JP4843944B2 - Resin composition and prepreg and laminate using the same - Google Patents

Resin composition and prepreg and laminate using the same Download PDF

Info

Publication number
JP4843944B2
JP4843944B2 JP2005006162A JP2005006162A JP4843944B2 JP 4843944 B2 JP4843944 B2 JP 4843944B2 JP 2005006162 A JP2005006162 A JP 2005006162A JP 2005006162 A JP2005006162 A JP 2005006162A JP 4843944 B2 JP4843944 B2 JP 4843944B2
Authority
JP
Japan
Prior art keywords
resin
cyanate ester
epoxy resin
prepreg
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005006162A
Other languages
Japanese (ja)
Other versions
JP2006193607A (en
Inventor
政伸 十亀
弘直 福岡
菅野  裕一
誠之 片桐
大典 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005006162A priority Critical patent/JP4843944B2/en
Priority to CN 200610001192 priority patent/CN1803916B/en
Priority to TW095101338A priority patent/TWI391446B/en
Priority to KR1020060003720A priority patent/KR101181948B1/en
Publication of JP2006193607A publication Critical patent/JP2006193607A/en
Application granted granted Critical
Publication of JP4843944B2 publication Critical patent/JP4843944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、電気回路を形成するプリント配線板材料に好適に使用される樹脂組成物、並びにこれを用いたプリプレグ、積層板に関する。   The present invention relates to a resin composition suitably used for a printed wiring board material for forming an electric circuit, and a prepreg and a laminate using the resin composition.

電子機器や通信機、パーソナルコンピューター等に広く用いられているプリント配線板は、高密度配線化や高集積化が進展している。これに伴い、プリント配線板に用いられる金属箔張り積層板には、耐熱性、低吸水性、吸湿耐熱性、絶縁信頼性などの特性に優れる積層板が要求されている。従来、プリント配線板用の積層板としては、エポキシ樹脂をジシアンジアミドで硬化させるFR−4タイプの積層板が広く使用されているが、この手法では高耐熱性化の要求に対応するには限界があった。耐熱性に優れるプリント配線板用樹脂としては、シアン酸エステル樹脂が知られており、ビスフェノールA型シアン酸エステル樹脂と、他の熱硬化性樹脂や熱可塑性樹脂との樹脂組成物をベースにして、近年、半導体プラスチックパッケージ用などの高機能のプリント配線板用材料などに幅広く使用されている。このビスフェノールA型シアン酸エステル樹脂は、電気特性、機械特性、耐薬品性、接着性などに優れた特性を有しているが、低吸水性や吸湿耐熱性の面では、過酷な条件下では不十分な場合があり、更なる特性の向上を目指して、他の構造のシアン酸エステル樹脂の検討が行われている。   Printed wiring boards widely used in electronic devices, communication devices, personal computers, and the like have been developed to have higher density wiring and higher integration. Along with this, a metal foil-clad laminate used for a printed wiring board is required to have a laminate excellent in characteristics such as heat resistance, low water absorption, moisture absorption heat resistance, and insulation reliability. Conventionally, FR-4 type laminates that harden epoxy resin with dicyandiamide have been widely used as laminates for printed wiring boards, but this method has limitations in meeting the demand for higher heat resistance. there were. As a resin for printed wiring boards having excellent heat resistance, cyanate ester resin is known, and based on a resin composition of bisphenol A type cyanate ester resin and other thermosetting resin or thermoplastic resin. In recent years, it has been widely used for materials for high-performance printed wiring boards such as semiconductor plastic packages. This bisphenol A type cyanate ester resin has excellent electrical properties, mechanical properties, chemical resistance, adhesive properties, etc., but in terms of low water absorption and moisture absorption heat resistance, under severe conditions In some cases, the cyanate ester resin having another structure has been studied with the aim of further improving the properties.

他の構造のシアン酸エステル樹脂としては、フェノールノボラック型シアン酸エステル樹脂の事例が多く見受けられる(例えば特許文献1参照)が、ノボラック型シアン酸エステル樹脂は、通常の硬化条件では、硬化不足になり易く、得られる硬化物は、吸水率が大きく、吸湿耐熱性が低下するなどの問題があった。ノボラック型シアン酸エステル樹脂の改善手法として、ビスフェノールA型シアン酸エステル樹脂とのプレポリマーが開示されている(例えば特許文献2参照)が、本プレポリマーは、硬化性の点は向上するものの、特性改善の点では未だ不十分であり、低吸水性や吸湿耐熱性に優れるシアン酸エステル系樹脂組成物が切望されていた。   As examples of cyanate ester resins having other structures, there are many examples of phenol novolac-type cyanate ester resins (see, for example, Patent Document 1). However, novolak-type cyanate ester resins are insufficiently cured under normal curing conditions. The resulting cured product has problems such as high water absorption and reduced moisture absorption heat resistance. As a method for improving the novolak-type cyanate ester resin, a prepolymer with a bisphenol A-type cyanate ester resin is disclosed (for example, see Patent Document 2), but the prepolymer has improved curability, A cyanate ester-based resin composition that is still insufficient in terms of improving characteristics and is excellent in low water absorption and moisture absorption heat resistance has been desired.

