. In addition, although it is flammable, HFC-161 has a lower explosion limit of 5.0% by volume, compared with 2.1% by volume, which is the lower limit of explosion of propane. Refrigerant leakage is difficult to occur and it is much safer. The refrigerant concentration in the room hardly reaches 5.0% by volume. In addition, since fluorine is contained in the molecule, the amount dissolved in refrigerating machine oil is much less than that of propane, and the amount of refrigerant charge per refrigeration / air-conditioning device can be reduced. It is considered possible. Since the amount of the dissolved refrigeration oil in the coexisting refrigeration oil is small, the decrease in the viscosity of the refrigeration oil is small and the lubricity is advantageous, and there is no problem in stability because there is no double bond in the molecule.

また、HFC−161を含有する冷媒に他の冷媒成分を更に含有させることにより、冷媒(混合冷媒)の特性を目的・用途に応じたより好適なものとすることができる。配合する冷媒としては、ハイドロフルオロカーボン(HFC)、ハイドロフルオロオレフィン(HFO)、二酸化炭素(R744)、アンモニア(R717),フッ素化エーテル化合物等が挙げられる。   In addition, by further containing other refrigerant components in the refrigerant containing HFC-161, the characteristics of the refrigerant (mixed refrigerant) can be made more suitable according to the purpose and application. Examples of the refrigerant to be blended include hydrofluorocarbon (HFC), hydrofluoroolefin (HFO), carbon dioxide (R744), ammonia (R717), and fluorinated ether compounds.

ここで、上記の冷媒成分のうちHFCやHFOは、分子内のフッ素原子の数が多いほど、つまり一分子に占めるフッ素原子の割合が高いほど、鉱油及び合成炭化水素油との相溶性が低下する。したがって、HFC−161との配合割合にもよるが、部分的に冷媒と冷凍機油が二層分離する場合はシステムでの対応が必要となる。   Here, among the above refrigerant components, HFC and HFO have lower compatibility with mineral oil and synthetic hydrocarbon oil as the number of fluorine atoms in the molecule increases, that is, as the proportion of fluorine atoms in one molecule increases. To do. Therefore, depending on the blending ratio with HFC-161, when the refrigerant and the refrigerating machine oil partially separate into two layers, it is necessary to deal with the system.

モノフルオロエタンと組み合わせる好ましい成分について、括弧内に沸点、GWP、燃焼性を付記して列挙すると、HFC−32(−52℃、675、微燃性)、HFC−152a(−25℃、120、可燃性)、HFC−143a(−47℃、4300、微燃性)、HFC−134a(−26℃、1300、不燃性)、HFC−125(−49℃、3400、不燃性)、HFO−1234ze(−19℃、6、微燃性)、HFO−1234yf(−29℃、4、微燃性)、プロパン(−42℃、3、強燃性)、イソブタン(−12℃、3、強燃性)、二酸化炭素(−78℃、1、不燃性)が挙げられる。これらの成分は2種以上を組み合わせてもよい。   For preferred components combined with monofluoroethane, the boiling point, GWP, and flammability are listed in parentheses, and HFC-32 (-52 ° C., 675, slightly flammable), HFC-152a (−25 ° C., 120, Flammable), HFC-143a (-47 ° C, 4300, slightly flammable), HFC-134a (-26 ° C, 1300, nonflammable), HFC-125 (-49 ° C, 3400, nonflammable), HFO-1234ze (-19 ° C, 6, slightly flammable), HFO-1234yf (-29 ° C, 4, flammable), propane (-42 ° C, 3, flammable), isobutane (-12 ° C, 3, flammable) ), Carbon dioxide (-78 ° C., 1, nonflammability). Two or more of these components may be combined.

例えば、本実施形態における冷媒(混合冷媒)の安全性を高めるためには、不燃性冷媒を配合すればよいが、不燃性のHFC冷媒は総じてGWPが高い。そこで、微燃性冷媒を配合して特性のバランスをとる方法がある。特に、二酸化炭素は不燃であり、GWPの基準化合物で1と小さいことから、熱力学特性に影響しない範囲での配合は有効である。
また、効率を高めるためには高圧な冷媒、つまり沸点の低い冷媒を配合することになるが、プロパンは強燃性であることから、HFC−32、HFC−143a、HFC−125が候補となる。
For example, in order to improve the safety of the refrigerant (mixed refrigerant) in the present embodiment, a nonflammable refrigerant may be blended, but the nonflammable HFC refrigerant generally has a high GWP. Therefore, there is a method of balancing the characteristics by blending a slightly flammable refrigerant. In particular, since carbon dioxide is nonflammable and is as small as 1 as a GWP reference compound, blending in a range that does not affect thermodynamic properties is effective.
In order to increase efficiency, a high-pressure refrigerant, that is, a refrigerant having a low boiling point, is blended. However, since propane is highly flammable, HFC-32, HFC-143a, and HFC-125 are candidates. .

