JP5259182B2 - 直角位相オフセット電力増幅器 - Google Patents

直角位相オフセット電力増幅器 Download PDF

Info

Publication number
JP5259182B2
JP5259182B2 JP2007515189A JP2007515189A JP5259182B2 JP 5259182 B2 JP5259182 B2 JP 5259182B2 JP 2007515189 A JP2007515189 A JP 2007515189A JP 2007515189 A JP2007515189 A JP 2007515189A JP 5259182 B2 JP5259182 B2 JP 5259182B2
Authority
JP
Japan
Prior art keywords
transistor
electrode
output
coupled
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007515189A
Other languages
English (en)
Other versions
JP2008500778A (ja
Inventor
セリン,ジョン・アール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2008500778A publication Critical patent/JP2008500778A/ja
Application granted granted Critical
Publication of JP5259182B2 publication Critical patent/JP5259182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/191Tuned amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/225Indexing scheme relating to amplifiers the input circuit of an amplifying stage comprising an LC-network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Description

本発明は、マイクロ波周波数送信機で使用されるマイクロ波周波数電力増幅器に関し、さらに詳細には、改善された効率及び直線性を達成する装置及び方法に関する。
背景技術
当該技術分野で既知のように、過去数年にわたる商用の電気通信システム及び軍用の電気通信システムは、デジタル変調技法を使用する傾向を示してきた。これらのデジタルシステムは、引き続き費用効率を維持するために、高密度の搬送周波数を取り扱う能力を必要とする。さらに宇宙ベースのシステムの傾向によって、高効率の制約条件及び重量最小化の制約条件が課される。電力増幅器は、上記仕様に準拠しなければならないので、重要な設計課題を表す。あいにく、電力増幅器における高効率は、多数の搬送波周波数について達成するのが困難であった。つまり、これは、従来の増幅器設計における直接的なトレードオフである。
同様に当該技術分野で既知のように、電気通信システム、衛星システム等では、無線周波数(RF)電力増幅器(PA)が、効率の高い方法でRF信号を線形に増幅することが望ましい。効率は、一般に、RF出力電力レベルの関数であり、したがって、RF入力レベルの関数でもある。良好な効率性能を有する増幅器の構成の場合、効率は、RF出力電力レベルの平方根にほぼ比例して変化する。高効率は、通常、増幅器がその最大出力電力に近づくまで達成されない。しかしながら、これは、線形動作と一致しない。したがって、通常、RF電力増幅器回路では、最大効率の達成と高い線形性の達成との間でトレードオフを行わなければならない。
提案された技法には、増幅器のRFトランジスタのバイアス状態を低減すること、又は、増幅器のトランジスタの或る部分を遮断することが含まれる。これらの手法は、バックオフ電力出力領域、すなわち、飽和領域からバックオフされた領域における効率の最低限の改善しか提供しなかった。バイアスを低減する一手法は、切換(スイッチ)負荷ライン(switched loadline)を提供することである。或る切換負荷ライン技法は、出力整合ネットワークにPINダイオードスイッチを使用する。しかしながら、PINダイオードスイッチは、オン・オフ状態の一方でDC電流を必要とし、また、効率向上に一部の劣化を引き起こすRF損失を追加する。
発明の概要
本発明によれば、共通の入力節点(ノード)と共通の出力ノードとの間に結合される一対の増幅器部を有する増幅器が提供される。増幅器部の第1のものは、共通の出力ノードに結合される出力を有する第1のトランジスタと、第1のバイアス源と、制御信号に従って選択的に、相対的に高い電力動作モードの期間中は、第1のトランジスタの制御電極を第1のバイアス源に結合して、このような第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中は、このような制御電極を第1のバイアス源から取り除いて、第1のトランジスタを非導通状態にするためのスイッチとを有する。一対の増幅器部の第2のものは、共通の出力ノードに結合される出力を有する第2のトランジスタと、相対的に高い電力動作モード及び相対的に低い電力動作モードの双方の期間中に、第2のトランジスタへの制御電極に結合されて、このような第2のトランジスタを導通状態にバイアスするための第2のバイアス源とを含む。第1の回路部が、第2のトランジスタの出力と共通の出力ノードとの間に結合されて、相対的に低い電力動作モードの期間中とは異なるインピーダンスを、相対的に高い電力動作モードの期間中に第2のトランジスタの出力において提供する。第2の回路部が、共通の入力ノードと第2のトランジスタデバイスの制御電極との間に結合される。第1の回路部及び第2の回路部の一方は位相進みを提供し、第1の回路部及び第2の回路部の他方は位相遅れを提供する。
一実施の形態では、回路部の一方の位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、回路部の他方の位相遅れは、実質的に(4n+1)π/2ラジアンである。
一実施の形態では、第2の増幅器は、制御信号に従って選択的に、相対的に高い電力動作モードの期間中、第2のトランジスタの制御電極を第2のバイアス源に結合して、この第2のトランジスタを第1の導通レベルにバイアスするか、又は、相対的に低い電力動作モードの期間中は、第2のトランジスタの制御電極を第3のバイアス源に結合して、第2のトランジスタを第2の導通レベルにバイアスするためのスイッチを含む。
このような配置により、バイアスは、特定の導通状態でトランジスタを動作させる電流源にトランジスタの制御電極を接続するスイッチによってスイッチングされる。このスイッチは、制御モジュールから得られる制御信号によってその2つの状態のいずれかに設定される。この制御モジュールは、増幅器の外部にあり、通常は、増幅器を使用する通信システム等のシステムの一部である。制御信号は、通常、一対の増幅器部の双方のスイッチ状態を同時に制御するのに使用される。高動作電力モードでは、各トランジスタがその対応する高動作電力状態に設定された状態で、増幅器部の双方が高動作電力状態で使用される。低動作電力モードでは、バイアスは、一対の増幅器部の第1のものでオフにスイッチングされ、第2の増幅器部で低動作電力状態にスイッチングされる。第2の増幅器に対するバイアスは、高電力動作状態及び低電力動作状態の双方について同じとすることができる。この場合、第2の増幅器部のバイアス状態を変更するのに必要なスイッチは存在しない。したがって、バックオフモード、すなわち低動作電力モードで、スイッチングされたバイアスを使用することによって、ピーク増幅器段を効率的にオンにする駆動の下で自己バイアスのドハティモード(Doherty mode)を使用する配置と区別して、効率が改善される。
