JP5263705B2 - Prepreg and laminate - Google Patents

Prepreg and laminate Download PDF

Info

Publication number
JP5263705B2
JP5263705B2 JP2007186929A JP2007186929A JP5263705B2 JP 5263705 B2 JP5263705 B2 JP 5263705B2 JP 2007186929 A JP2007186929 A JP 2007186929A JP 2007186929 A JP2007186929 A JP 2007186929A JP 5263705 B2 JP5263705 B2 JP 5263705B2
Authority
JP
Japan
Prior art keywords
weight
parts
resin
prepreg
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007186929A
Other languages
Japanese (ja)
Other versions
JP2008214602A (en
Inventor
禎啓 加藤
雅義 上野
豪志 信國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2007186929A priority Critical patent/JP5263705B2/en
Priority to TW097104159A priority patent/TWI408052B/en
Priority to KR20080011400A priority patent/KR101494834B1/en
Priority to US12/068,298 priority patent/US7601429B2/en
Priority to EP20080250425 priority patent/EP1961554B1/en
Priority to DE602008000591T priority patent/DE602008000591D1/en
Priority to CN2008100086948A priority patent/CN101240111B/en
Publication of JP2008214602A publication Critical patent/JP2008214602A/en
Application granted granted Critical
Publication of JP5263705B2 publication Critical patent/JP5263705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

A prepreg for a printed circuit board is provided to realize excellent heat resistance during soldering and after moisture absorption, curability, chemical resistance, and a high glass transition temperature. A prepreg comprises: a resin composition containing (A) a naphthol aralkyl type cyanate ester resin represented by the following formula 1, wherein R is H or methyl, and n is an integer of 1-50; (B) a halogen-free epoxy resin; (C) boehmite; and (D) silicon powder, and (E) a base material. In the prepreg, the boehmite as component (C) and the silicon powder as component (D) are used in an amount of 50-300 parts by weight and 5-30 parts by weight based on 100 parts by weight of the combined weight of the naphthol aralkyl type cyanate ester resin and the halogen-free epoxy resin.

Description

本発明は、プリント配線板用の難燃性を有する樹脂組成物によるプリプレグ、それを用いた積層板、金属張り積層板に関する。   The present invention relates to a prepreg made of a flame retardant resin composition for printed wiring boards, a laminate using the prepreg, and a metal-clad laminate.

電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化・高機能化・高密度実装化はとどまるところを知らず、その進展はますます加速している。特に近年では携帯電話に代表されるモバイル機器の技術が急進し、ユピキタス社会の実現に向けた技術革新が著しい。
半導体パッケージもQFPからBGA・CSPのようなエリア実装型に展開し、さらにMCP・SIP等の高機能型の出現ように、その形態は多種多様になりつつある。そのため、以前にも増して半導体パッケージ用積層板に対する耐熱性・高剛性・低熱膨張性・低吸水性などの特性の要求が強まっている。
The high integration, high functionality, and high-density mounting of semiconductors widely used in electronic devices, communication devices, personal computers, etc. are unrecognized, and their progress is accelerating. In particular, in recent years, the technology of mobile devices represented by mobile phones has rapidly advanced, and technological innovation for realizing a ubiquitous society has been remarkable.
Semiconductor packages are also expanding from QFP to area mounting types such as BGA and CSP, and the form is becoming more diverse as high-functional types such as MCP and SIP appear. For this reason, demands for characteristics such as heat resistance, high rigidity, low thermal expansion, and low water absorption are increasing for semiconductor package laminates.

従来、プリント配線板用の積層板としては、エポキシ樹脂をジシアンジアミドで硬化させるFR−4タイプの積層板が広く使用されているが、この手法では高耐熱性の要求に対応するには限界があった。耐熱性に優れるプリント配線板用樹脂としては、シアン酸エステル樹脂が知られており、ビスフェノールA型シアン酸エステル樹脂と、他の熱硬化性樹脂や熱可塑性樹脂との樹脂組成物をベースにして、近年、半導体パッケージ用積層板に幅広く使用されている。
このビスフェノールA型シアン酸エステル樹脂は、電気特性、機械特性、耐薬品性、接着性などに優れた特性を有しているが、吸水性や吸湿耐熱性の面では、過酷な条件下では不十分な場合があり、更なる特性の向上を目指して、他の構造を有するシアン酸エステル樹脂の検討が行われている。
他の構造のシアン酸エステル樹脂としては、ノボラック型シアン酸エステル樹脂の事例が多く見受けられる(例えば特許文献1参照)が、ノボラック型シアン酸エステル樹脂は、通常の硬化条件では、硬化不足になり易く、得られる硬化物は、吸水率が大きく、吸湿耐熱性が低下するなどの問題があった。ノボラック型シアン酸エステル樹脂の改善手法として、ビスフェノールA型シアン酸エステル樹脂とのプレポリマーが開示されている(例えば特許文献2参照)が、本プレポリマーは、硬化性の点は向上するものの、特性改善の点では未だ不十分であった。
Conventionally, FR-4 type laminates in which epoxy resin is cured with dicyandiamide have been widely used as laminates for printed wiring boards, but this method has limitations in meeting the requirements for high heat resistance. It was. As a resin for printed wiring boards having excellent heat resistance, cyanate ester resin is known, and based on a resin composition of bisphenol A type cyanate ester resin and other thermosetting resin or thermoplastic resin. In recent years, it has been widely used for semiconductor package laminates.
This bisphenol A type cyanate ester resin has excellent electrical properties, mechanical properties, chemical resistance, adhesive properties, etc., but it is not suitable under severe conditions in terms of water absorption and moisture absorption heat resistance. In some cases, cyanate ester resins having other structures have been studied with the aim of further improving the properties.
As examples of cyanate ester resins having other structures, there are many examples of novolac-type cyanate ester resins (see, for example, Patent Document 1), but novolak-type cyanate ester resins are insufficiently cured under normal curing conditions. The resulting cured product has problems such as high water absorption and reduced moisture absorption heat resistance. As a method for improving the novolak-type cyanate ester resin, a prepolymer with a bisphenol A-type cyanate ester resin is disclosed (for example, see Patent Document 2), but the prepolymer has improved curability, In terms of improving the characteristics, it was still insufficient.

また、電子機器等に使用されるプリント配線板用積層板としては、通常難燃性が必要であり、従来、この難燃性を付与するために臭素系難燃剤を併用する処方が用いられている(例えば特許文献3参照)が、昨今の環境問題の高まりに呼応して、ハロゲン系化合物を使用しない樹脂組成物が求められている。非ハロゲン系の難燃剤としてはリン化合物の検討が行われてきたが、燃焼時にホスフィンなどの有毒化合物が発生する恐れがあった。他の難燃剤では無機化合物として、金属水和物が知られており、水酸化アルミニウムは加熱時に結晶水を放出する反応による難燃剤として知られている。しかしながら、水酸化アルミニウム等の金属水和物を単独で難燃剤として使用する場合、UL94V-0を達成する添加量は50wt%以上を必要とすることが多く(例えば特許文献4参照)、水酸化アルミニウムの一般構造であるギブサイトの添加量が多い場合、アルカリや酸に対する耐薬品性が著しく劣る傾向にある。プリント配線板の製造工程におけるエッチング・デスミア・メッキ処理などは過酷なアルカリ性・酸性条件であり、耐薬品性の劣る絶縁層の改善が要求されていた。   In addition, as a laminated board for printed wiring boards used for electronic devices and the like, usually flame retardancy is necessary, and conventionally, a prescription using a brominated flame retardant in combination with this flame retardancy has been used. However, in response to the recent increase in environmental problems, there is a demand for a resin composition that does not use a halogen-based compound. Phosphorus compounds have been studied as non-halogen flame retardants, but toxic compounds such as phosphine may be generated during combustion. In other flame retardants, metal hydrates are known as inorganic compounds, and aluminum hydroxide is known as a flame retardant by a reaction that releases crystal water when heated. However, when a metal hydrate such as aluminum hydroxide is used alone as a flame retardant, the amount of addition to achieve UL94V-0 often requires 50 wt% or more (see, for example, Patent Document 4). When the amount of gibbsite, which is a general structure of aluminum, is large, the chemical resistance to alkalis and acids tends to be extremely inferior. Etching, desmear, plating, etc. in the printed wiring board manufacturing process are harsh alkaline and acidic conditions, and improvement of the insulating layer having poor chemical resistance has been demanded.