GWPを小さくするには、HFO−1234ze、HFO−1234yf、二酸化炭素さらにはプロパン、イソブタンが好ましい。   In order to reduce GWP, HFO-1234ze, HFO-1234yf, carbon dioxide, propane, and isobutane are preferable.

また、HCFC−22が使われてきた分野以外に適用するために混合冷媒の圧力を下げる場合は、総合的な特性バランスを考慮し、沸点が−30℃より高いHFC−134a、HFO−1234ze、HFO−1234yfなどの比較的圧力の低い冷媒から選定することになる。   In addition, when reducing the pressure of the mixed refrigerant for application to fields other than where HCFC-22 has been used, HFC-134a, HFO-1234ze having a boiling point higher than −30 ° C. A refrigerant having a relatively low pressure such as HFO-1234yf is selected.

本実施形態における冷媒がモノフルオロエタンと上記成分との混合冷媒の場合、当該混合冷媒中のモノフルオロエタンの含有割合が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。また、GWPについては300以下とすることが、地球環境保護の観点から好ましく、200以下、さらに150以下がより好ましい。本実施形態において使用される冷媒が混合冷媒である場合、当該混合冷媒は共沸混合物であることが好ましいが、冷媒として必要な物性を有していれば特に共沸混合物である必要はない。   When the refrigerant in the present embodiment is a mixed refrigerant of monofluoroethane and the above components, the content ratio of monofluoroethane in the mixed refrigerant is preferably 50% by mass or more, and more preferably 70% by mass or more. preferable. Moreover, about GWP, it is preferable to set it as 300 or less from a viewpoint of global environment protection, 200 or less, and 150 or less are more preferable. When the refrigerant used in the present embodiment is a mixed refrigerant, the mixed refrigerant is preferably an azeotrope, but need not be an azeotrope as long as it has physical properties necessary as a refrigerant.

[冷凍機油]
本実施形態における冷凍機油は、n−d−M環分析における%Cが10〜60且つ流動点が−15℃以下の鉱油及び流動点が−15℃以下の合成炭化水素油から選ばれる少なくとも1種を基油とするものである。
[Refrigerator oil]
Refrigerating machine oil in this embodiment, at least% C N 10 to 60 and mineral oil pour point of -15 ° C. or less and pour point of n-d-M ring analysis is selected from -15 ° C. or less of the synthetic hydrocarbon oil One type is a base oil.

鉱油は、パラフィン系、ナフテン系などの原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤精製、水素化精製、水素化分解、溶剤脱ろう、水素化脱ろう、白土処理、硫酸洗浄の1種もしくは2種以上の精製を適宜組み合わせて得ることができる。   For mineral oil, lubricating oil fractions obtained by atmospheric distillation and vacuum distillation of paraffinic and naphthenic crude oil are removed from the solvent, solvent refining, hydrorefining, hydrocracking, solvent dewaxing, hydrogenation One type or two or more types of purification of dewaxing, clay treatment, and sulfuric acid washing can be appropriately combined.

n−d−M環分析はASTM D−3238で規定されており、油の20℃における屈折率、密度と硫黄分、粘度(40℃及び100℃)を測定し、計算で芳香族炭素数(%C)、ナフテン炭素数(%C)、パラフィン炭素数(%C)を求める方法であり、3種の炭素の合計が100%であることから、油の組成タイプの指標となる。鉱油の%Cが10未満となると、%Cが多くなり冷媒と油の相溶性が低下する。一方、鉱油の%Cが60を越えると%Cが少なくなり、粘度指数が小さくなるなど、粘度特性が低下、つまり潤滑性が低下する。%Cは、好ましくは20〜50である。 The ndM ring analysis is defined by ASTM D-3238, and the refractive index, density and sulfur content of oil at 20 ° C., viscosity (40 ° C. and 100 ° C.) are measured, and the aromatic carbon number ( % C A ), naphthene carbon number (% C N ), paraffin carbon number (% C P ), and the total of the three types of carbon is 100%, which is an index of the composition type of oil. . If the% C N value of the mineral oil is less than 10,% C P is the compatibility of many becomes refrigerant and oil drops. On the other hand,% C N of mineral oil is less the% C P exceeds 60, such as viscosity index decreases, lowering the viscosity characteristics, i.e. lubricity decreases. % C N is preferably 20 to 50.

合成炭化水素油としては、アルキルベンゼン、アルキルナフタレン、ポリ−α−オレフィン(PAO)、ポリブテン、エチレン−α−オレフィン共重合体などがあげられ、例えばポリブテンなどは分子量が大きくなると固体となることから、流動点は−15℃以下であることが必要である。中でもHFC−161冷媒と共存した場合の相溶性、粘度指数などの特性から、アルキルベンゼン、アルキルナフタレン、PAOが好ましい。   Examples of the synthetic hydrocarbon oil include alkylbenzene, alkylnaphthalene, poly-α-olefin (PAO), polybutene, and ethylene-α-olefin copolymer. For example, polybutene becomes a solid when the molecular weight increases. The pour point must be −15 ° C. or lower. Of these, alkylbenzene, alkylnaphthalene, and PAO are preferable from the viewpoint of compatibility and viscosity index when coexisting with HFC-161 refrigerant.