一実施の形態では、負荷は、共通の出力ノードにおいてインピーダンスZoを示す。トランジスタの第1のものの出力におけるインピーダンスは、相対的に高い電力動作モードの期間中は2Zoである。相対的に低い電力動作モードの期間中、トランジスタの第1のものは非導通状態であり、その結果、そのトランジスタからの信号は、共通の出力ノードに印加されない。第2のトランジスタの出力と共通の出力ノードとの間に結合される回路部は、特性インピーダンスZCI=2Zoを有する。このような回路部は、相対的に高い電力動作モードの期間中は、第2のトランジスタの出力において2Zoのインピーダンスを提供し、相対的に低い電力動作モードの期間中は、第2のトランジスタの出力において(ZCI)/Zoのインピーダンスを提供する。
一実施の形態では、双方の増幅器部は、当該増幅器部のトランジスタが、2つのトランジスタのバイアス状態を高動作電力状態又は低動作電力状態のいずれかに設定する共通の制御信号でバイアススイッチングされる。高動作電力状態では、2つの増幅器部は、当該2つの増幅器部のトランジスタが、それらトランジスタの各導通バイアス電流値にバイアスされる。低動作電力状態(すなわち、バックオフの期間中)では、一対の増幅器部の第1のものは、当該第1のもののトランジスタが、バイアスから有効に遮断され、したがって、電流はこのようなトランジスタのベースに供給されない。増幅器部の第2のものは、当該第2のもののトランジスタが、より良い効率を得るために、その導通バイアス電流値に設定される。一方、第2の増幅器部にバイアススイッチを有しないより基本的な構成では、トランジスタをスイッチングする必要はなく、そのバイアス電流値のまま放置することができる。この基本的な場合には、効率は、スイッチングを有するものほど良くないが、それでも、本発明を用いない単純な増幅器よりもはるかに良い。
一実施の形態では、位相進み回路部及び位相遅れ回路部(すなわち、直角位相オフセット部)が、増幅器全体の整合回路部の内部のトランジスタの入力及び出力に隣接している。本発明を用いない場合、整合ネットワークは、通常、2つの増幅器部の双方におけるトランジスタの入力及び出力で使用される。本発明を用いる手法では、単一の整合ネットワークのみが、結合増幅器部の入力及び出力において使用されるように、整合回路部が簡略化される。これによって、通常ならば、各増幅器部が2つの増幅器部の入力及び出力のそれぞれにおいて個別に整合される場合に使用される整合ネットワークの2つが取り除かれる。
一実施の形態では、位相進み回路部(すなわち、負の遅延部)は、増幅器部の第2のもののトランジスタの入力で使用される。位相遅れ回路部は、増幅器部の第2のもののトランジスタの出力にある。この位相進み回路部によって、フル動作電力モード及び低減された動作電力(すなわち、バックオフ領域)モードでのトランジスタ動作と互換性のある簡略化された入力分離ネットワークが可能になる。この手法は、共通の入力ノードに直接接続される増幅器部の第1のもののトランジスタの入力を有する。したがって、そのトランジスタが低動作電力モードでオフにスイッチングされると、オフのトランジスタの高い入力インピーダンスは、その共通のノードに対して最低限のインピーダンス負荷効果を有し、その結果、増幅器全体の入力に印加されるRF信号は、依然として、増幅器部の第2のもののトランジスタの入力に印加されることになる。本発明を用いない場合、位相遅れネットワークは、通常、増幅器部の第1のもののトランジスタの入力で使用される一方、第2の増幅器部のトランジスタの入力は、共通の入力ノードに接続される。その場合、増幅器部の第1のもののトランジスタのトランジスタがオフにされると、位相遅れネットワークは、共通の入力ノードに低いインピーダンスが課されるように、オフのトランジスタの入力における高い入力インピーダンスのインピーダンス変換を引き起こす。そのノードにおけるこの低いインピーダンスは、その後、そのノードにおいて、RF入力信号の大幅な低減を引き起こす。RF信号は増幅器部の第2のもののトランジスタの入力に殆ど印加されず、増幅器全体のゲインが大幅に低減されるようになる。
一実施の形態では、増幅器部の第2のもののトランジスタの入力における直角位相入力部(たとえば、位相進み回路部)は、通常は高域T型ネットワークと呼ばれる構成で互いに接続されるインダクタ及びコンデンサ等の集中定数コンポーネント(素子)で実施される。このコンポーネント構成は、ネットワークのコンデンサがDC阻止(ブロック)機能も提供するという付加的な利点を有し、その結果、通常ならばDC阻止を提供するための別のコンポーネントが必要であるが、その必要はない。
一実施の形態では、直角位相出力部(たとえば、位相遅れ回路部)は、通常は低域Π型ネットワークと呼ばれる構成で互いに接続されるインダクタ及びコンデンサ等の集中定数コンポーネントで実施される。このコンポーネント構成によって、1つのコレクタバイアスフィードを使用して双方の増幅器部にDCコレクタバイアスを提供することを可能にするために、DCコレクタ電流がその増幅器部を通過することが可能になる。さらに、分路コンデンサのリアクタンスの一部又はすべてを、通常は増幅器全体の出力で使用される出力整合ネットワーク内に取り込むことができる。通常の出力整合ネットワークは、コンポーネントを追加することなくネットワークのコンポーネントの値を変更することにより追加リアクタンスを取り込むことができる。したがって、このリアクタンスの取り込み手法によって、直角位相ネットワークのコンポーネントの少なくとも1つを除去することができる。残りの分路コンデンサ及び直列インダクタは、直角位相ネットワークの一部として実装されるように残される。
上述した配置により、低減されたバイアス状態と共にトランジスタの構成に本来備わっている負荷ラインスイッチング手法を有し、且つ、増幅器のRFトランジスタの或る部分を遮断する直角位相オフセット増幅器が提供される。この負荷ライン(すなわち、負荷インピーダンス)は、RFトランジスタの1つが付加的コンポーネントがないように遮断されると、直角位相出力部によって適切に変換される。この付加的コンポーネントは、通常は、本来的なRF損失を有し、改善を劣化させる。直角位相オフセット部を実施するのに使用される僅かな追加コンポーネントは、通常の増幅器内に容易に組み込まれ、それらのコンポーネントのRF効果の少なくとも一部は、通常の増幅器の整合回路部を完成させるのにすでに使用されている回路部に統合することができる。それら2つの状態のバイアス状態は、外部DC電圧信号によって制御されるように容易に設定され、一貫したRF性能を提供する。
さらに、直角位相オフセット増幅器は、電力増幅器段を構成する2つの並列RFトランジスタの周囲の回路部の構成によって実装される負荷ライン(すなわち、インピーダンス)スイッチング手法も提供する。出力回路の直角位相遅延部(すなわち、位相遅れ)は、本来的に、他方のトランジスタが遮断されている時に、より高い負荷ライン(すなわち、インピーダンス)をトランジスタの一方に提供する。高いインピーダンス負荷ライン及びトランジスタにおける低減された追加バイアス設定の結果、バックオフモードにおける増幅器の動作について、効率が約2倍改善される。低域形式の出力直角位相は、通常の出力整合回路及びバイアスフィードと容易に統合される。入力における直角位相部は、回路での実施を簡略化して、トランジスタのバイアスモードのスイッチングによって引き起こされる有害な影響を最小にする位相進み回路部を使用する。
本発明の1つ又は2つ以上の実施の形態の詳細な内容は、添付図面及び以下の説明に述べられている。本発明の他の特徴、目的、及び利点は、それら説明及び図面、並びに特許請求の範囲から明らかになるであろう。
さまざまな図面における同様の参照符号は、同様の要素を示す。
発明の詳細な説明