さらに半導体パッケージの組み立て工程では、ベーキング・ワイヤーボンディング・ダイアタッチ・モールド樹脂硬化等の工程で120〜200℃の熱加工が行われ、半田ボール接続では、環境問題から、従来の鉛半田に替えて無鉛半田になることでリフロー温度が20〜30℃上昇するため、半導体パッケージ用積層板に求められる高耐熱性の要求は留まることがない。難燃剤としてギブサイトを用いた積層板では、ギブサイトの脱水開始温度が200℃をやや超えた付近であることから、200℃以上の高温加工では耐熱性が劣ることがあり、高い信頼性が要求される半導体パッケージ用積層板において、耐熱性に優れたハロゲン系化合物を使用しない積層板の開発が望まれていた。   Furthermore, in the process of assembling the semiconductor package, thermal processing at 120 to 200 ° C. is performed in processes such as baking, wire bonding, die attach, and mold resin curing. For solder ball connection, instead of conventional lead solder due to environmental problems. Since the reflow temperature is increased by 20 to 30 ° C. by using lead-free solder, the demand for high heat resistance required for a laminated board for semiconductor packages does not remain. In a laminate using gibbsite as a flame retardant, the dehydration start temperature of gibbsite is in the vicinity of slightly over 200 ° C, so heat resistance may be inferior in high-temperature processing at 200 ° C or higher, and high reliability is required. Therefore, it has been desired to develop a laminated board that does not use a halogen-based compound having excellent heat resistance.

特開平11-124433号公報Japanese Patent Laid-Open No. 11-124433 特開2000-191776号公報JP 2000-191776 A 特開平11-021452号公報Japanese Patent Laid-Open No. 11-021452 特開2001-226465号公報JP 2001-226465 A

本発明は、ハロゲン化合物を使用せずに高度の難燃性を保持し、耐薬品性に優れ、ガラス転移温度が高く、優れた半田耐熱性を有するプリント配線板材料用プリプレグ及び積層板を提供する事を課題とする。   The present invention provides a prepreg and laminated board for printed wiring board materials that retain a high degree of flame resistance without using a halogen compound, have excellent chemical resistance, have a high glass transition temperature, and have excellent soldering heat resistance. The task is to do.

本発明者らは、特定構造のシアン酸エステル樹脂と非ハロゲン系エポキシ樹脂に、酸・アルカリに難溶であるベーマイト、難燃助剤であるシリコーンパウダーを配合することで、シアン酸エステル樹脂の分子構造などによる反応阻害要因を低減させて硬化性を高め、樹脂骨格の剛直な構造により耐熱性(高ガラス転移温度)を維持するとともに、耐薬品性と吸湿耐熱性に優れたハロゲンフリー系の難燃性樹脂組成物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式(1)で示されるシアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)、ベーマイト(C)、シリコーンパウダー(D)を含む樹脂組成物と基材(E)からなるプリプレグであって、該樹脂組成物における該シアン酸エステル樹脂(A)のシアネート基数と該非ハロゲン系エポキシ樹脂(B)のエポキシ基数の比が0.7〜2.5であり、該ベーマイト(C)の量が、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計100重量部に対して120〜250重量部であり、該シリコーンパウダー(D)の量が、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計100重量部に対して5〜30重量部であるプリプレグであり、これらプリプレグを硬化して得られる積層板または金属箔張り積層板である。

Figure 0005263705
(式中、Rは水素原子またはメチル基を示し、nは平均値として1から10である。) The present inventors incorporated cyanite ester resin having a specific structure and non-halogen epoxy resin with boehmite, which is hardly soluble in acids and alkalis, and silicone powder, which is a flame retardant aid, to provide a cyanate ester resin. Halogen free system with high chemical resistance and moisture absorption heat resistance while maintaining heat resistance (high glass transition temperature) due to the rigid structure of the resin skeleton by reducing reaction inhibition factors due to molecular structure etc. The present inventors have found that a flame retardant resin composition can be obtained and have completed the present invention. That is, the present invention relates to a resin composition comprising a cyanate ester resin (A) represented by the general formula (1), a non-halogen epoxy resin (B), boehmite (C), and silicone powder (D) and a substrate ( A ratio of the number of cyanate groups of the cyanate ester resin (A) and the number of epoxy groups of the non-halogen epoxy resin (B) in the resin composition is 0.7 to 2.5, The amount of the boehmite (C) is 120 to 250 parts by weight with respect to a total of 100 parts by weight of the cyanate ester resin (A) and the non-halogen epoxy resin (B), and the amount of the silicone powder (D) is a prepreg 5 to 30 parts by weight per 100 parts by weight of cyanate ester resin (a) and the non-halogen epoxy resin (B), obtained by curing these prepregs It is a laminate or a metal foil-clad laminate.
Figure 0005263705
(In the formula, R represents a hydrogen atom or a methyl group, and n is 1 to 10 as an average value.)

本発明によるプリプレグの硬化物は、耐薬品性に優れ、ガラス転移温度が高く、耐熱性が優れており、ハロゲン系難燃材を使用することなく高い難燃性を有することから、高い耐薬品性を要求される過酷条件下で製造され、高耐熱性・高信頼性を要求される高機能化対応のプリント配線板用の材料に好適であり、工業的な実用性は極めて高いものである。   The cured product of the prepreg according to the present invention has excellent chemical resistance, high glass transition temperature, excellent heat resistance, and high flame resistance without using a halogen-based flame retardant. It is manufactured under severe conditions that require high performance, and is suitable for materials for high-performance printed wiring boards that require high heat resistance and high reliability. The industrial practicality is extremely high. .

本発明において用いられるシアン酸エステル樹脂(A)は、一般式(1)で示されるシアン酸エステル樹脂及びそのプレポリマーであれば特に限定されない。一般式(1)で示されるシアン酸エステル樹脂(A)は、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシリレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮合させて得られるものであり、その製法は特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。具体的に例示すると、一般式(2)で示されるナフトールアラルキル樹脂とハロゲン化シアンを不活性有機溶媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフトールアラルキル樹脂と塩基性化合物による塩を、水を含有する溶液中にて形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採ることもできる。

Figure 0005263705
(式中、Rは水素原子またはメチル基を示し、nは平均値として1から10である。) The cyanate ester resin (A) used in the present invention is not particularly limited as long as it is a cyanate ester resin represented by the general formula (1) and a prepolymer thereof. The cyanate ester resin (A) represented by the general formula (1) includes naphthols such as α-naphthol or β-naphthol, p-xylylene glycol, α, α'-dimethoxy-p-xylene, 1,4- It is obtained by condensing naphthol aralkyl resin obtained by reaction with di (2-hydroxy-2-propyl) benzene or the like and cyanic acid, and its production method is not particularly limited, and existing as cyanate ester synthesis You may manufacture by any method. Specifically, it can be obtained by reacting a naphthol aralkyl resin represented by the general formula (2) with cyanogen halide in an inert organic solvent in the presence of a basic compound. Further, a similar method may be employed in which a salt of a naphthol aralkyl resin and a basic compound is formed in a solution containing water, and then a two-phase interface reaction with cyanogen halide is performed.
Figure 0005263705
(In the formula, R represents a hydrogen atom or a methyl group, and n is 1 to 10 as an average value.)

本発明において使用される非ハロゲン系エポキシ樹脂(B)とは、1分子中に2個以上のエポキシ基を有し、意図的に分子骨格内にハロゲン原子を有しない化合物であれば特に限定されるものではない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられ、特に難燃性を向上させるためにはアラルキルノボラック型エポキシ樹脂が好ましい。アラルキルノボラック型エポキシ樹脂とは式(3)で表せるものであり、フェノールフェニルアラルキル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等が挙げられる。これらの非ハロゲン系エポキシ樹脂(B)は、1種もしくは2種以上を適宜混合して使用することが可能である。

Figure 0005263705
G:グリシジル基
(式中、Ar1・Ar2はフェニル基、ナフチル基、ビフェニル基等の単環あるいは多環の芳香族炭化水素が置換基になったアリール基を示し、Rx・Ryは水素原子またはアルキル基、アリール基を示し、mは1〜5までの整数を示し、nは1から50までの整数を示す。) The non-halogen epoxy resin (B) used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule and intentionally not having a halogen atom in the molecular skeleton. It is not something. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy Resin, biphenyl type epoxy resin, aralkyl novolak type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, glycidylamine, glycidyl ester, butadiene epoxidized compound, hydroxyl group-containing silicone resin and epichlorohydrin In particular, an aralkyl novolac type epoxy resin is preferable in order to improve flame retardancy. The aralkyl novolac type epoxy resin can be represented by the formula (3), and examples thereof include a phenol phenyl aralkyl type epoxy resin, a phenol biphenyl aralkyl type epoxy resin, and a naphthol aralkyl type epoxy resin. These non-halogen epoxy resins (B) can be used alone or in combination of two or more.
Figure 0005263705
G: Glycidyl group (wherein Ar1 and Ar2 represent an aryl group substituted with a monocyclic or polycyclic aromatic hydrocarbon such as a phenyl group, a naphthyl group, and a biphenyl group, and Rx / Ry represents a hydrogen atom or An alkyl group or an aryl group, m represents an integer of 1 to 5, and n represents an integer of 1 to 50.)