アルキルベンゼンはベンゼン環にアルキル基が結合した芳香族炭化水素である。アルキル基の化学構造により直鎖タイプと分枝タイプがあり、置換アルキル基の数によりモノ−、ジ−、トリ−、テトラアルキルベンゼンのように呼ばれる。アルキルベンゼンとしては炭素数1〜30のアルキル基を1〜4個有し、アルキル基の合計炭素数が3〜30のものが好ましい。アルキル基としては炭素数に応じ、メチル基、エチル基や直鎖状または分枝状のプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘプタデシル基、オクタデシル基などがある。なかでもプロピレン、ブテン、イソブチレンなどのオレフィンのオリゴマーから誘導される分枝状のアルキル基が好ましく、40℃における動粘度が3〜50mm/sのものがより好ましい。 Alkylbenzene is an aromatic hydrocarbon having an alkyl group bonded to the benzene ring. Depending on the chemical structure of the alkyl group, there are a straight-chain type and a branched type, and it is called mono-, di-, tri-, or tetraalkylbenzene depending on the number of substituted alkyl groups. The alkylbenzene is preferably one having 1 to 4 alkyl groups having 1 to 30 carbon atoms and 3 to 30 carbon atoms in total. As the alkyl group, depending on the carbon number, methyl group, ethyl group, linear or branched propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, There are dodecyl group, tridecyl group, tetradecyl group, heptadecyl group, octadecyl group and the like. Of these, branched alkyl groups derived from oligomers of olefins such as propylene, butene and isobutylene are preferable, and those having a kinematic viscosity at 40 ° C. of 3 to 50 mm 2 / s are more preferable.

アルキルナフタレンはナフタレン環にアルキル基が結合した芳香族炭化水素であり、アルキル基についてはアルキルベンゼンと同様である。ナフタレン環に炭素数が1〜10のアルキル基を1〜4個有し、アルキル基の総炭素数が1〜20のものが好ましく、ナフタレン環が安定であることから、耐熱性など安定性に優れる。また、40℃における動粘度が10〜100mm/sのものが好ましい。 Alkylnaphthalene is an aromatic hydrocarbon having an alkyl group bonded to the naphthalene ring, and the alkyl group is the same as alkylbenzene. It is preferable that the naphthalene ring has 1 to 4 alkyl groups having 1 to 10 carbon atoms and the total number of carbon atoms in the alkyl group is 1 to 20, and the naphthalene ring is stable. Excellent. Moreover, the thing whose kinematic viscosity in 40 degreeC is 10-100 mm < 2 > / s is preferable.

ポリ−α−オレフィン(PAO)は、炭素数6〜18の直鎖で両末端の片方に二重結合を有するオレフィンを数分子だけ限定的に重合させ、次に水素添加して得られる無色透明の液体である。例えば炭素数10のα−デセンや炭素数12のα−ドデセンの3量体あるいは4量体を中心に前後に分布したイソパラフィンであり、鉱油と比較すると純度が高く、分子量分布は狭い。分子構造が櫛状の分枝をもっており、粘度指数が高く、流動点が低く、粘度の割に引火点が高いなど鉱油より優れた性状を示す。   Poly-α-olefin (PAO) is a colorless and transparent polymer obtained by polymerizing a limited number of olefins having a straight chain of 6 to 18 carbon atoms and having a double bond at one of both ends, and then hydrogenating the polymer. It is a liquid. For example, it is isoparaffin distributed around the trimer or tetramer of α-decene having 10 carbon atoms and α-dodecene having 12 carbon atoms, and has higher purity and narrow molecular weight distribution than mineral oil. Its molecular structure has comb-like branches, a high viscosity index, a low pour point, and a high flash point for its viscosity.

本実施形態における冷凍機油の動粘度は特に限定されないが、40℃における動粘度は、好ましくは3〜500mm/s、より好ましくは5〜400mm/sとすることができる。また、100℃における動粘度は好ましくは1〜50mm/s、より好ましくは2〜30mm/sとすることができる。 The kinematic viscosity of the refrigerating machine oil in the present embodiment is not particularly limited, but the kinematic viscosity at 40 ° C. can be preferably 3 to 500 mm 2 / s, more preferably 5 to 400 mm 2 / s. The kinematic viscosity at 100 ° C. is preferably 1 to 50 mm 2 / s, more preferably 2 to 30 mm 2 / s.