ここで図1を参照すると、無線周波数信号増幅器10は、一対の増幅器部12、14を含む。この無線周波数信号増幅器10は、ここでは、直角位相オフセット電力増幅器である。この実施の形態では、増幅器部12は、図示するように、トランジスタ16を含む。このトランジスタ16は、ここでは、たとえばバイポーラトランジスタである。トランジスタ16は、入力、すなわち制御電極を有する。この制御電極は、ここでは、ベース電極である。この入力は、(1)直流阻止(ブロック)コンデンサ21を有する直列回路を介した入力インピーダンス整合ネットワーク18の出力と、(2)ベース電流バイアスネットワーク20とに結合されている。このベース電流バイアスネットワーク20は、ここでは、スイッチング可能バイアスネットワークである。増幅器部12は、ここでは、図示するように、直流阻止コンデンサ21とトランジスタ16のベース電極との間に接続される直列インダクタL及び/又は直列抵抗器R等の付加的補償/安定化/リアクタンス調整コンポーネントを含む。インダクタL及び抵抗器Rは必要とされない場合があることは理解されるはずである。
増幅器部12の出力、より詳細には、エミッタ接地トランジスタ16のコレクタは、(1)出力整合ネットワーク22の入力と、(2)インダクタ26を介したコレクタバイアス電源24とに接続されている。このコレクタバイアス電源24は、ここでは、+Vccである。インダクタ26及びコレクタバイアス電源24は、図示するように、コンデンサ30を介して接地(グラウンド)に接続されていることに留意されたい。出力整合ネットワーク22は、負荷ZL(図2A及び図2B)に結合されている。出力整合ネットワーク22及び接続される負荷ZL(図2A及び図2B)によって提供される、出力ノード62におけるインピーダンスは、Zoである。
増幅器部14は、トランジスタ32を含む。このトランジスタ32は、ここでは、たとえばバイポーラトランジスタである。トランジスタ32は、入力、すなわち制御電極を有する。この制御電極は、ここでは、ベース電極である。この入力は、直流阻止コンデンサ23と90度進み回路部38とを有する直列回路を介して入力インピーダンス整合ネットワーク18の出力に結合されている。90度進み回路部38は、公称90度(すなわち、実質的に(4n+1)π/2ラジアン、ここで、nは0を含む整数である)位相進みを、当該回路部38を通過する信号に提供する。ここでは、回路部38は、図示するように、ここでは一対の直列コンデンサC1及びC2と分路(シャント)インダクタL1とを有するT型ラダー(はしご)ネットワークとして図1Aに示すような集中定数素子で形成される。トランジスタ32の制御電極は、図示するように、ライン41を介して、ベースバイアスネットワーク40にも接続されている。このベースバイアスネットワーク40は、本明細書では、固定バイアスネットワークである。
ここでは、増幅器部12と同様に、増幅器部14も、図示するように、直流阻止コンデンサ23とトランジスタ21のベース電極との間に接続される直列インダクタL及び/又は直列抵抗器R等の付加的補償/安定化/リアクタンス調整コンポーネントを含む。このようなインダクタL及び抵抗器Rは必要とされない場合があることに留意されたい。一般に、等価な安定化及び調整は、入力整合回路部18に取り入れることもできる。これらのコンポーネントがトランジスタ16及び32のベース端子に配置されている場合に、同じ値を有する同じコンポーネントが、双方のトランジスタの入力で使用されることになる。これらの調整コンポーネントと結合されたトランジスタの入力インピーダンスの新たな値は、入力進みネットワーク38及び入力整合回路18の回路部の設計を決定するために、トランジスタ単独だけのインピーダンスの値の代わりに使用されることになる。
増幅器部14の出力、より詳細には、エミッタ接地トランジスタ32のコレクタは、図示するように、回路部42を介して出力整合ネットワーク22の入力に接続されている。この回路部42は、ここでは、公称90度(すなわち、実質的に(4n+1)π/2ラジアン、ここで、nは0を含む整数である)位相遅れを、当該回路部42を通過する信号に提供する回路部である。回路部42は、図示するように、インダクタ26を介してコレクタバイアス電源24に結合されている。この実施の形態では、90度遅れネットワーク42は、図示するように、一対の分路コンデンサC3及びC4と直列インダクタL2とを有するΠ(パイ)型はしごネットワークとして図1Bに示されている。回路部42は、たとえば、4分の1波長伝送ラインとすることができ、たとえば、ストリップ伝送ライン回路部又はマイクロストリップ伝送ライン回路部とすることができることが理解されるはずである。ノード62から出力整合ネットワーク22内を見た場合に見られるインピーダンスはZoである。遅れネットワーク回路部42の特性インピーダンスZCIは、2Zoに等しい。
スイッチング可能ベース電流バイアスネットワーク20は、ライン51の制御信号に応答して動作し、トランジスタ16のライン50のベースバイアス電流として、バイアス電流1又はバイアス電流2のいずれかを選択する。ここで、本明細書では、バイアス1は0、すなわち開(オープン)回路である。
ライン51の制御信号は、通常、スマートシステムコントローラ52から得られる。このスマートシステムコントローラ52は、たとえば、増幅器10が携帯電話において使用される電話プロセッサチップ等であり、このような携帯電話の機能のすべてを制御する。そのプロセッサ52は、通常、図示しない電話と基地局との間で実行される2方向ハンドシェークに基づく良好な信号完全性を維持するのに必要なRF電力出力のレベルを決定する。同じ手法は、スマートプロセッサが信号レベルを制御する無線LAN構成において使用される。より単純化したシナリオでは、ライン51の制御信号は、高電力状態又は低電力状態のいずれで動作するかのユーザの選択に基づいて設定される手動スイッチとすることができる。所望の状態は、バッテリ寿命、干渉効果、伝送品質、データ転送速度等の多数の因子に基づいて選ぶことができる。
たとえば、基地局が携帯電話の近くにあるときのように低動作電力状態では、プロセッサ52は、増幅器10の2つの側の一方のバイアスのスイッチを切り(すなわち、この実施の形態では、トランジスタ16のスイッチをオフにする一方、トランジスタ32には引き続きバイアスがかけられる)、たとえば、基地局が携帯電話から比較的離れているときのように高動作電力状態では、プロセッサ52は、増幅器10の双方の側を使用する(すなわち、トランジスタ16にバイアスをかけると同時に、トランジスタ32には引き続きバイアスがかけられる)。
直角位相オフセット電力増幅器10の動作
ベースライン直角位相オフセット電力増幅器10は、RFトランジスタを有する1段増幅器である。このRFトランジスタは、それぞれ共通のRF入力ポート60及び共通の出力ポート62において互いに結合された2つの並列トランジスタ部12、14に分離されている。上部RFパスのRFトランジスタ16、すなわち増幅器部12は、基本的には、共通の入力ノード60及び共通の出力ノード62に直接結合されている。下部RFパスのRFトランジスタ32、すなわち増幅器部14は、共通の入力ノード60と共通の出力ノード62との間においてその入力及び出力に直角位相オフセットをそれぞれ有する。これらの直角位相オフセットは、それぞれ、進みネットワーク38及び遅れネットワーク42によって、実質的に90度に等しい大きさではあるが逆の極性を有する挿入位相シフトを提供することが望ましい。概略図に示すように、入力オフセットは、90度進みネットワーク38(図1A)によって提供される直角位相進みと等価な+90度の挿入位相を有する。出力オフセットは、90度遅れネットワーク42(図1B)によって提供される直角位相遅れと等価な−90度の挿入位相を有する。位相極性が逆(すなわち、進みと遅れ)であるために、下部パス、すなわちネットワーク14は、上部パス、すなわちネットワーク12と比較して挿入位相に最終的な相違を何ら有しない。したがって、それらパス、すなわちネットワーク12、14のそれぞれからのRF信号電力は、共通の出力ノード62において同相で結合する。
