JP2004018677A - Additive composition for lubricant oil and lubricant oil composition - Google Patents

Additive composition for lubricant oil and lubricant oil composition Download PDF

Info

Publication number
JP2004018677A
JP2004018677A JP2002175529A JP2002175529A JP2004018677A JP 2004018677 A JP2004018677 A JP 2004018677A JP 2002175529 A JP2002175529 A JP 2002175529A JP 2002175529 A JP2002175529 A JP 2002175529A JP 2004018677 A JP2004018677 A JP 2004018677A
Authority
JP
Japan
Prior art keywords
lubricating oil
composition
load
lubricant oil
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175529A
Other languages
Japanese (ja)
Inventor
Hiroaki Koujima
甲嶋 宏明
Hideto Kamimura
上村 秀人
Kazuhito Saito
齋藤 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002175529A priority Critical patent/JP2004018677A/en
Publication of JP2004018677A publication Critical patent/JP2004018677A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sulfur-based additive composition for a lubricant oil exhibiting excellent lubricity, especially even under a severe high-load condition, and suitable as a high-performance load-carrying additive; and to provide a lubricant oil composition containing the additive composition for the lubricant oil. <P>SOLUTION: The additive composition for the lubricant oil contains one or more kinds of specific organic sulfur compounds. The lubricant composition contains the additive composition for the lubricant oil. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑油添加剤組成物及び潤滑油組成物に関し、さらに詳しくは、耐荷重添加剤として好適な、特定の有機硫黄化合物を含有する潤滑油添加剤組成物及び該潤滑油添加剤組成物を含む潤滑油組成物に関する。
【0002】
【従来の技術】
従来から、内燃機関や、自動変速機、パワーステアリング、緩衝器などの駆動系機器、ギヤなどの機械装置、切削等の金属加工においては、金属表面を摩耗から防止し、摩擦を制御して作動を円滑にするために潤滑油が用いられているが、高出力、高荷重の高負荷の過酷な条件のもとでは潤滑性能が不足し、潤滑面が摩擦摩耗し、遂には焼き付きを起こすことが知られている。このため、摩擦摩耗を減少させ、装置の寿命を延長するためには、潤滑油に良好な潤滑性能を付与する目的で、油性剤や摩擦調整剤、極圧剤、耐摩耗剤などの耐荷重添加剤が添加され、その役割は極めて重要なものとなっている。
【0003】
潤滑油の潤滑性は、液体の粘性による流体力学的効果と、有機極性化合物の金属表面への吸着と金属表面との反応による固体潤滑膜の形成による潤滑効果に大別することができる。
流体力学的効果には、潤滑油分子の分子量、分子構造及び会合性が、粘度−温度、粘度−圧力、金属表面への粘着性に関連して効果を与える。一方、固体潤滑膜を形成し、境界潤滑及び極圧潤滑時の潤滑性、すなわち、潤滑油に耐荷重性能を付与するには、油性剤や摩擦調整剤、極圧剤、耐摩耗剤などの耐荷重添加剤が効果を与える。
【0004】
したがって、これまで耐荷重添加剤として、特に硫黄系、リン系、ハロゲン系、亜鉛系などの添加剤の検討が行われてきた。しかしながら、高負荷の過酷な条件下で優れた性能を示す添加剤は、見出されていないのが現状である。また、環境への負荷低減により、今後、リン系、ハロゲン系、亜鉛系の添加剤の使用は制限される方向にあるため、リン、ハロゲン、亜鉛を含まない添加剤が望まれている。
【0005】
硫黄系の潤滑油添加剤としては、例えば特開平10−60430号、特開平11−228955号公報には、硫黄で架橋されたフェノール化合物が開示されている。また、特開2000−119676号公報には、ポリフェノール硫化物が提示され、さらに、特開2002−3878号公報には、ポリフェニルチオエーテルが開示されている。しかしながら、これらの添加剤を用いても、高負荷の過酷な条件下で優れた潤滑性能を得ることは困難であった。
【0006】
【発明が解決しようとする課題】
本発明は、このような状況下で、特に高負荷の過酷な条件下でも優れた潤滑性能を示す高性能の耐荷重添加剤として好適な硫黄系潤滑油添加剤組成物及び該潤滑油添加剤組成物を含む潤滑油組成物を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の硫黄原子含有複素環式化合物及びその酸化物が、耐荷重添加剤として優れた性能を有することを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明の要旨は下記のとおりである。
1.下記一般式(1)〜(9)
【化2】