本実施形態における冷凍機油の体積抵抗率は特に限定されないが、好ましくは1.0×1010Ω・m以上、より好ましくは1.0×1011Ω・m以上とすることができる。特に、密閉型の冷凍機用に用いる場合には高い電気絶縁性が必要となる傾向にある。なお、本発明において、体積抵抗率とは、JIS C 2101「電気絶縁油試験方法」に準拠して測定した25℃での値を意味する。 The volume resistivity of the refrigerating machine oil in the present embodiment is not particularly limited, but is preferably 1.0 × 10 10 Ω · m or more, more preferably 1.0 × 10 11 Ω · m or more. In particular, when it is used for a hermetic refrigerator, high electrical insulation tends to be required. In the present invention, the volume resistivity means a value at 25 ° C. measured in accordance with JIS C 2101 “Electrical insulating oil test method”.

本実施形態における冷凍機油の水分含有量は特に限定されないが、冷凍機油全量基準で好ましくは100ppm以下、より好ましくは50ppm以下、最も好ましくは30ppm以下とすることができる。特に密閉型の冷凍機用に用いる場合には、冷凍機油の熱・化学的安定性や電気絶縁性への影響の観点から、水分含有量が少ないことが求められる。   The water content of the refrigerating machine oil in the present embodiment is not particularly limited, but can be preferably 100 ppm or less, more preferably 50 ppm or less, and most preferably 30 ppm or less based on the total quantity of refrigerating machine oil. In particular, when it is used for a hermetic type refrigerator, the moisture content is required to be small from the viewpoint of the influence on the thermal / chemical stability and electrical insulation of the refrigerator oil.

本実施形態における冷凍機油の酸価は特に限定されないが、冷凍機または配管に用いられている金属への腐食を防止するため、および冷凍機油の劣化を防止するため、好ましくは0.1mgKOH/g以下、より好ましくは0.05mgKOH/g以下とすることができる。なお、本発明において、酸価とは、JISK2501「石油製品および潤滑油−中和価試験方法」に準拠して測定した酸価を意味する。   The acid value of the refrigerating machine oil in the present embodiment is not particularly limited, but is preferably 0.1 mgKOH / g in order to prevent corrosion of the metal used in the refrigerating machine or piping and to prevent deterioration of the refrigerating machine oil. Hereinafter, more preferably 0.05 mgKOH / g or less. In addition, in this invention, an acid value means the acid value measured based on JISK2501 "Petroleum products and lubricating oil-neutralization value test method".

本実施形態における冷凍機油の灰分は特に限定されないが、冷凍機油の熱・化学的安定性を高めスラッジ等の発生を抑制するため、好ましくは100ppm以下、より好ましくは50ppm以下とすることができる。なお、本発明において、灰分とは、JISK2272「原油および石油製品の灰分並びに硫酸灰分試験方法」に準拠して測定した灰分の値を意味する。   The ash content of the refrigerating machine oil in the present embodiment is not particularly limited, but is preferably 100 ppm or less, more preferably 50 ppm or less in order to increase the thermal / chemical stability of the refrigerating machine oil and suppress the generation of sludge and the like. In the present invention, ash means the value of ash measured in accordance with JIS K2272 “Testing method for ash and sulfated ash of crude oil and petroleum products”.

本実施形態に係る冷凍機用作動流体組成物は、必要に応じてさらに各種添加剤を配合した形で使用することもできる。なお、以下の添加剤の含有量は、冷凍機油組成物全量を基準として、5質量%以下、特には、2質量%以下が好ましい。   The working fluid composition for a refrigerator according to this embodiment can be used in a form in which various additives are further blended as necessary. In addition, content of the following additives is 5 mass% or less on the basis of the refrigerating machine oil composition whole quantity, and 2 mass% or less is especially preferable.

本実施形態に係る冷凍機用作動流体組成物の耐摩耗性、耐荷重性をさらに改良するために、リン酸エステル、酸性リン酸エステル、チオリン酸エステル、酸性リン酸エステルのアミン塩、塩素化リン酸エステルおよび亜リン酸エステルからなる群より選ばれる少なくとも1種のリン化合物を配合することができる。これらのリン化合物は、リン酸または亜リン酸とアルカノール、ポリエーテル型アルコールとのエステルあるいはその誘導体である。   In order to further improve the wear resistance and load resistance of the working fluid composition for a refrigerator according to this embodiment, phosphoric acid ester, acidic phosphoric acid ester, thiophosphoric acid ester, amine salt of acidic phosphoric acid ester, chlorination At least one phosphorus compound selected from the group consisting of phosphoric acid esters and phosphorous acid esters can be blended. These phosphorus compounds are esters of phosphoric acid or phosphorous acid with alkanols and polyether type alcohols or derivatives thereof.