各トランジスタ、すなわち増幅器部12、14は、自身のベースバイアス電源20、40をそれぞれ有し、ベースバイアス電流の設定によって各増幅器部12、14を個別に制御できるようにする。単一のコレクタ電源24は、出力回路部22の前にあるノード62における接続で双方の増幅器部12、14に共通のコレクタバイアスを提供する。コレクタ電源24は、ここでは固定電圧、Vccである。
増幅器10は、上部トランジスタ16及び下部トランジスタ32の双方のベースバイアス状態を、目的とする用途の最良のRF出力電力、電力付加効率、ゲイン、及び線形性に通常は使用されるのと同じ状態に設定することによって、高動作電力モードで動作させることができる。また、増幅器10は、いわゆるバックオフ条件である低入力RF駆動レベルでも動作される。最大電力及びバックオフで最良の効率を得るために、増幅器のベースバイアス状態は、通常、RFトランジスタ16、32をほぼクラスB(B級)モードで動作させるように設定される。クラスBモードでは、入力信号が、増幅器10を最大RF出力電力レベルへ駆動するのに必要なレベルより低いレベルに低減されるにつれて、RFトランジスタ16、32のDCコレクタ電流は減少する。この電流は、出力電力レベルが減少するにつれて降下するので、バックオフの効率は、通例、許容可能である。ただし、その効率は、増幅器10がゲイン圧縮の状態になると、最高出力電力レベルで到達するピーク効率よりも低い。
RFトランジスタ16、32のコレクタにおいてそれらトランジスタに示される出力インピーダンス負荷ラインは、増幅器10の圧縮時の最大出力電力、効率、及び線形性を決定する重要なパラメータの1つである。インピーダンス負荷ラインの値は、所与のレベルの動作出力電力のピークRF電圧波形及びピークRF電流波形等、トランジスタのコレクタにおけるRF信号の特性を決定する。効率及び線形性について最良の性能を提供するインピーダンスの値は、主として、DCコレクタ電源電圧及びRF出力電力レベルの関数である。出力インピーダンス負荷ラインが、バックオフにおいて選択されたより低いレベルの出力電力にとってより適したインピーダンス値に設定されている場合、増幅器10の効率は、バックオフ電力レベルで動作される時に改善することができる。一方、通常、その代わりの負荷ラインがバックオフ電力レベルにとってより良い値に設定されていると、増幅器は、通常の高動作電力レベルで必要とされる性能を満たすことができない。
バックオフ動作状態の下で動作することが望ましい場合に、直角位相オフセット増幅器10は、ベースバイアス状態を、上部RFトランジスタ16を効率的に遮断する代わりの状態に設定することによって、代わりの負荷ラインを提供する能力を有する。下部RFトランジスタ32は、依然としてバイアスされ、RF出力電力を出力に提供する。バックオフ状態と呼ばれるこの代わりのバイアス状態では、増幅器10は、必要とされる直線性を依然として満たすと同時に、バックオフ駆動レベルにおいて改善された効率を示す。直角位相オフセット増幅器10は、負荷ラインが、高動作電力レベルにとってのみ最良である値で一定に維持される類似の増幅器で得られる効率と比較して、バックオフレベルで得られる効率の値を通常2倍にすることができる。
高電力動作モードの期間中、すなわち、双方のトランジスタ16及び32にバイアスがかけられている時の増幅器10の出力部の等価回路を図2Aに示す。低電力動作モードの期間中(すなわち、トランジスタ32にバイアスがかけられ、且つ、トランジスタ16がオフである時、トランジスタ16のベースは開回路に接続されている)の増幅器10の出力部の等価回路を図2Bに示す。
したがって、図2Aを参照すると、双方のトランジスタ16及び32がオンである高電力動作モードの期間中、上述したように、遅れネットワーク回路部42の特性インピーダンスZCIも2Zoに等しいので、トランジスタ16及び32の出力、すなわちコレクタにおけるインピーダンスは、それぞれ2Zoである。これら2つのインピーダンスの有効な結合、すなわち並列結合は、したがってZoであり、出力整合ネットワーク22及び接続される負荷ZLにより出力ノード62において提供される負荷インピーダンスと同じである。
他方、トランジスタ16がオフである一方、トランジスタ32がオンである低電力動作モードの期間中、トランジスタ16の出力、すなわちコレクタ内に見られるインピーダンスは、図2Bに示すように、相対的に高い(すなわち、開回路である)。したがって、遅れネットワーク42の出力におけるインピーダンスもZoである。上述したように、遅れネットワーク回路部42の特性インピーダンスZCIは2Zoに等しい。したがって、トランジスタ32の出力(すなわち、コレクタ)におけるインピーダンスは、(ZCI)/Zo=(2Zo)/Zo=4Zoである。
したがって、双方のトランジスタ16及び32が導通している高電力動作モードの期間中、これら2つのインピーダンスの有効な結合、すなわち並列結合はZoである。これは、出力整合ネットワーク22及び負荷ZLにより出力端子62において提供されるインピーダンスと同じである。一方、トランジスタ16がオフであり、且つ、トランジスタ32がオンである低電力動作モードの期間中、導通しているトランジスタ32の出力におけるインピーダンスは4Zoであり、この例では、4倍の増加である。
直角位相オフセット部14による負荷ラインスイッチング
出力における直角位相オフセット部42は、増幅器10に組み込まれているが、双方のトランジスタ16及び32がオンにされているフル電力モードで動作される時の増幅器10の動作には影響を与えない。増幅器10の通常の実施態様では、上部トランジスタ16及び下部トランジスタ32は同じサイズである。増幅器10が、双方のトランジスタ16、32がオンにされているフル動作電力バイアス状態にある時、各トランジスタに示される負荷ラインインピーダンスは、対称性のために、出力整合ネットワーク22によって提供される等価インピーダンスの2倍になる。出力直角位相オフセット部42の特性インピーダンスは、直角位相オフセット部42からノード62を見た負荷ラインと同じであり、その結果、直角位相オフセット部42は、負荷ラインインピーダンスに影響を与えない。増幅器部14は、トランジスタ32の出力側のネットワーク42を用いて90度位相遅れを提供する一方、位相進みネットワーク38を有する増幅器部14の対応する入力直角位相部は、2つのトランジスタ16、32がフル動作電力モードにおいて同相で有効に動作するように、出力遅れネットワークの効果をキャンセルする挿入位相を提供する。各トランジスタ16、32は、増幅器10全体の出力電力の2分の1を自身の負荷ラインに供給しており、結合された増幅器10は、高電力出力動作モードで必要とされる性能を満たすことができる。
出力における直角位相オフセットは、上部トランジスタ16がバックオフバイアス状態で遮断されている時に代わりの負荷ラインを提供することへの鍵となる。オフのトランジスタ16は、共通の出力ノード62に電力を何ら供給していないので、下部トランジスタ32には、フル動作電力モードとは異なる負荷ラインが提供されることになる。共通の出力ノード62におけるインピーダンスは、回路部42の実効インピーダンスの2分の1であるが、遅れネットワーク42によって提供される4分の1波長伝送ライン変換器の既知の効果のために、共通の出力ノード62の4倍のインピーダンス値に変換される。直角位相部遅れネットワーク42は、低域Π型部42として実施されたものとして示されているが、分路コンデンサC2及びC3の値並びに直列インダクタL3の値は、4分の1波長RF伝送ラインが、たとえば、マイクロストリップであろうと、ストリップラインであろうと、導波管であろうと、その4分の1波長RF伝送ラインの集中定数素子バージョンとして等価なRF性能を提供する。したがって、低動作モードの下部トランジスタ32により見られる負荷ラインは、高動作電力モードで通常見られる値の2倍であり、フル動作電力状態の結合増幅器10の負荷ラインの負荷ライン値の4倍である。