特開平11-124433号公報Japanese Patent Laid-Open No. 11-124433 特開2000-191776号公報JP 2000-191776 A

本発明は、プリント配線板材料用シアン酸エステル樹脂系組成物において、吸水率、吸湿時の耐熱性や絶縁信頼性を改善した樹脂組成物の提供を目的とするものであり、併せてこれを用いたプリプレグ及び積層板を提供するものである。   An object of the present invention is to provide a resin composition having improved water absorption, heat resistance during moisture absorption and insulation reliability in a cyanate ester resin composition for printed wiring board materials. The prepreg and laminate used are provided.

フェノールノボラック型シアン酸エステル樹脂は、シアネート基当量が小さく、その剛直な骨格構造から、硬化時に未反応シアネート基が多く残存し易いことから、金属箔との密着性、吸水率や吸湿耐熱性などの特性において満足できるものではなかった。本発明者らは、特定構造のシアン酸エステル樹脂にエポキシ樹脂を配合することで、シアン酸エステル樹脂の分子構造などによる反応阻害要因を低減させて硬化性を高め、樹脂骨格の剛直な構造により耐熱性を維持するとともに、吸水性、吸湿耐熱性に優れる特性を有する樹脂組成物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式(1)で示されるシアン酸エステル樹脂(A)とエポキシ樹脂(B)とを必須成分として含有する樹脂組成物であり、これらの
・・・(1)
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
樹脂組成物と基材(C)からなるプリプレグ、これらのプリプレグを硬化して得られる積層板または金属箔張り積層板である。
Phenol novolac type cyanate ester resin has a small cyanate group equivalent, and because of its rigid skeleton structure, many unreacted cyanate groups are likely to remain at the time of curing, so adhesion with metal foil, water absorption rate, moisture absorption heat resistance, etc. The characteristics were not satisfactory. By adding an epoxy resin to a cyanate ester resin having a specific structure, the present inventors have reduced the reaction inhibition factor due to the molecular structure of the cyanate ester resin, etc., and improved curability, and the rigid structure of the resin skeleton The inventors have found that a resin composition having characteristics excellent in water absorption and moisture absorption heat resistance can be obtained while maintaining heat resistance, and the present invention has been completed. That is, the present invention is a resin composition containing the cyanate ester resin (A) represented by the general formula (1) and the epoxy resin (B) as essential components.
... (1)
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
A prepreg comprising a resin composition and a substrate (C), a laminate obtained by curing these prepregs, or a metal foil-clad laminate.

本発明による樹脂組成物は、硬化性が良好であり、得られるプリプレグを硬化してなる積層板や金属箔張り積層板は、耐熱性、吸水率、吸湿時の耐熱性や絶縁信頼性などが優れることから、高密度化対応のプリント配線板材料に好適であり、工業的な実用性は極めて高いものである。   The resin composition according to the present invention has good curability, and the laminate or metal foil-clad laminate obtained by curing the obtained prepreg has heat resistance, water absorption, heat resistance during moisture absorption, insulation reliability, etc. Since it is excellent, it is suitable for a printed wiring board material corresponding to high density, and industrial practicality is extremely high.