また、本実施形態に係る冷凍機用作動流体組成物は、その熱・化学的安定性をさらに改良するために、フェニルグリシジルエーテル型エポキシ化合物、アルキルグリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、アリルオキシラン化合物、アルキルオキシラン化合物、脂環式エポキシ化合物、エポキシ化脂肪酸モノエステルおよびエポキシ化植物油から選ばれる少なくとも1種のエポキシ化合物を含有することができる。   In addition, the working fluid composition for a refrigerator according to the present embodiment has a phenyl glycidyl ether type epoxy compound, an alkyl glycidyl ether type epoxy compound, a glycidyl ester type epoxy compound, in order to further improve its thermal and chemical stability. It can contain at least one epoxy compound selected from allyl oxirane compounds, alkyl oxirane compounds, alicyclic epoxy compounds, epoxidized fatty acid monoesters and epoxidized vegetable oils.

また、本実施形態に係る冷凍機用作動流体組成物は、その性能をさらに高めるため、必要に応じて従来公知の冷凍機油用添加剤を含有することができる。かかる添加剤としては、例えばジ−tert.−ブチル−p−クレゾール、ビスフェノールA等のフェノール系の酸化防止剤、フェニル−α−ナフチルアミン、N,N−ジ(2−ナフチル)−p−フェニレンジアミン等のアミン系の酸化防止剤、ジチオリン酸亜鉛などの摩耗防止剤、塩素化パラフィン、硫黄化合物等の極圧剤、脂肪酸等の油性剤、シリコーン系等の消泡剤、ベンゾトリアゾール等の金属不活性化剤、粘度指数向上剤、流動点降下剤、清浄分散剤等が挙げられる。これらの添加剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In addition, the working fluid composition for a refrigerator according to the present embodiment can contain a conventionally known additive for refrigerator oil as necessary in order to further enhance the performance. Examples of such additives include di-tert. Phenolic antioxidants such as butyl-p-cresol and bisphenol A, amine antioxidants such as phenyl-α-naphthylamine and N, N-di (2-naphthyl) -p-phenylenediamine, dithiophosphoric acid Antiwear agents such as zinc, extreme pressure agents such as chlorinated paraffin and sulfur compounds, oily agents such as fatty acids, antifoaming agents such as silicones, metal deactivators such as benzotriazole, viscosity index improvers, pour points Depressants, cleaning dispersants and the like. These additives may be used individually by 1 type, and may be used in combination of 2 or more type.

本実施形態に係る冷凍機用作動流体組成物は、往復動式や回転式の密閉型圧縮機を有するルームエアコン、冷蔵庫、あるいは開放型または密閉型のカーエアコンに好ましく用いられる。また、本実施形態に係る冷凍機用作動流体組成物および冷凍機油は、除湿機、給湯器、冷凍庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等の冷却装置等に好ましく用いられる。さらに、本実施形態に係る冷凍機用作動流体組成物および冷凍機油は、遠心式の圧縮機を有するものにも好ましく用いられる。   The working fluid composition for a refrigerator according to this embodiment is preferably used for a room air conditioner, a refrigerator, or an open or sealed car air conditioner having a reciprocating or rotating hermetic compressor. Moreover, the working fluid composition for refrigeration machine and the refrigeration oil according to the present embodiment are preferably used for a dehumidifier, a water heater, a freezer, a refrigerated warehouse, a vending machine, a showcase, a cooling device for a chemical plant, and the like. Furthermore, the working fluid composition for refrigerating machine and the refrigerating machine oil according to this embodiment are also preferably used for those having a centrifugal compressor.

以下、実施例および比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[冷凍機油]
まず、以下に示す基油1〜4に酸化防止剤であるジ−tert.−ブチル−p−クレゾール(DBPC)を0.1質量%添加し、冷凍機油1〜4を調製した。冷凍機油1〜4の各種性状を表1に示す。
[基油]
基油1:ナフテン原油からの減圧留出油をフルフラール抽出、水素化精製により精製した基油(JX日鉱日石エネルギー社製)
基油2:パラフィン原油からの減圧留出油を水素化分解、水素化脱ろうにより精製した基油(韓国、SKルブリカンツ社製)
基油3:分枝タイプアルキルベンゼン(JX日鉱日石エネルギー社製)
基油4:ポリ−α−オレフィン(エクソンモービル社製)
[Refrigerator oil]
First, the base oils 1-4 shown below are added to di-tert. Refrigerating machine oils 1 to 4 were prepared by adding 0.1% by mass of -butyl-p-cresol (DBPC). Table 1 shows various properties of the refrigerating machine oils 1 to 4.
[Base oil]
Base oil 1: Base oil (manufactured by JX Nippon Oil & Energy Co., Ltd.) purified by furfural extraction and hydrorefining of vacuum distillate from naphthenic crude oil
Base oil 2: Base oil refined by hydrocracking and hydrodewaxing distillate from paraffin crude oil (Korea, manufactured by SK Lubricans)
Base oil 3: Branched alkylbenzene (manufactured by JX Nippon Oil & Energy Corporation)
Base oil 4: poly-α-olefin (manufactured by ExxonMobil)