負荷ラインインピーダンスのこの代わりの高い値により、このバックオフモードの増幅器10は、その出力動作電力能力が、高電力モードの増幅器10の電力能力と比較して、同じ4倍だけ低減されていることが分かる。この低い電力能力は、通常、バックオフモードの動作の性能要件と一致する。一方、この代わりの負荷ラインでは、バックオフモードの増幅器10の効率は、高電力モードで動作している時の増幅器10のバックオフ出力電力レベルで得られる効率と比較して、バックオフ出力電力レベルで約2倍だけ改善される。
ベースバイアススイッチング
バックオフモードの効率の全改善を調べるために、下部トランジスタ32のベースバイアスは、通常、より低い静止電流レベルに設定される。このレベルは、真のクラスBバイアス状態により近い。トランジスタ32のこのより低い静止バイアスへのスイッチングにより、RF駆動電力がこのバックオフ状態に向けて低減されるにつれて、トランジスタ32のコレクタ電流がより低い値に下がることが可能になり、したがって、バックオフの効率改善の全利益が与えられる。この低減された静止バイアス設定は、図3に示すように、トランジスタ32の制御電極に代わりのバイアス電流を供給するスイッチング可能バイアス回路部20’により達成される。スイッチング可能バイアス回路部20’は、電力レベルをバイアス電流レベル3(すなわち、電流バイアス源3)からバイアス電流レベル4(すなわち、電流バイアス源4)へ変更する。トランジスタ32に対する静止バイアスをより低く変更することは、上部トランジスタ16が、自身のベースバイアス回路部20を介して遮断されるのと同時に行われる。コントローラ52は、双方のスイッチング可能電流源20及び20’にライン51の共通のスイッチ信号を提供する。スイッチング可能電流源20’は、スマートコントローラ52により増幅器部12について決定された所望の動作状態に基づいて、コントローラ52からのライン51の制御信号により設定される。
通常、20及び20’として示すスイッチング可能バイアス回路部は、2つの動作モードについて、上部トランジスタ16及び下部トランジスタ32の二組のバイアス状態を提供するために、図示しない単純なトランジスタ、図示しない抵抗器、及び図示しないインバータ段を組み合わせたものから構成される。
増幅器10の場合:
高電力動作モードの期間中、増幅器部12のバイアス電流は、相対的に高い電流レベルであり(すなわち、電流レベル2は相対的に高い)、低電力動作モードの期間中、増幅器部12のバイアス電流は、相対的に低い(ここでは、開回路である)。高電力動作モード及び低電力動作モードの双方の期間中、増幅器部14のバイアス電流は、相対的に高い電流レベルである。
増幅器10’の場合:
高電力動作モードの期間中、増幅器部12のバイアス電流は、相対的に高い電流レベルであり(すなわち、電流レベル2は相対的に高い)、低電力動作モードの期間中、増幅器部12のバイアス電流は、相対的に低い(すなわち、電流レベル1は相対的に低く、ここでは、開回路である)。高電力動作モードの期間中、増幅器14のバイアス電流(図3の電流3)は、相対的に高い電流レベルである一方、低電力動作モードの期間中、増幅器部14のバイアス電流レベル(図3の電流4)は、相対的に低い電流レベルである。
入力直角位相オフセット効果
入力回路の直角位相オフセット部14の主な機能は、下部RFパス、すなわち直角位相オフセット部14の挿入位相を、上部RFパスである直角位相オフセット部12と等しくすることである。図1の概略図に示すように、直角位相オフセット部14は、進みネットワーク38を使用して位相進みを提供し、遅れネットワーク42の位相遅れを相殺する。進みネットワーク38は、通常は下部トランジスタ32の入力インピーダンスとほぼ同じである特性インピーダンスZCLBを有し、その結果、直角位相部14の入力内を見た場合に見られるインピーダンスは、下部トランジスタ32のインピーダンスとなる。増幅器10が高電力モードで動作されると、上部トランジスタ16も、同様に、下部トランジスタ32と同じ状態にバイアスされ、その結果、トランジスタ16の入力インピーダンスは、トランジスタ32の入力インピーダンスとほぼ同じとなる。増幅器10の入力における整合回路18は、60における共通のノード接続で結合された2つのRFパス、すなわち直角位相オフセット部12、14の等価な並列インピーダンスと整合するように設計される。上部パス、すなわち直角位相オフセット部12のトランジスタ16は、そのノードに直接接続される一方、下部パスのトランジスタ32は、トランジスタ32とノード60との間に、直角位相部、すなわち遅れネットワーク38を有する。2つのRFパスの並列インピーダンスは、トランジスタ16及び32のそれぞれの入力におけるインピーダンスのほぼ2分の1である。
増幅器10が、上部トランジスタ16及び下部トランジスタ32の双方が完全にバイアスされたフル電力モードで動作している時、RF入力信号は、2つのRFパス、すなわち直角位相オフセット部12、14に等分割され、その結果、双方のトランジスタ16、32は、同じRF電力で駆動される。増幅器10全体の入力から分かるように、整合回路18の入力において、入力インピーダンスは、所望の外部特性インピーダンスに整合される。この所望の外部特性インピーダンスは、通常、50オームである。増幅器10が、低動作電力モードにスイッチングされると、上部トランジスタ16はオフにされ、それによって、その入力インピーダンスは、より高いインピーダンスの値に変化し、通常は、バイアス時のトランジスタの入力インピーダンスよりもかなり高い。この時、共通の入力ノード60は、下部パス、すなわち直角位相オフセット部14だけのインピーダンスのみで負荷を受けるので、ノード60で見られるインピーダンスは、より高く、ほぼ2倍である。この場合、増幅器10の入力は、この低動作電力モードで動作している時に不整合になる。
図3に示す増幅器10’を参照すると、スイッチング可能ベースバイアス回路20’が、図1に示す固定電流バイアス回路20の代わりに使用される。図3に示すように、このスイッチング可能ベースバイアス回路20’は、下部トランジスタ32が低動作電力モードにバイアスされるようにライン41のベースバイアス電流をスイッチングするのに使用される。トランジスタ32のバイアスのその変化の結果、トランジスタ32の入力におけるインピーダンスは増加することになる。そのわずかに大きなインピーダンスの値は、90度位相進みネットワーク38のインピーダンス変換効果のために、入力進みネットワーク38によって、より低いインピーダンスに変換される。したがって、入力の共通のノード60において、低動作電力モードの場合に見られるインピーダンスは、高電力動作電力モードの場合のバイアス時に増幅器のそのノードにおいて見られるインピーダンスにより近い値にシフトされる。したがって、トランジスタ32のスイッチング可能ベースバイアスを有する場合、増幅器10’の入力整合も、所望の外部特性インピーダンスにより近い値にシフトされる。この場合、増幅器10’の入力インピーダンスは、高動作電力モード及び低動作電力モードの双方について許容可能である。
本発明の多数の実施の形態を説明してきた。それにもかかわらず、本発明の精神及び範囲から逸脱することなく、さまざまな変更を行えることが理解されよう。したがって、他の実施の形態は、特許請求の範囲の範囲に含まれる。
本発明による増幅器の概略ブロック図である。 図1の増幅器での使用に適した位相進みネットワークの概略図である。 図1の増幅器での使用に適した位相遅れネットワークの概略図である。 図1の増幅器が高電力動作モードにある時のこのような増幅器の概略ブロック図である。 図1の増幅器が低電力動作モードにある時のこのような増幅器の概略ブロック図である。 本発明の一代替的な実施の形態による増幅器の概略ブロック図である。