本発明において用いられるシアン酸エステル樹脂(A)は、一般式(1)で示される1分子中に2個以上のシアネート基を有するシアン酸エステル樹脂及びそのプレポリマーであれば特に限定されず、1種もしくは2種以上を適宜混合して使用することも可能である。一般式(1)で示されるシアン酸エステル樹脂(A)は、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等の縮合剤との反応により得られるナフトールアラルキル樹脂と、シアン酸とを縮重合させて得られるものであり、その製法は特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。具体的に例示すると、一般式(2)で示されるナフトールアラルキル樹脂とハロゲン化シアンを不活性有機溶媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフトールアラルキル樹脂と塩基性化合物による塩を、水を含有する溶液中にて形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採ることもできる。好適なシアン酸エステル樹脂(A)としては、Rが水素であるα-ナフトールアラルキル型シアン酸エステル樹脂が挙げられる。
・・・(2)
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
本発明におけるシアン酸エステル樹脂(A)の配合量は特に限定されないが、配合量が過小になると、得られる積層板の耐熱性が低下し、多くなりすぎると、溶剤溶解性や硬化性などが低下するため、シアン酸エステル樹脂(A)とエポキシ樹脂(B)の合計配合量の10〜90重量%の範囲が好ましく、30〜70重量%の範囲が特に好適である。
The cyanate ester resin (A) used in the present invention is not particularly limited as long as it is a cyanate ester resin having two or more cyanate groups in one molecule represented by the general formula (1) and a prepolymer thereof. It is also possible to use 1 type or 2 types or more mixed appropriately. The cyanate ester resin (A) represented by the general formula (1) includes naphthols such as α-naphthol and β-naphthol, p-xylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di- It is obtained by condensation polymerization of naphthol aralkyl resin obtained by reaction with a condensing agent such as (2-hydroxy-2-propyl) benzene and cyanic acid, and its production method is not particularly limited, and cyanate ester It may be produced by any existing method as a synthesis. Specifically, it can be obtained by reacting a naphthol aralkyl resin represented by the general formula (2) with cyanogen halide in an inert organic solvent in the presence of a basic compound. Further, a similar method may be employed in which a salt of a naphthol aralkyl resin and a basic compound is formed in a solution containing water, and then a two-phase interface reaction with cyanogen halide is performed. Suitable cyanate ester resins (A) include α-naphthol aralkyl type cyanate ester resins in which R is hydrogen.
... (2)
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
The blending amount of the cyanate ester resin (A) in the present invention is not particularly limited, but if the blending amount is too small, the heat resistance of the resulting laminate is reduced, and if it is too large, solvent solubility, curability, etc. Therefore, the range of 10 to 90% by weight of the total blending amount of the cyanate ester resin (A) and the epoxy resin (B) is preferable, and the range of 30 to 70% by weight is particularly preferable.

本発明において使用されるエポキシ樹脂(B)は、1分子中に2個以上のエポキシ基を有する化合物であれば、特に限定されるものではない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。好適なものとして、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂が挙げられる。これらのエポキシ樹脂(B)は、1種もしくは2種以上を適宜混合して使用することも可能である。エポキシ樹脂(B)の配合量は、特に限定されないが、シアン酸エステル樹脂(A)とエポキシ樹脂(B)の合計配合量の10〜90重量%の範囲が好ましく、30〜70重量%の範囲が特に好適である。   The epoxy resin (B) used in the present invention is not particularly limited as long as it is a compound having two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, brominated bisphenol A type epoxy resin, brominated phenol novolak type epoxy resin, 3 Functional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy Resin, phosphorus-containing epoxy resin, glycidylamine, glycidyl ester, butadiene epoxidized compound, hydroxyl group-containing silicon resin Compound obtained by reaction of epichlorohydrin with. Preferred are bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, brominated bisphenol A type epoxy resin, brominated phenol novolak type epoxy. Examples thereof include resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, and naphthol aralkyl type epoxy resins. These epoxy resins (B) can be used alone or in combination of two or more. The blending amount of the epoxy resin (B) is not particularly limited, but is preferably in the range of 10 to 90% by weight, and in the range of 30 to 70% by weight of the total blending amount of the cyanate ester resin (A) and the epoxy resin (B). Is particularly preferred.

本発明の樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を併用することも可能である。これらは、シアン酸エステル樹脂(A)やエポキシ樹脂(B)の硬化促進剤として一般に使用されるものであれば、特に限定されるものではない。これらの具体例としては、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類及びその誘導体、第3級アミン等が挙げられる。   If necessary, the resin composition of the present invention can be used in combination with a curing accelerator in order to adjust the curing rate as appropriate. These are not particularly limited as long as they are generally used as a curing accelerator for the cyanate ester resin (A) and the epoxy resin (B). Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, and tertiary amines.

本発明の樹脂組成物には、無機充填剤を併用することも可能である。無機系充填剤としては、一般に使用されるものであれば、特に限定されるものではないが、その具体例としては、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。   An inorganic filler can be used in combination with the resin composition of the present invention. The inorganic filler is not particularly limited as long as it is generally used. Specific examples thereof include natural silica, fused silica, amorphous silica, hollow silica, and other silicas, aluminum hydroxide , Aluminum hydroxide heat-treated product (aluminum hydroxide is heat-treated and part of the water of crystallization is reduced), boehmite, metal hydrates such as magnesium hydroxide, molybdenum compounds such as molybdenum oxide and zinc molybdate, Zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass), hollow glass, etc. .