本発明において使用されるシアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)は、樹脂組成物中のシアン酸エステル樹脂(A)のシアネート基数と非ハロゲン系エポキシ樹脂(B)のエポキシ基数の比(CN/Ep)が0.7〜2.5で配合することが好ましい。CN/Epが0.7未満では積層板の難燃性が低下し、2.5を超える配合では硬化性などが低下する場合がある。   The cyanate ester resin (A) and non-halogen epoxy resin (B) used in the present invention are the cyanate group number of the cyanate ester resin (A) in the resin composition and the epoxy of the non-halogen epoxy resin (B). It is preferable that the ratio of the number of bases (CN / Ep) is 0.7 to 2.5. If CN / Ep is less than 0.7, the flame retardancy of the laminate is reduced, and if it exceeds 2.5, the curability may be reduced.

本発明ではベーマイト(C)を含むことが特徴である。従来、ハロゲン系難燃剤を用いないプリント配線板用積層板の無機系難燃剤としては、ギブサイトが好適に使用されていたが、積層板の耐薬品性が劣る問題があった。本発明において使用されるシアン酸エステル樹脂(A)を含む樹脂組成物に酸・アルカリに難溶なベーマイト(C)を添加したところ、積層板の難燃性を維持し、耐薬品性が向上することがわかった。さらにベーマイトはギブサイトに比べ結晶水が少なく、脱水開始温度が高いため、半田耐熱性も向上することがわかった。本発明で用いられるベーマイトの平均粒子径(D50)は特に限定されないが、分散性を考慮すると平均粒子径(D50)が0.2〜5μmであることが好ましい。ベーマイトの配合量はシアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量100重量部に対して、120〜250重量部であり、積層板の厚さ方向の熱膨張率を低くするには、配合量を多くした方が良いが、配合量が多くなりすぎると樹脂ワニスが増粘し、取り扱いが悪くなり、また成形性が低下することがあるため、120〜250重量部の範囲であるThe present invention is characterized by containing boehmite (C). Conventionally, gibbsite has been suitably used as an inorganic flame retardant for a printed wiring board laminate that does not use a halogen flame retardant, but there has been a problem that the chemical resistance of the laminate is poor. When boehmite (C), which is hardly soluble in acids and alkalis, is added to the resin composition containing the cyanate ester resin (A) used in the present invention, the flame retardancy of the laminate is maintained and the chemical resistance is improved. I found out that Furthermore, boehmite has less crystal water than gibbsite, and the dehydration start temperature is high, so it has been found that the solder heat resistance is also improved. The average particle size (D50) of the boehmite used in the present invention is not particularly limited, but the average particle size (D50) is preferably 0.2 to 5 μm in consideration of dispersibility. The amount of boehmite is 120 to 250 parts by weight with respect to 100 parts by weight of the total amount of cyanate ester resin (A) and non-halogen epoxy resin (B), and the coefficient of thermal expansion in the thickness direction of the laminate. order to lower, although it is better to increase the amount, when the blending amount is too much resin varnish thickened, handling becomes worse, also the moldability may decrease, 120-250 weight it is in the range of parts.

本発明のプリプレグの樹脂組成物には、上記ベーマイト(C)以外に、他の無機充填剤も併用することができる。その具体例としては、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。併用する無機充填剤の平均粒子径(D50)は特に限定されないが、分散性を考慮すると平均粒子径(D50)が0.2〜5μmであることが好ましい。無機充填剤の配合量は、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量100重量部に対して、ベーマイト(C)との合計配合として300重量部以下であり、無機充填剤の配合量が多すぎると成形性が低下することがあることから、ベーマイト(C)との合計配合として250重量部以下が特に好ましい。   In addition to the boehmite (C), other inorganic fillers can be used in combination with the prepreg resin composition of the present invention. Specific examples thereof include silicas such as natural silica, fused silica, amorphous silica, and hollow silica, molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, and calcination. Examples include clay, calcined kaolin, calcined talc, mica, short glass fibers (fine glass powders such as E glass and D glass), and hollow glass. The average particle size (D50) of the inorganic filler used in combination is not particularly limited, but it is preferable that the average particle size (D50) is 0.2 to 5 μm in consideration of dispersibility. The blending amount of the inorganic filler is 300 parts by weight or less as a total blending with boehmite (C) with respect to 100 parts by weight of the total blending amount of the cyanate ester resin (A) and the non-halogen epoxy resin (B). When the amount of the inorganic filler is too large, the moldability may be lowered, so that the total amount with boehmite (C) is particularly preferably 250 parts by weight or less.

ベーマイト(C)と併用する無機充填剤に関して、シランカップリング剤や湿潤分散剤を併用することも可能である。これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられ、1種もしくは2種以上を適宜組み合わせて使用することも可能である。また湿潤分散剤とは、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン(株)製のDisperbyk-110、111、180、BYK-W996、W9010、W903等の酸基を有する共重合体ベースの湿潤分散剤などが挙げられる。   With respect to the inorganic filler used in combination with boehmite (C), a silane coupling agent or a wetting and dispersing agent can be used in combination. These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ Vinyl silanes such as -methacryloxypropyltrimethoxysilane, cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc. It is also possible to use one kind or a combination of two or more kinds as appropriate. The wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used for coatings. Examples thereof include copolymer-based wetting and dispersing agents having acid groups such as Disperbyk-110, 111, 180, BYK-W996, W9010, and W903 manufactured by Big Chemie Japan.

本発明において用いられるシリコーンパウダー(D)は、シロキサン結合が三次元網目状に架橋したポリメチルシルセスキオキサンを微粉末化したもの、ビニル基含有ジメチルポリシロキサンとメチルハイドロジェンポリシロキサンの付加重合物を微粉末化したもの、ビニル基含有ジメチルポリシロキサンとメチルハイドロジェンポリシロキサンの付加重合物による微粉末の表面にシロキサン結合が三次元網目状に架橋したポリメチルシルセスキオキサンを被服させたもの、無機担持体表面にシロキサン結合が三次元網目状に架橋したポリメチルシルセスキオキサンを被服させたもの等である。シリコーンパウダーは燃焼時間を遅らせ、難燃効果を高める難燃助剤としての作用があり、シリコーンパウダーをシアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量100重量部に対して5重量部以上配合すると顕著な難燃効果があることがわかった。シリコーンパウダーの配合量としては、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量100重量部に対して5〜30重量部であり、好適には5〜20重量部である。   The silicone powder (D) used in the present invention is a fine powder of polymethylsilsesquioxane in which siloxane bonds are crosslinked in a three-dimensional network, addition polymerization of vinyl group-containing dimethylpolysiloxane and methylhydrogenpolysiloxane. The surface of the fine powder made of an addition polymer of vinyl group-containing dimethylpolysiloxane and methylhydrogenpolysiloxane was coated with polymethylsilsesquioxane having a siloxane bond crosslinked in a three-dimensional network. And those coated with polymethylsilsesquioxane having a siloxane bond crosslinked in a three-dimensional network on the surface of the inorganic carrier. Silicone powder acts as a flame retardant aid that delays the burning time and enhances the flame retardant effect. Silicone powder is added to 100 parts by weight of the total amount of cyanate ester resin (A) and non-halogen epoxy resin (B). On the other hand, it was found that when 5 parts by weight or more is blended, there is a remarkable flame retardant effect. The blending amount of the silicone powder is 5 to 30 parts by weight, preferably 5 to 20 parts by weight with respect to 100 parts by weight of the total blending amount of the cyanate ester resin (A) and the non-halogen epoxy resin (B). It is.

本発明のプリプレグの樹脂組成物には、ビスマレイミド化合物を併用することも可能である。これらは1分子中に2個のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタンなどが挙げられる。なお、これらビスマレイミド化合物のプレポリマー、もしくはビスマレイミド化合物とアミン化合物のプレポリマーなどの形で配合する事もでき、1種もしくは2種以上を適宜混合して使用することも可能である。より好適なものとしては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンが挙げられる。   The prepreg resin composition of the present invention may be used in combination with a bismaleimide compound. These are not particularly limited as long as they are compounds having two maleimide groups in one molecule. Specific examples thereof include bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-Ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane and the like. These bismaleimide compound prepolymers or bismaleimide compound and amine compound prepolymers can also be blended, and one or two or more of them can be used in appropriate combination. More preferred are bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) Methane is mentioned.

本発明のプリプレグの樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性の化合物、添加剤などの併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、メラミンやベンゾグアナミンなどの窒素含有化合物、オキサジン環含有化合物などが挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等、所望に応じて適宜組み合わせて使用することも可能である。   The resin composition of the prepreg of the present invention includes other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, and other flame retardants as long as the desired properties are not impaired. Can be used in combination with other compounds and additives. These are not particularly limited as long as they are generally used. For example, examples of the flame retardant compound include nitrogen-containing compounds such as melamine and benzoguanamine, and oxazine ring-containing compounds. Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners In addition, a polymerization inhibitor or the like can be used in appropriate combination as desired.