Figure 0006161766
Figure 0006161766

[実施例1〜8、比較例1〜10]
実施例1〜8および比較例1〜10においては、それぞれ上記の冷凍機油1〜4のいずれかと、表2〜4に示す冷媒とを組み合わせた冷凍機用作動流体組成物について、以下に示す評価試験を実施した。なお、後述するように、冷凍機用作動流体組成物における冷媒と冷凍機油との質量比は、試験ごとに変更した。
[Examples 1-8, Comparative Examples 1-10]
In Examples 1-8 and Comparative Examples 1-10, the evaluation shown below about the working fluid composition for refrigerators which combined either the said refrigerator oil 1-4, and the refrigerant | coolant shown in Tables 2-4, respectively. The test was conducted. In addition, as will be described later, the mass ratio between the refrigerant and the refrigerating machine oil in the working fluid composition for the refrigerating machine was changed for each test.

冷媒として、実施例にはHFC−161単独と、HFC−161に二酸化炭素(R744)配合し、燃焼性を抑えた混合冷媒Aを用いた。なお、GWPについてHFC−161の確定した値が公表されていないことから、最大値である100を用いて計算した。
比較例には、現在幅広く使用されているHFC−134aとGWP値、燃焼性、熱力学特性から新冷媒として有力候補であるプロパン(R290)、HFC−32、HFO−1234yfを用いた。
[冷媒]
HFC−161:モノフルオロエタン(GWP:約100)
R744:二酸化炭素(GWP:1)
R290:プロパン(GWP:3)
HFC−134a:1,1,1,2−テトラフルオロエタン(GWP:1300)
HFC−32:ジフルオロメタン(GWP:675)
HFO−1234yf:2,3,3,3−テトラフルオロプロペン(GWP:4)
混合冷媒A:HFC−161/R744=80/20(質量比、GWP:約80)
As the refrigerant, HFC-161 alone and mixed refrigerant A in which carbon dioxide (R744) was blended with HFC-161 and the flammability was suppressed were used in the examples. In addition, since the fixed value of HFC-161 was not announced about GWP, it calculated using 100 which is the maximum value.
As comparative examples, HFC-134a, which is currently widely used, and propane (R290), HFC-32, and HFO-1234yf, which are promising candidates, were used as new refrigerants based on GWP values, combustibility, and thermodynamic characteristics.
[Refrigerant]
HFC-161: Monofluoroethane (GWP: about 100)
R744: Carbon dioxide (GWP: 1)
R290: Propane (GWP: 3)
HFC-134a: 1,1,1,2-tetrafluoroethane (GWP: 1300)
HFC-32: Difluoromethane (GWP: 675)
HFO-1234yf: 2,3,3,3-tetrafluoropropene (GWP: 4)
Mixed refrigerant A: HFC-161 / R744 = 80/20 (mass ratio, GWP: about 80)

次に、実施例1〜8および比較例1〜10の冷凍機用作動流体組成物について、以下に示す評価試験を実施した。その結果を表2〜4に示す。 Next, the following evaluation tests were performed on the working fluid compositions for refrigerators of Examples 1 to 8 and Comparative Examples 1 to 10. The results are shown in Tables 2-4.

[相溶性の評価]
JIS−K−2211「冷凍機油」の「冷媒との相溶性試験方法」に準拠し、混合冷媒を含む上記冷媒のそれぞれ18gに対して冷凍機油を2g配合し、冷媒と冷凍機油とが0℃において相互に溶解しているかを観察した。得られた結果を表2〜4に示す。表中、「相溶」は冷媒と冷凍機油とが相互に溶解したことを意味し、「分離」は冷媒と冷凍機油とが2層に分離したことを意味する。
[Compatibility evaluation]
In accordance with JIS-K-2211 “Refrigerating machine oil” “Compatibility test method with refrigerant”, 2 g of refrigerating machine oil is blended with 18 g of each of the above refrigerants including mixed refrigerant, and the refrigerant and refrigerating machine oil are at 0 ° C. It was observed whether they were dissolved in each other. The obtained results are shown in Tables 2-4. In the table, “compatible” means that the refrigerant and the refrigerating machine oil are dissolved in each other, and “separation” means that the refrigerant and the refrigerating machine oil are separated into two layers.