Figure 2004018677
(式中、XはS、SO又はSOを示し、R、Rは炭素数1〜30のアルキル基を示し、aは0〜4の整数、bは0〜4の整数、cは0〜2の整数、dは0又は1を示す。)
で表される有機硫黄化合物の少なくとも一種以上を含有してなる潤滑油添加剤組成物。
2.潤滑油添加剤が耐荷重添加剤である前記1記載の潤滑油添加剤組成物。
3.(A)潤滑油基油と、(B)前記1又は2に記載の潤滑油添加剤組成物を含むことを特徴とする潤滑油組成物。
4.前記1記載の有機硫黄化合物の含有量が0.1〜10質量%である前記3記載の潤滑油組成物。
【0008】
【発明の実施の形態】
本発明の潤滑油添加剤組成物は、前記一般式(1)〜(9)で表される有機硫黄化合物の少なくとも一種以上を含有してなるものである。
一般式(1)〜(9)において、R及びRは、炭素数1〜30のアルキル基で、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種ウンデシル基、各種ドデシル基、各種トリデシル基、各種テトラデシル基、各種ペンタデシル基、各種ヘキサデシル基、各種ヘプタデシル基、各種オクタデシル基、各種ノナデシル基、各種エイコシル基、各種ドコシル基、各種ペンタコシル基、各種トリアコンタコシル基を挙げることができる。R及びRのアルキル基の炭素数が30を超えると有効成分の割合が少なくなり好ましくない。好ましくは炭素数4〜20のアルキル基である。
【0009】
一般式(1)で表されるジベンゾチオフェン誘導体の好ましい例として、(ジ)ヘキシルジベンゾチオフェン、(ジ)オクチルジベンゾチオフェン、(ジ)デシルジベンゾチオフェン、(ジ)ドデシルジベンゾチオフェン、(ジ)ヘキサデシルジベンゾチオフェン、(ジ)オクタデシルジベンゾチオフェン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(2)で表されるベンゾチオフェン誘導体の好ましい例として、(ジ)ヘキシルベンゾチオフェン、(ジ)オクチルベンゾチオフェン、(ジ)デシルベンゾチオフェン、(ジ)ドデシルベンゾチオフェン、(ジ)ヘキサデシルベンゾチオフェン、(ジ)オクタデシルベンゾチオフェン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(3)で表されるチオフェン誘導体の好ましい例として、ヘキシルチオフェン、オクチルチオフェン、デシルチオフェン、ドデシルチオフェン、ヘキサデシルチオフェン、オクタデシルチオフェン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
【0010】
一般式(4)で表されるフェノキサチイン誘導体の好ましい例として、(ジ)ヘキシルフェノキサチイン、(ジ)オクチルフェノキサチイン、(ジ)デシルフェノキサチイン、(ジ)ドデシルフェノキサチイン、(ジ)ヘキサデシルフェノキサチイン、(ジ)オクタデシルフェノキサチイン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(5)で表されるフェノチアジン誘導体の好ましい例として、(ジ)ヘキシルフェノチアジン、(ジ)オクチルフェノチアジン、(ジ)デシルフェノチアジン、(ジ)ドデシルフェノチアジン、(ジ)ヘキサデシルフェノチアジン、(ジ)オクタデシルフェノチアジン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(6)で表されるチアントレン誘導体の好ましい例として、(ジ)ヘキシルチアントレン、(ジ)オクチルチアントレン、(ジ)デシルチアントレン、(ジ)ドデシルチアントレン、(ジ)ヘキサデシルチアントレン、(ジ)オクタデシルチアントレン、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
【0011】
一般式(7)で表されるベンゾチアゾール誘導体の好ましい例として、(ジ)ヘキシルベンゾチアゾール、(ジ)オクチルベンゾチアゾール、(ジ)デシルベンゾチアゾール、(ジ)ドデシルベンゾチアゾール、(ジ)ヘキサデシルベンゾチアゾール、(ジ)オクタデシルベンゾチアゾール、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(8)で表されるチアゾール誘導体の好ましい例として、(ジ)ヘキシルチアゾール、(ジ)オクチルチアゾール、(ジ)デシルチアゾール、(ジ)ドデシルチアゾール、(ジ)ヘキサデシルチアゾール、(ジ)オクタデシルチアゾール、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
一般式(9)で表されるチアジアゾール誘導体の好ましい例として、ヘキシルチアジアゾール、オクチルチアジアゾール、デシルチアジアゾール、ドデシルチアジアゾール、ヘキサデシルチアジアゾール、オクタデシルチアジアゾール、及びそれらのスルホキシド、並びにそれらのスルホンなどを挙げることができる。
【0012】
本発明の潤滑油添加剤組成物を構成する、前記一般式(1)〜(9)で表される有機硫黄化合物の製造方法は特に制限はないが、下記の方法で効率よく製造することができる。
前記一般式(1)で表されるジベンゾチオフェン誘導体について代表的に述べるが、(2)〜(9)で表される有機硫黄化合物はそれと同様に実施すればよい。
まずジベンゾチオフェンのアルキル化物は、例えば、Tetrahedoron,Vol.52,No.27,9087(1996)に記載されているように、(a)ジベンゾチオフェンと(b)ヨウ化アルキルやトルエンスルホン酸アルキルエステルを(c)ブチルリチウムやブチルリチウム/TMEDA(N,N,N’,N’−テトラメチルエチレンジアミン)等のルイス塩基の存在下、テトラヒドロフラン、ジエチルエーテル、ヘキサン等の溶媒中で反応させて得られる。(a)成分:(b)成分(モル比)=1:1〜10(好ましくは、1:1〜4)、(b)成分:(c)成分(モル比)=1:1〜5(好ましくは1:1〜2)の割合で仕込み、常圧で、−78℃〜溶媒の還流温度で、0.5〜12時間反応させればよい。
【0013】
次いで、上記のジベンゾチオフェンのアルキル化物のスルホキシド、スルホンへの酸化反応は、例えば、J.Am.Chem.Soc.,74,2021(1952)やJ.Chem.Soc.,Chem.Commun.,4,1995,473に記載されているように、(a)ジベンゾチオフェンのアルキル化物と(b)過酸化水素を(c)ぎ酸や酢酸等の有機酸類の存在下、ヘキサン、トルエン等の溶媒中で行わせる。
【0014】
スルホキシドを得ようとする場合、(a)成分:(b)成分(モル比)=1:1、(b)成分:(c)成分(質量比)=1:1〜20(好ましくは1:1〜5)の割合で仕込み、常圧で、−78℃〜室温で、0.5〜24時間反応させればよい。
スルホンを得ようとする場合、(a)成分:(b)成分(モル比)=1:2〜5、(b)成分:(c)成分(質量比)=1:1〜20(好ましくは1:1〜5)の割合で仕込み、常圧で、−78℃〜室温で、0.5〜24時間反応させればよい。
【0015】
上記の有機硫黄化合物は、そのまま潤滑油添加剤として使用できるが、一般に、希釈剤に配合して潤滑油添加剤組成物として使用される。その希釈剤として鉱油や合成油を使用することができる。ここで、鉱油として、例えば、パラフィン系鉱油、ナフテン系鉱油、芳香族系鉱油などの潤滑油やガソリン、灯油、軽油などの燃料油を挙げることができる。合成油として、ポリフェニルエーテル、アルキルナフタレン、エステル油、グリコール油、ポリα−オレフィンなどを挙げることができる。
このような本発明の潤滑油添加剤組成物は、特に、極圧剤、耐摩耗剤、摩擦調整剤などの耐荷重添加剤として、優れた機能を発揮する。
【0016】
次に、本発明の潤滑油組成物は、(A)潤滑油基油と、(B)前述の本発明の潤滑油添加剤組成物を含むものである。
前記(A)成分の潤滑油基油としては、通常、鉱油や合成油が用いられる。この鉱油や合成油の種類、その他については特に制限はなく、鉱油としては、例えば、溶剤精製、水添精製などの通常の精製法により得られるパラフィン基鉱油、中間基鉱油又はナフテン系鉱油などが挙げられる。
【0017】
また、合成油としては、例えば、ポリブテン、ポリオレフィン〔α−オレフィン(共)重合体〕、各種のエステル(例えば、ポリオールエステル、二塩基酸エステル)、各種のエーテル(例えば、ポリフェニルエーテル)、アルキルベンゼン、アルキルナフタレンなどが挙げられる。
本発明においては、基油として、上記鉱油を一種用いてもよく、二種以上組み合わせて用いてもよい。また、上記合成油を一種用いてもよく、二種以上組み合わせて用いてもよい。さらには、鉱油一種以上と合成油一種以上とを組み合わせて用いてもよい。
前記基油の粘度としては、潤滑油組成物の用途に応じて適宜選定されるが、通常100℃の動粘度で2〜35mm/s、好ましくは3〜25mm/sの範囲である。
【0018】
本発明の潤滑油組成物においては、前述の有機硫黄化合物の含有量が、通常0.01〜10質量%、好ましくは0.01〜5質量%の範囲で選定される。この含有量が0.01質量%未満では耐荷重添加剤としての機能が充分に発揮されにくいし10質量%を超えるとその量の割には効果の向上が認められず、むしろ経済的に不利になる場合がある。
本発明の潤滑油組成物には、本発明の目的が損なわれない範囲で、従来から潤滑油に慣用されている各種添加剤、例えば金属系清浄剤、無灰系清浄分散剤、粘度指数向上剤、酸化防止剤、防錆剤、腐食防止剤、消泡剤、他の極圧剤、耐摩耗剤、摩擦調整剤などを適宜添加することができる。
【0019】
金属系清浄剤としては、例えば、カルシウムスルホネート、マグネシウムスルホネート、バリウムスルホネート、カルシウムフェネート、バリウムフェネートなどが挙げられ、これらは、通常0.1〜5質量%の割合で使用される。無灰系清浄分散剤としては、例えば、コハク酸イミド系、コハク酸アミド系、ベンジルアミン系、エステル系のものなどが挙げられ、これらは、通常0.5〜7質量%の割合で使用される。
粘度指数向上剤としては、例えばポリメタクリレート系、ポリイソブチレン系、エチレン−プロピレン共重合体系、スチレン−ブタジエン水添共重合体系のものなどが挙げられ、これらは、通常0.5〜35質量%の割合で使用される。酸化防止剤としては、例えばアルキル化ジフェニルアミン、フェニル−α−ナフチルアミン、アルキル化−α−ナフチルアミンなどのアミン系酸化防止剤、2,6−ジ−t−ブチル−4−メチルフェノール、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)などのフェノール系酸化防止剤などが挙げられ、これは、通常0.05〜2質量%の割合で使用される。
【0020】
防錆剤としては、例えばアルケニルコハク酸やその部分エステルなどが、腐食防止剤としては、例えばベンゾトリアゾールやベンゾイミダゾールなどが、消泡剤としては、例えばジメチルポリシロキサンやポリアクリレートなどが挙げられ、これらは適宜添加することができる。
本発明の潤滑油組成物は、極圧性、耐摩耗性、摩擦特性などに優れ、例えば自動車の内燃機関用潤滑油、駆動系潤滑油、ギヤ油、軸受油、変速機油、緩衝器油、金属加工油及びその他の工業用潤滑油として好適に用いることができる。
【0021】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、潤滑油の耐荷重試験及び耐摩耗試験は、以下に示す要領に従って行った。
(1)耐荷重試験
ASTM D 2783に準拠して、回転数1,800rpm、室温の条件で行い、最大非焼付荷重(LNL)と融着荷重(WL)から、荷重摩耗指数(LWI)を求めた。この値が大きいほど、耐荷重性が良好である。
(2)耐摩耗試験
ASTM D 2783に準拠して、荷重294N、回転数1,200rpm、油温50℃、試験時間30分の条件で行い、1/2インチ球3個の摩耗痕径を平均して、平均摩耗痕径を算出した。
(3)銅板腐食試験
JIS K 2513に準拠して、よく磨いた銅板を約30ミリリットルの試料に浸し、100℃、3時間保持した後、これを取り出し、銅板腐食標準と比較して試料の銅に対する腐食性を判定した。
【0022】
製造例1
乾燥したTHF(テトラヒドロフラン)400ミリリットルにジベンゾチオフェン18.4g(0.1モル)を溶解し、ドライアイス/メタノールで冷却した。n−ブチルリチウムのヘキサン溶液(1.6モル/リットル)200ミリリットルを滴下し、反応混合物を室温に昇温し5時間攪拌した。再びドライアイス/メタノールで冷却した後、ヨウ化ヘキシル127.2g(0.6モル)を滴下した。反応混合物を室温に昇温し10時間攪拌した。反応終了後,反応混合物中に氷水1Lを入れ,反応生成物を塩化メチレンで抽出した。塩化メチレン層を1N塩酸水で中和し,硫酸マグネシウムで乾燥した。塩化メチレンを留去して,ヘキシルジベンゾチオフェン27gを得た。
【0023】
製造例2
製造例1の方法で得たヘキシルジベンゾチオフェン8gをヘキサン200ミリリットルに溶かし,30%過酸化水素水3.4gとぎ酸10gを加え,室温で8時間攪拌した。ヘキサン層を分離し,ヘキサンを留去して,ヘキシルジベンゾチオフェンスルホキシド8gを得た。