Claims (13)

  1. 共通の入力ノードと共通の出力ノードとの間に結合される一対の増幅器部を備え、
    (A)前記増幅器部の第1のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第1のトランジスタと、
    (ii)第1のバイアス源と、
    (iii)制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタの制御電極を前記第1のバイアス源に結合して、該第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタを非導通状態にするためのスイッチと、を有し、
    (B)前記増幅器部の第2のものは、
    (i)第1電極、出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、
    (ii)前記相対的に高い電力動作モード及び前記相対的に低い電力動作モードの双方の期間中、前記第2のトランジスタの制御電極に結合されて、該第2のトランジスタを導通状態にバイアスするための第2のバイアス源と、
    (iii)前記第2のトランジスタの出力と前記共通の出力ノードとの間に結合される第1の回路部と、
    (iv)前記共通の入力ノードと前記第2のトランジスタの前記制御電極との間に結合される第2の回路部と、を有し、
    (C)前記第1の回路部及び前記第2の回路部の一方は位相進みを提供し、前記第1の回路部及び前記第2の回路部の他方は位相遅れを提供し、
    (D)前記第1の回路部は、前記第2のトランジスタの出力と前記共通の出力ノードとの間に、前記第1のトランジスタの出力と前記共通の出力ノードとの間の位相シフトと異なる位相シフトを提供する位相シフト・ネットワークを含み、更に
    (E)前記共通の出力ノードに結合されるDC電圧源を備え、
    前記第2の増幅器部が、前記制御信号に従って選択的に、前記相対的に高い電力動作モードの期間中、前記第2のトランジスタの制御電極を前記第2のバイアス源に結合して、該第2のトランジスタを第1の導通レベルにバイアスするか、又は、前記相対的に低い電力動作モードの期間中、前記第2のトランジスタの制御電極を第3のバイアス源に結合して、該第2のトランジスタを第2の導通レベルにバイアスするためのスイッチを含み、
    前記相対的に低い電力動作モードの期間中に、前記第1の導通レベルから前記第2の導通レベルへの変化に伴い増加された前記第2のトランジスタの入力インピーダンスが、前記第2の回路部によってより低いインピーダンスに変換され、前記共通の入力ノードにおけるインピーダンスが、前記相対的に高い電力動作モードにおけるインピーダンスに近い値にシフトされることを特徴とする、増幅器。
  2. 前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数である、請求項1に記載の増幅器。
  3. 共通の入力ノードと共通の出力ノードとの間に結合される一対の増幅器部を備え、
    (A)前記増幅器部の第1のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第1のトランジスタと、
    (ii)第1のバイアス源と、
    (iii)制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタの制御電極を前記第1のバイアス源に結合して、該第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタを非導通状態にするためのスイッチと、を有し、
    (B)前記増幅器部の第2のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、
    (ii)前記相対的に高い電力動作モード及び前記相対的に低い電力動作モードの双方の期間中、前記第2のトランジスタの制御電極に結合されて、該第2のトランジスタを導通状態にバイアスするための第2のバイアス源と、
    (iii)前記第2のトランジスタの出力と前記共通の出力ノードとの間に結合され、前記相対的に高い電力動作モードの期間中、前記相対的に低い電力動作モードの期間中と異なるインピーダンスを、前記第2のトランジスタの出力に提供する第1の回路部と、
    (iv)前記共通の入力ノードと前記第2のトランジスタの前記制御電極との間に結合される第2の回路部と、を有し、
    (C)前記第1の回路部及び前記第2の回路部の一方は位相進みを提供し、前記第1の回路部及び前記第2の回路部の他方は位相遅れを提供し、
    (D)前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、更に
    (E)前記共通の出力ノードに結合されるインピーダンスZoを有する負荷を含み、
    前記第1の回路部は、特性インピーダンスZCI=2Zoを有し、該回路部は、前記相対的に高い電力動作モードの期間中は前記第2のトランジスタの前記出力において2Zoのインピーダンスを提供し、前記相対的に低い電力動作モードの期間中は前記第2のトランジスタの前記出力において(ZCI)/Zoのインピーダンスを提供
    前記第2の増幅器部が、前記制御信号に従って選択的に、前記相対的に高い電力動作モードの期間中、前記第2のトランジスタの制御電極を前記第2のバイアス源に結合して、該第2のトランジスタを第1の導通レベルにバイアスするか、又は、前記相対的に低い電力動作モードの期間中、前記第2のトランジスタの制御電極を第3のバイアス源に結合して、該第2のトランジスタを第2の導通レベルにバイアスするためのスイッチを含み、
    前記相対的に低い電力動作モードの期間中に、前記第1の導通レベルから前記第2の導通レベルへの変化に伴い増加された前記第2のトランジスタの入力インピーダンスが、前記第2の回路部によってより低いインピーダンスに変換されて、前記共通の入力ノードにおけるインピーダンスが、前記相対的に高い電力動作モードにおけるインピーダンスに近い値にシフトされることを特徴とする、
    増幅器。
  4. 共通の入力ノードと共通の出力ノードとの間に結合される一対の増幅器部を備え、
    (A)前記増幅器部の第1のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第1のトランジスタと、
    (ii)第1のバイアス源と、
    (iii)制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタの制御電極を前記第1のバイアス源に結合して、該第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタを非導通状態にするためのスイッチと、を有し、
    (B)前記増幅器部の第2のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、
    (ii)前記相対的に高い電力動作モード及び前記相対的に低い電力動作モードの双方の期間中、前記第2のトランジスタの制御電極に結合されて、該第2のトランジスタを導通状態にバイアスするための第2のバイアス源と、
    (iii)前記第2のトランジスタの出力と前記共通の出力ノードとの間に結合され、前記相対的に高い電力動作モードの期間中、前記相対的に低い電力動作モードの期間中と異なるインピーダンスを、前記第2のトランジスタの出力に提供する第1の回路部と、
    (iv)前記共通の入力ノードと前記第2のトランジスタの前記制御電極との間に結合される第2の回路部と、を有し、
    (C)前記第1の回路部及び前記第2の回路部の一方は位相進みを提供し、前記第1の回路部及び前記第2の回路部の他方は位相遅れを提供し、
    (D)前記第1の回路部は、前記第2のトランジスタの出力と前記共通の出力ノードとの間に、前記第1のトランジスタの出力と前記共通の出力ノードとの間の位相シフトと異なる位相シフトを提供する位相シフト・ネットワークを含み、
    (E)前記第2の増幅器部は、前記制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第2のトランジスタの制御電極を前記第2のバイアス源に結合して、該第2のトランジスタを第1の導通レベルにバイアスするか、又は、相対的に低い電力動作モードの期間中、前記第2のトランジスタの制御電極を第3のバイアス源に結合して、該第2のトランジスタを第2の導通レベルにバイアスするためのスイッチを含
    前記相対的に低い電力動作モードの期間中に、前記第1の導通レベルから前記第2の導通レベルへの変化に伴い増加された前記第2のトランジスタの入力インピーダンスが、前記第2の回路部によってより低いインピーダンスに変換されて、前記共通の入力ノードにおけるインピーダンスが、前記相対的に高い電力動作モードにおけるインピーダンスに近い値にシフトされることを特徴とする、
    増幅器。
  5. 前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数である、請求項4に記載の増幅器。
  6. 前記共通の出力ノードに結合されるインピーダンスZoを有する負荷を含み、
    前記第1の回路部は、特性インピーダンスZCI=2Zoを有し、該回路部は、前記相対的に高い電力動作モードの期間中は前記第2のトランジスタの前記出力において2Zoのインピーダンスを提供し、前記相対的に低い電力動作モードの期間中は前記第2のトランジスタの前記出力において(ZCI)/Zoのインピーダンスを提供する、請求項5に記載の増幅器。
  7. 第1電極、出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第1のトランジスタと、
    第1電極、前記出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、を備え、
    前記第1のトランジスタの制御電極が入力ノードに結合され、更に、
    第1のバイアス源と、