[熱・化学的安定性の評価]
JIS−K−2211に準拠し、水分を100ppm以下に調整した冷凍機油(初期色相L0.5)1gと、上記の各種冷媒1gと、触媒(鉄、銅、アルミの各線)とをガラス管に封入した後、鉄製の保護管に入れ175℃に加熱して1週間保持し試験した。試験後に、冷凍機油の色相および触媒の色変化を評価した。色相は、ASTMD156に準拠して評価した。また、触媒の色変化は、外観を目視で観察し、変化なし、光沢なし、黒化のいずれに該当するかを評価した。光沢なし、黒化の場合は冷凍機油と冷媒の混合液体、つまり作動流体が劣化しているといえる。得られた結果を表2〜4に示す。
[Evaluation of thermal and chemical stability]
In accordance with JIS-K-2211, 1 g of refrigerating machine oil (initial hue L0.5) whose water content is adjusted to 100 ppm or less, 1 g of the above-mentioned various refrigerants, and catalysts (iron, copper, and aluminum wires) in a glass tube After sealing, it was placed in an iron protective tube, heated to 175 ° C. and held for 1 week for testing. After the test, the hue of the refrigerating machine oil and the color change of the catalyst were evaluated. The hue was evaluated according to ASTM D156. Further, the color change of the catalyst was visually observed for the appearance, and it was evaluated whether it corresponded to no change, no gloss, or blackening. In the case of no gloss and blackening, it can be said that the mixed liquid of the refrigerating machine oil and the refrigerant, that is, the working fluid is deteriorated. The obtained results are shown in Tables 2-4.

Figure 0006161766
Figure 0006161766

Figure 0006161766
Figure 0006161766

Figure 0006161766
Figure 0006161766

表2に示した本発明の実施例1〜8は、冷媒のGWPはすべて150以下と小さく、冷媒と冷凍機油の相溶性に問題がなく、熱・化学的安定性、潤滑性も良好であり、優れた冷凍・空調機用の作動流体であるといえる。   In Examples 1 to 8 of the present invention shown in Table 2, the GWP of the refrigerant is as small as 150 or less, there is no problem in compatibility between the refrigerant and the refrigerating machine oil, and the thermal / chemical stability and lubricity are also good. It can be said that it is an excellent working fluid for refrigeration and air conditioners.

一方、比較例1〜4は、いずれの冷凍機油も冷媒とは相溶するものの、冷媒が溶け込み過ぎるため粘度低下をおこして潤滑性が悪化することから作動流体としての使用は難しい。比較例5〜8は、GWPが大きく、かつ冷媒と冷凍機油の相溶性がないことから使用できない。比較例9、10はGWPが小さいものの、冷凍機油と冷媒が共存した場合の熱・化学的安定性が悪く、銅、鉄触媒が変色し、油の着色、つまり劣化が見られ、また、相溶性がないことから、好適な作動流体とはいえない。   On the other hand, in Comparative Examples 1 to 4, although any refrigeration oil is compatible with the refrigerant, it is difficult to use as a working fluid because the refrigerant is excessively dissolved and the viscosity is lowered to deteriorate the lubricity. Comparative Examples 5 to 8 cannot be used because GWP is large and refrigerant and refrigerating machine oil are not compatible. Although Comparative Examples 9 and 10 have a small GWP, the thermal and chemical stability when the refrigerator oil and the refrigerant coexist are poor, the copper and iron catalysts are discolored, and the oil is colored, that is, deteriorated. Since it is not soluble, it is not a suitable working fluid.

本発明は、HFC−161を含有する冷媒が用いられる冷凍・空調機に使用される作動流体組成物であり、圧縮機、凝縮器、絞り装置、蒸発器等を有し、これらの間で冷媒を循環させる冷却効率の高い冷凍システムで、特には、ロータリータイプ、スイングタイプ、スクロールタイプ、レシプロタイプ圧縮機等の圧縮機を有する冷凍・空調機の作動流体として用いることができ、ルームエアコン、パッケージエアコン、産業用冷凍機、冷蔵庫、カーエアコン等の分野で好適に使用できる。   The present invention is a working fluid composition used in a refrigeration / air conditioner in which a refrigerant containing HFC-161 is used, and includes a compressor, a condenser, a throttle device, an evaporator, and the like, and the refrigerant is between them. Refrigeration system with high cooling efficiency that circulates, and can be used as working fluid for refrigeration / air conditioners that have compressors such as rotary type, swing type, scroll type, reciprocating type compressor, etc., room air conditioner, package It can be suitably used in the fields of air conditioners, industrial refrigerators, refrigerators, car air conditioners and the like.

Claims (6)