製造例3
製造例1の方法で得たヘキシルジベンゾチオフェン8gをヘキサン200ミリリットルに溶かし,30%過酸化水素水10gとぎ酸20gを加え,室温で16時間攪拌した。ヘキサン層を分離し,ヘキサンを留去して,ヘキシルジベンゾチオフェンスルホン8gを得た。
【0024】
製造例4
ヨウ化ヘキシルの代わりにヨウ化ドデシル177.8g(0.6モル)を使用した以外は,実施例1と同様に反応を行った。ドデシルジベンゾチオフェン35gを得た。
製造例5
ジベンゾチオフェンの代わりにベンゾチオフェン13.4g(0.1モル)を使用した以外は,実施例1と同様に反応を行った。ヘキシルベンゾチオフェン29gを得た。
【0025】
製造例6
製造例5の方法で得たヘキシルベンゾチオフェン11gをヘキサン200ミリリットルに溶かし,30%過酸化水素水15gとぎ酸30gを加え,室温で8時間攪拌した。ヘキサン層を分離し,ヘキサンを留去して,ヘキシルベンゾチオフェンスルホン10gを得た。
製造例7
ジベンゾチオフェンの代わりにベンゾチアゾール13.5g(0.1モル)を使用した以外は,実施例1と同様に反応を行った。ヘキシルベンゾチアゾール28gを得た。
【0026】
製造例8
市販のオクチルチオフェンをそのまま使用した。
製造例9
市販のオクチルチオフェン9gをヘキサン200ミリリットルに溶かし,30%過酸化水素水15gとぎ酸30gを加え,室温で8時間攪拌した。ヘキサン層を分離し,ヘキサンを留去して,オクチルチオフェンスルホン8gを得た。
【0027】
実施例1〜9
150ニュートラル留分の鉱油に製造例1〜9で得られた化合物1質量%を配合し,潤滑油組成物を調製した。この潤滑油組成物の性能を耐荷重性試験,耐荷重性試験,銅板腐食試験により評価した。その結果を第1表に示す。
比較例1
150ニュートラル留分の鉱油そのもので耐荷重性試験,耐荷重性試験,銅板腐食試験を行った。その結果を第1表に示す。
比較例2
150ニュートラル留分の鉱油に市販のZnDTP1質量%を配合し,潤滑油組成物を調製した。この潤滑油組成物の性能を耐荷重性試験,耐荷重性試験,銅板腐食試験により評価した。その結果を第1表に示す。
比較例3
150ニュートラル留分の鉱油に市販のTCP(トリクレジルフォスフェート)1質量%を配合し,潤滑油組成物を調製した。この潤滑油組成物の性能を耐荷重性試験,耐荷重性試験,銅板腐食試験により評価した。その結果を第1表に示す。
【0028】
【表1】
Figure 2004018677
【0029】
第1表から、本発明の潤滑油添加剤組成物は、最大非焼付荷重及び荷重摩耗指数が大きく、代表的な耐荷重添加剤であるTCP、ZnDTPよりも優れた性能を示すことが分かる。また、耐摩耗性能でも優れていることが分かる。
【0030】
【発明の効果】
本発明によれば、特に高負荷の過酷な条件下でも優れた潤滑性能を示す高性能の耐荷重添加剤として好適な硫黄系潤滑油添加剤組成物及び該潤滑油添加剤組成物を含む潤滑油組成物を提供することができる。
前記潤滑油添加剤組成物を含む本発明の潤滑油組成物は、極圧性、耐摩耗性、摩擦特性などに優れており、各種用途に好適に用いられる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lubricating oil additive composition and a lubricating oil composition, and more particularly to a lubricating oil additive composition containing a specific organic sulfur compound, which is suitable as a load-bearing additive, and the lubricating oil additive composition The present invention relates to a lubricating oil composition containing a product.
[0002]
[Prior art]
Conventionally, in the case of internal combustion engines, drive systems such as automatic transmissions, power steering, shock absorbers, mechanical devices such as gears, and metal processing such as cutting, metal surfaces are protected from wear and operated by controlling friction. The lubricating oil is used to smooth the lubrication, but under the severe conditions of high output, high load and high load, the lubrication performance is insufficient, the lubricated surface frictionally wears, and finally seizure may occur. It has been known. For this reason, in order to reduce frictional wear and extend the life of the equipment, load-bearing agents such as oily agents, friction modifiers, extreme pressure agents, antiwear agents, etc. Additives have been added and their role has become extremely important.
[0003]
The lubricating properties of lubricating oils can be broadly classified into hydrodynamic effects due to the viscosity of a liquid, and lubricating effects due to the formation of a solid lubricating film by adsorption of an organic polar compound to a metal surface and reaction with the metal surface.
For hydrodynamic effects, the molecular weight, molecular structure and associative properties of lubricating oil molecules have an effect in relation to viscosity-temperature, viscosity-pressure, and adhesion to metal surfaces. On the other hand, in order to form a solid lubricating film and provide lubrication during boundary lubrication and extreme pressure lubrication, that is, to impart load-bearing performance to the lubricating oil, oily agents, friction modifiers, extreme pressure agents, antiwear agents, etc. Load-bearing additives have an effect.
[0004]
Therefore, as load-bearing additives, particularly sulfur-based, phosphorus-based, halogen-based, and zinc-based additives have been studied. However, at present, an additive exhibiting excellent performance under severe conditions of high load has not been found. In addition, since the use of phosphorus-based, halogen-based, and zinc-based additives tends to be restricted in the future due to reduction in environmental load, additives that do not contain phosphorus, halogen, and zinc are desired.
[0005]
As sulfur-based lubricating oil additives, for example, JP-A-10-60430 and JP-A-11-228895 disclose phenol compounds crosslinked with sulfur. JP-A-2000-119676 discloses a polyphenol sulfide, and JP-A-2002-3878 discloses a polyphenylthioether. However, even with the use of these additives, it has been difficult to obtain excellent lubrication performance under severe conditions of high load.
[0006]
[Problems to be solved by the invention]
The present invention relates to a sulfur-based lubricating oil additive composition suitable as a high-performance load-bearing additive that exhibits excellent lubricating performance even under severe conditions under high load, and the lubricating oil additive. It is an object to provide a lubricating oil composition containing the composition.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a specific sulfur atom-containing heterocyclic compound and an oxide thereof have excellent performance as a load-bearing additive. The present invention has been completed based on such findings.
That is, the gist of the present invention is as follows.
1. The following general formulas (1) to (9)
Embedded image
Figure 2004018677
(Wherein X represents S, SO or SO 2 , R 1 and R 2 each represent an alkyl group having 1 to 30 carbon atoms, a is an integer of 0 to 4, b is an integer of 0 to 4, and c is Integer of 0 to 2, d represents 0 or 1.)
A lubricating oil additive composition comprising at least one organic sulfur compound represented by the formula:
2. The lubricating oil additive composition according to claim 1, wherein the lubricating oil additive is a load-bearing additive.
3. A lubricating oil composition comprising: (A) a lubricating base oil; and (B) the lubricating oil additive composition according to 1 or 2.