本発明において使用される基材(E)には、各種プリント配線板材料に用いられている公知のものを使用することが出来る。例えば、Eガラス、Dガラス、Sガラス、NEガラス等のガラス繊維、あるいはガラス以外の無機繊維、ポリイミド、ポリアミド、ポリエステルなどの有機繊維が挙げられ、目的とする用途や性能により適宜選択できる。形状としては織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。厚みについては、特に制限はされないが、通常は0.01〜0.3mm程度を使用する。これら基材のなかでも強度と吸水性の点でガラス繊維による基材が好ましい。   As the base material (E) used in the present invention, known materials used for various printed wiring board materials can be used. Examples thereof include glass fibers such as E glass, D glass, S glass, and NE glass, inorganic fibers other than glass, and organic fibers such as polyimide, polyamide, and polyester, and can be appropriately selected depending on the intended use and performance. Examples of the shape include woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat. The thickness is not particularly limited, but usually about 0.01 to 0.3 mm is used. Among these substrates, glass substrates are preferable in terms of strength and water absorption.

本発明のプリプレグの樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を併用することも可能である。これらは、シアン酸エステル樹脂(A)や非ハロゲン系エポキシ樹脂(B)の硬化促進剤として一般に使用されるものであれば、特に限定されるものではない。これらの具体例としては、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類及びその誘導体、第3級アミン等が挙げられる。   The prepreg resin composition of the present invention can be used in combination with a curing accelerator in order to adjust the curing rate as needed. These are not particularly limited as long as they are generally used as a curing accelerator for the cyanate ester resin (A) and the non-halogen epoxy resin (B). Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, and tertiary amines.

本発明のプリプレグの製造方法は、シアン酸エステル樹脂(A)、非ハロゲン系エポキシ樹脂(B)、ベーマイト(C)、シリコーンパウダー(D)を必須成分として含有する樹脂組成物と基材(E)とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。例えば、上記樹脂組成物からなる樹脂ワニスを基材(E)に含浸または塗布させた後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、プリプレグを製造する方法などが挙げられる。基材(E)に対する樹脂組成物の付着量は、プリプレグの樹脂量(無機充填剤を含む)で20〜90重量%の範囲が好ましい。   The method for producing the prepreg of the present invention comprises a resin composition containing a cyanate ester resin (A), a non-halogen epoxy resin (B), boehmite (C), and silicone powder (D) as essential components and a substrate (E ) And a method for producing a prepreg is not particularly limited. For example, after impregnating or applying the resin varnish composed of the above resin composition to the base material (E), it is semi-cured by a method of heating for 1 to 60 minutes in a dryer at 100 to 200 ° C. to produce a prepreg The method of doing is mentioned. The amount of the resin composition attached to the substrate (E) is preferably in the range of 20 to 90% by weight in terms of the resin amount of the prepreg (including the inorganic filler).

前記樹脂ワニスに用いられる有機溶剤としては、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)との混合物が相溶するものであれば、特に限定されるものではない。具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。   The organic solvent used in the resin varnish is not particularly limited as long as the mixture of the cyanate ester resin (A) and the non-halogen epoxy resin (B) is compatible. Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, amides such as dimethylformamide and dimethylacetamide, and the like.

本発明の積層板は、上述のプリプレグを用いて積層成形したものである。具体的には前述のプリプレグを1枚あるいは複数枚を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造する。使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されない。成形条件としては、通常のプリント配線板用積層板および多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度は100〜300℃、圧力は2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。また、必要に応じて150〜300℃の温度で後硬化を行っても良い。 The laminated board of the present invention is formed by lamination using the above prepreg. Specifically, it is manufactured by laminating one or a plurality of the prepregs described above and laminating and forming a metal foil such as copper or aluminum on one or both sides as desired. The metal foil to be used is not particularly limited as long as it is used for a printed wiring board material. As a molding condition, a general laminated board for a printed wiring board and a multilayer board can be applied. For example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., the temperature is generally 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally in the range of 0.05 to 5 hours. . Moreover, you may perform postcure at the temperature of 150-300 degreeC as needed.

以下に合成例、実施例、比較例を示し、本発明を詳細に説明するが、本発明はこれに限定されるものではない。   Synthesis Examples, Examples and Comparative Examples are shown below to describe the present invention in detail, but the present invention is not limited thereto.

(合成例1)α−ナフトールアラルキル型シアン酸エステル樹脂の合成-1

Figure 0005263705
式(4)で表されるα−ナフトールアラルキル樹脂(SN485、OH基当量:219g/eq.軟化点:86℃、新日鐵化学(株)製) 103g(OH基0.47モル)をクロロホルム 500mlに溶解後、トリエチルアミン 0.7モルを添加混合し、これを 0.93モルの塩化シアンのクロロホルム溶液 300gに、-10℃で1.5時間かけて滴下し、30分撹拌した後、更に 0.1モルのトリエチルアミンとクロロホルム 30gの混合溶液を滴下し、30分撹拌して反応を完結させた。生成するトリエチルアミンの塩酸塩を濾別した後、得られた濾液を 0.1N塩酸 500mlで洗浄した後、水 500mlでの洗浄を4回繰り返した。ついで、クロロホルム/水混合溶液のクロロホルム層を分液処理により抽出、クロロホルム溶液に硫酸ナトリウムを添加し脱水処理を行った。硫酸ナトリウムを濾別した後、75℃でエバポレートし、更に90℃で減圧脱気することにより、褐色固形の式(5)で表されるα−ナフトールアラルキル型のシアン酸エステル樹脂を得た。赤外吸収スペクトルにおいて、2264cm-1付近にシアン酸エステル基の吸収を確認。また、13C-NMR及び1H-NMRにより、構造を同定し、OH基からOCN基への転化率は、99%以上であった。
Figure 0005263705
Synthesis Example 1 Synthesis of α-naphthol aralkyl type cyanate ester resin-1
Figure 0005263705
Α-naphthol aralkyl resin represented by formula (4) (SN485, OH group equivalent: 219 g / eq. Softening point: 86 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) 103 g (OH group 0.47 mol) in 500 ml of chloroform After dissolution, 0.7 mol of triethylamine was added and mixed, and this was added dropwise to 300 g of 0.93 mol of cyanogen chloride in chloroform over 1.5 hours at −10 ° C., stirred for 30 minutes, and further 0.1 mol of triethylamine and 30 g of chloroform. The mixed solution was added dropwise and stirred for 30 minutes to complete the reaction. The resulting triethylamine hydrochloride was filtered off, and the obtained filtrate was washed with 500 ml of 0.1N hydrochloric acid, and then washed with 500 ml of water four times. Subsequently, the chloroform layer of the chloroform / water mixed solution was extracted by liquid separation treatment, and sodium sulfate was added to the chloroform solution for dehydration treatment. Sodium sulfate was filtered off, evaporated at 75 ° C., and degassed under reduced pressure at 90 ° C. to obtain an α-naphthol aralkyl type cyanate ester resin represented by the formula (5) as a brown solid. In the infrared absorption spectrum, the absorption of the cyanate ester group was confirmed around 2264 cm-1. Further, the structure was identified by 13C-NMR and 1H-NMR, and the conversion rate from OH group to OCN group was 99% or more.
Figure 0005263705

(合成例2)α−ナフトールアラルキル型シアン酸エステル樹脂の合成-2
α−ナフトールアラルキル樹脂(SN485、OH基当量:219g/eq.軟化点:86℃、新日鐵化学(株)製)の代わりにα−ナフトールアラルキル樹脂(SN4105、OH基当量:226g/eq.軟化点:105℃、新日鐵化学(株)製) 102g(OH基0.45モル)を使用し、塩化シアンの使用量を0.90モルとした以外は合成法1と同様の手法にて合成した。
Synthesis Example 2 Synthesis of α-naphthol aralkyl-type cyanate ester resin-2
Instead of α-naphthol aralkyl resin (SN485, OH group equivalent: 219 g / eq. Softening point: 86 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) α-naphthol aralkyl resin (SN4105, OH group equivalent: 226 g / eq. Softening point: 105 ° C., manufactured by Nippon Steel Chemical Co., Ltd.) 102 g (OH group 0.45 mol) was used, and synthesis was performed in the same manner as in Synthesis Method 1 except that the amount of cyanogen chloride was 0.90 mol.

(実施例1) 合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)35重量部とフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)65重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン(株)製) 1.5重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(トスパール120、GE東芝シリコーン(株)製)10重量部、ベーマイト(BN100、河合石灰工業(株)製)150重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量51重量%のプリプレグを得た。 (Example 1) 35 parts by weight of α-naphthol aralkyl cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol biphenyl aralkyl epoxy resin (NC-3000-FH, epoxy equivalent: 320 g) / eq., Nippon Kayaku Co., Ltd.) 65 parts by weight, wetting and dispersing agent (BYK-W903, Big Chemie Japan Co., Ltd.) 1.5 parts by weight was dissolved and mixed with methyl ethyl ketone, and silicone powder (Tospearl 120, GE A varnish was obtained by mixing 10 parts by weight of Toshiba Silicone Co., Ltd., 150 parts by weight of boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.) and 0.02 parts by weight of zinc octylate. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 51% by weight is obtained. Obtained.