本発明の樹脂組成物には、所期の特性が損なわれない範囲において、上記一般式(1)で示されるシアン酸エステル樹脂(A)以外のシアン酸エステル樹脂を使用することも可能である。一般式(1)以外のシアン酸エステル樹脂としては、公知のものが使用できる。例えば、ビスフェノールA型シアン酸エステル樹脂、ビスフェノールF型シアン酸エステル樹脂、ビスフェノールM型シアン酸エステル樹脂、ビスフェノールP型シアン酸エステル樹脂、ビスフェノールE型シアン酸エステル樹脂、フェノールノボラック型シアン酸エステル樹脂、クレゾールノボラック型シアン酸エステル樹脂、ジシクロペンタジエンノボラック型シアン酸エステル樹脂、テトラメチルビスフェノールF型シアン酸エステル樹脂、ビフェノール型シアン酸エステル樹脂等、及びこれらのプレポリマー等が挙げられ、1種もしくは2種以上適宜混合して使用することも可能である。   In the resin composition of the present invention, it is also possible to use a cyanate ester resin other than the cyanate ester resin (A) represented by the general formula (1) as long as the desired properties are not impaired. . As the cyanate ester resin other than the general formula (1), known resins can be used. For example, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol M type cyanate ester resin, bisphenol P type cyanate ester resin, bisphenol E type cyanate ester resin, phenol novolac type cyanate ester resin, Examples include cresol novolac-type cyanate ester resin, dicyclopentadiene novolak-type cyanate ester resin, tetramethylbisphenol F-type cyanate ester resin, biphenol-type cyanate ester resin, and prepolymers thereof. It is also possible to use a mixture of more than one species.

本発明の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性の化合物、添加剤などの併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、リン酸エステル、リン酸メラミンなどのリン化合物、メラミンやベンゾグアナミンなどの窒素含有化合物、オキサジン環含有化合物、シリコン系化合物などが挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等、所望に応じて適宜組み合わせて使用することも可能である。   The resin composition of the present invention includes other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, and other flame retardants, as long as the desired properties are not impaired. A combination of a compound and an additive is also possible. These are not particularly limited as long as they are generally used. Examples of the flame retardant compound include phosphorous compounds such as phosphate esters and melamine phosphate, nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and silicon compounds. Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners In addition, a polymerization inhibitor or the like can be used in appropriate combination as desired.

本発明の樹脂組成物には、必要に応じて、有機溶剤を使用することが可能である。この有機溶剤としては、シアン酸エステル樹脂(A)とエポキシ樹脂(B)との混合物が相溶するものであれば、特に限定されるものではない。具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。   In the resin composition of the present invention, an organic solvent can be used as necessary. The organic solvent is not particularly limited as long as the mixture of the cyanate ester resin (A) and the epoxy resin (B) is compatible. Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, amides such as dimethylformamide and dimethylacetamide, and the like.

本発明において好適に使用される基材(C)には、各種プリント配線板材料に用いられている公知のものを使用することが出来る。例えば、Eガラス、Dガラス、Sガラス、NEガラス、クォーツ等の無機繊維、ポリイミド、ポリアミド、ポリエステルなどの有機繊維が挙げられ、目的とする用途や性能により適宜選択し、単独もしくは2種類以上を組み合わせて使用することも可能である。形状としては織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット、(有機繊維)フィルムなどが挙げられる。厚みについては、特に制限はされないが、通常は0.01〜0.3mm程度を使用する。また、シランカップリング剤などで表面処理したものや、織布において物理的に開繊処理を行ったものは、吸湿耐熱性の面から好適に使用できる。基材が有機フィルムの場合は、フィルムの厚みは、とくに制限されないが、0.002〜0.05mm程度が好ましく、プラズマ処理などで表面処理したものがより好ましい。   As the base material (C) suitably used in the present invention, known materials used for various printed wiring board materials can be used. For example, inorganic fibers such as E glass, D glass, S glass, NE glass, and quartz, and organic fibers such as polyimide, polyamide, and polyester can be used. It is also possible to use in combination. Examples of the shape include woven fabric, nonwoven fabric, roving, chopped strand mat, surfacing mat, and (organic fiber) film. The thickness is not particularly limited, but usually about 0.01 to 0.3 mm is used. Moreover, what surface-treated with the silane coupling agent etc., and what carried out the fiber opening process physically in the woven fabric can use it suitably from the surface of moisture absorption heat resistance. When the substrate is an organic film, the thickness of the film is not particularly limited, but is preferably about 0.002 to 0.05 mm, and more preferably a surface treated by plasma treatment or the like.

本発明のプリプレグの製造方法は、シアン酸エステル樹脂(A)とエポキシ樹脂(B)とを必須成分として含有する樹脂組成物と基材(C)とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。例えば、上記樹脂組成物を基材(C)に含浸または塗布させた後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、プリプレグを製造する方法などが挙げられる。基材(C)に対する樹脂組成物の付着量は、プリプレグの樹脂量で20〜95重量%の範囲が好ましい。   The method for producing a prepreg of the present invention is a method for producing a prepreg by combining a resin composition containing a cyanate ester resin (A) and an epoxy resin (B) as essential components and a substrate (C). There is no particular limitation. For example, after impregnating or applying the resin composition to the base material (C), it is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, etc. to produce a prepreg, etc. Can be mentioned. The adhesion amount of the resin composition to the substrate (C) is preferably in the range of 20 to 95% by weight in terms of the prepreg resin amount.