4. 4. The lubricating oil composition according to the above 3, wherein the content of the organic sulfur compound according to the above 1 is 0.1 to 10% by mass.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The lubricating oil additive composition of the present invention contains at least one or more of the organic sulfur compounds represented by the general formulas (1) to (9).
In the general formulas (1) to (9), R 1 and R 2 are alkyl groups having 1 to 30 carbon atoms, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Group, isobutyl group, s-butyl group, t-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various nonyl groups, various decyl groups, various undecyl groups, various dodecyl groups, various tridecyl groups And various tetradecyl groups, various pentadecyl groups, various hexadecyl groups, various heptadecyl groups, various octadecyl groups, various nonadecyl groups, various eicosyl groups, various docosyl groups, various pentacosyl groups, and various triacontacosyl groups. When the number of carbon atoms of the alkyl group of R 1 and R 2 exceeds 30, the proportion of the active ingredient is decreased, which is not preferable. Preferably, it is an alkyl group having 4 to 20 carbon atoms.
[0009]
Preferred examples of the dibenzothiophene derivative represented by the general formula (1) include (di) hexyldibenzothiophene, (di) octyldibenzothiophene, (di) decyldibenzothiophene, (di) dodecyldibenzothiophene, and (di) hexadecyl. Examples include dibenzothiophene, (di) octadecyldibenzothiophene, and their sulfoxides, their sulfones, and the like.
Preferred examples of the benzothiophene derivative represented by the general formula (2) include (di) hexylbenzothiophene, (di) octylbenzothiophene, (di) decylbenzothiophene, (di) dodecylbenzothiophene, and (di) hexadecyl. Benzothiophene, (di) octadecylbenzothiophene, their sulfoxides, their sulfones and the like can be mentioned.
Preferred examples of the thiophene derivative represented by the general formula (3) include hexylthiophene, octylthiophene, decylthiophene, dodecylthiophene, hexadecylthiophene, octadecylthiophene, their sulfoxides, their sulfones, and the like. .
[0010]
Preferred examples of the phenoxathiin derivative represented by the general formula (4) include (di) hexylphenoxatiin, (di) octylphenoxatiin, (di) decylphenoxatiin, (di) dodecylphenoxatiin, (Di) hexadecylphenoxatiin, (di) octadecylphenoxatiin, their sulfoxides, their sulfones, and the like.
Preferred examples of the phenothiazine derivative represented by the general formula (5) include (di) hexylphenothiazine, (di) octylphenothiazine, (di) decylphenothiazine, (di) dodecylphenothiazine, (di) hexadecylphenothiazine, and (di) Octadecylphenothiazine, their sulfoxides, their sulfones and the like can be mentioned.
Preferred examples of the thianthrene derivative represented by the general formula (6) include (di) hexylthianthrene, (di) octylthianthrene, (di) decylthianthrene, (di) dodecylthianthrene, and (di) hexadecylthian. Tren, (di) octadecylthianthrene, their sulfoxides, their sulfones and the like can be mentioned.
[0011]
Preferred examples of the benzothiazole derivative represented by the general formula (7) include (di) hexylbenzothiazole, (di) octylbenzothiazole, (di) decylbenzothiazole, (di) dodecylbenzothiazole, and (di) hexadecyl. Benzothiazole, (di) octadecylbenzothiazole, their sulfoxides, their sulfones and the like can be mentioned.
Preferred examples of the thiazole derivative represented by the general formula (8) include (di) hexylthiazole, (di) octylthiazole, (di) decylthiazole, (di) dodecylthiazole, (di) hexadecylthiazole, and (di). Octadecylthiazole, their sulfoxides, their sulfones and the like can be mentioned.
Preferred examples of the thiadiazole derivative represented by the general formula (9) include hexylthiadiazole, octylthiadiazole, decylthiadiazole, dodecylthiadiazole, hexadecylthiadiazole, octadecylthiadiazole, and their sulfoxides, and their sulfones. .
[0012]
The method for producing the organic sulfur compound represented by the general formulas (1) to (9), which constitutes the lubricating oil additive composition of the present invention, is not particularly limited, but it can be efficiently produced by the following method. it can.
The dibenzothiophene derivative represented by the general formula (1) will be typically described, but the organic sulfur compounds represented by (2) to (9) may be implemented in the same manner.
First, alkylated dibenzothiophenes are described, for example, in Tetrahedron, Vol. 52, no. 27, 9087 (1996), (a) dibenzothiophene and (b) alkyl iodide or toluenesulfonic acid alkyl ester are converted to (c) butyllithium or butyllithium / TMEDA (N, N, N ′). , N'-tetramethylethylenediamine) in the presence of a Lewis base such as tetrahydrofuran, diethyl ether, hexane or the like. Component (a): Component (b) (molar ratio) = 1: 1 to 10 (preferably 1: 1 to 4), Component (b): Component (c) (molar ratio) = 1: 1 to 5 ( Preferably, the mixture is charged in a ratio of 1: 1 to 2) and reacted at normal pressure at a temperature of -78 ° C to the reflux temperature of the solvent for 0.5 to 12 hours.
[0013]
Next, the oxidation reaction of the alkylated dibenzothiophene to a sulfoxide or a sulfone is described in, for example, J. Am. Am. Chem. Soc. , 74, 2021 (1952) and J.A. Chem. Soc. Chem. Commun. , 4, 1995, 473, (a) alkylated dibenzothiophene and (b) hydrogen peroxide in the presence of (c) organic acids such as formic acid and acetic acid in the presence of hexane, toluene and the like. Perform in solvent.
[0014]
When trying to obtain sulfoxide, component (a): component (b) (molar ratio) = 1: 1, component (b): component (c) (mass ratio) = 1: 1 to 20 (preferably 1: 1-5), and the reaction may be carried out at normal pressure and at −78 ° C. to room temperature for 0.5 to 24 hours.