n−d−M環分析における%Cが10〜60且つ流動点が−15℃以下の鉱油及び流動点が−15℃以下の合成炭化水素油から選ばれる少なくとも1種を基油として含有し、モノフルオロエタンを含有する冷媒であって、前記冷媒中の前記モノフルオロエタンの含有割合が50質量%以上である冷媒と共に用いられる、冷凍機油。 n-d-M% in ring analysis C N 10-60 and mineral oil pour point of -15 ° C. or less and pour point are contained as base oil at least one kind of selected from -15 ° C. or less of the synthetic hydrocarbon oil A refrigerating machine oil used together with a refrigerant containing monofluoroethane, wherein the content of the monofluoroethane in the refrigerant is 50% by mass or more . 記冷媒の地球温暖化係数が300以下である、請求項1に記載の冷凍機油。 Global warming coefficient before Symbol refrigerant is 300 or less, the refrigerating machine oil according to claim 1. 前記冷媒が二酸化炭素をさらに含有する、請求項1又は2に記載の冷凍機油。   The refrigerating machine oil according to claim 1 or 2, wherein the refrigerant further contains carbon dioxide. 前記基油が前記合成炭化水素油を含有し、該合成炭化水素油がアルキルベンゼン、アルキルナフタレン及びポリ−α−オレフィンから選ばれる少なくとも1種である、請求項1〜3のいずれか一項に記載の冷凍機油。   The said base oil contains the said synthetic hydrocarbon oil, This synthetic hydrocarbon oil is at least 1 sort (s) chosen from alkylbenzene, an alkylnaphthalene, and a poly-alpha-olefin. Refrigeration oil. 請求項1〜4のいずれか一項に記載の冷凍機油と、
モノフルオロエタンを含有する冷媒であって、前記冷媒中の前記モノフルオロエタンの含有割合が50質量%以上である冷媒と、を含有する冷凍機用作動流体組成物。
Refrigerating machine oil according to any one of claims 1 to 4,
A refrigerant-containing working fluid composition comprising: a refrigerant containing monofluoroethane, wherein the refrigerant contains a monofluoroethane in a proportion of 50% by mass or more .
前記冷媒と前記冷凍機油の質量比が90:10〜30:70である、請求項5に記載の冷凍機用作動流体組成物。   The working fluid composition for a refrigerator according to claim 5, wherein a mass ratio of the refrigerant and the refrigerator oil is 90:10 to 30:70.
JP2016096001A 2016-05-12 2016-05-12 Working fluid composition for refrigerator Active JP6161766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096001A JP6161766B2 (en) 2016-05-12 2016-05-12 Working fluid composition for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096001A JP6161766B2 (en) 2016-05-12 2016-05-12 Working fluid composition for refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012157870A Division JP5937446B2 (en) 2012-07-13 2012-07-13 Working fluid composition for refrigerator

Publications (2)

Publication Number Publication Date
JP2016164274A JP2016164274A (en) 2016-09-08
JP6161766B2 true JP6161766B2 (en) 2017-07-12

Family

ID=56875980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096001A Active JP6161766B2 (en) 2016-05-12 2016-05-12 Working fluid composition for refrigerator

Country Status (1)

Country Link
JP (1) JP6161766B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161089A (en) * 1987-12-18 1989-06-23 Kiyouseki Seihin Gijutsu Kenkyusho:Kk Production of refrigerator oil
US4941986A (en) * 1989-03-16 1990-07-17 The Lubrizol Corporation Liquid compositions containing organic nitro compounds
JP2901529B2 (en) * 1996-01-09 1999-06-07 株式会社日立製作所 Refrigeration oil composition
JPH08231972A (en) * 1996-01-09 1996-09-10 Hitachi Ltd Refrigerating unit
JP4772504B2 (en) * 2003-08-01 2011-09-14 Jx日鉱日石エネルギー株式会社 Refrigerator oil composition
JP4659500B2 (en) * 2005-03-30 2011-03-30 Jx日鉱日石エネルギー株式会社 Trial run oil for refrigerant compressor, and trial run method of refrigerant compressor
JP5237543B2 (en) * 2006-10-25 2013-07-17 出光興産株式会社 Grease
JP5265996B2 (en) * 2008-09-11 2013-08-14 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP2012510552A (en) * 2008-12-02 2012-05-10 メキシケム、アマンコ、ホールディング、ソシエダッド、アノニマ、デ、カピタル、バリアブレ Heat transfer composition
JP2012031239A (en) * 2010-07-29 2012-02-16 Hitachi Appliances Inc Compressor for refrigeration and air-conditioning, and refrigeration and air-conditioning apparatus
JP5937446B2 (en) * 2012-07-13 2016-06-22 Jxエネルギー株式会社 Working fluid composition for refrigerator

Also Published As

Publication number Publication date
JP2016164274A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP5937446B2 (en) Working fluid composition for refrigerator
JP5871688B2 (en) Working fluid composition for refrigerator
JP6232371B2 (en) Working fluid composition for refrigerator, refrigerator oil and method for producing the same
JP5977816B2 (en) Working fluid composition for refrigerator
JP5941056B2 (en) Working fluid composition for refrigerator and refrigerator oil
KR102177381B1 (en) Refrigerating machine oil, and working fluid composition for refrigerating machines
JP5977817B2 (en) Working fluid composition for refrigerator
AU2013221829B2 (en) Heat transfer compositions and methods
JP6995764B2 (en) Lubricating oil composition, refrigerator composition and leak location detection method
JP7228009B2 (en) refrigerator oil
JP6263079B2 (en) Refrigerator oil and working fluid composition for refrigerator
JP6161766B2 (en) Working fluid composition for refrigerator
JP2020139072A (en) Composition for refrigerating-machine
JP7474202B2 (en) Refrigerating machine composition
JP6054495B2 (en) Working fluid composition for refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250