(参考例1)
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)64重量部と、フェノールフェニルアラルキル型エポキシ樹脂(ザイロック型エポキシ樹脂:240g/eq.、日本化薬(株)製)18重量部、ナフトールアラルキル型エポキシ樹脂(ESN-175,エポキシ当量:268g/eq.、東都化成(株)製)18重量部、シランカップリング剤(Z6040、東レ・ダウコーニング(株)製)2重量部、湿潤分散剤(BYK-W996、ビッグケミージャパン(株)製) 1重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(トスパール130、GE東芝シリコーン(株)製)10重量部、ベーマイト(BS100、河合石灰工業(株)製)80重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。
(Reference Example 1)
64 parts by weight of α-naphthol aralkyl-type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1, phenol phenyl aralkyl-type epoxy resin (Zylock-type epoxy resin: 240 g / eq., Nippon Kayaku ( 18 parts by weight, naphthol aralkyl type epoxy resin (ESN-175, epoxy equivalent: 268 g / eq., Manufactured by Tohto Kasei Co., Ltd.), silane coupling agent (Z6040, Toray Dow Corning) )) 2 parts by weight, wetting and dispersing agent (BYK-W996, manufactured by Big Chemie Japan) 1 part by weight is dissolved and mixed with methyl ethyl ketone, and then 10 parts by weight of silicone powder (Tospearl 130, manufactured by GE Toshiba Silicone) Varnish was obtained by mixing 80 parts by weight of boehmite (BS100, manufactured by Kawai Lime Industry Co., Ltd.) and 0.02 part by weight of zinc octylate. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 48% by weight is obtained. Obtained.

(実施例
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)50重量部とフェノールノボラック型エポキシ樹脂(EPICLON N-770、エポキシ当量:190 g/eq.,大日本インキ化学工業(株)製) 50重量部、湿潤分散剤(BYK-W996、ビッグケミージャパン(株)製) 1重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(トスパール130、GE東芝シリコーン(株)製)20重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部、ベーマイト(BN100、河合石灰工業(株)製)120重量部、焼成タルク(BST-200L、日本タルク(株)製)15重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量50重量%のプリプレグを得た。
(Example 2 )
50 parts by weight of α-naphthol aralkyl cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol novolac epoxy resin (EPICLON N-770, epoxy equivalent: 190 g / eq., Dainippon) Ink Chemical Industry Co., Ltd.) 50 parts by weight, Wetting Dispersant (BYK-W996, Big Chemie Japan Co., Ltd.) 1 part by weight is dissolved and mixed with methyl ethyl ketone, and then silicone powder (Tospearl 130, GE Toshiba Silicone Co., Ltd.) )) 20 parts by weight, zinc molybdate coated on talc (chemguard 911C, zinc molybdate supported: 10% by weight, Sherwin Williams Chemicals) 3 parts by weight, boehmite (BN100, Kawai Lime Industry Co., Ltd.) )) 120 parts by weight, calcined talc (BST-200L, manufactured by Nippon Talc Co., Ltd.) 15 parts by weight, zinc octylate 0.02 parts by weight were mixed to obtain a varnish. This varnish is diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 50% by weight is obtained. Obtained.

(実施例
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)50重量部とナフトールアラルキル型エポキシ樹脂(ESN-175,エポキシ当量:268g/eq.、東都化成(株)製)10重量部、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EPPN-501HY、エポキシ当量:169g/eq.、日本化薬(株)製)30重量部、ナフタレン骨格型エポキシ樹脂(HP-4032D、エポキシ当量:140g/eq.、大日本インキ化学工業(株)製)10重量部、シランカップリング剤(Z6040、東レ・ダウコーニング(株)製)2重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン(株)製) 2.0重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(KMP-590、信越化学工業(株)製)20重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部、ベーマイト(BN100、河合石灰工業(株)製)200重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量50重量%のプリプレグを得た。
(Example 3 )
50 parts by weight of α-naphthol aralkyl-type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and naphthol aralkyl-type epoxy resin (ESN-175, epoxy equivalent: 268 g / eq., Toto Kasei Co., Ltd.) )) 10 parts by weight, tris (hydroxyphenyl) methane type epoxy resin (EPPN-501HY, epoxy equivalent: 169 g / eq., Nippon Kayaku Co., Ltd.) 30 parts by weight, naphthalene skeleton type epoxy resin (HP-4032D) , Epoxy equivalent: 140 g / eq., 10 parts by weight, manufactured by Dainippon Ink & Chemicals, Inc., 2 parts by weight of silane coupling agent (Z6040, manufactured by Toray Dow Corning), wetting and dispersing agent (BYK-W903) , Big Chemie Japan Co., Ltd.) 2.0 parts by weight dissolved in methyl ethyl ketone, 20 parts by weight of silicone powder (KMP-590, manufactured by Shin-Etsu Chemical Co., Ltd.), zinc molybdate coated on talc (Chemguard) 911C, molybdenum Zinc acid loading: 10 wt%, 3 parts by weight of Sherwin Williams Chemicals), 200 parts by weight of boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.) and 0.02 parts by weight of zinc octylate were mixed to obtain a varnish. . This varnish is diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 50% by weight is obtained. Obtained.

(実施例
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)55重量部とフェノールフェニルアラルキル型エポキシ樹脂(ザイロック型エポキシ樹脂,エポキシ当量:240g/eq.、日本化薬(株)製)20重量部、フェノールノボラック型エポキシ樹脂(EPICLON N-770、エポキシ当量:190 g/eq.,大日本インキ化学工業(株)製) 20重量部、ナフタレン骨格型エポキシ樹脂(HP-4032D、エポキシ当量:140g/eq.、大日本インキ化学工業(株)製)5重量部、シランカップリング剤(Z6040、東レ・ダウコーニング(株)製)2重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン(株)製) 1.5重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(KMP-701、信越化学工業(株)製)15重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部ベーマイト(BN100、河合石灰工業(株)製)150重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量51重量%のプリプレグを得た。
(Example 4 )
55 parts by weight of α-naphthol aralkyl-type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol phenyl aralkyl-type epoxy resin (Zylock type epoxy resin, epoxy equivalent: 240 g / eq., Nippon Kayaku) Yakuhin Co., Ltd.) 20 parts by weight, phenol novolac type epoxy resin (EPICLON N-770, epoxy equivalent: 190 g / eq., Manufactured by Dainippon Ink and Chemicals) 20 parts by weight, naphthalene skeleton type epoxy resin ( HP-4032D, epoxy equivalent: 140 g / eq., 5 parts by weight, manufactured by Dainippon Ink & Chemicals, Inc., 2 parts by weight of silane coupling agent (Z6040, manufactured by Toray Dow Corning), wetting and dispersing agent ( BYK-W903, manufactured by Big Chemie Japan Co., Ltd.) 1.5 parts by weight was dissolved and mixed with methyl ethyl ketone, and further 15 parts by weight of silicone powder (KMP-701, manufactured by Shin-Etsu Chemical Co., Ltd.) and zinc molybdate were coated on talc. (Chemguard 911C, zinc molybdate supported: 10% by weight, manufactured by Sherwin Williams Chemicals) 3 parts by weight boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.) 150 parts by weight, 0.02 parts by weight zinc octylate And got a varnish. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 51% by weight is obtained. Obtained.

(実施例
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)55重量部とフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)20重量部、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EPPN-501HY、エポキシ当量:169g/eq.、日本化薬(株)製)20重量部、ナフタレン骨格型エポキシ樹脂(HP-4032D、エポキシ当量:140g/eq.、大日本インキ化学工業(株)製)5重量部、シランカップリング剤(Z6040、東レ・ダウコーニング(株)製)2重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン(株)製) 1.5重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(トスパール130、GE東芝シリコーン(株)製)10重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部、ベーマイト(BN100、河合石灰工業(株)製)120重量部、球状合成シリカ(SC-2050、(株)アドマテックス製)15重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量50重量%のプリプレグを得た。
(Example 5 )
55 parts by weight of α-naphthol aralkyl type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Japan) Kayaku Co., Ltd.) 20 parts by weight, tris (hydroxyphenyl) methane type epoxy resin (EPPN-501HY, epoxy equivalent: 169 g / eq., Nippon Kayaku Co., Ltd.) 20 parts by weight, naphthalene skeleton type epoxy resin (HP-4032D, epoxy equivalent: 140 g / eq., Manufactured by Dainippon Ink & Chemicals, Inc.) 5 parts by weight, silane coupling agent (Z6040, manufactured by Toray Dow Corning Co., Ltd.), 2 parts by weight, wetting and dispersing agent (BYK-W903, manufactured by Big Chemie Japan Co., Ltd.) 1.5 parts by weight was dissolved and mixed with methyl ethyl ketone, and further 10 parts by weight of silicone powder (Tospearl 130, manufactured by GE Toshiba Silicone Co., Ltd.) and zinc molybdate were coated on talc. thing( Mugard 911C, zinc molybdate supported: 10% by weight, 3 parts by weight of Sherwin Williams Chemicals), 120 parts by weight of boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.), spherical synthetic silica (SC-2050, Co., Ltd.) (Made by Admatechs) 15 parts by weight and 0.02 parts by weight of zinc octylate were mixed to obtain a varnish. This varnish is diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 50% by weight is obtained. Obtained.