    制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタの制御電極を前記第1のバイアス源に結合して、該第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタを非導通状態にするためのスイッチと、
    前記相対的に高い電力動作モード及び前記相対的に低い電力動作モードの双方の期間中、前記第2のトランジスタの制御電極に結合されて、該第2のトランジスタを導通状態にバイアスするための第2のバイアス源と、
    前記第2のトランジスタの出力と前記出力ノードとの間に結合される第1の回路部と、
    前記入力ノードと前記第2のトランジスタの制御電極との間に結合される第2の回路部と、
    前記制御信号に従って選択的に、前記相対的に高い電力動作モードの期間中、前記第2のトランジスタの制御電極を前記第2のバイアス源に結合して、該第2のトランジスタを第1の導通レベルにバイアスするか、又は、前記相対的に低い電力動作モードの期間中、前記第2のトランジスタの制御電極を第3のバイアス源に結合して、該第2のトランジスタを第2の導通レベルにバイアスするためのスイッチと、
    を有し、
    前記第1の回路部及び前記第2の回路部の一方は位相進みを提供し、前記第1の回路部及び前記第2の回路部の他方は位相遅れを提供し、
    前記相対的に低い電力動作モードの期間中に、前記第1の導通レベルから前記第2の導通レベルへの変化に伴い増加された前記第2のトランジスタの入力インピーダンスが、前記第2の回路部によってより低いインピーダンスに変換されて、前記共通の入力ノードにおけるインピーダンスが、前記相対的に高い電力動作モードにおけるインピーダンスに近い値にシフトされ、
    更に、
    前記出力ノードに結合されるDC電圧源を備える、
    増幅器。
  8. 前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数である、請求項に記載の増幅器。
  9. 共通の入力ノードと共通の出力ノードとの間に結合される一対の増幅器部を備え、
    (A)前記増幅器部の第1のものは、
    (i)前記共通の出力ノードに結合される出力電極を有する第1のトランジスタと、
    (ii)第1のバイアス源と、
    (iii)制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタの制御電極を前記第1のバイアス源に結合して、該第1のトランジスタを導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタを非導通状態にするためのスイッチと、を有し、
    (B)前記増幅器部の第2のものは、
    (i)第1電極、前記共通の出力ノードに結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、
    (ii)前記相対的に高い電力動作モード及び前記相対的に低い電力動作モードの双方の期間中、前記第2のトランジスタの制御電極に結合されて、該第2のトランジスタを導通状態にバイアスするための第2のバイアス源と、
    (iii)前記第2のトランジスタの出力と前記共通の出力ノードとの間に結合される第1の回路部と、
    (iv)前記共通の入力ノードと前記第2のトランジスタの前記制御電極との間に結合される第2の回路部と、を有し、
    (C)前記第1の回路部及び前記第2の回路部の一方は位相進みを提供し、前記第1の回路部及び前記第2の回路部の他方は位相遅れを提供し、
    (D)前記第1の回路部は、前記第2のトランジスタの出力と前記共通の出力ノードとの間に、前記第1のトランジスタの出力と前記共通の出力ノードとの間の位相シフトと異なる位相シフトを提供する位相シフト・ネットワークを含み、更に
    (E)前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、更に、
    (F)前記共通の出力ノードに結合されるインピーダンスZoを有する負荷を含み、
    前記第1の回路部は、特性インピーダンスZCI=2Zoを有し、該回路部は、前記相対的に高い電力動作モードの期間中は前記第2のトランジスタの前記出力において2Zoのインピーダンスを提供し、前記相対的に低い電力動作モードの期間中は前記第2のトランジスタの前記出力において(ZCI)/Zoのインピーダンスを提供
    前記第2の増幅器部が、前記制御信号に従って選択的に、前記相対的に高い電力動作モードの期間中、前記第2のトランジスタの制御電極を前記第2のバイアス源に結合して、該第2のトランジスタを第1の導通レベルにバイアスするか、又は、前記相対的に低い電力動作モードの期間中、前記第2のトランジスタの制御電極を第3のバイアス源に結合して、該第2のトランジスタを第2の導通レベルにバイアスするためのスイッチを含み、
    前記相対的に低い電力動作モードの期間中に、前記第1の導通レベルから前記第2の導通レベルへの変化に伴い増加された前記第2のトランジスタの入力インピーダンスが、前記第2の回路部によってより低いインピーダンスに変換されて、前記共通の入力ノードにおけるインピーダンスが、前記相対的に高い電力動作モードにおけるインピーダンスに近い値にシフトされることを特徴とする、増幅器。
  10. 回路において入力整合ネットワーク(18)及び出力整合ネットワーク(22)の間を結合する増幅器(10’)であって、
    入力整合ネットワーク(18)に結合する共通の入力ノード(60)と、
    出力整合ネットワーク(22)に結合する共通の出力ノード(62)と、
    前記共通の入力ノード(60)及び前記共通の出力ノード(62)の間に結合される一対の増幅器部(12、14)とを備え、
    (A)前記一対の増幅器部のうち第1の増幅器部(12)は、
    (i)第1のトランジスタ(16)であって、基準電位に結合される第1電極、前記共通の出力ノード(62)に結合される出力電極、及び前記第1電極と出力電極との間の電流の流れを制御する制御電極を有する第1のトランジスタ(16)と、
    (ii)第1のバイアス源と、
    (iii)スイッチであって、制御信号に従って選択的に、相対的に高い電力動作モードの期間中、前記第1のトランジスタ(16)の制御電極を前記第1のバイアス源に結合して、該第1のトランジスタ(16)を導通状態にバイアスするか、又は、相対的に低い電力動作モードの期間中、制御電極を前記第1のバイアス源から除去して、前記第1のトランジスタ(16)を非導通状態にするためのスイッチと、を有し、
    (B)前記一対の増幅器部のうち第2の増幅器部(14)は、
    (i)第2のトランジスタ(32)であって、前記基準電位に結合される第1電極、前記共通の出力ノード(62)に結合される出力電極、及び前記第1電極と当該第2トランジスタ(32)の出力電極との間の電流の流れを制御する制御電極を有する第2のトランジスタと、
    (ii)前記第2のトランジスタ(32)を導通状態にバイアスするための第2のバイアス源と、
    (iii)前記第2のトランジスタ(32)の出力及び前記共通の出力ノード(62)の間に結合される第1の回路部(42)であって、前記第2トランジスタ(32)の出力において、前記相対的に高い電力動作モードの期間中に、前記相対的に低い電力動作制御モードの期間中とは異なるインピーダンスを提供する、第1回路部(42)と、を有し、
    (C)DC電圧源(24)は、前記共通の出力ノード(62)に結合され、
    前記一対の増幅器部のうち第2の増幅器部(14)が、
    前記共通の入力ノード(60)及び前記第2のトランジスタ(32)の前記制御電極の間に結合される第2の回路部(38)と、
    前記制御信号に従って選択的に、前記相対的に高い電力動作モードの期間中、前記第2のトランジスタ(32)の制御電極を、前記第2のバイアス源に結合して、該第2のトランジスタ(32)を第1の導通レベルにバイアスするか、又は、前記相対的に低い電力動作モードの期間中、第3のバイアス源に結合して、前記第2のトランジスタ(32)を第2の導通レベルにバイアスするためのスイッチと、を有し、
    (D)前記第1の回路部(42)及び前記第2の回路部(38)の一方は位相進みを提供し、前記第1の回路部(38)及び前記第2の回路部(42)の他方は位相遅れを提供すること
    を特徴とする、増幅器。
  11. 前記位相進みは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数であり、前記位相遅れは、実質的に(4n+1)π/2ラジアンであり、ここで、nは0を含む整数である、請求項10に記載の増幅器。
  12. 請求項11に記載の増幅器であって、前記共通の出力ノード(62)に結合されるインピーダンスZoを有する負荷を含み、
    前記第1の回路部(42)は、特性インピーダンスZCI=2Zoを有し、該回路部(42)は、前記相対的に高い電力動作モードの期間中は前記第2のトランジスタ(32)の前記出力電極において2Zoのインピーダンスを提供し、前記相対的に低い電力動作モードの期間中は前記第2のトランジスタ(32)の前記出力において(ZCI)/Zoのインピーダンスを提供する、増幅器。
  13. 請求項10乃至12のいずれか一項に記載の増幅器において、前記第1回路部(42)が位相遅れを提供し、前記第2回路部(38)が位相進みを提供する、増幅器。
JP2007515189A 2004-05-26 2005-05-19 直角位相オフセット電力増幅器 Active JP5259182B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/854,720 US7123096B2 (en) 2004-05-26 2004-05-26 Quadrature offset power amplifier
US10/854,720 2004-05-26
PCT/US2005/017629 WO2005119903A1 (en) 2004-05-26 2005-05-19 Quadrature offset power amplifier