When trying to obtain a sulfone, component (a): component (b) (molar ratio) = 1: 2 to 5, component (b): component (c) (mass ratio) = 1: 1 to 20 (preferably (1: 1 to 5), and the reaction may be performed at normal pressure and at −78 ° C. to room temperature for 0.5 to 24 hours.
[0015]
The above organic sulfur compound can be used as a lubricating oil additive as it is, but is generally used as a lubricating oil additive composition by being blended with a diluent. Mineral oil or synthetic oil can be used as the diluent. Here, examples of the mineral oil include lubricating oils such as paraffinic mineral oil, naphthenic mineral oil, and aromatic mineral oil, and fuel oils such as gasoline, kerosene, and light oil. Examples of the synthetic oil include polyphenyl ether, alkyl naphthalene, ester oil, glycol oil, poly α-olefin and the like.
Such a lubricating oil additive composition of the present invention exhibits an excellent function particularly as a load-bearing additive such as an extreme pressure agent, an antiwear agent, and a friction modifier.
[0016]
Next, the lubricating oil composition of the present invention comprises (A) a lubricating base oil and (B) the above-described lubricating oil additive composition of the present invention.
As the lubricating base oil of the component (A), mineral oil and synthetic oil are usually used. There are no particular restrictions on the type of mineral oil or synthetic oil, and other mineral oils. Examples of the mineral oil include paraffinic mineral oil, intermediate mineral oil, and naphthenic mineral oil obtained by ordinary refining methods such as solvent refining and hydrogenation refining. No.
[0017]
Examples of the synthetic oil include polybutene, polyolefin [α-olefin (co) polymer], various esters (for example, polyol ester and dibasic acid ester), various ethers (for example, polyphenyl ether), and alkylbenzene. And alkylnaphthalene.
In the present invention, as the base oil, one of the above mineral oils may be used, or two or more thereof may be used in combination. In addition, the above synthetic oils may be used alone or in combination of two or more. Further, one or more mineral oils and one or more synthetic oils may be used in combination.
The viscosity of the base oil is appropriately selected depending on the use of the lubricating oil composition, but is usually in the range of 2 to 35 mm 2 / s, preferably 3 to 25 mm 2 / s at a kinematic viscosity at 100 ° C.
[0018]
In the lubricating oil composition of the present invention, the content of the above-mentioned organic sulfur compound is selected in the range of usually 0.01 to 10% by mass, preferably 0.01 to 5% by mass. When the content is less than 0.01% by mass, the function as a load-bearing additive is hardly sufficiently exhibited. When the content exceeds 10% by mass, no improvement in effect is recognized for the amount, and it is economically disadvantageous. In some cases.
In the lubricating oil composition of the present invention, various additives conventionally used in lubricating oils, for example, a metal-based detergent, an ashless detergent-dispersant, and a viscosity index improve, as long as the object of the present invention is not impaired. Agents, antioxidants, rust inhibitors, corrosion inhibitors, defoamers, other extreme pressure agents, antiwear agents, friction modifiers, and the like can be added as appropriate.
[0019]
Examples of the metal-based detergent include calcium sulfonate, magnesium sulfonate, barium sulfonate, calcium phenate, barium phenate and the like, and these are usually used at a ratio of 0.1 to 5% by mass. Examples of the ashless detergent / dispersant include succinimide-based, succinamide-based, benzylamine-based and ester-based detergents, which are usually used at a ratio of 0.5 to 7% by mass. You.
Examples of the viscosity index improver include polymethacrylates, polyisobutylenes, ethylene-propylene copolymers, styrene-butadiene hydrogenated copolymers, and the like. Used in proportions. Examples of the antioxidant include amine antioxidants such as alkylated diphenylamine, phenyl-α-naphthylamine, and alkylated-α-naphthylamine; 2,6-di-t-butyl-4-methylphenol; and 4,4 ′. And phenolic antioxidants such as -methylenebis (2,6-di-t-butylphenol) and the like, which are usually used at a ratio of 0.05 to 2% by mass.
[0020]
As the rust inhibitor, for example, alkenyl succinic acid and its partial ester, and the like, as the corrosion inhibitor, for example, benzotriazole and benzimidazole, as the defoaming agent, for example, dimethyl polysiloxane and polyacrylate, These can be appropriately added.
The lubricating oil composition of the present invention is excellent in extreme pressure properties, abrasion resistance, friction characteristics, and the like. For example, lubricating oil for an internal combustion engine of an automobile, drive system lubricating oil, gear oil, bearing oil, transmission oil, shock absorber oil, metal It can be suitably used as a processing oil and other industrial lubricating oils.
[0021]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The load resistance test and the wear resistance test of the lubricating oil were performed according to the following procedures.
(1) Load resistance test A load wear index (LWI) was obtained from the maximum non-seizure load (LNL) and the fusion load (WL) in accordance with ASTM D2783 under the conditions of a rotation speed of 1,800 rpm and room temperature. Was. The larger the value, the better the load resistance.