本発明の積層板は、上述のプリプレグを用いて積層成形したものである。具体的には前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造する。使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されない。成形条件としては、通常のプリント配線板用積層板および多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度は100〜300℃、圧力は2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。また、本発明のプリプレグと、別途作成した内層用の配線板を組み合わせ、積層成形することにより、多層板とすることも可能である。以下に合成例、実施例、比較例を示し、本発明を詳細に説明する。 The laminated board of the present invention is formed by lamination using the above prepreg. Specifically, it is manufactured by laminating one or more of the above-described prepregs and laminating with a configuration in which a metal foil such as copper or aluminum is arranged on one or both sides as desired. The metal foil to be used is not particularly limited as long as it is used for a printed wiring board material. As a molding condition, a general laminated board for a printed wiring board and a multilayer board can be applied. For example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., the temperature is generally 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally in the range of 0.05 to 5 hours. . Moreover, it is also possible to make a multilayer board by combining the prepreg of the present invention and a separately prepared wiring board for an inner layer, and performing lamination molding. Synthesis examples, examples, and comparative examples are shown below to describe the present invention in detail.

(合成例1)α-ナフトールアラルキル型シアン酸エステル樹脂の合成
・・・(3)
式中、nは1〜5の混合物)
式(3)で表されるα-ナフトールアラルキル樹脂(SN475L、OH基当量:216g/eq.、新日鐵化学製) 0.47モル (OH基換算)をクロロホルム 500mlに溶解後、トリエチルアミン 0.7モルを添加混合し、これに 0.93モルの塩化シアンのクロロホルム溶液 300gを、-10℃で1.5時間かけて滴下し、30分撹拌した後、更に 0.1モルのトリエチルアミンとクロロホルム 30gの混合溶液を滴下し、30分撹拌して反応を完結させた。生成するトリエチルアミンの塩酸塩を濾別した後、得られた濾液を 0.1N塩酸 500mlで洗浄した後、水 500mlでの洗浄を4回繰り返した。これに硫酸ナトリウムによる乾燥後、75℃でエバポレートし、更に90℃で減圧脱気することにより、褐色固形の式(4)で表されるα-ナフトールアラルキル型シアン酸エステル樹脂(赤外吸収スペクトルにおいて、2264cm-1付近のシアネート基の吸収を確認)を得た。
・・・(4)
(式中、nは1〜5の混合物)
(Synthesis Example 1) Synthesis of α-naphthol aralkyl type cyanate ester resin
... (3)
Wherein n is a mixture of 1 to 5)
Α-Naphthol aralkyl resin represented by formula (3) (SN475L, OH group equivalent: 216 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.) 0.47 mol (converted to OH group) is dissolved in 500 ml of chloroform, and 0.7 mol of triethylamine is added. Then, 300 g of a 0.93 mol solution of cyanogen chloride in chloroform was added dropwise at −10 ° C. over 1.5 hours, stirred for 30 minutes, and then a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was added dropwise for 30 minutes. Stir to complete the reaction. The resulting triethylamine hydrochloride was filtered off, and the obtained filtrate was washed with 500 ml of 0.1N hydrochloric acid, and then washed with 500 ml of water four times. This was dried over sodium sulfate, evaporated at 75 ° C., and degassed at 90 ° C. under reduced pressure to give an α-naphthol aralkyl cyanate ester resin represented by the formula (4) as a brown solid (infrared absorption spectrum). In the above, absorption of cyanate group around 2264 cm −1 was confirmed).
... (4)
(Where n is a mixture of 1 to 5)