Publications (2)

Publication Number Publication Date
JP2008500778A JP2008500778A (ja) 2008-01-10
JP5259182B2 true JP5259182B2 (ja) 2013-08-07

Family

ID=34971543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007515189A Active JP5259182B2 (ja) 2004-05-26 2005-05-19 直角位相オフセット電力増幅器

Country Status (7)

Country Link
US (1) US7123096B2 (ja)
EP (1) EP1749342B1 (ja)
JP (1) JP5259182B2 (ja)
KR (1) KR101121772B1 (ja)
DE (1) DE602005027198D1 (ja)
TW (1) TWI350651B (ja)
WO (1) WO2005119903A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500883A (ja) * 2002-09-20 2006-01-05 トライクウィント セミコンダクター,インコーポレーテッド 複数の出力電力レベルを有する線形電力増幅器
US7936218B1 (en) * 2003-08-20 2011-05-03 Emhiser Research, Inc. Shared-current electronic system
JP2006093773A (ja) * 2004-09-21 2006-04-06 Renesas Technology Corp 高周波電力増幅モジュール
DE102005020319B4 (de) * 2005-05-02 2010-06-17 Infineon Technologies Ag Verstärkeranordnung mit einem umschaltbaren Verstärkungsfaktor und Verfahren zum Verstärken eines zu verstärkenden Signals mit einem umschaltbaren Verstärkungsfaktor
US7482868B2 (en) * 2005-10-25 2009-01-27 Skyworks Solutions, Inc. Dual mode power amplifier
US7382194B2 (en) * 2006-01-18 2008-06-03 Triquint Semiconductor, Inc. Switched distributed power amplifier
EP2005578B1 (en) * 2006-03-09 2013-01-09 Skyworks Solutions, Inc. High efficiency load insensitive power amplifier
US7414478B2 (en) * 2006-03-31 2008-08-19 Intel Corporation Integrated parallel power amplifier
JP2008092521A (ja) * 2006-10-05 2008-04-17 Nec Electronics Corp 小型電力増幅器
WO2009052283A2 (en) * 2007-10-16 2009-04-23 Black Sand Technologies, Inc. Adaptively tuned rf power amplifier
WO2010096582A2 (en) * 2009-02-18 2010-08-26 Rayspan Corporation Metamaterial power amplifier systems
EP2267885A1 (en) * 2009-06-17 2010-12-29 Nxp B.V. Doherty amplifier
JP2011030069A (ja) * 2009-07-28 2011-02-10 Mitsubishi Electric Corp 高周波増幅器
US8299857B2 (en) * 2011-01-27 2012-10-30 Integra Technologies, Inc. RF power amplifier including broadband input matching network
KR101444520B1 (ko) 2012-02-09 2014-09-24 삼성전기주식회사 증폭 회로 및 그 동작 방법
US9473076B2 (en) 2013-11-07 2016-10-18 Skyworks Solutions, Inc. Linearity performance for multi-mode power amplifiers
US9467101B2 (en) * 2013-11-07 2016-10-11 Skyworks Solutions, Inc. Systems, circuits and methods related to multi-mode power amplifiers having improved linearity
CA2937686C (en) * 2014-02-06 2022-06-28 Fadhel M. Ghannouchi High efficiency ultra-wideband amplifier
JP6707642B2 (ja) * 2015-12-17 2020-06-10 ユー−ブロックス、アクチエンゲゼルシャフトu−blox AG 電力増幅装置、エンベロープ追跡型の増幅装置、および信号を増幅する方法
CN111527693A (zh) * 2017-12-28 2020-08-11 住友电气工业株式会社 谐波处理电路和放大电路
WO2020012922A1 (ja) * 2018-07-09 2020-01-16 住友電気工業株式会社 給電回路及び増幅回路
CN109450395B (zh) * 2018-12-26 2024-02-02 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器
KR20220015809A (ko) 2020-07-31 2022-02-08 삼성전기주식회사 전력 증폭기, 전력 증폭기 시스템, 그리고 이의 동작 방법
CN112994627B (zh) * 2021-02-25 2024-02-20 中电国基南方集团有限公司 高阻抗变换比、低匹配损耗的高效率功率放大器电路拓扑结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454006A (ja) * 1990-06-22 1992-02-21 Fujitsu Ltd 増幅装置
US5541554A (en) 1995-03-06 1996-07-30 Motorola, Inc. Multi-mode power amplifier
JPH08307159A (ja) * 1995-04-27 1996-11-22 Sony Corp 高周波増幅回路、送信装置、及び受信装置
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
US6329877B1 (en) 1999-06-25 2001-12-11 Agere Systems Guardian Corp. Efficient power amplifier
US6320462B1 (en) 2000-04-12 2001-11-20 Raytheon Company Amplifier circuit
US6894561B2 (en) * 2002-09-20 2005-05-17 Triquint Semiconductor, Inc. Efficient power control of a power amplifier by periphery switching
JP2006500883A (ja) * 2002-09-20 2006-01-05 トライクウィント セミコンダクター,インコーポレーテッド 複数の出力電力レベルを有する線形電力増幅器
KR20040092291A (ko) * 2003-04-26 2004-11-03 엘지전자 주식회사 전력 증폭기

Also Published As

Publication number Publication date
US7123096B2 (en) 2006-10-17
EP1749342B1 (en) 2011-03-30
TW200610263A (en) 2006-03-16
KR20070015190A (ko) 2007-02-01
EP1749342A1 (en) 2007-02-07
JP2008500778A (ja) 2008-01-10
TWI350651B (en) 2011-10-11
WO2005119903A1 (en) 2005-12-15
DE602005027198D1 (de) 2011-05-12
KR101121772B1 (ko) 2012-03-23
US20050264364A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
JP5259182B2 (ja) 直角位相オフセット電力増幅器
US5541554A (en) Multi-mode power amplifier
KR101089891B1 (ko) 무선 통신 장치용 집적 전력 증폭기 시스템
US6522201B1 (en) RF amplifier having switched load impedance for back-off power efficiency
US7242245B2 (en) Method and apparatus for an improved power amplifier
US7358806B2 (en) Method and apparatus for an improved power amplifier
US9203362B2 (en) Quadrature lattice matching network
US7486133B2 (en) Transmitting output stage with adjustable output power and process for amplifying a signal in a transmitting output stage
US7332960B2 (en) Method and apparatus for an improved power amplifier
US7268616B2 (en) Method and apparatus for an improved power amplifier
EP1515450A1 (en) Antenna switching circuit
WO2001003289A1 (en) Power amplifier for efficiently amplifying linearly modulated signals
WO2006105413A2 (en) Doherty power amplifier with phase compensation
GB2219702A (en) Multistage amplifier
WO2013015778A1 (en) Actively tuned circuit having parallel carrier and peaking paths
US7248109B2 (en) Method and apparatus for an improved power amplifier
US6317002B1 (en) Circuit for efficiently producing low-power radio frequency signals
US11482974B2 (en) Radio-frequency amplifier
US7999613B2 (en) Method and apparatus for an improved power amplifier
US11309842B2 (en) Power amplifier circuit
JP2001211090A (ja) 高周波電力増幅回路およびそれを用いた携帯電話端末
EP1854209A2 (en) Method and apparatus for an improved power amplifier
WO2003085826A2 (en) Switched transformer for adjusting power amplifier loading
WO2006088604A2 (en) Method and apparatus for an improved power amplifier
CN114665828A (zh) 推挽功率放大电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100609

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100616

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110810

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110817

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110907

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111007

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121101

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121203

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5259182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250