(2) Wear test In accordance with ASTM D2783, the test was carried out under the conditions of a load of 294 N, a rotation speed of 1,200 rpm, an oil temperature of 50 ° C. and a test time of 30 minutes, and averaged the wear scar diameters of three 1/2 inch balls. Then, the average wear scar diameter was calculated.
(3) Copper plate corrosion test According to JIS K 2513, a well-polished copper plate was immersed in a sample of about 30 ml, kept at 100 ° C. for 3 hours, taken out, and compared with a copper plate corrosion standard to obtain a copper plate sample. Was evaluated for corrosion.
[0022]
Production Example 1
In 400 ml of dry THF (tetrahydrofuran), 18.4 g (0.1 mol) of dibenzothiophene was dissolved and cooled with dry ice / methanol. 200 ml of a hexane solution of n-butyllithium (1.6 mol / l) was added dropwise, and the reaction mixture was heated to room temperature and stirred for 5 hours. After cooling again with dry ice / methanol, 127.2 g (0.6 mol) of hexyl iodide was added dropwise. The reaction mixture was warmed to room temperature and stirred for 10 hours. After completion of the reaction, 1 L of ice water was put into the reaction mixture, and the reaction product was extracted with methylene chloride. The methylene chloride layer was neutralized with 1N aqueous hydrochloric acid and dried over magnesium sulfate. The methylene chloride was distilled off to obtain 27 g of hexyldibenzothiophene.
[0023]
Production Example 2
8 g of hexyldibenzothiophene obtained by the method of Production Example 1 was dissolved in 200 ml of hexane, 3.4 g of 30% hydrogen peroxide solution and 10 g of formic acid were added, and the mixture was stirred at room temperature for 8 hours. The hexane layer was separated and hexane was distilled off to obtain 8 g of hexyldibenzothiophene sulfoxide.
Production Example 3
8 g of hexyldibenzothiophene obtained by the method of Production Example 1 was dissolved in 200 ml of hexane, 10 g of 30% aqueous hydrogen peroxide and 20 g of formic acid were added, and the mixture was stirred at room temperature for 16 hours. The hexane layer was separated and hexane was distilled off to obtain 8 g of hexyldibenzothiophene sulfone.
[0024]
Production Example 4
The reaction was carried out in the same manner as in Example 1, except that 177.8 g (0.6 mol) of dodecyl iodide was used instead of hexyl iodide. 35 g of dodecyldibenzothiophene were obtained.
Production Example 5
The reaction was carried out in the same manner as in Example 1, except that 13.4 g (0.1 mol) of benzothiophene was used instead of dibenzothiophene. 29 g of hexylbenzothiophene were obtained.
[0025]
Production Example 6
11 g of hexylbenzothiophene obtained by the method of Production Example 5 was dissolved in 200 ml of hexane, 15 g of 30% aqueous hydrogen peroxide and 30 g of formic acid were added, and the mixture was stirred at room temperature for 8 hours. The hexane layer was separated and hexane was distilled off to obtain 10 g of hexylbenzothiophene sulfone.
Production Example 7
The reaction was carried out in the same manner as in Example 1, except that 13.5 g (0.1 mol) of benzothiazole was used instead of dibenzothiophene. 28 g of hexylbenzothiazole were obtained.
[0026]
Production Example 8
Commercially available octylthiophene was used as is.
Production Example 9
9 g of commercially available octylthiophene was dissolved in 200 ml of hexane, 15 g of 30% aqueous hydrogen peroxide and 30 g of formic acid were added, and the mixture was stirred at room temperature for 8 hours. The hexane layer was separated and hexane was distilled off to obtain 8 g of octylthiophene sulfone.
[0027]
Examples 1 to 9
A lubricating oil composition was prepared by blending 1% by mass of the compounds obtained in Production Examples 1 to 9 with a mineral oil of a 150 neutral fraction. The performance of this lubricating oil composition was evaluated by a load-bearing test, a load-bearing test, and a copper plate corrosion test. Table 1 shows the results.
Comparative Example 1
A load-bearing test, a load-bearing test, and a copper plate corrosion test were performed using the mineral oil itself of the 150 neutral fraction. Table 1 shows the results.
Comparative Example 2
A lubricating oil composition was prepared by blending 1% by mass of commercially available ZnDTP with mineral oil of a 150 neutral fraction. The performance of this lubricating oil composition was evaluated by a load-bearing test, a load-bearing test, and a copper plate corrosion test. Table 1 shows the results.
Comparative Example 3
A lubricating oil composition was prepared by blending 1% by mass of commercially available TCP (tricresyl phosphate) with mineral oil of the 150 neutral fraction. The performance of this lubricating oil composition was evaluated by a load-bearing test, a load-bearing test, and a copper plate corrosion test. Table 1 shows the results.
[0028]
[Table 1]
Figure 2004018677
[0029]
From Table 1, it can be seen that the lubricating oil additive composition of the present invention has a large maximum non-seizing load and a load abrasion index, and exhibits performance superior to typical load-bearing additives TCP and ZnDTP. Further, it can be seen that the abrasion resistance is also excellent.
[0030]
【The invention's effect】
According to the present invention, a sulfur-based lubricating oil additive composition suitable as a high-performance load-bearing additive exhibiting excellent lubricating performance even under severe conditions of high load, and a lubricating oil containing the lubricating oil additive composition An oil composition can be provided.
The lubricating oil composition of the present invention containing the lubricating oil additive composition is excellent in extreme pressure properties, abrasion resistance, friction characteristics and the like, and is suitably used for various applications.