参考例2
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)50重量部とフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)50重量部、シランカップリング剤(Z6040、東レ・ダウコーニング製)2重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(KMP-590、信越化学工業(株)製)5重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部、ベーマイト(BN100、河合石灰工業(株)製)80重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。
( Reference Example 2 )
50 parts by weight of α-naphthol aralkyl cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Japan) 50 parts by weight of Kayaku Co., Ltd. and 2 parts by weight of silane coupling agent (Z6040, manufactured by Toray Dow Corning) are dissolved and mixed with methyl ethyl ketone, and then silicone powder (KMP-590, manufactured by Shin-Etsu Chemical Co., Ltd.) 5 parts by weight, zinc molybdate coated on talc (chemguard 911C, zinc molybdate supported: 10% by weight, manufactured by Sherwin Williams Chemicals), 3 parts by weight, boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.) A varnish was obtained by mixing 80 parts by weight and 0.02 part by weight of zinc octylate. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 48% by weight is obtained. Obtained.

(実施例
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)45重量部とフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)28重量部、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EPPN-501HY、エポキシ当量:169g/eq.、日本化薬(株)製)27重量部、シランカップリング剤(Z6040、東レ・ダウコーニング(株)製)2重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン(株)製) 1.5重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(KMP-600、信越化学工業(株)製)10重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ・ケミカルズ製)3重量部、ベーマイト(BN100、河合石灰工業(株)製)250重量部、オクチル酸亜鉛 0.02重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量51重量%のプリプレグを得た。
(Example 6 )
45 parts by weight of α-naphthol aralkyl type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Japan) Kayaku Co., Ltd.) 28 parts by weight, Tris (hydroxyphenyl) methane type epoxy resin (EPPN-501HY, epoxy equivalent: 169 g / eq., Nippon Kayaku Co., Ltd.) 27 parts by weight, silane coupling agent ( Z6040, manufactured by Toray Dow Corning Co., Ltd.) 2 parts by weight, wetting and dispersing agent (BYK-W903, manufactured by Big Chemie Japan Co., Ltd.) 1.5 parts by weight are dissolved and mixed with methyl ethyl ketone, and silicone powder (KMP-600, Shin-Etsu) Chemical Industry Co., Ltd.) 10 parts by weight, zinc molybdate coated talc (chemguard 911C, zinc molybdate supported: 10% by weight, Sherwin Williams Chemicals) 3 parts by weight, boehmite (BN100 250 parts by weight of Kawai Lime Industry Co., Ltd.) and 0.02 parts by weight of zinc octylate were mixed to obtain a varnish. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 51% by weight is obtained. Obtained.

参考例3
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)70重量部とフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)15重量部、フェノールノボラック型エポキシ樹脂(EPICLON N-770、エポキシ当量:190 g/eq.,大日本インキ化学工業製) 15重量部、湿潤分散剤(BYK-W996、ビッグケミージャパン(株)製) 1重量部をメチルエチルケトンで溶解混合し、更にシリコーンパウダー(トスパール130、GE東芝シリコーン(株)製)15重量部、ベーマイト(BN100、河合石灰製)80重量部、焼成タルク(BST-200L、日本タルク(株)製)20重量部、オクチル酸亜鉛 0.01重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロス(比重:2.5g/cm 3 )に含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量49重量%のプリプレグを得た。
( Reference Example 3 )
70 parts by weight of α-naphthol aralkyl type cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1 and phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq., Japan) 15 parts by weight of a phenol novolac type epoxy resin (EPICLON N-770, epoxy equivalent: 190 g / eq., Manufactured by Dainippon Ink and Chemicals), 15 parts by weight of a wetting dispersant (BYK-W996, 1 part by weight dissolved in methyl ethyl ketone, 15 parts by weight of silicone powder (Tospearl 130, manufactured by GE Toshiba Silicone), 80 parts by weight of boehmite (BN100, manufactured by Kawai Lime), fired Varnish was obtained by mixing 20 parts by weight of talc (BST-200L, Nippon Talc Co., Ltd.) and 0.01 parts by weight of zinc octylate. This varnish is diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth (specific gravity: 2.5 g / cm 3 ), dried by heating at 160 ° C. for 4 minutes, and a prepreg with a resin content of 49% by weight is obtained. Obtained.

参考例4
参考例2において、合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)の代わりに、合成例2で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:244g/eq.)を使用する以外は、参考例2と同様にプリプレグを得た。
( Reference Example 4 )
In Reference Example 2 , instead of the α-naphthol aralkyl cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1, the α-naphthol aralkyl cyanate ester resin (cyanate) obtained in Synthesis Example 2 was used. (Equivalent: 244 g / eq.) Was used, and a prepreg was obtained in the same manner as in Reference Example 2 .

(実施例
実施例において、合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)の代わりに、合成例2で得たα−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:244g/eq.)を使用する以外は、実施例と同様にプリプレグを得た。
(Example 7 )
In Example 6 , instead of the α-naphthol aralkyl cyanate ester resin (cyanate equivalent: 237 g / eq.) Obtained in Synthesis Example 1, the α-naphthol aralkyl cyanate ester resin (cyanate) obtained in Synthesis Example 2 was used. (Equivalent: 244 g / eq.) Was used, and a prepreg was obtained in the same manner as in Example 6 .

(比較例1)
実施例1において、ベーマイト(BN100、河合石灰工業(株)製)150重量部の代わりに、ギブサイト(水酸化アルミニウムCL303、住友化学(株)製)150重量部を使用する以外は、実施例1と同様にプリプレグを得た。
(Comparative Example 1)
Example 1 except that 150 parts by weight of gibbsite (aluminum hydroxide CL303, manufactured by Sumitomo Chemical Co., Ltd.) was used instead of 150 parts by weight of boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.) in Example 1. A prepreg was obtained in the same manner.

(比較例2)
参考例1において、ベーマイト(BS100、河合石灰工業(株)製)80重量部の代わりに、ギブサイト(水酸化アルミニウムCL303、住友化学(株)製)80重量部を使用する以外は、参考例1と同様にプリプレグを得た。
(Comparative Example 2)
Reference Example 1, boehmite (BS 100, manufactured by Kawai Lime Industrial Co.) in place of 80 parts by weight, but using gibbsite (aluminum hydroxide CL303, manufactured by Sumitomo Chemical Co.) 80 parts by weight, Reference Example 1 A prepreg was obtained in the same manner.

(比較例3)
実施例においてシリコーンパウダー(トスパール130、GE東芝シリコーン(株)製)20重量部を除いた以外は実施例と同様にプリプレグを得た。
(Comparative Example 3)
Except that in Example 2 except for the silicone powder (Tospearl 130, GE Toshiba Silicone Co.) 20 parts by weight to obtain a prepreg in the same manner as in Example 2.

(比較例4)
実施例においてシリコーンパウダー(KMP-590、信越化学工業(株)製)20重量部を除いた以外は実施例と同様にプリプレグを得た。
(Comparative Example 4)
Silicone powder except excluding (KMP-590, manufactured by Shin-Etsu Chemical Co., Ltd.) 20 parts by weight to obtain a prepreg in the same manner as in Example 3 in Example 3.

(比較例5)
比較例4においてベーマイト(BN100、河合石灰工業(株)製)200重量部の代わりに、ギブサイト(水酸化アルミニウムCL303、住友化学(株)製)200重量部を使用する以外は、比較例4と同様にプリプレグを得た。
(Comparative Example 5)
Comparative Example 4 and Comparative Example 4 were used except that 200 parts by weight of gibbsite (aluminum hydroxide CL303, manufactured by Sumitomo Chemical Co., Ltd.) was used instead of 200 parts by weight of boehmite (BN100, manufactured by Kawai Lime Industry Co., Ltd.). Similarly, a prepreg was obtained.

(比較例6)
実施例において、α−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)55重量部の代わりに、2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(BT2070,シアネート当量:139g/eq.、三菱ガス化学(株)製)55重量部を使用する以外は、実施例と同様にプリプレグを得た。
(Comparative Example 6)
In Example 4 , instead of 55 parts by weight of α-naphthol aralkyl type cyanate ester resin (cyanate equivalent: 237 g / eq.), A prepolymer of 2,2-bis (4-cyanatephenyl) propane (BT2070, cyanate equivalent) : 139 g / eq., Manufactured by Mitsubishi Gas Chemical Co., Ltd.) A prepreg was obtained in the same manner as in Example 4 except that 55 parts by weight were used.

(比較例7)
実施例において、α−ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:237g/eq.)55重量部の代わりに、フェノールノボラック型シアネート(PT-30,シアネート当量:126g/eq.、Lonza社製)55重量部を使用する以外は、実施例と同様にプリプレグを得た。
(Comparative Example 7)
In Example 5 , instead of 55 parts by weight of α-naphthol aralkyl type cyanate ester resin (cyanate equivalent: 237 g / eq.), Phenol novolac type cyanate (PT-30, cyanate equivalent: 126 g / eq., Manufactured by Lonza) ) A prepreg was obtained in the same manner as in Example 5 except that 55 parts by weight were used.