(実施例1)
合成例1で得たα-ナフトールアラルキル型シアン酸エステル樹脂 70重量部とビスフェノールA型エポキシ樹脂(エピコート1001,ジャパンエポキシレジン製)30重量部とをメチルエチルケトンで溶解し、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスをメチルエチルケトン溶剤で希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量41重量%のプリプレグを得た。次に、このプリプレグを 4枚重ね、18μmの電解銅箔を上下に配置し、圧力 30 kgf/cm2、温度 220℃で120分間プレスを行い、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
Example 1
70 parts by weight of α-naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1 and 30 parts by weight of bisphenol A type epoxy resin (Epicoat 1001, made by Japan Epoxy Resin) are dissolved in methyl ethyl ketone, and 0.04 part by weight of zinc octylate is dissolved. The varnish was obtained by mixing. This varnish was diluted with a methyl ethyl ketone solvent, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 41% by weight. Next, 4 sheets of this prepreg were stacked, 18μm electrolytic copper foil was placed one above the other, and pressed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a 0.4 mm thick copper-clad laminate. . The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(実施例2)
合成例1で得たα-ナフトールアラルキル型シアン酸エステル樹脂 30重量部と臭素化フェノールノボラック型エポキシ樹脂(BREN-S,日本化薬製)45重量部とクレゾールノボラック型エポキシ樹脂(ESCN-220F,住友化学製) 25重量部とをメチルエチルケトンで溶解し、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスを使用し、実施例1と同様にして行い、樹脂含有量 43重量%のプリプレグを得た。これを実施例1と同様にして、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Example 2)
30 parts by weight of α-naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1, 45 parts by weight of brominated phenol novolac epoxy resin (BREN-S, Nippon Kayaku) and cresol novolac epoxy resin (ESCN-220F, Sumitomo Chemical Co., Ltd. (25 parts by weight) was dissolved in methyl ethyl ketone, and 0.04 parts by weight of zinc octylate was mixed to obtain a varnish. This varnish was used in the same manner as in Example 1 to obtain a prepreg having a resin content of 43% by weight. In the same manner as in Example 1, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(実施例3)
合成例1で得たα-ナフトールアラルキル型シアン酸エステル樹脂 50重量部とビフェニルアラルキル型エポキシ樹脂(NC-3000H,日本化薬製)50量部とをメチルエチルケトンで溶解し、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスを使用し、実施例1と同様にして行い、樹脂含有量 41重量%のプリプレグを得た。これを実施例1と同様にして、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Example 3)
50 parts by weight of α-naphthol aralkyl-type cyanate ester resin obtained in Synthesis Example 1 and 50 parts by weight of biphenyl aralkyl-type epoxy resin (NC-3000H, manufactured by Nippon Kayaku Co., Ltd.) are dissolved in methyl ethyl ketone, and 0.04 part by weight of zinc octylate Were mixed to obtain a varnish. Using this varnish, the same procedure as in Example 1 was performed to obtain a prepreg having a resin content of 41% by weight. In the same manner as in Example 1, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(比較例1)
実施例1において、α-ナフトールアラルキル型シアン酸エステル樹脂 70重量部の代わりに、2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(BT2070、三菱ガス化学製)70重量部を使用する以外は、実施例1と同様にして行い、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Comparative Example 1)
In Example 1, 70 parts by weight of 2,2-bis (4-cyanatephenyl) propane prepolymer (BT2070, manufactured by Mitsubishi Gas Chemical) is used instead of 70 parts by weight of α-naphthol aralkyl type cyanate ester resin. Except for the above, the same procedure as in Example 1 was performed to obtain a copper-clad laminate having a thickness of 0.4 mm. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(比較例2)
実施例1において、α-ナフトールアラルキル型シアン酸エステル樹脂 70重量部の代わりに、フェノールノボラック型シアン酸エステル樹脂(PrimasetPT-30,ロンザ社製)70重量部を使用する以外は、実施例1と同様にして行い、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Comparative Example 2)
In Example 1, instead of 70 parts by weight of α-naphthol aralkyl-type cyanate ester resin, 70 parts by weight of phenol novolac-type cyanate ester resin (PrimasetPT-30, manufactured by Lonza) was used. In the same manner, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(測定方法)
1)銅箔ピール強度:JIS C6481に準拠して測定。
2)ガラス転移温度:JIS C6481に準拠して、DMA法にて測定。
3)吸湿耐熱性:50mm×50mmの片面の半分以外の全銅箔をエッチング除去した試験片を、プレシッヤークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で3時間処理後、260℃のハンダ中に30秒浸漬した後の外観変化を目視で観察。(フクレ発生数/試験数)
4)吸水率:JIS C6481に準拠して、プレシッヤークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で3時間処理後の吸水率を測定。
5)絶縁抵抗:JIS C6481に準拠して、プレシッヤークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で所定時間処理後の絶縁抵抗を測定。
(Measuring method)
1) Copper foil peel strength: Measured according to JIS C6481.
2) Glass transition temperature: Measured by DMA method according to JIS C6481.
3) Moisture absorption and heat resistance: A test piece from which all copper foil except one half of one side of 50mm x 50mm was removed by etching was measured at 121 ° C and 2 atm using a prescher cooker tester (Hirayama Seisakusho, PC-3 type). After the time treatment, visually change the appearance after immersion for 30 seconds in 260 ° C solder. (Number of swelling / number of tests)
4) Water absorption rate: Based on JIS C6481, the water absorption rate was measured after treatment for 3 hours at 121 ° C and 2 atm with a prescher cooker tester (PC-3 type, manufactured by Hirayama Seisakusho).
5) Insulation resistance: In accordance with JIS C6481, the insulation resistance after treatment for a predetermined time at 121 ° C and 2 atm with a prescher cooker tester (Hirayama Seisakusho, PC-3 type) was measured.