Claims (4)

下記一般式(1)〜(9)
Figure 2004018677
(式中、XはS、SO又はSOを示し、R、Rは炭素数1〜30のアルキル基を示し、aは0〜4の整数、bは0〜4の整数、cは0〜2の整数、dは0又は1を示す。)
で表される有機硫黄化合物の少なくとも一種以上を含有してなる潤滑油添加剤組成物。
The following general formulas (1) to (9)
Figure 2004018677
(Wherein X represents S, SO or SO 2 , R 1 and R 2 each represent an alkyl group having 1 to 30 carbon atoms, a is an integer of 0 to 4, b is an integer of 0 to 4, and c is Integer of 0 to 2, d represents 0 or 1.)
A lubricating oil additive composition comprising at least one organic sulfur compound represented by the formula:
潤滑油添加剤が耐荷重添加剤である請求項1記載の潤滑油添加剤組成物。The lubricating oil additive composition according to claim 1, wherein the lubricating oil additive is a load-bearing additive. (A)潤滑油基油と、(B)請求項1又は2に記載の潤滑油添加剤組成物を含むことを特徴とする潤滑油組成物。A lubricating oil composition comprising (A) a lubricating base oil and (B) the lubricating oil additive composition according to claim 1 or 2. 請求項1記載の有機硫黄化合物の含有量が0.01〜10質量%である請求項3記載の潤滑油組成物。The lubricating oil composition according to claim 3, wherein the content of the organic sulfur compound according to claim 1 is 0.01 to 10% by mass.
JP2002175529A 2002-06-17 2002-06-17 Additive composition for lubricant oil and lubricant oil composition Pending JP2004018677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175529A JP2004018677A (en) 2002-06-17 2002-06-17 Additive composition for lubricant oil and lubricant oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175529A JP2004018677A (en) 2002-06-17 2002-06-17 Additive composition for lubricant oil and lubricant oil composition