金属箔張り積層板1の作成
実施例1〜7、参考例1〜4および比較例1〜7で得られたプリプレグを、それぞれ4枚重ねて18μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を上下に配置し、圧力30 kgf/cm2、温度 220℃で120分間の積層成形を行い、絶縁層厚さ 0.4mmの銅張り積層板を得た。
Production of metal foil-clad laminate 1 Four prepregs obtained in Examples 1 to 7, Reference Examples 1 to 4 and Comparative Examples 1 to 7 were each stacked to be 18 μm thick electrolytic copper foil (3EC-III, Mitsui Metals) Mining Co., Ltd.) were placed one above the other and laminated for 120 minutes at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. to obtain a copper-clad laminate with an insulation layer thickness of 0.4 mm.

金属箔張り積層板2の作成
実施例1〜7、参考例1〜4および比較例1〜7で得られたプリプレグを、それぞれ2枚重ねて18μmの電解銅箔(3EC-III、三井金属鉱業(株)製)を上下に配置し、圧力30 kgf/cm2、温度 220℃で120分間の積層成形を行い、絶縁層厚さ 0.2mmの銅張り積層板を得た。
Preparation of metal foil-clad laminate 2 Each of the prepregs obtained in Examples 1 to 7, Reference Examples 1 to 4 and Comparative Examples 1 to 7 was overlapped, and 18 μm electrolytic copper foil (3EC-III, Mitsui Mining & Mining) (Manufactured by Co., Ltd.) was placed up and down, and laminate molding was performed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a copper-clad laminate having an insulation layer thickness of 0.2 mm.

得られた金属箔張り積層板1を用いて、難燃性、ガラス転移温度、熱膨張率、はんだ耐熱性、吸湿耐熱性を評価した結果を表1に示す。   Table 1 shows the results of evaluation of flame retardancy, glass transition temperature, coefficient of thermal expansion, solder heat resistance, and moisture absorption heat resistance using the obtained metal foil-clad laminate 1.

はんだ耐熱性以外の難燃性・ガラス転移温度・熱膨張率・吸湿耐熱性の評価は、金属箔張り積層板1をエッチングにより銅箔を除去した後、下記方法で行った。
燃焼試験:UL94垂直燃焼試験法に準拠して評価した。
ガラス転移温度:JIS C6481に従い、動的粘弾性分析装置(TAインスツルメント製)で測定した。
熱膨張率:熱機械分析装置(TAインスツルメント製)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃での厚み方向の線膨張係数を測定した。
はんだ耐熱性:5cmx5cmのサンプルを115℃で20時間乾燥した後、288℃の半田浴に浮かし、ふくれるまでの時間を計測した。
表1のはんだ耐熱性の記号は、○:30分以上ふくれ無し ×:30分未満でふくれ発生 である。
吸湿耐熱性:5cmx5cmのサンプルを115℃で20時間乾燥した後、プレッシャークッカー試験器(平山製作所製 PC-3型)で121℃、2気圧で4時間処理後、260℃の半田浴に60秒浸漬し、膨れ有無を目視観察した。
表1の吸湿耐熱性の記号は、○:異常なし △:ミーズリング発生 ×:ふくれ発生 である。
Evaluation of flame retardancy other than solder heat resistance, glass transition temperature, coefficient of thermal expansion, and moisture absorption heat resistance was performed by the following method after removing the copper foil from the metal foil-clad laminate 1 by etching.
Combustion test: Evaluated according to UL94 vertical combustion test method.
Glass transition temperature: Measured with a dynamic viscoelasticity analyzer (TA Instruments) according to JIS C6481.
Coefficient of thermal expansion: The temperature was increased from 40 ° C. to 340 ° C. at 10 ° C. per minute using a thermomechanical analyzer (TA Instruments), and the linear expansion coefficient in the thickness direction from 60 ° C. to 120 ° C. was measured.
Solder heat resistance: A sample of 5 cm x 5 cm was dried at 115 ° C for 20 hours, then floated in a solder bath at 288 ° C, and the time until swelling was measured.
The symbol of solder heat resistance in Table 1 is: ○: No blistering for 30 minutes or more ×: Blistering occurs in less than 30 minutes.
Hygroscopic heat resistance: After drying a sample of 5cm x 5cm at 115 ° C for 20 hours, it is treated in a pressure cooker tester (PC-3 type, manufactured by Hirayama Seisakusho) at 121 ° C and 2 atm for 4 hours, then in a 260 ° C solder bath for 60 seconds It was immersed and visually observed for the presence or absence of swelling.
The symbols for moisture absorption heat resistance in Table 1 are: ○: no abnormality Δ: occurrence of mesling ×: occurrence of blistering.

得られた金属箔張り積層板2を用いて、耐アルカリ性と耐酸性を評価した結果を表1に示す。   Table 1 shows the results of evaluation of alkali resistance and acid resistance using the obtained metal foil-clad laminate 2.

評価は、金属箔張り積層板2をエッチングにより銅箔を除去した後、下記方法で行った。
耐アルカリ性:5cmx5cmのサンプルを(1)115℃で20時間乾燥し、(2)70℃の1N 水酸化ナトリウム水溶液に60分浸漬後、(3)115℃で20時間乾燥した後の重量変化率を測定した。(1)後のサンプル重量をW1、(3)後のサンプル重量をW2とし、重量変化率を以下の式で算出した。
重量変化率[wt%] = (W1-W2)x100/W1
耐酸性:5cmx5cmのサンプルを(4)115℃で20時間乾燥し、(5)60℃の4N 塩酸水溶液に60分浸漬後、(6)115℃で20時間乾燥した後の重量変化率を測定した。(4)後のサンプル重量をW3、(6)後のサンプル重量をW4とし、重量変化率を以下の式で算出した。
重量変化率[wt%] = (W3-W4)x100/W3
表1の耐アルカリ性と耐酸性の記号は、○:重量変化0.1wt%未満 ×:重量変化0.1wt%以上 である。
Evaluation was performed by the following method after removing the copper foil by etching the metal foil-clad laminate 2.
Alkali resistance: Weight change rate after 5 cm x 5 cm sample (1) dried at 115 ° C for 20 hours, (2) immersed in 1N sodium hydroxide solution at 70 ° C for 60 minutes, and (3) dried at 115 ° C for 20 hours Was measured. The weight of the sample after (1) was W1, the weight of the sample after (3) was W2, and the weight change rate was calculated by the following formula.
Weight change rate [wt%] = (W1-W2) x100 / W1
Acid resistance: 5cmx5cm sample was dried (4) at 115 ° C for 20 hours, (5) 60% immersed in 4N hydrochloric acid aqueous solution for 60 minutes, and (6) measured for weight change after drying at 115 ° C for 20 hours. did. The weight of the sample after (4) was W3, the weight of the sample after (6) was W4, and the weight change rate was calculated by the following equation.
Weight change rate [wt%] = (W3-W4) x100 / W3
The symbols for alkali resistance and acid resistance in Table 1 are: ○: Less than 0.1 wt% change in weight ×: 0.1 wt% or more change in weight.

Figure 0005263705
Figure 0005263705

(表1)は、本発明による実施例1〜7が、ギブサイトを難燃剤として用いた比較例15より耐薬品性とはんだ耐熱性に優れ、シリコーンパウダーを用いていない比較例32,2-ビス(4-シアネートフェニル)プロパンのプレポリマーを用いた比較例6より難燃性に優れ、フェノールノボラック型シアネートを用いた比較例7より吸湿耐熱性に優れていることを示した。よって本発明により得られるプリプレグによる積層板は、耐薬品性に優れ、ガラス転移温度が高く、耐熱性に優れ、ハロゲン系難燃剤を用いることなく難燃性がUL94V−0を達成できることを確認した。 (Table 1) shows that Comparative Examples 3 to 7 in which Examples 1 to 7 according to the present invention were superior in chemical resistance and solder heat resistance to Comparative Examples 1 , 2 , and 5 using gibbsite as a flame retardant, and no silicone powder was used. , 4, 2,2-bis (4-cyanate phenyl) excellent than the flame retardant in Comparative example 6 using a prepolymer of propane, to be excellent in heat resistance after moisture absorption than Comparative example 7 using a phenol novolac type cyanate showed that. Therefore, it was confirmed that the prepreg laminate obtained by the present invention has excellent chemical resistance, high glass transition temperature, excellent heat resistance, and flame retardancy can achieve UL94V-0 without using a halogen-based flame retardant. .