Claims (4)

一般式(1)で示されるシアン酸エステル樹脂(A)とエポキシ樹脂(B)とを必須成分として含有する樹脂組成物。
・・・(1)
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
A resin composition containing the cyanate ester resin (A) represented by the general formula (1) and the epoxy resin (B) as essential components.
... (1)
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
請求項1に記載の樹脂組成物と基材(C)からなるプリプレグ A prepreg comprising the resin composition according to claim 1 and a substrate (C) . 請求項2に記載のプリプレグを硬化して得られる積層板 A laminate obtained by curing the prepreg according to claim 2 . 請求項2に記載のプリプレグを硬化して得られる金属箔張り積層板。A metal foil-clad laminate obtained by curing the prepreg according to claim 2.
JP2005006162A 2005-01-13 2005-01-13 Resin composition and prepreg and laminate using the same Active JP4843944B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005006162A JP4843944B2 (en) 2005-01-13 2005-01-13 Resin composition and prepreg and laminate using the same
CN 200610001192 CN1803916B (en) 2005-01-13 2006-01-13 Resin composite and prepreg and laminate materials used thereof
TW095101338A TWI391446B (en) 2005-01-13 2006-01-13 Resin composition, and prepreg and laminate using the same
KR1020060003720A KR101181948B1 (en) 2005-01-13 2006-01-13 Resin composition, and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006162A JP4843944B2 (en) 2005-01-13 2005-01-13 Resin composition and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2006193607A JP2006193607A (en) 2006-07-27
JP4843944B2 true JP4843944B2 (en) 2011-12-21

Family

ID=36799937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006162A Active JP4843944B2 (en) 2005-01-13 2005-01-13 Resin composition and prepreg and laminate using the same

Country Status (2)

Country Link
JP (1) JP4843944B2 (en)
CN (1) CN1803916B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997727B2 (en) * 2005-08-12 2012-08-08 三菱瓦斯化学株式会社 Flame retardant resin composition, and prepreg and laminate using the same
JP5140977B2 (en) * 2006-09-22 2013-02-13 三菱瓦斯化学株式会社 Resin composition, prepreg and metal foil-clad laminate
JP5263705B2 (en) * 2007-02-07 2013-08-14 三菱瓦斯化学株式会社 Prepreg and laminate
US7601429B2 (en) * 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
CN102719058B (en) * 2007-06-22 2014-12-17 Adeka股份有限公司 One liquid type cyanate-epoxy composite resin composition
JP5024205B2 (en) * 2007-07-12 2012-09-12 三菱瓦斯化学株式会社 Prepreg and laminate
JP5384809B2 (en) * 2007-07-18 2014-01-08 三菱瓦斯化学株式会社 Prepreg and laminate
JP5475223B2 (en) * 2007-10-09 2014-04-16 株式会社Adeka One-component cyanate-epoxy composite resin composition, cured product thereof and method for producing the same, and sealing material and adhesive using the same
WO2009051120A1 (en) * 2007-10-16 2009-04-23 Sumitomo Bakelite Company Limited Substrate with semiconductor element mounted thereon
JP5239743B2 (en) * 2007-10-29 2013-07-17 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
DE602009000326D1 (en) * 2008-04-01 2010-12-23 Mitsubishi Gas Chemical Co Resin composition, prepreg and laminated with a metal foil laminate
JP5263496B2 (en) * 2008-07-01 2013-08-14 株式会社スリーボンド Epoxy resin composition
JP2010065092A (en) * 2008-09-09 2010-03-25 Mitsubishi Gas Chemical Co Inc Resin composition and prepreg and laminate using the same
KR101688828B1 (en) * 2009-02-25 2017-01-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Prepreg and laminated sheet
CN101643572B (en) * 2009-08-24 2011-11-30 广东生益科技股份有限公司 Thermosetting resin composition and prepreg and laminate for printed circuits thereby
JP5849948B2 (en) 2010-06-02 2016-02-03 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
EP2634205A4 (en) 2010-10-29 2016-12-28 Mitsubishi Gas Chemical Co Cyanate ester compound, curable resin composition containing cyanate ester compound, and cured product thereof
CN103298854A (en) * 2010-12-27 2013-09-11 三菱瓦斯化学株式会社 Thermosetting resin composition
CN103347930B (en) 2011-02-04 2015-06-24 三菱瓦斯化学株式会社 Curable resin composition and cured product thereof
JP5999369B2 (en) * 2011-03-07 2016-09-28 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
WO2012128313A1 (en) * 2011-03-24 2012-09-27 三菱瓦斯化学株式会社 Resin composition, prepreg and resin sheet, and metal foil-clad laminate
WO2014059654A1 (en) * 2012-10-19 2014-04-24 广东生益科技股份有限公司 Cyanate ester resin composition, and prepreg, laminate, and metal-clad laminate that are fabricated by using the same
JP6332036B2 (en) * 2012-11-28 2018-05-30 三菱瓦斯化学株式会社 Resin composition, prepreg, laminate, metal foil-clad laminate, and printed wiring board
WO2014203865A1 (en) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 Cyanate ester compound, curable resin composition containing said compound, and cured product of said composition
US20160237246A1 (en) * 2013-10-25 2016-08-18 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
KR102413357B1 (en) * 2014-08-08 2022-06-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Underlayer film-forming composition for lithography, underlayer film for lithography, and pattern forming method
KR20170125844A (en) * 2015-03-03 2017-11-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 A material for forming a lower layer film for lithography, a composition for forming a lower layer film for lithography, a lower layer film for lithography, a resist pattern forming method, and a circuit pattern forming method
JP6710434B2 (en) * 2015-03-31 2020-06-17 三菱瓦斯化学株式会社 Cyanate ester compound, curable resin composition containing the compound and cured product thereof
CN110330612A (en) * 2019-06-27 2019-10-15 扬州天启新材料股份有限公司 A kind of production technology of Novolac Cyanate Ester Resins