Publications (1)

Publication Number Publication Date
JP2004018677A true JP2004018677A (en) 2004-01-22

Family

ID=31174151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175529A Pending JP2004018677A (en) 2002-06-17 2002-06-17 Additive composition for lubricant oil and lubricant oil composition

Country Status (1)

Country Link
JP (1) JP2004018677A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330948A (en) * 2004-05-21 2005-12-02 Mitsuo Kobayashi Method and device for tuning engine
JPWO2004101517A1 (en) * 2003-05-16 2006-07-13 株式会社半導体エネルギー研究所 Carbazole derivatives, organic semiconductor elements, light emitting elements, and electronic devices
JP2007197336A (en) * 2006-01-24 2007-08-09 Adeka Corp New indole compound and lubricating oil composition comprising the same
JP2013224403A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2013224405A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2013224404A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method
US8603955B2 (en) 2004-10-19 2013-12-10 Nippon Oil Corporation Lubricant composition and antioxidant composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004101517A1 (en) * 2003-05-16 2006-07-13 株式会社半導体エネルギー研究所 Carbazole derivatives, organic semiconductor elements, light emitting elements, and electronic devices
JP4558510B2 (en) * 2003-05-16 2010-10-06 株式会社半導体エネルギー研究所 Carbazole derivatives, light emitting devices and electronic devices
JP2005330948A (en) * 2004-05-21 2005-12-02 Mitsuo Kobayashi Method and device for tuning engine
US8603955B2 (en) 2004-10-19 2013-12-10 Nippon Oil Corporation Lubricant composition and antioxidant composition
US8709989B2 (en) 2004-10-19 2014-04-29 Nippon Oil Corporation Lubricant composition and antioxident composition
JP2007197336A (en) * 2006-01-24 2007-08-09 Adeka Corp New indole compound and lubricating oil composition comprising the same
JP2013224403A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2013224405A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method
JP2013224404A (en) * 2012-03-21 2013-10-31 Idemitsu Kosan Co Ltd Lubricating oil composition for engine made of aluminum alloy and lubrication method

Similar Documents

Publication Publication Date Title
JP3613530B2 (en) Lubricating oil composition
US9725672B2 (en) Method for lubricating a continuously variable transmission, and a continuously variable transmission
JPS63280796A (en) Lubricating oil composition having improved temperature characteristic
JP4769463B2 (en) Lubricating base oil and lubricating oil composition
JP5672631B2 (en) Lubricating oil composition
US20090292137A1 (en) Additive for lubricating oil and fuel oil, lubricating oil composition, and fuel oil composition
JP2011162652A (en) Lubricating oil composition
EP4121501B1 (en) Lubricating oil compositions
JPS6366296A (en) Lubricating oil composition
JP5265996B2 (en) Lubricating oil composition
JP4342034B2 (en) Lubricating oil composition
JPH01287196A (en) Lubrication oil composition
JP3925952B2 (en) Oil-impregnated bearing oil composition
JP2004018677A (en) Additive composition for lubricant oil and lubricant oil composition
KR102336568B1 (en) Polyalkylene glycol-based lubricating composition
JP6444219B2 (en) Lubricating oil composition for gear oil
JP4981241B2 (en) Additive for lubricating oil and fuel oil, and lubricating oil composition and fuel oil composition
JP6832213B2 (en) Lubricating oil composition and sliding mechanism using it
JPH1036870A (en) Bearing oil composition
KR20190068556A (en) Lubricant composition
KR102312591B1 (en) Hybrid Lubricant Composition
JP3138181B2 (en) Automatic transmission oil composition
JP3914600B2 (en) Lubricating oil composition
JP5112402B2 (en) Additive for lubricating oil and fuel oil, and lubricating oil composition and fuel oil composition
JP4198391B2 (en) Lubricant composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

A131 Notification of reasons for refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715