Claims (3)

一般式(1)で示されるシアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)、ベーマイト(C)、シリコーンパウダー(D)を含む樹脂組成物と基材(E)からなるプリプレグであって、該樹脂組成物における該シアン酸エステル樹脂(A)のシアネート基数と該非ハロゲン系エポキシ樹脂(B)のエポキシ基数の比が0.7〜2.5であり、該ベーマイト(C)の量が、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計100重量部に対して120〜250重量部であり、該シリコーンパウダー(D)の量が、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計100重量部に対して5〜30重量部である、プリプレグ。
Figure 0005263705
(式中、Rは水素原子またはメチル基を示し、nは平均値として1から10である。)
A prepreg comprising a resin composition containing a cyanate ester resin (A) represented by the general formula (1), a non-halogen epoxy resin (B), boehmite (C), and silicone powder (D) and a substrate (E). The ratio of the number of cyanate groups of the cyanate ester resin (A) to the number of epoxy groups of the non-halogen epoxy resin (B) in the resin composition is 0.7 to 2.5, and the boehmite (C) The amount is 120 to 250 parts by weight with respect to a total of 100 parts by weight of the cyanate ester resin (A) and the non-halogen epoxy resin (B), and the amount of the silicone powder (D) is The prepreg which is 5-30 weight part with respect to a total of 100 weight part of A) and a non-halogen-type epoxy resin (B).
Figure 0005263705
(In the formula, R represents a hydrogen atom or a methyl group, and n is 1 to 10 as an average value.)
請求項1に記載のプリプレグを硬化して得られる積層板。   A laminate obtained by curing the prepreg according to claim 1. 請求項1又は2に記載のプリプレグと金属箔とを積層して硬化して得られる金属箔張り積層板。   A metal foil-clad laminate obtained by laminating and curing the prepreg according to claim 1 or 2 and a metal foil.
JP2007186929A 2007-02-07 2007-07-18 Prepreg and laminate Active JP5263705B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007186929A JP5263705B2 (en) 2007-02-07 2007-07-18 Prepreg and laminate
KR20080011400A KR101494834B1 (en) 2007-02-07 2008-02-04 Prepreg and laminate
TW097104159A TWI408052B (en) 2007-02-07 2008-02-04 Prepreg and laminate
EP20080250425 EP1961554B1 (en) 2007-02-07 2008-02-05 Prepreg and laminate
US12/068,298 US7601429B2 (en) 2007-02-07 2008-02-05 Prepreg and laminate
DE602008000591T DE602008000591D1 (en) 2007-02-07 2008-02-05 Prepreg and laminate
CN2008100086948A CN101240111B (en) 2007-02-07 2008-02-05 Prepreg and laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007028117 2007-02-07
JP2007028117 2007-02-07
JP2007186929A JP5263705B2 (en) 2007-02-07 2007-07-18 Prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2008214602A JP2008214602A (en) 2008-09-18
JP5263705B2 true JP5263705B2 (en) 2013-08-14

Family

ID=39835029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186929A Active JP5263705B2 (en) 2007-02-07 2007-07-18 Prepreg and laminate

Country Status (5)

Country Link
JP (1) JP5263705B2 (en)
KR (1) KR101494834B1 (en)
CN (1) CN101240111B (en)
DE (1) DE602008000591D1 (en)
TW (1) TWI408052B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024205B2 (en) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
JP5233710B2 (en) * 2008-02-12 2013-07-10 三菱瓦斯化学株式会社 Resin composition, prepreg and metal foil-clad laminate
JP5381016B2 (en) * 2008-10-30 2014-01-08 日立化成株式会社 Thermosetting resin composition, and prepreg and laminate using the same
JP5747817B2 (en) * 2009-02-25 2015-07-15 三菱瓦斯化学株式会社 Prepreg and laminate
JP5223781B2 (en) * 2009-06-01 2013-06-26 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
JP5526820B2 (en) * 2010-01-29 2014-06-18 日立化成株式会社 Thermosetting resin composition, and prepreg and laminate using the same
KR102002178B1 (en) * 2010-03-02 2019-10-21 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
GB201005444D0 (en) * 2010-03-31 2010-05-19 3M Innovative Properties Co Epoxy adhesive compositions comprising an adhesion promoter
JP5935690B2 (en) * 2010-04-08 2016-06-15 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
EP2578631B1 (en) 2010-06-02 2017-09-20 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminated sheet using same
CN101967264A (en) * 2010-08-31 2011-02-09 广东生益科技股份有限公司 Epoxy resin composition and high frequency circuit board made of same
CN102558472A (en) * 2010-12-24 2012-07-11 广东生益科技股份有限公司 Naphthol phenolic cyanate ester resin and synthesis method thereof
CN103443200B (en) * 2011-01-20 2015-12-23 三菱瓦斯化学株式会社 Resin combination, prepreg and plywood
WO2012121224A1 (en) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
KR101921366B1 (en) * 2011-09-26 2018-11-22 미츠비시 가스 가가쿠 가부시키가이샤 Molybdenum compound powder, prepreg, and laminate
JP6103486B2 (en) * 2011-11-07 2017-03-29 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate using the same
WO2013146700A1 (en) * 2012-03-30 2013-10-03 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
JP2014005338A (en) * 2012-06-22 2014-01-16 Dic Corp Curable composition, cured product, and printed wiring board
WO2014059654A1 (en) * 2012-10-19 2014-04-24 广东生益科技股份有限公司 Cyanate ester resin composition, and prepreg, laminate, and metal-clad laminate that are fabricated by using the same
WO2014061812A1 (en) * 2012-10-19 2014-04-24 三菱瓦斯化学株式会社 Resin composition, prepreg, laminate, and printed wiring board
JP2013237844A (en) * 2013-06-12 2013-11-28 Hitachi Chemical Co Ltd Thermosetting resin composition, prepreg using the same, and laminate
CN103497488B (en) * 2013-10-11 2016-05-25 广东生益科技股份有限公司 A kind of compositions of thermosetting resin and uses thereof
CN105237949B (en) * 2014-06-12 2017-11-03 广东生益科技股份有限公司 A kind of thermosetting epoxy resin composition and application thereof
CN104320911A (en) * 2014-08-27 2015-01-28 无锡长辉机电科技有限公司 Solving method of hydroscopic fracture of circuit board
JP6264250B2 (en) * 2014-09-30 2018-01-24 信越化学工業株式会社 Method for producing silicone rubber particles to be blended in synthetic resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245349B2 (en) * 1983-09-13 1990-10-09 Sumitomo Bakelite Co INSATSUKAIROYOSEKISOBAN
JPH064310B2 (en) * 1986-01-27 1994-01-19 松下電工株式会社 Electric laminate
JPH11124433A (en) * 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc Phenol novolak-based cyanic acid ester prepolymer
KR100617287B1 (en) * 2001-07-17 2006-08-30 신에쓰 가가꾸 고교 가부시끼가이샤 Semiconductor encapsulating epoxy resin composition and semiconductor device
KR100470178B1 (en) * 2003-06-03 2005-02-04 주식회사 엘지화학 The resin composition for copper clad laminate
JP2006131743A (en) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd Thermosetting resin composition and prepreg and metal-clad laminate and printed wiring board using the same
JP4843944B2 (en) * 2005-01-13 2011-12-21 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
JP2006348187A (en) * 2005-06-16 2006-12-28 Mitsubishi Gas Chem Co Inc Resin composition, and prepreg and copper-clad laminate using the same

Also Published As

Publication number Publication date
TWI408052B (en) 2013-09-11
TW200848257A (en) 2008-12-16
CN101240111B (en) 2011-12-28
KR20080074037A (en) 2008-08-12
CN101240111A (en) 2008-08-13
DE602008000591D1 (en) 2010-03-18
KR101494834B1 (en) 2015-02-23
JP2008214602A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5263705B2 (en) Prepreg and laminate
JP5384809B2 (en) Prepreg and laminate
EP1961554B1 (en) Prepreg and laminate
JP5024205B2 (en) Prepreg and laminate
JP6314830B2 (en) Resin composition, prepreg, laminate, and printed wiring board
JP5954586B2 (en) Resin composition, prepreg and laminate
JP4843944B2 (en) Resin composition and prepreg and laminate using the same
JP5849948B2 (en) Resin composition and prepreg and laminate using the same
TWI596153B (en) Resin composition, prepreg and laminated board
JP5239743B2 (en) Resin composition and prepreg and laminate using the same
JP5692062B2 (en) Method for storing resin solution, and method for producing prepreg and laminate
JP4997727B2 (en) Flame retardant resin composition, and prepreg and laminate using the same
JP6414799B2 (en) Resin composition, prepreg, laminate, metal foil clad laminate and printed wiring board
KR102094567B1 (en) Resin composition, pre-preg, laminate, metal foil-clad laminate, and printed wiring board
KR102376567B1 (en) Resin composition and its manufacturing method, prepreg, resin sheet, laminated board, metal foil-clad laminated board, and printed wiring board
JP5223781B2 (en) Resin composition, prepreg and laminate
KR20230175317A (en) Metal-clad laminate, printed wiring board and semiconductor package
TWI391446B (en) Resin composition, and prepreg and laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120524

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130408

R151 Written notification of patent or utility model registration

Ref document number: 5263705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130421