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912308A (en) * 1994-11-30 1999-06-15 Alliedsignal Inc. Multifunctional cyanate ester and epoxy blends
JPH09328601A (en) * 1995-12-08 1997-12-22 Mitsui Petrochem Ind Ltd Thermosetting resin composition, prepreg using the same and laminated sheet
JPH10330596A (en) * 1997-05-30 1998-12-15 Sumitomo Bakelite Co Ltd Flare-retardant resin composition and semiconductor sealing material prepared therefrom
TW541323B (en) * 1998-05-13 2003-07-11 Sumitomo Chemical Co Cyanate ester composition and cured product thereof
JP2000191776A (en) * 1998-12-24 2000-07-11 Mitsubishi Gas Chem Co Inc Cyanate ester-coprepolymer
JP3629235B2 (en) * 2001-11-27 2005-03-16 ナミックス株式会社 Liquid sealing resin composition
JP2004175925A (en) * 2002-11-27 2004-06-24 Mitsubishi Gas Chem Co Inc Prepreg and laminate
CN1475473A (en) * 2003-07-08 2004-02-18 北京玻璃钢研究设计院 Low fused mass viscosity naphthol phenol aldehyde performed polymer and its synthesis method
CN1184247C (en) * 2003-07-08 2005-01-12 北京玻璃钢研究设计院 Phenolic cyanate resin and its synthesis method and phenolic cyanate ablative material composite
CN1233708C (en) * 2003-09-05 2005-12-28 清华大学 Polymer cladding layer material of isocyarate crosslinked epoxy resin for integrated optical device
JP4407823B2 (en) * 2004-02-18 2010-02-03 三菱瓦斯化学株式会社 Novel cyanate ester compound, flame retardant resin composition, and cured product thereof

Also Published As

Publication number Publication date
JP2006193607A (en) 2006-07-27
CN1803916A (en) 2006-07-19
CN1803916B (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4843944B2 (en) Resin composition and prepreg and laminate using the same
JP4997727B2 (en) Flame retardant resin composition, and prepreg and laminate using the same
KR101920106B1 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using same
JP5239743B2 (en) Resin composition and prepreg and laminate using the same
JP5999369B2 (en) Resin composition and prepreg and laminate using the same
JP5849948B2 (en) Resin composition and prepreg and laminate using the same
JP5024205B2 (en) Prepreg and laminate
JP5263705B2 (en) Prepreg and laminate
JP5384809B2 (en) Prepreg and laminate
JP5692062B2 (en) Method for storing resin solution, and method for producing prepreg and laminate
JP4784198B2 (en) Thermosetting resin composition
JP4968044B2 (en) Method for producing polyimide compound, thermosetting resin composition, and prepreg and laminate using the same
WO2014061812A1 (en) Resin composition, prepreg, laminate, and printed wiring board
KR20130095730A (en) Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
JP6910590B2 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, laminated resin sheet, resin sheet, and printed wiring board
JP4940680B2 (en) Resin composition and prepreg and laminate using the same
JP2004175925A (en) Prepreg and laminate
JP2014024970A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2003231762A (en) Prepreg and laminated sheet
JP2012236908A (en) Thermosetting resin composition, prepreg and laminated board
JP6774035B2 (en) Resin sheet, metal foil laminated board and printed wiring board
JP2010065092A (en) Resin composition and prepreg and laminate using the same
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR20060082822A (en) Resin composition, and prepreg and laminate using the same
JP2017039898A (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4843944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3